Lecture 5: Stokes' Theorem on Manifold

Chenlin GU
DMA/ENS, PSL Research University

April 20, 2020

Recap

- Green's theorem: transform an integral of 1-form to 2-form

$$
\begin{equation*}
\int_{D}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{y}}\right) \mathrm{dxdy}=\int_{\partial \mathrm{D}} \mathrm{Pdx}+\mathrm{Q} d y \tag{0.1}
\end{equation*}
$$

- Language of differential form: $\varphi=\operatorname{Pdx}+\mathrm{Qdy}$, then we have $\int_{\partial \mathrm{D}} \varphi=\int_{\mathrm{D}} \mathrm{d} \varphi$ because

$$
\begin{aligned}
\mathrm{d} \varphi & =\mathrm{dP} \wedge \mathrm{dx}+\mathrm{dQ} \wedge \mathrm{dy} \\
& =\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{y}}\right) \mathrm{dx} \wedge \mathrm{dy} .
\end{aligned}
$$

- Question: Does it make sense for a general k -form φ and a general domain D ?

Outline for section 1

(1) Manifold

- Definition
- Differential Map on Manifold
(2) Integration on Manifold
- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Outline

(1) Manifold

- Definition
- Differential Map on Manifold
(2) Integration on Manifold
- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Manifold

A manifold is an object that locally looks like that of \mathbb{R}^{n}.
Definition (Manifold)
A n-dimensional manifold is an object $\left(\mathrm{M},\left(\mathrm{f}_{\alpha}\right)_{\alpha \in \mathrm{I}}\right)$ such that a family of injective functions $\mathrm{f}_{\alpha}: \mathrm{U}_{\alpha} \subset \mathbb{R}^{\mathrm{n}} \rightarrow \mathrm{M}$:
(1) $\bigcup_{\alpha \in \mathrm{I}} \mathrm{f}_{\alpha}\left(\mathrm{U}_{\alpha}\right)=\mathrm{M}$.
(2) For any $\mathrm{V}=\mathrm{f}_{\alpha}\left(\mathrm{U}_{\alpha}\right) \cap \mathrm{f}_{\beta}\left(\mathrm{U}_{\beta}\right)$, that

$$
\begin{aligned}
& \mathrm{f}_{\beta}^{-1} \circ \mathrm{f}_{\alpha}: \mathrm{f}_{\alpha}^{-1}(\mathrm{~V}) \rightarrow \mathrm{f}_{\beta}^{-1}(\mathrm{~V}) \\
& \mathrm{f}_{\alpha}^{-1} \circ \mathrm{f}_{\beta}: \mathrm{f}_{\beta}^{-1}(\mathrm{~V}) \rightarrow \mathrm{f}_{\alpha}^{-1}(\mathrm{~V})
\end{aligned}
$$

are differentiable.
(3) $\left(\mathrm{f}_{\alpha}\right)_{\alpha \in \mathrm{I}}$ is a maximal set.

We also call $\left(\mathrm{f}_{\alpha}\right)_{\alpha \in \mathrm{I}}$ atlas and one function f_{α} local chart.
Remark: Usually, we admit that the manifold has countable basis.

Manifold

Manifold - Exploration of Maps

Manifold

Examples of manifold:

- \mathbb{R}^{n}.
- n-dimensional unit ball B_{1}.
- $(\mathrm{n}-1)$-dimensional unit sphere $\mathbb{S}^{\mathrm{n}-1}$.
- Torus.
- Projective space: $\mathrm{P}^{2}=\left(\mathbb{R}^{3} \backslash 0\right) / \sim$.

Manifold

A non-trivial example of manifold: Projective space $\mathrm{P}^{2}=\left(\mathbb{R}^{3} \backslash 0\right) / \sim$ that

$$
(\mathrm{x}, \mathrm{y}, \mathrm{z}) \sim(\lambda \mathrm{x}, \lambda \mathrm{y}, \lambda \mathrm{z}), \lambda \neq 0
$$

One can use three maps to cover it and then add all the compatible maps

- $f_{1}: \mathbb{R}^{2} \rightarrow P^{2}, f_{1}(u, v)=[1, u, v]$.
- $f_{2}: \mathbb{R}^{2} \rightarrow P^{2}, f_{2}(u, v)=[u, 1, v]$.
- $f_{3}: \mathbb{R}^{2} \rightarrow P^{2}, f_{3}(u, v)=[u, v, 1]$.

