Homework 4: \mathbb{R}^d Integral, line integral and Green theorem

Due: 04/08/2020

Lecturer: Chenlin GU

Exercise 1 (Value of Gamma function). In this question, we study the some typical numerical value of the Gamma function. We recall the definition that

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx,\tag{1}$$

and its value is well defined for $\alpha \in (0, \infty)$.

1. Prove the recurrence equation that $\forall \alpha \in (0, \infty)$

$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha). \tag{2}$$

- 2. Use eq. (2) to prove that for $n \in \mathbb{N}$, $\Gamma(n) = (n-1)!$.
- 3. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. (Indication: you can try a change of variable in eq. (1) that $x = y^2$.)

Exercise 2 (Area of *n*-ball and area of \mathbb{S}^{n-1}). In this question, we study the volume of *n*-dimensional unit ball

$$B_1^n = \left\{ (x_1, \cdots x_n) \left| \sum_{i=1}^n (x_i)^2 \leqslant 1 \right\},\right.$$

and the area of the surface area that

$$\mathbb{S}^{n-1} = \left\{ (x_1, \cdots x_n) \left| \sum_{i=1}^n (x_i)^2 = 1 \right\} \right\}.$$

1. The main idea is a recurrence equation: let the volume $V_n = V(B_1^n)$, we have the equation

$$V_n = \frac{2\pi V_{n-2}}{n}.$$
 (3)

Indication: you can make a change of variable $x_1 = r \cos \theta$, $x_2 = r \sin \theta$, and make use of the volume V_{n-2} .

2. Establish the formula $V_n = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$.

3. Deduce from it ω_{n-1} the area of surface \mathbb{S}^{n-1} that $\omega_{n-1} = \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}$.

Exercise 3. Let C be the unit circle $x^2 + y^2 = 1$, oriented counterclockwise. Evaluate the following integral by using Green's theorem to convert to a double integral over the unit disk D:

- 1. $\int_C (3x^2 y) \, dx + (x + 4y^3) \, dy.$
- 2. $\int_C (x^2 + y^2) \, dy$.

Exercise 4. Find a potential function ϕ such that $F = \nabla \phi$ for the following vector field $F : \mathbb{R}^2 \to \mathbb{R}^2$.

- 1. $F(x,y) = (2xy^3, 3x^2y^2).$
- 2. $F(x,y) = (\sin 2x \cos^2 y, -\sin^2 x \sin 2y).$