Lecture 1: Line Integral

Chenlin GU
DMA/ENS, PSL Research University

March 25, 2020

Outline for section 1

(1) Curve

(2) Integral of Vector Field

(3) Integral of 1-Form

Object

- What is a curve in \mathbb{R}^{d} ?
- How to define a integral for along a curve γ as

$$
\int_{\gamma} \mathrm{fd} \gamma ?
$$

- Similar property as Newton-Leibniz formula that

$$
\int_{\gamma} \mathrm{fd} \gamma=\mathrm{F}(\mathrm{~b})-\mathrm{F}(\mathrm{a}) ?
$$

You know the answer for a special case when γ is an affine interval.

What is a curve?

- A curve in \mathbb{R}^{d} is a continuous parametrization $\gamma:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{\mathrm{d}}$.
- Thus, geometrically, two parametrizations γ_{1}, γ_{2} may identify a same object visually. (A non-math description.)
- One can establish an equivalent relation : $\gamma_{1}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{\mathrm{d}}, \gamma_{2}:[\mathrm{c}, \mathrm{d}] \rightarrow \mathbb{R}^{\mathrm{d}}, \gamma_{1} \equiv \gamma_{2}$ if there is a monotone bijection $\phi:[\mathrm{a}, \mathrm{b}] \rightarrow[\mathrm{c}, \mathrm{d}]$ and

$$
\forall \mathrm{t} \in[\mathrm{a}, \mathrm{~b}], \quad \gamma_{2}(\phi(\mathrm{t}))=\gamma_{1}(\mathrm{t})
$$

Length of a Curve

One natural way to define the length of a curve $\gamma:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{\mathrm{d}}$ is to do at first partition \mathcal{P} and then let the partition go to 0 . That is: Let $\mathcal{P}=\left\{\mathrm{t}_{0}, \mathrm{t}_{1} \cdots \mathrm{t}_{\mathrm{n}}\right\}$ where $\mathrm{a}=\mathrm{t}_{0}<\mathrm{t}_{1} \cdots<\mathrm{t}_{\mathrm{n}}=\mathrm{b}$, and $|\mathcal{P}|=\max _{0 \leqslant \mathrm{i} \leqslant \mathrm{n}-1}\left|\mathrm{t}_{\mathrm{i}+1}-\mathrm{t}_{\mathrm{i}}\right|$, then the length of the curve with the partition $\mathrm{L}(\gamma, \mathcal{P})$ is

$$
\begin{equation*}
\mathrm{L}(\gamma, \mathcal{P})=\sum_{\mathrm{i}=0}^{\mathrm{n}-1}\left|\gamma\left(\mathrm{t}_{\mathrm{i}+1}\right)-\gamma\left(\mathrm{t}_{\mathrm{i}}\right)\right| \tag{1.1}
\end{equation*}
$$

One may define that

$$
\begin{equation*}
\mathrm{L}(\gamma):=\lim _{|\mathcal{P}| \rightarrow 0} \mathrm{~L}(\gamma, \mathcal{P}) \tag{1.2}
\end{equation*}
$$

Length of a Curve

Definition (Rectified Curve)
We say a curve $\gamma:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{\mathrm{d}}$ is rectified if eq. (1.2) is well defined and $\mathrm{L}(\gamma)<\infty$. In this case, we say $\mathrm{L}(\gamma)$ the length of γ.

Length of a Curve

- It is false that every curve has length, even it is continuous.
- Reason: fractal structure.
- e.x. Koch's snowflake, Brownian motion etc.

Figure: Koch's snowflake.

Length of a Curve

Remark: For these fractal objects, although the definition of length above does not work, one can also define their "length" by some other formula.

Length of a Curve

Theorem
If $\gamma:[a, b] \rightarrow \mathbb{R}^{d}$ is C^{1}, then $L(\gamma)$ exists.
Proof.
In this case $\left|\gamma\left(\mathrm{t}_{\mathrm{i}+1}\right)-\gamma\left(\mathrm{t}_{\mathrm{i}}\right)\right| \simeq \gamma^{\prime}\left(\mathrm{t}_{\mathrm{i}}\right)\left|\mathrm{t}_{\mathrm{i}+1}-\mathrm{t}_{\mathrm{i}}\right|$, and one can use the uniform continuity to prove that the sum converges.