Then we see that $f_{2}^{-1} \circ f_{1}(u, v)=f_{2}^{-1}([1, u, v])=\left(\frac{1}{u}, \frac{v}{u}\right)$.

Manifold

Definition (Orientable Manifold)

For a manifold ($\left.\mathrm{M},\left(\mathrm{f}_{\alpha}\right)_{\alpha \in \mathrm{I}}\right)$ is said orientable iff for any two local charts $\mathrm{f}_{\alpha}, \mathrm{f}_{\beta}$ with common image, $\mathrm{d}\left(\mathrm{f}_{\beta}^{-1} \circ \mathrm{f}_{\alpha}\right)$ has positive determinant.

A famous counter example of non-orientable manifold: Möbius band.

Outline

(1) Manifold

- Definition
- Differential Map on Manifold
(2) Integration on Manifold
- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Differential Map on Manifold

Definition (Differential Map)
Let M_{1} and M_{2} be two differential manifolds, then a function (map) $\phi: \mathrm{M}_{1} \rightarrow \mathrm{M}_{2}$ is said differentiable if for any local chart $\mathrm{f}: \mathrm{U}_{1} \rightarrow \mathrm{M}_{1}, \mathrm{~g}: \mathrm{U}_{2} \rightarrow \mathrm{M}_{2}$ such that $\phi \circ \mathrm{f}\left(\mathrm{U}_{1}\right) \subset \mathrm{g}\left(\mathrm{U}_{2}\right)$, we have $\mathrm{g}^{-1} \circ \phi \circ \mathrm{f}: \mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$ is differentiable.
In the case $\mathrm{M}_{2}=\mathbb{R}$, we call ϕ a differentiable function on M_{1}.

Differential Map on Manifold

Differential Map on Manifold

Remark: The definition does not depend on the choice of local charts. For two pairs of charts in the definition,

$$
\begin{aligned}
\mathrm{f}_{1}, \mathrm{f}_{2}: \mathrm{U}_{1} & \rightarrow \mathrm{M}_{1}, \\
\mathrm{~g}_{1}, \mathrm{~g}_{2}: \mathrm{U}_{2} & \rightarrow \mathrm{M}_{2} .
\end{aligned}
$$

Then we have

$$
\mathrm{g}_{2}^{-1} \circ \phi \circ \mathrm{f}_{2}=\underbrace{\left(\mathrm{g}_{2}^{-1} \circ \mathrm{~g}_{1}\right)}_{\text {differentiable }} \circ\left(\mathrm{g}_{1}^{-1} \circ \phi \circ \mathrm{f}_{1}\right) \circ \underbrace{\left(\mathrm{f}_{1}^{-1} \circ \mathrm{f}_{2}\right)}_{\text {differentiable }} .
$$

Outline for section 2

(1) Manifold

- Definition
- Differential Map on Manifold
(2) Integration on Manifold
- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Outline

(1) Manifold

- Definition
- Differential Map on Manifold
(2) Integration on Manifold
- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Differential Form on Manifold

Definition (Sub-manifold)
M is a sub-manifold of \mathbb{R}^{m} if $\mathrm{M} \subset \mathbb{R}^{\mathrm{m}}$ and M is a manifold.
In the case of sub-manifold, the tangent space $T_{p} M$ at $p \in M$ is easy to define: let f be a local chart around p , and $\mathrm{f}(0)=\mathrm{p}$ then

$$
\mathrm{T}_{\mathrm{p}} \mathrm{M}:=\operatorname{Vect}\left\{\mathrm{df}_{0}\left(\mathrm{e}_{1}\right), \operatorname{df}_{0}\left(\mathrm{e}_{1}\right) \cdots \mathrm{df}_{0}\left(\mathrm{e}_{\mathrm{n}}\right)\right\}
$$

Then the k -form on M at p is defined as $\Lambda^{\mathrm{k}}\left(\mathrm{T}_{\mathrm{p}} \mathrm{M}\right)^{*}$.

Differential Form on Manifold

Theorem (Whitney Embedding)
Every n-dimensional smooth manifold can be smoothly embedded in $\mathbb{R}^{2 \mathrm{n}}$.

Thus you can treat the manifold as sub-manifold in some sense.

