Lecture 1: Line Integral

Chenlin GU

DMA/ENS, PSL Research University

March 25, 2020

Chenlin GU (DMA/ENS)

Vector Analysis

March 25, 2020 1/31

Outline for section 1

2 Integral of Vector Field

3 Integral of 1-Form

Chenlin GU (DMA/ENS)

Vector Analysis

March 25, 2020 2/31

Object

- What is a curve in \mathbb{R}^d ?
- How to define a integral for along a curve γ as

 $\int_{\gamma} f \, d\gamma?$

• Similar property as Newton-Leibniz formula that

$$\int_{\gamma} f \, d\gamma = F(b) - F(a)?$$

You know the answer for a special case when γ is an affine interval.

What is a curve ?

- A curve in \mathbb{R}^d is a continuous parametrization $\gamma : [a, b] \to \mathbb{R}^d$.
- Thus, geometrically, two parametrizations γ_1, γ_2 may identify a same object visually. (A non-math description.)
- One can establish an equivalent relation : $\gamma_1 : [a, b] \to \mathbb{R}^d, \gamma_2 : [c, d] \to \mathbb{R}^d, \gamma_1 \equiv \gamma_2$ if there is a monotone bijection $\phi : [a, b] \to [c, d]$ and

$$\forall t \in [a, b], \qquad \gamma_2(\phi(t)) = \gamma_1(t).$$

Curve

Length of a Curve

One natural way to define the length of a curve $\gamma : [a, b] \to \mathbb{R}^d$ is to do at first partition \mathcal{P} and then let the partition go to 0. That is: Let $\mathcal{P} = \{t_0, t_1 \cdots t_n\}$ where $a = t_0 < t_1 \cdots < t_n = b$, and $|\mathcal{P}| = \max_{0 \leq i \leq n-1} |t_{i+1} - t_i|$, then the length of the curve with the partition $L(\gamma, \mathcal{P})$ is

$$L(\gamma, \mathcal{P}) = \sum_{i=0}^{n-1} |\gamma(t_{i+1}) - \gamma(t_i)|. \qquad (1.1)$$

One may define that

$$L(\gamma) := \lim_{|\mathcal{P}| \to 0} L(\gamma, \mathcal{P}).$$
(1.2)

Length of a Curve

Definition (Rectified Curve)

We say a curve $\gamma : [a, b] \to \mathbb{R}^d$ is rectified if eq. (1.2) is well defined and $L(\gamma) < \infty$. In this case, we say $L(\gamma)$ the length of γ .

Curve

Length of a Curve

- It is false that every curve has length, even it is continuous.
- Reason: fractal structure.
- e.x. Koch's snowflake, Brownian motion etc.

Figure: Koch's snowflake.

Vector Analysis

Length of a Curve

Remark: For these fractal objects, although the definition of length above does not work, one can also define their "length" by some other formula.

Length of a Curve

Theorem

If $\gamma : [a, b] \to \mathbb{R}^d$ is C^1 , then $L(\gamma)$ exists.

Proof.

In this case $|\gamma(t_{i+1}) - \gamma(t_i)| \simeq \gamma'(t_i)|t_{i+1} - t_i|$, and one can use the uniform continuity to prove that the sum converges.

П

Regular Curve

Definition (Regular Curve)

We say a curve $\gamma : [a, b] \to \mathbb{R}^d$ is regular is γ is $C^1([a, b])$ and $\gamma' \neq 0$.

Definition (Equivalent Relation for Regular Curve)

For two regular curves $\gamma_1 : [a, b] \to \mathbb{R}^d$, $\gamma_2 : [c, d] \to \mathbb{R}^d$, we say they are equivalent if there is a monotone C^1 bijection $\phi : [a, b] \to [c, d]$ and

$$\forall t \in [a, b], \qquad \gamma_2(\phi(t)) = \gamma_1(t).$$

Theorem (Integral along Regular Curve)

For a regular curve $\gamma:[a,b]\to \mathbb{R}^d,$ f continuous on $\gamma,$ then we define that

$$\int_{\gamma} f \, d\gamma := \int_{a}^{b} f(\gamma(t)) |\gamma'(t)| \, dt.$$
(1.3)

This integral is independent of the parametrization: for two equivalent regular curves $\gamma_1 : [a, b] \to \mathbb{R}^d, \gamma_2 : [c, d] \to \mathbb{R}^d$, we have

$$\int_{a}^{b} f(\gamma_{1}(t)) |\gamma_{1}'(t)| dt = \int_{c}^{d} f(\gamma_{2}(t)) |\gamma_{2}'(t)| dt.$$
(1.4)

Remark: One can generalize this result to a curve regular in every interval.

Chenlin GU (DMA/ENS)

Proof.

