# Lecture 3: Area of Surface 

Chenlin GU

DMA/ENS, PSL Research University
April 1, 2020

## Outline for section 1

(1) Surface (2-d Manifold)

- What is a Surface?
- A First Look at the Calculus of Area
(2) Metric Tensor
- Length
- Area


## Outline

(1) Surface (2-d Manifold)

- What is a Surface ?
- A First Look at the Calculus of Area
(2) Metric Tensor
- Length
- Area


## What is a surface in $\mathbb{R}^{3}$

Some example of surface in $\mathbb{R}^{3}$

- Hyperplane: $\mathrm{z}=0$.
- Sphere: $\mathbb{S}^{2}$.
- Torus:
.......



## What is a Surface?

## Definition (Smooth Surface)

A surface in $\mathbb{R}^{3}$ locally looks like a subset $U \subset \mathbb{R}^{2}$. That is there exists a $\mathrm{C}^{1}$ map (u,v) $\mapsto(\mathrm{x}, \mathrm{y}, \mathrm{z})$ such that the Jacob matrix

$$
\frac{\partial(\mathrm{x}, \mathrm{y}, \mathrm{z})}{\partial(\mathrm{u}, \mathrm{v})}
$$

has rank 2, i.e. $\left(\mathrm{x}_{\mathrm{u}}, \mathrm{y}_{\mathrm{u}}, \mathrm{z}_{\mathrm{u}}\right) \neq \lambda\left(\mathrm{x}_{\mathrm{v}}, \mathrm{y}_{\mathrm{v}}, \mathrm{z}_{\mathrm{v}}\right)$.

## What is a Surface?

Examples:

- Hyperplane: $\mathrm{x}=\mathrm{u}, \mathrm{y}=\mathrm{v}, \mathrm{z}=0$.
- Sphere: $x=\cos u \cos v, y=\cos u \sin v, z=\sin u$.
- Torus: $\mathrm{x}=(\mathrm{R}+\mathrm{r} \cos \mathrm{u}) \cos \mathrm{v}, \mathrm{y}=(\mathrm{R}+\mathrm{r} \cos \mathrm{u}) \sin \mathrm{v}, \mathrm{z}=\sin \mathrm{u}$.


## What is a Surface?

## Surface (of Microsoft) is not a smooth surface (in maths).



Commercial 0


## What is a Surface?

Surface (of Microsoft) is not a smooth surface (in maths).


## Outline

(1) Surface (2-d Manifold)

- What is a Surface ?
- A First Look at the Calculus of Area
(2) Metric Tensor
- Length
- Area


## Cross Product



## A First Look at the Calculus of Area

Let $S$ be a smooth surface, $S=\sqcup_{i=1}^{N} \Phi_{i}$, where $\Phi_{i}:(u, v) \rightarrow(x, y, z)$ is $\mathrm{C}^{1}$ map, then we have

$$
\operatorname{Area}(\mathrm{S})=\sum_{\mathrm{i}=1}^{\mathrm{N}} \int \mathrm{I}\left(\mathrm{x}_{\mathrm{u}}, \mathrm{y}_{\mathrm{u}}, \mathrm{z}_{\mathrm{u}}\right) \times\left(\mathrm{x}_{\mathrm{v}}, \mathrm{y}_{\mathrm{v}}, \mathrm{z}_{\mathrm{v}}\right) \mid \text { dudv. }
$$

## Outline for section 2

(1) Surface (2-d Manifold)

- What is a Surface ?
- A First Look at the Calculus of Area
(2) Metric Tensor
- Length
- Area


## Generalization of Surface in $\mathbb{R}^{\mathrm{d}}$

A surface M in $\mathbb{R}^{\mathrm{d}}$ locally looks like a subset $\mathrm{U} \subset \mathbb{R}^{2}$. That is locally there exists a $\mathrm{C}^{1}$ map $\mathrm{X}:(\mathrm{u}, \mathrm{v}) \rightarrow\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots \mathrm{x}_{\mathrm{d}}\right)$ and $\mathrm{X}_{\mathrm{u}} \neq \lambda \mathrm{X}_{\mathrm{v}}$.