Differential Form on Manifold

A more abstract way to define the tangent plane.
Definition (Differentiable Curve on M)
Let $\mathrm{I}=(\mathrm{a}, \mathrm{b}), \gamma: \mathrm{I} \rightarrow \mathrm{M}$ be a differential map, we call γ a differentiable curve on M.

Remark: A special example of differential map.

Differential Form on Manifold

Definition (Tangent Vector)
Let $\gamma: \mathrm{I} \rightarrow \mathrm{M}$ a differential curve on a manifold M , with $\gamma(0)=\mathrm{p} \in \mathrm{M}$, and let D be the set of functions differentiable at p . Then we define the tangent vector at p to be $\gamma^{\prime}(0)$, which is a derivative operator $\gamma^{\prime}(0): \mathrm{D} \rightarrow \mathbb{R}$ that

$$
\gamma^{\prime}(0) \phi:=\left.\frac{\mathrm{d}}{\mathrm{dt}}(\phi \circ \gamma)\right|_{\mathrm{t}=0} .
$$

Differential Form on Manifold

For local chart f_{α} of M, it gives a local canonical basis so that $\phi \in D$

$$
\phi \circ \mathrm{f}_{\alpha}=\phi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots \mathrm{x}_{\mathrm{n}}\right),
$$

then the differentiable curve $\left\{\mathrm{x}_{\mathrm{i}}\right\}_{1 \leqslant i \leqslant n}$ gives a canonical partial derivative

$$
\frac{\partial}{\partial_{\mathrm{x}_{\mathrm{i}}}} \phi:=\frac{\partial}{\partial_{\mathrm{x}_{\mathrm{i}}}}\left(\phi \circ \mathrm{f}_{\alpha}\right) .
$$

Then $\left\{\frac{\partial}{\partial_{x_{\mathrm{i}}}}\right\}_{1 \leqslant i \leqslant n}$ construct a canonical basis for $T_{\mathrm{p}} \mathrm{M}$ under the local chart f_{α}.

Differential Form on Manifold

Moreover, for $\gamma: \mathrm{I} \rightarrow \mathrm{M}$ passing $\mathrm{p}(\gamma(0)=\mathrm{p})$, we have

$$
\mathrm{f}_{\alpha}^{-1} \circ \gamma=\left(\mathrm{x}_{1}(\mathrm{t}), \mathrm{x}_{2}(\mathrm{t}) \cdots \mathrm{x}_{\mathrm{n}}(\mathrm{t})\right) .
$$

and then

$$
\begin{aligned}
\gamma^{\prime}(0) \phi & =\left.\frac{\mathrm{d}}{\mathrm{dt}}(\phi \circ \gamma)\right|_{\mathrm{t}=0} \\
& =\left.\frac{\mathrm{d}}{\mathrm{dt}}\left(\left(\phi \circ \mathrm{f}_{\alpha}\right) \circ\left(\mathrm{f}_{\alpha}^{-1} \circ \gamma\right)\right)\right|_{\mathrm{t}=0} \\
& =\left.\frac{\mathrm{d}}{\mathrm{dt}}\left(\phi\left(\mathrm{x}_{1}(\mathrm{t}), \mathrm{x}_{2}(\mathrm{t}) \cdots \mathrm{x}_{\mathrm{n}}(\mathrm{t})\right)\right)\right|_{\mathrm{t}=0} \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{\prime}(0)\left(\frac{\partial}{\partial_{\mathrm{x}_{\mathrm{i}}}} \phi\right)
\end{aligned}
$$

It does prove that $\mathrm{T}_{\mathrm{p}} \mathrm{M}$ is a tangent plane and we can construct the k -form on M at p is defined as $\Lambda^{\mathrm{k}}\left(\mathrm{T}_{\mathrm{p}} \mathrm{M}\right)^{*}$.

Differential Form on Manifold: Pullback

Recap: Pull-Back is the idea of df_{p}.

