MATH-UA.0224@NYU

Homework 5: Stokes' theorem and some applications

Due: No Due

Lecturer: Chenlin GU

Exercise 1 (Can we apply Green's theorem?). *The function of winding number is defined as an integral of* 1*-form* ω *defined on* $\mathbb{R}^2 \setminus \{0\}$.

$$\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy.$$
 (1)

Let γ be the closed curve ∂B_1 .

- 1. Calculate $\int_{\partial B_1} \omega d\gamma$.
- 2. Can we apply the Green's theorem for the integral above? Why?

Exercise 2 (Calculus on torus). Let $(\alpha, \beta) \in [0, 2\pi]^2$ and $(\alpha, \beta) \mapsto (x, y, z)$ be the parametrization of torus

$$x = (R + r \cos \alpha) \cos \beta,$$

$$y = (R + r \cos \alpha) \sin \beta,$$

$$z = r \sin \alpha.$$

Calculate the area and volume of this torus.

Exercise 3 (Induction of Gauss's law from Coulomb's law). We recall that the Coulomb's law: for two electric particle of charge q_1, q_2 , and of distance r_{12} , the force between them is

$$F = k_e \frac{q_1 q_2}{|r_{12}|^2}, \qquad k_e = \frac{1}{4\pi\varepsilon_0}.$$

Now we put a particle of charge q at origin 0, and denote by $E : \mathbb{R}^3 \to \mathbb{R}^3$ the electric field generated by it, i.e. for any particle of charge q' at position $r \in \mathbb{R}^3$, it is acted a force F = E(r)q'.

- 1. Write down the expression E(r).
- 2. Prove that for any r > 0, we have

$$\int_{\partial B_r} E \cdot \mathbf{n} \, dS = \frac{q}{\varepsilon_0}.$$

3. Prove that E satisfies the Gauss' law, i.e. for any domain Ω contains 0 with regular boundary

$$\int_{\partial\Omega} E \cdot \mathbf{n} \, dS = \frac{q}{\varepsilon_0}.\tag{2}$$

4. Let ρ be the density of particle charge, and use the superposition to prove Gauss' law in general case.

Exercise 4. *Prove that in the Maxwell equations, when* $J = \rho = 0$ *, we can deduce the following equation for the field* E, B*.*

$$\mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} E = \Delta E,$$

$$\mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} B = \Delta B.$$

Exercise 5 (Platonic solid). *In three-dimensional space, a Platonic solid is a regular, convex polyhedron i.e. every face is identical regular polygon (same number of edges, vertex, and same length, angles). Prove that there are 5 types of Platonic solid. (Indication: Euler formula.)*

Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron
Four faces	Six faces	Eight faces	Twelve faces	Twenty faces
(Animation)	(Animation)	(Animation)	(Animation)	(Animation)
(3D model)	(3D model)	(3D model)	(3D model)	(3D model)