## Metric Tensor

- Tangent plane $T_{p} M$ at the position $p \in M$ : $\mathrm{T}_{\mathrm{p}} \mathrm{M}=\operatorname{Vec}\left\{\mathrm{X}_{\mathrm{u}}(\mathrm{p}), \mathrm{X}_{\mathrm{v}}(\mathrm{p})\right\}$.
- Metric tensor

$$
\begin{aligned}
\mathrm{g}(\mathrm{p}) & =\left(\begin{array}{ll}
\mathrm{g}_{\mathrm{uu}}(\mathrm{p}) & \mathrm{g}_{\mathrm{uv}}(\mathrm{p}) \\
\mathrm{g}_{\mathrm{uv}}(\mathrm{p}) & \mathrm{g}_{\mathrm{vv}}(\mathrm{p})
\end{array}\right) \\
& =\left(\begin{array}{ll}
\left\langle\mathrm{X}_{\mathrm{u}}(\mathrm{p}), \mathrm{X}_{\mathrm{u}}(\mathrm{p})\right\rangle & \left\langle\mathrm{X}_{\mathrm{u}}(\mathrm{p}), \mathrm{X}_{\mathrm{v}}(\mathrm{p})\right\rangle \\
\left\langle\mathrm{X}_{\mathrm{u}}(\mathrm{p}), \mathrm{X}_{\mathrm{v}}(\mathrm{p})\right\rangle & \left\langle\mathrm{X}_{\mathrm{v}}(\mathrm{p}), \mathrm{X}_{\mathrm{v}}(\mathrm{p})\right\rangle
\end{array}\right) .
\end{aligned}
$$

- $\mathrm{g}(\mathrm{p})$ contains much information.


## Outline

(1) Surface (2-d Manifold)

- What is a Surface?
- A First Look at the Calculus of Area
(2) Metric Tensor
- Length
- Area


## Length of Curve

For a regular curve $\gamma:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{M}, \mathrm{t} \mapsto \mathrm{X}(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t}))$, the length of curve is that

$$
|\gamma|=\int_{\mathrm{a}}^{\mathrm{b}} \sqrt{\mathrm{~g}_{\mathrm{uu}}(\gamma(\mathrm{t}))\left(\mathrm{u}^{\prime}(\mathrm{t})\right)^{2}+2 \mathrm{~g}_{\mathrm{uv}}(\gamma(\mathrm{t})) \mathrm{u}^{\prime}(\mathrm{t}) \mathrm{v}^{\prime}(\mathrm{t})+\mathrm{g}_{\mathrm{vv}}(\gamma(\mathrm{t}))\left(\mathrm{v}^{\prime}(\mathrm{t})\right)^{2}} \mathrm{dt}
$$

## Outline

(1) Surface (2-d Manifold)

- What is a Surface?
- A First Look at the Calculus of Area
(2) Metric Tensor
- Length
- Area


## Area

In fact, what we need is $\left|\mathrm{X}_{\mathrm{u}}\right|\left|\mathrm{X}_{\mathrm{v}}\right| \sin \theta$ rather than $\left|\mathrm{X}_{\mathrm{u}} \times \mathrm{X}_{\mathrm{v}}\right|$. We use the formula that $\left\langle\mathrm{X}_{\mathrm{u}}, \mathrm{X}_{\mathrm{v}}\right\rangle=\left|\mathrm{X}_{\mathrm{u}} \| \mathrm{X}_{\mathrm{v}}\right| \cos \theta$, thus we have

$$
\begin{aligned}
\left|\mathrm{X}_{\mathrm{u}} \| \mathrm{X}_{\mathrm{v}}\right| \sin \theta & =\sqrt{\left(\left|\mathrm{X}_{\mathrm{u}} \| \mathrm{X}_{\mathrm{v}}\right|\right)^{2}-\left\langle\mathrm{X}_{\mathrm{u}}, \mathrm{X}_{\mathrm{v}}\right\rangle^{2}} \\
& =\sqrt{\operatorname{det}(\mathrm{g})}
\end{aligned}
$$

with $g$ the metric tensor.

$$
\operatorname{Area}(\mathrm{M})=\sum_{\mathrm{i}=1}^{\mathrm{N}} \int\left|\mathrm{X}_{\mathrm{u}} \times \mathrm{X}_{\mathrm{v}}\right| \operatorname{dudv}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \int_{\mathrm{M} \cap \Phi_{\mathrm{i}}} \sqrt{\operatorname{det}(\mathrm{~g})}
$$

## Recap: Green's Theorem

Theorem (Green's Theorem)
Let $\mathrm{D} \subset \mathbb{R}^{2}$ be a region, with boundary $\partial \mathrm{D}$ is piece-wise smooth, positively oriented, closed and let $\mathrm{F}=\mathrm{Pdx}+\mathrm{Qdy}$ a $\mathrm{C}^{1}$ 1-form on D , then we have

$$
\begin{equation*}
\int_{\mathrm{D}} \mathrm{dF}=\int_{\partial \mathrm{D}} \mathrm{~F} . \tag{2.1}
\end{equation*}
$$

Question: Can it also be true for D a surface?

