Homework 4: \mathbb{R}^{d} Integral, line integral and Green theorem

Due: 04/08/2020
Lecturer: Chenlin GU

Exercise 1 (Value of Gamma function). In this question, we study the some typical numerical value of the Gamma function. We recall the definition that

$$
\begin{equation*}
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x \tag{1}
\end{equation*}
$$

and its value is well defined for $\alpha \in(0, \infty)$.

1. Prove the recurrence equation that $\forall \alpha \in(0, \infty)$

$$
\begin{equation*}
\Gamma(\alpha+1)=\alpha \Gamma(\alpha) \tag{2}
\end{equation*}
$$

2. Use eq. (2) to prove that for $n \in \mathbb{N}, \Gamma(n)=(n-1)$!.
3. Prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$. (Indication: you can try a change of variable in eq. (1) that $x=y^{2}$.)

Exercise 2 (Area of n-ball and area of \mathbb{S}^{n-1}). In this question, we study the volume of n-dimensional unit ball

$$
B_{1}^{n}=\left\{\left(x_{1}, \cdots x_{n}\right) \mid \sum_{i=1}^{n}\left(x_{i}\right)^{2} \leqslant 1\right\}
$$

and the area of the surface area that

$$
\mathbb{S}^{n-1}=\left\{\left(x_{1}, \cdots x_{n}\right) \mid \sum_{i=1}^{n}\left(x_{i}\right)^{2}=1\right\} .
$$

1. The main idea is a recurrence equation: let the volume $V_{n}=V\left(B_{1}^{n}\right)$, we have the equation

$$
\begin{equation*}
V_{n}=\frac{2 \pi V_{n-2}}{n} \tag{3}
\end{equation*}
$$

Indication: you can make a change of variable $x_{1}=r \cos \theta, x_{2}=r \sin \theta$, and make use of the volume V_{n-2}.
2. Establish the formula $V_{n}=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}$.
3. Deduce from it ω_{n-1} the area of surface \mathbb{S}^{n-1} that $\omega_{n-1}=\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}$.

Exercise 3. Let C be the unit circle $x^{2}+y^{2}=1$, oriented counterclockwise. Evaluate the following integral by using Green's theorem to convert to a double integral over the unit disk D:

1. $\int_{C}\left(3 x^{2}-y\right) d x+\left(x+4 y^{3}\right) d y$.
2. $\int_{C}\left(x^{2}+y^{2}\right) d y$.

Exercise 4. Find a potential function ϕ such that $F=\nabla \phi$ for the following vector field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

1. $F(x, y)=\left(2 x y^{3}, 3 x^{2} y^{2}\right)$.
2. $F(x, y)=\left(\sin 2 x \cos ^{2} y,-\sin ^{2} x \sin 2 y\right)$.