Regular Curve

Definition (Regular Curve)
We say a curve $\gamma:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{\mathrm{d}}$ is regular is γ is $\mathrm{C}^{1}([\mathrm{a}, \mathrm{b}])$ and $\gamma^{\prime} \neq 0$.

Definition (Equivalent Relation for Regular Curve)
For two regular curves $\gamma_{1}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{\mathrm{d}}, \gamma_{2}:[\mathrm{c}, \mathrm{d}] \rightarrow \mathbb{R}^{\mathrm{d}}$, we say they are equivalent if there is a monotone C^{1} bijection $\phi:[\mathrm{a}, \mathrm{b}] \rightarrow[\mathrm{c}, \mathrm{d}]$ and

$$
\forall \mathrm{t} \in[\mathrm{a}, \mathrm{~b}], \quad \gamma_{2}(\phi(\mathrm{t}))=\gamma_{1}(\mathrm{t})
$$

Integral along Regular Curve

Theorem (Integral along Regular Curve)
For a regular curve $\gamma:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{\mathrm{d}}$, f continuous on γ, then we define that

$$
\begin{equation*}
\int_{\gamma} \mathrm{fd} \gamma:=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\gamma(\mathrm{t}))\left|\gamma^{\prime}(\mathrm{t})\right| \mathrm{dt} \tag{1.3}
\end{equation*}
$$

This integral is independent of the parametrization: for two equivalent regular curves $\gamma_{1}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{\mathrm{d}}, \gamma_{2}:[\mathrm{c}, \mathrm{d}] \rightarrow \mathbb{R}^{\mathrm{d}}$, we have

$$
\begin{equation*}
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}\left(\gamma_{1}(\mathrm{t})\right)\left|\gamma_{1}^{\prime}(\mathrm{t})\right| \mathrm{dt}=\int_{\mathrm{c}}^{\mathrm{d}} \mathrm{f}\left(\gamma_{2}(\mathrm{t})\right)\left|\gamma_{2}^{\prime}(\mathrm{t})\right| \mathrm{dt} \tag{1.4}
\end{equation*}
$$

Remark: One can generalize this result to a curve regular in every interval.

Integral along Regular Curve

Proof.

Let $\phi:[\mathrm{a}, \mathrm{b}] \rightarrow[\mathrm{c}, \mathrm{d}]$ the function such that $\gamma_{1}=\gamma_{2} \circ \phi$, and let $\mathrm{s}=\phi(\mathrm{t})$, then we have

$$
\begin{aligned}
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}\left(\gamma_{1}(\mathrm{t})\right)\left|\gamma_{1}^{\prime}(\mathrm{t})\right| \mathrm{dt} & =\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}\left(\gamma_{2} \circ \phi(\mathrm{t})\right)\left|\left(\gamma_{2} \circ \phi(\mathrm{t})\right)^{\prime}\right| \mathrm{dt} \\
& =\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}\left(\gamma_{2}(\phi(\mathrm{t}))\right)\left|\gamma_{2}^{\prime}(\phi(\mathrm{t}))\right| \phi^{\prime}(\mathrm{t}) \mathrm{dt} \\
& =\int_{\mathrm{c}}^{\mathrm{d}} \mathrm{f}\left(\gamma_{2}(\mathrm{~s})\right)\left|\gamma_{2}^{\prime}(\mathrm{s})\right| \mathrm{ds}
\end{aligned}
$$

Integral along Regular Curve

Interpretation 1 of the equation

$$
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}\left(\gamma_{1}(\mathrm{t})\right)\left|\gamma_{1}^{\prime}(\mathrm{t})\right| \mathrm{dt}=\int_{\mathrm{c}}^{\mathrm{d}} \mathrm{f}\left(\gamma_{2}(\mathrm{t})\right)\left|\gamma_{2}^{\prime}(\mathrm{t})\right| \mathrm{dt}
$$

: Alice and Bob finish a riding tour and they count the number of the audience, which has density f. Alice has trace γ_{1} during time $[\mathrm{a}, \mathrm{b}$] while Bob with trace γ_{2} during time [c, b]. If we suppose they finish the same tour, with the same audience, the total number does not depend on how and when they finish.

