Lecture 3: Area of Surface

Chenlin GU

DMA/ENS, PSL Research University

April 1, 2020

Chenlin GU (DMA/ENS)

Vector Analysis

April 1, 2020 1 / 19

Outline for section 1

Surface (2-d Manifold)

- What is a Surface ?
- A First Look at the Calculus of Area

- Length
- Area

Outline

① Surface (2-d Manifold)

- What is a Surface ?
- A First Look at the Calculus of Area

- Length
- Area

What is a surface in \mathbb{R}^3

Some example of surface in \mathbb{R}^3

- Hyperplane: z = 0.
- Sphere: \mathbb{S}^2 .
- Torus:
- • • • • •

Definition (Smooth Surface)

A surface in \mathbb{R}^3 locally looks like a subset $U \subset \mathbb{R}^2$. That is there exists a C^1 map $(u, v) \mapsto (x, y, z)$ such that the Jacob matrix

$$rac{\partial(\mathrm{x},\mathrm{y},\mathrm{z})}{\partial(\mathrm{u},\mathrm{v})}$$

has rank 2, i.e. $(x_u, y_u, z_u) \neq \lambda(x_v, y_v, z_v)$.

Examples:

- Hyperplane: x = u, y = v, z = 0.
- Sphere: $x = \cos u \cos v, y = \cos u \sin v, z = \sin u$.
- Torus: $x = (R + r \cos u) \cos v$, $y = (R + r \cos u) \sin v$, $z = \sin u$.

Surface (of Microsoft) is not a smooth surface (in maths).

Surface (of Microsoft) is not a smooth surface (in maths).

Outline

Surface (2-d Manifold)

- What is a Surface ?
- A First Look at the Calculus of Area

- Length
- \bullet Area

Cross Product

A First Look at the Calculus of Area

Let S be a smooth surface, $S = \sqcup_{i=1}^{N} \Phi_{i}$, where $\Phi_{i} : (u, v) \rightarrow (x, y, z)$ is C^{1} map, then we have

Area(S) =
$$\sum_{i=1}^{N} \int |(x_u, y_u, z_u) \times (x_v, y_v, z_v)| dudv.$$

Outline for section 2

1 Surface (2-d Manifold)

- What is a Surface ?
- A First Look at the Calculus of Area

- Length
- Area

Generalization of Surface in \mathbb{R}^d

A surface M in \mathbb{R}^d locally looks like a subset $U \subset \mathbb{R}^2$. That is locally there exists a C^1 map $X : (u, v) \to (x_1, x_2, \cdots x_d)$ and $X_u \neq \lambda X_v$.

Metric Tensor

- Tangent plane T_pM at the position $p \in M$: $T_pM = Vec\{X_u(p), X_v(p)\}.$
- Metric tensor

$$g(p) = \begin{pmatrix} g_{uu}(p) & g_{uv}(p) \\ g_{uv}(p) & g_{vv}(p) \end{pmatrix}$$
$$= \begin{pmatrix} \langle X_u(p), X_u(p) \rangle & \langle X_u(p), X_v(p) \rangle \\ \langle X_u(p), X_v(p) \rangle & \langle X_v(p), X_v(p) \rangle \end{pmatrix}.$$

• g(p) contains much information.

Length

Outline

- What is a Surface ?
- A First Look at the Calculus of Area

- Length
- Area

Length

Length of Curve

For a regular curve $\gamma:[a,b]\to M, t\mapsto X(u(t),v(t)),$ the length of curve is that

$$|\gamma| = \int_a^b \sqrt{g_{uu}(\gamma(t))(u'(t))^2 + 2g_{uv}(\gamma(t))u'(t)v'(t) + g_{vv}(\gamma(t))(v'(t))^2} dt.$$

Area

Outline

1 Surface (2-d Manifold)

- What is a Surface ?
- A First Look at the Calculus of Area

- Length
- Area

Area

In fact, what we need is $|X_u||X_v|\sin\theta$ rather than $|X_u \times X_v|$. We use the formula that $\langle X_u, X_v \rangle = |X_u||X_v|\cos\theta$, thus we have

$$\begin{split} |X_u||X_v|\sin\theta &= \sqrt{(|X_u||X_v|)^2 - \langle X_u, X_v \rangle^2} \\ &= \sqrt{\det(g)}, \end{split}$$

with g the metric tensor.

$$Area(M) = \sum_{i=1}^{N} \int |X_u \times X_v| \, dudv = \sum_{i=1}^{N} \int_{M \cap \Phi_i} \sqrt{\det(g)}.$$

Chenlin GU (DMA/ENS)

Area

Recap: Green's Theorem

Theorem (Green's Theorem)

Let $D \subset \mathbb{R}^2$ be a region, with boundary ∂D is piece-wise smooth, positively oriented, closed and let $F = Pdx + Qdy \ a \ C^1$ 1-form on D, then we have

$$\int_{\mathcal{D}} \mathrm{dF} = \int_{\partial \mathcal{D}} \mathbf{F}.$$
(2.1)

Question: Can it also be true for D a surface?