Let $\phi : [a, b] \rightarrow [c, d]$ the function such that $\gamma_1 = \gamma_2 \circ \phi$, and let $s = \phi(t)$, then we have

$$\begin{split} \int_{a}^{b} f(\gamma_{1}(t)) |\gamma_{1}'(t)| \, \mathrm{d}t &= \int_{a}^{b} f(\gamma_{2} \circ \phi(t)) |(\gamma_{2} \circ \phi(t))'| \, \mathrm{d}t \\ &= \int_{a}^{b} f(\gamma_{2}(\phi(t))) |\gamma_{2}'(\phi(t))| \phi'(t) \, \mathrm{d}t \\ &= \int_{c}^{d} f(\gamma_{2}(s)) |\gamma_{2}'(s)| \, \mathrm{d}s. \end{split}$$

Chenlin GU (DMA/ENS)

П

Interpretation 1 of the equation

$$\int_a^b f(\gamma_1(t))|\gamma_1'(t)|\,\mathrm{d} t = \int_c^d f(\gamma_2(t))|\gamma_2'(t)|\,\mathrm{d} t.$$

: Alice and Bob finish a riding tour and they count the number of the audience, which has density f. Alice has trace γ_1 during time [a, b] while Bob with trace γ_2 during time [c, b]. If we suppose they finish the same tour, with the same audience, the total number does not depend on how and when they finish.

Interpretation 2 of the equation

$$\int_a^b f(\gamma_1(t))|\gamma_1'(t)|\,\mathrm{d} t = \int_c^d f(\gamma_2(t))|\gamma_2'(t)|\,\mathrm{d} t.$$

Let f be the mass density of a string, then this equation calculate the total mass of this string, which is

$$\lim_{|\mathcal{P}| \to 0} \sum_{i=0}^{n-1} f(t_i) |\gamma(t_{i+1}) - \gamma(t_i)|.$$

Outline for section 2

2 Integral of Vector Field

Work done by the force

Let a particle moving along the curve $\gamma : [a, b] \to \mathbb{R}^d$, drive by a force field $F : \mathbb{R}^d \to \mathbb{R}^d$, then what is the work done by the force ?

- Recall the formula: $W = F \cdot \Delta S$.
- We do a partition \mathcal{P} of the curve, $\mathcal{P} = \{t_0, t_1 \cdots t_n\}$ where $a = t_0 < t_1 \cdots < t_n = b$, and $|\mathcal{P}| = \max_{0 \le i \le n-1} |t_{i+1} t_i|$
- We use linear interpolation and suppose the force constant on every interval, then

$$W(\gamma, F, \mathcal{P}) = \sum_{i=0}^{n-1} F(t_i) \cdot (\gamma(t_{i+1}) - \gamma(t_i)).$$

• We take the limit

$$W(\gamma, F) = \lim_{|\mathcal{P}| \to 0} W(\gamma, F, \mathcal{P}).$$

Work done by the force

Question: How to make the procedure above rigorous ?

Integral of Vector Field

Theorem (Integral of Vector Field)

Let $\gamma : [a, b] \to \mathbb{R}^d$ a regular curve (so $C^1([a, b])$, with d components $(\gamma_1, \gamma_2 \cdots \gamma_d)$. Let the force field $F : \mathbb{R}^d \to \mathbb{R}^d$ a continuous field, i.e.

$$\mathbf{F} = (\mathbf{F}_1, \mathbf{F}_2, \cdots \mathbf{F}_d), \forall \mathbf{i}, \mathbf{F}_\mathbf{i} \in \mathbf{C}(\mathbb{R}^d).$$

Then we define that

$$\int_{\gamma} F \, \mathrm{d}\gamma := \int_{a}^{b} F(t) \cdot \gamma'(t) \, \mathrm{d}t = \sum_{i=1}^{d} \int_{a}^{b} F_{i}(t) \gamma'_{i}(t) \, \mathrm{d}t.$$

Moreover, for two equivalent regular curves γ, β , we have

$$\int_{\gamma} \mathbf{F} \, \mathrm{d}\gamma = \int_{\beta} \mathbf{F} \, \mathrm{d}\beta$$

Chenlin GU (DMA/ENS)

Gradient Field

Definition (Gradient Field)

 $F:\mathbb{R}^d\to\mathbb{R}^d$ is a gradient field if and only if there exists $f:\mathbb{R}^d\to\mathbb{R}$ differentiable such that

$$\mathbf{F} = \nabla \mathbf{f}, \qquad \text{i.e.} \qquad \mathbf{F}_{\mathbf{i}} = \partial_{\mathbf{i}} \mathbf{f}.$$

Chenlin GU (DMA/ENS)

Integral of Gradient Field

Lemma

Let $\gamma:[0,1]\to\mathbb{R}^d$ a regular curve, F a continuous gradient field that $F=\nabla f,$ then

$$\int_{\gamma} \operatorname{F} \mathrm{d} \gamma = \operatorname{f}(\gamma(1)) - \operatorname{f}(\gamma(0)).$$

In this case, we call f potential function.