Integral along Regular Curve

Interpretation 2 of the equation

$$
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}\left(\gamma_{1}(\mathrm{t})\right)\left|\gamma_{1}^{\prime}(\mathrm{t})\right| \mathrm{dt}=\int_{\mathrm{c}}^{\mathrm{d}} \mathrm{f}\left(\gamma_{2}(\mathrm{t})\right)\left|\gamma_{2}^{\prime}(\mathrm{t})\right| \mathrm{dt}
$$

Let f be the mass density of a string, then this equation calculate the total mass of this string, which is

$$
\lim _{|\mathcal{P}| \rightarrow 0} \sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{f}\left(\mathrm{t}_{\mathrm{i}}\right)\left|\gamma\left(\mathrm{t}_{\mathrm{i}+1}\right)-\gamma\left(\mathrm{t}_{\mathrm{i}}\right)\right| .
$$

Outline for section 2

(1) Curve
(2) Integral of Vector Field

(3) Integral of 1-Form

Work done by the force

Let a particle moving along the curve $\gamma:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{\mathrm{d}}$, drive by a force field $\mathrm{F}: \mathbb{R}^{\mathrm{d}} \rightarrow \mathbb{R}^{\mathrm{d}}$, then what is the work done by the force ?

- Recall the formula: $\mathrm{W}=\mathrm{F} \cdot \Delta \mathrm{S}$.
- We do a partition \mathcal{P} of the curve, $\mathcal{P}=\left\{\mathrm{t}_{0}, \mathrm{t}_{1} \cdots \mathrm{t}_{\mathrm{n}}\right\}$ where $\mathrm{a}=\mathrm{t}_{0}<\mathrm{t}_{1} \cdots<\mathrm{t}_{\mathrm{n}}=\mathrm{b}$, and $|\mathcal{P}|=\max _{0 \leqslant \mathrm{i} \leqslant \mathrm{n}-1}\left|\mathrm{t}_{\mathrm{i}+1}-\mathrm{t}_{\mathrm{i}}\right|$
- We use linear interpolation and suppose the force constant on every interval, then

$$
\mathrm{W}(\gamma, \mathrm{~F}, \mathcal{P})=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{~F}\left(\mathrm{t}_{\mathrm{i}}\right) \cdot\left(\gamma\left(\mathrm{t}_{\mathrm{i}+1}\right)-\gamma\left(\mathrm{t}_{\mathrm{i}}\right)\right)
$$

- We take the limit

$$
\mathrm{W}(\gamma, \mathrm{~F})=\lim _{|\mathcal{P}| \rightarrow 0} \mathrm{~W}(\gamma, \mathrm{~F}, \mathcal{P})
$$

Work done by the force

Question: How to make the procedure above rigorous?

Integral of Vector Field

Theorem (Integral of Vector Field)

Let $\gamma:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{\mathrm{d}}$ a regular curve (so $\mathrm{C}^{1}([\mathrm{a}, \mathrm{b}])$, with d components $\left(\gamma_{1}, \gamma_{2} \cdots \gamma_{\mathrm{d}}\right)$. Let the force field $\mathrm{F}: \mathbb{R}^{\mathrm{d}} \rightarrow \mathbb{R}^{\mathrm{d}}$ a continuous field, i.e.

$$
\mathrm{F}=\left(\mathrm{F}_{1}, \mathrm{~F}_{2}, \cdots \mathrm{~F}_{\mathrm{d}}\right), \forall \mathrm{i}, \mathrm{~F}_{\mathrm{i}} \in \mathrm{C}\left(\mathbb{R}^{\mathrm{d}}\right)
$$

Then we define that

$$
\int_{\gamma} \mathrm{Fd} \gamma:=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{~F}(\mathrm{t}) \cdot \gamma^{\prime}(\mathrm{t}) \mathrm{dt}=\sum_{\mathrm{i}=1}^{\mathrm{d}} \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{~F}_{\mathrm{i}}(\mathrm{t}) \gamma_{\mathrm{i}}^{\prime}(\mathrm{t}) \mathrm{dt} .
$$

