Homework 5: Stokes' theorem and some applications

Due: No Due

Lecturer: Chenlin GU

Exercise 1 (Can we apply Green's theorem?). The function of winding number is defined as an integral of 1 -form ω defined on $\mathbb{R}^{2} \backslash\{0\}$.

$$
\begin{equation*}
\omega=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y . \tag{1}
\end{equation*}
$$

Let γ be the closed curve ∂B_{1}.

1. Calculate $\int_{\partial B_{1}} \omega d \gamma$.
2. Can we apply the Green's theorem for the integral above? Why?

Exercise 2 (Calculus on torus). Let $(\alpha, \beta) \in[0,2 \pi]^{2}$ and $(\alpha, \beta) \mapsto(x, y, z)$ be the parametrization of torus

$$
\begin{aligned}
& x=(R+r \cos \alpha) \cos \beta, \\
& y=(R+r \cos \alpha) \sin \beta, \\
& z=r \sin \alpha .
\end{aligned}
$$

Calculate the area and volume of this torus.

Exercise 3 (Induction of Gauss's law from Coulomb's law). We recall that the Coulomb's law: for two electric particle of charge q_{1}, q_{2}, and of distance r_{12}, the force between them is

$$
F=k_{e} \frac{q_{1} q_{2}}{\left|r_{12}\right|^{2}}, \quad k_{e}=\frac{1}{4 \pi \varepsilon_{0}} .
$$

Now we put a particle of charge q at origin 0 , and denote by $E: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ the electric field generated by it, i.e. for any particle of charge q^{\prime} at position $r \in \mathbb{R}^{3}$, it is acted a force $F=E(r) q^{\prime}$.

1. Write down the expression $E(r)$.
2. Prove that for any $r>0$, we have

$$
\int_{\partial B_{r}} E \cdot \mathbf{n} d S=\frac{q}{\varepsilon_{0}} .
$$

3. Prove that E satisfies the Gauss' law, i.e. for any domain Ω contains 0 with regular boundary

$$
\begin{equation*}
\int_{\partial \Omega} E \cdot \mathbf{n} d S=\frac{q}{\varepsilon_{0}} . \tag{2}
\end{equation*}
$$

4. Let ρ be the density of particle charge, and use the superposition to prove Gauss' law in general case.

Exercise 4. Prove that in the Maxwell equations, when $J=\rho=0$, we can deduce the following equation for the field E, B.

$$
\begin{aligned}
& \mu_{0} \varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} E=\Delta E \\
& \mu_{0} \varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} B=\Delta B
\end{aligned}
$$

Exercise 5 (Platonic solid). In three-dimensional space, a Platonic solid is a regular, convex polyhedron i.e. every face is identical regular polygon (same number of edges, vertex, and same length, angles). Prove that there are 5 types of Platonic solid. (Indication: Euler formula.)

Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron
Four faces	Six faces	Eight faces	Twelve faces	Twenty faces