Integral of Gradient Field

Proof.

F continuous implies that $f \in C^1(\mathbb{R}^d)$, then we have $t \mapsto f(\gamma(t)) \in C^1([0, 1])$, we use Newton-Leibniz formula that

$$\begin{split} f(\gamma(1)) - f(\gamma(0)) &= \int_0^1 \frac{d}{dt} f(\gamma(t)) \, dt \\ &= \int_0^1 \nabla f(\gamma(t)) \cdot \gamma'(t) \, dt \\ &= \int_0^1 F(\gamma(t)) \cdot \gamma'(t) \, dt. \end{split}$$

It is the lemma.

Integral of Gradient Field

As a corollary, for F continuous field, then $\int_{\gamma} F d\gamma$ only depends on the end points rather than how they are connected.

Outline for section 3

2 Integral of Vector Field

The integral of vector field is in fact an integral of 1-form, which is a very intuitive example of the general integral of k-form. Objective of this section: start to be familiar with the terminology of differential form.

Dual Space of \mathbb{R}^d

• We define the dual space of \mathbb{R}^d

$$(\mathbb{R}^d)^* := \{T | T : \mathbb{R}^d \to \mathbb{R} \text{ linear function } \}.$$

• $(\mathbb{R}^d)^*$ is itself a d dimension linear space. Since every linear map has form

$$T = \sum_{i=1}^{d} \alpha_i e_i^*, \qquad e_i^*(e_j) = \delta_{ij}, \qquad T(\sum_{i=1}^{d} x_i e_i) = \sum_{i=1}^{d} \alpha_i x_i.$$

Dual Space of \mathbb{R}^d

Proof.

We test T with $\{e_1 \cdots e_d\}$ that

$$\forall 1 \leq i \leq d, \quad \alpha_i := T(e_i).$$

Then, for any $x = \sum_{i=1}^{d} x_i e_i$, we have

$$\mathrm{T}(\mathrm{x}) = \mathrm{T}(\sum_{\mathrm{i}=1}^{\mathrm{d}} \mathrm{x}_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}) = \sum_{\mathrm{i}=1}^{\mathrm{d}} \mathrm{x}_{\mathrm{i}} \mathrm{T}(\mathrm{e}_{\mathrm{i}}) = \sum_{\mathrm{i}=1}^{\mathrm{d}} \alpha_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}.$$

Let e_i^* such that $e_i^*(e_j) = \delta_{ij}$, then we have obviously $T = \sum_{i=1}^d \alpha_i e_i^*$. \Box

Tangent Space of Regular Curve

For a regular space $\gamma : [a, b] \to \mathbb{R}^d$, for every $p \in (a, b)$, it is associated to a tangent space $T_p \gamma$ of dimension 1 and also a dual space $T_p^* \gamma$ (= cotangent space) of dimension 1.

Remark: $\gamma' \neq 0$ is important here.

Integral of 1-Form

- We revisit the vector field $F : \mathbb{R}^d \to \mathbb{R}^d$.
- F is considered as 1-form:

$$\mathbf{F} = \mathbf{F}_1 \mathbf{d} \mathbf{x}_1 + \mathbf{F}_2 \mathbf{d} \mathbf{x}_1 \cdots \mathbf{F}_d \mathbf{d} \mathbf{x}_d.$$

• For any
$$p \in \gamma$$
, $F(p) \in T_p^* \gamma$ that

$$\forall h \in T_p \gamma, \quad F(p)(h) = F(p) \cdot h.$$

• $\int_{\gamma} F$ is understood as the integral of this linear functional - that is the integral of 1-form.

Gradient as Exterior Differential of 0-form

- A function $g : \mathbb{R}^d \to \mathbb{R}$ is 0-form.
- We define the exterior differential of a 0-form

$$dg = \sum_{i=1}^d \frac{\partial g}{\partial x_i} dx_i.$$

• A gradient vector field F is an 1-form such that F = dg, it is also said exact.

Homotopy

Definition (Homotopic Function)

Two continuous curves $\gamma_0,\gamma_1:[a,b]\to U\subset\mathbb{R}^d$ with the same end point

$$\gamma_0(\mathbf{a}) = \gamma_1(\mathbf{a}), \qquad \gamma_0(\mathbf{b}) = \gamma_1(\mathbf{b}).$$

They are homotopic if there exists a continuous function $H: [0, 1] \times [a, b] \rightarrow U$ s.t.

$$\begin{split} H(0,\cdot) &= \gamma_0(\cdot), H(1,\cdot) = \gamma_1(\cdot), \\ \forall s \in [0,1], H(s,a) &= \gamma_0(a) = \gamma_1(a), \\ H(s,b) &= \gamma_0(b) = \gamma_1(b). \end{split}$$

H is called homotopy function for γ_0, γ_1 .

Homotopy

• The theorem for the gradient field can be stated as: the integral is equal for homotopic curves.