Moreover, for two equivalent regular curves γ, β, we have

$$
\int_{\gamma} \mathrm{Fd} \gamma=\int_{\beta} \mathrm{F} \mathrm{~d} \beta
$$

Gradient Field

Definition (Gradient Field)
$\mathrm{F}: \mathbb{R}^{\mathrm{d}} \rightarrow \mathbb{R}^{\mathrm{d}}$ is a gradient field if and only if there exists $\mathrm{f}: \mathbb{R}^{\mathrm{d}} \rightarrow \mathbb{R}$ differentiable such that

$$
\mathrm{F}=\nabla \mathrm{f}, \quad \text { i.e. } \quad \mathrm{F}_{\mathrm{i}}=\partial_{\mathrm{i}} \mathrm{f}
$$

Integral of Gradient Field

Lemma
Let $\gamma:[0,1] \rightarrow \mathbb{R}^{\mathrm{d}}$ a regular curve, F a continuous gradient field that $\mathrm{F}=\nabla \mathrm{f}$, then

$$
\int_{\gamma} \mathrm{Fd} \gamma=\mathrm{f}(\gamma(1))-\mathrm{f}(\gamma(0))
$$

In this case, we call f potential function.

Integral of Gradient Field

Proof.

F continuous implies that $\mathrm{f} \in \mathrm{C}^{1}\left(\mathbb{R}^{\mathrm{d}}\right)$, then we have $\mathrm{t} \mapsto \mathrm{f}(\gamma(\mathrm{t})) \in \mathrm{C}^{1}([0,1])$, we use Newton-Leibniz formula that

$$
\begin{aligned}
\mathrm{f}(\gamma(1))-\mathrm{f}(\gamma(0)) & =\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{f}(\gamma(\mathrm{t})) \mathrm{dt} \\
& =\int_{0}^{1} \nabla \mathrm{f}(\gamma(\mathrm{t})) \cdot \gamma^{\prime}(\mathrm{t}) \mathrm{dt} \\
& =\int_{0}^{1} \mathrm{~F}(\gamma(\mathrm{t})) \cdot \gamma^{\prime}(\mathrm{t}) \mathrm{dt}
\end{aligned}
$$

It is the lemma.

Integral of Gradient Field

As a corollary, for F continuous field, then $\int_{\gamma} \mathrm{Fd} \gamma$ only depends on the end points rather than how they are connected.

Outline for section 3

(1) Curve

(2) Integral of Vector Field

(3) Integral of 1-Form

The integral of vector field is in fact an integral of 1-form, which is a very intuitive example of the general integral of k -form.
Objective of this section: start to be familiar with the terminology of differential form.

Dual Space of \mathbb{R}^{d}

- We define the dual space of \mathbb{R}^{d}

$$
\left(\mathbb{R}^{\mathrm{d}}\right)^{*}:=\left\{\mathrm{T} \mid \mathrm{T}: \mathbb{R}^{\mathrm{d}} \rightarrow \mathbb{R} \text { linear function }\right\} .
$$

- $\left(\mathbb{R}^{d}\right)^{*}$ is itself a d dimension linear space. Since every linear map has form

$$
\mathrm{T}=\sum_{\mathrm{i}=1}^{\mathrm{d}} \alpha_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}^{*}, \quad \mathrm{e}_{\mathrm{i}}^{*}\left(\mathrm{e}_{\mathrm{j}}\right)=\delta_{\mathrm{ij}}, \quad \mathrm{~T}\left(\sum_{\mathrm{i}=1}^{\mathrm{d}} \mathrm{x}_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{d}} \alpha_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} .
$$

Dual Space of \mathbb{R}^{d}

Proof.
We test T with $\left\{\mathrm{e}_{1} \cdots \mathrm{e}_{\mathrm{d}}\right\}$ that

$$
\forall 1 \leqslant \mathrm{i} \leqslant \mathrm{~d}, \quad \alpha_{\mathrm{i}}:=\mathrm{T}\left(\mathrm{e}_{\mathrm{i}}\right)
$$

Then, for any $x=\sum_{i=1}^{d} x_{i} e_{i}$, we have

$$
\mathrm{T}(\mathrm{x})=\mathrm{T}\left(\sum_{\mathrm{i}=1}^{\mathrm{d}} \mathrm{x}_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{d}} \mathrm{x}_{\mathrm{i}} \mathrm{~T}\left(\mathrm{e}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{d}} \alpha_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} .
$$

Let $\mathrm{e}_{\mathrm{i}}^{*}$ such that $\mathrm{e}_{\mathrm{i}}^{*}\left(\mathrm{e}_{\mathrm{j}}\right)=\delta_{\mathrm{ij}}$, then we have obviously $\mathrm{T}=\sum_{\mathrm{i}=1}^{\mathrm{d}} \alpha_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}^{*}$.

Tangent Space of Regular Curve

For a regular space $\gamma:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{\mathrm{d}}$, for every $\mathrm{p} \in(\mathrm{a}, \mathrm{b})$, it is associated to a tangent space $\mathrm{T}_{\mathrm{p}} \gamma$ of dimension 1 and also a dual space $\mathrm{T}_{\mathrm{p}}^{*} \gamma(=$ cotangent space) of dimension 1 .

Remark: $\gamma^{\prime} \neq 0$ is important here.

Integral of 1-Form

- We revisit the vector field $\mathrm{F}: \mathbb{R}^{\mathrm{d}} \rightarrow \mathbb{R}^{\mathrm{d}}$.
- F is considered as 1-form:

$$
\mathrm{F}=\mathrm{F}_{1} \mathrm{dx}_{1}+\mathrm{F}_{2} \mathrm{dx}_{1} \cdots \mathrm{~F}_{\mathrm{d}} \mathrm{dx}_{\mathrm{d}}
$$

- For any $\mathrm{p} \in \gamma, \mathrm{F}(\mathrm{p}) \in \mathrm{T}_{\mathrm{p}}^{*} \gamma$ that

$$
\forall \mathrm{h} \in \mathrm{~T}_{\mathrm{p}} \gamma, \quad \mathrm{~F}(\mathrm{p})(\mathrm{h})=\mathrm{F}(\mathrm{p}) \cdot \mathrm{h} .
$$

- $\int_{\gamma} \mathrm{F}$ is understood as the integral of this linear functional - that is the integral of 1-form.

Gradient as Exterior Differential of 0-form

- A function $\mathrm{g}: \mathbb{R}^{\mathrm{d}} \rightarrow \mathbb{R}$ is 0 -form.
- We define the exterior differential of a 0 -form

$$
\mathrm{dg}=\sum_{\mathrm{i}=1}^{\mathrm{d}} \frac{\partial \mathrm{~g}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}_{\mathrm{i}}
$$

- A gradient vector field F is an 1-form such that $\mathrm{F}=\mathrm{dg}$, it is also said exact.

Homotopy

Definition (Homotopic Function)
Two continuous curves $\gamma_{0}, \gamma_{1}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{U} \subset \mathbb{R}^{\mathrm{d}}$ with the same end point

$$
\gamma_{0}(\mathrm{a})=\gamma_{1}(\mathrm{a}), \quad \gamma_{0}(\mathrm{~b})=\gamma_{1}(\mathrm{~b})
$$

They are homotopic if there exists a continuous function $\mathrm{H}:[0,1] \times[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{U}$ s.t.

$$
\begin{aligned}
\mathrm{H}(0, \cdot) & =\gamma_{0}(\cdot), \mathrm{H}(1, \cdot)=\gamma_{1}(\cdot), \\
\forall \mathrm{s} \in[0,1], \mathrm{H}(\mathrm{~s}, \mathrm{a}) & =\gamma_{0}(\mathrm{a})=\gamma_{1}(\mathrm{a}) \\
\mathrm{H}(\mathrm{~s}, \mathrm{~b}) & =\gamma_{0}(\mathrm{~b})=\gamma_{1}(\mathrm{~b})
\end{aligned}
$$

H is called homotopy function for γ_{0}, γ_{1}.

Homotopy

- The theorem for the gradient field can be stated as: the integral is equal for homotopic curves.