- $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ a C^{1} differential map.
- $\mathrm{df}_{\mathrm{p}}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$.
- $\varphi \in \Lambda^{\mathrm{k}}\left(\mathbb{R}^{\mathrm{m}}\right)^{*}$.
- "Pull-back" means pull the differential form \mathbb{R}^{m} to that of \mathbb{R}^{n}.
- $\mathrm{f}^{*} \varphi \in \Lambda^{\mathrm{k}}\left(\mathbb{R}^{\mathrm{n}}\right)^{*}$: for $\mathrm{v}_{1} \cdots \mathrm{v}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{n}}$

$$
\begin{equation*}
\left(\mathrm{f}^{*} \varphi\right)_{\mathrm{p}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \cdots \mathrm{v}_{\mathrm{k}}\right):=\varphi_{\mathrm{f}(\mathrm{p})}\left(\mathrm{df}_{\mathrm{p}}\left(\mathrm{v}_{1}\right), \mathrm{df}_{\mathrm{p}}\left(\mathrm{v}_{2}\right) \cdots \mathrm{df}_{\mathrm{p}}\left(\mathrm{v}_{\mathrm{k}}\right)\right) \tag{2.1}
\end{equation*}
$$

Differential Form on Manifold: Pullback

Generalization: Pull-Back on manifold

- $\mathrm{f}_{\alpha}: \mathrm{U}_{\alpha} \rightarrow \mathrm{M}$ a local chart.
- $\mathrm{df}_{0}: \mathrm{T}_{0} \mathrm{U}_{\alpha} \rightarrow \mathrm{T}_{\mathrm{p}} \mathrm{M}, \forall \phi \in \mathrm{D}(\mathrm{M})$,

$$
\left(\mathrm{df}_{\alpha}\right)_{0}(\mathrm{v})(\phi)=\mathrm{d}\left(\phi \circ \mathrm{f}_{\alpha}\right)_{0}(\mathrm{v})=\sum_{\mathrm{i}=1}^{\mathrm{n}}[\mathrm{v}]_{\mathrm{i}}\left(\frac{\partial}{\partial_{\mathrm{x}_{\mathrm{i}}}}\right) \phi
$$

In another word, $\left(\mathrm{df}_{\alpha}\right)(\mathrm{v})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\mathrm{v} \mathrm{J}_{\mathrm{i}} \frac{\partial}{\partial_{\mathrm{x}_{\mathrm{i}}}}\right.$.

- $\varphi \in \Lambda^{\mathrm{k}}\left(\mathrm{T}_{\mathrm{p}} \mathrm{M}\right)^{*}$.
- "Pull-back" means pull the differential form M to that of U_{α}.
- $\mathrm{f}_{\alpha}^{*} \varphi \in \Lambda^{\mathrm{k}}\left(\mathrm{T}_{0} \mathrm{U}_{\alpha}\right)^{*}$: for $\mathrm{v}_{1} \cdots \mathrm{v}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{n}}$

$$
\begin{equation*}
\left(\mathrm{f}_{\alpha}^{*} \varphi\right)_{0}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \cdots \mathrm{v}_{\mathrm{k}}\right):=\varphi\left(\mathrm{df}_{\alpha}\left(\mathrm{v}_{1}\right), \mathrm{df}_{\alpha}\left(\mathrm{v}_{2}\right) \cdots \mathrm{df}_{\alpha}\left(\mathrm{v}_{\mathrm{k}}\right)\right) . \tag{2.2}
\end{equation*}
$$

We define that $\varphi_{\alpha}:=\mathrm{f}_{\alpha}^{*} \varphi$.

Outline

(1) Manifold

- Definition
- Differential Map on Manifold
(2) Integration on Manifold
- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Integration

Definition (Integration of n -form on \mathbb{R}^{n})
Let $\varphi_{\alpha}=\omega_{\alpha} \mathrm{dx}_{1} \wedge \mathrm{dx}_{2} \cdots \wedge \mathrm{dx}_{\mathrm{n}}$, then we have

$$
\int \varphi_{\alpha}=\int \omega_{\alpha} \mathrm{dx}_{1} \cdots \mathrm{dx}_{\mathrm{n}}
$$

Definition (Integration on Manifold)
Let φ a n-form on n-dimensional manifold M and $\left\{\mathrm{f}_{\alpha}, \mathrm{U}_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ local charts. Then we define that

$$
\begin{equation*}
\int_{\mathrm{Mnf}_{\alpha}\left(\mathrm{U}_{\alpha}\right)} \varphi:=\int_{\mathrm{U}_{\alpha}} \varphi_{\alpha} . \tag{2.3}
\end{equation*}
$$

Integration

Question: Is it well-defined?
Let $\mathrm{f}_{\alpha}, \mathrm{f}_{\beta}$ two charts such that $\mathrm{f}_{\alpha}\left(\mathrm{U}_{\alpha}\right)=\mathrm{f}_{\beta}\left(\mathrm{U}_{\beta}\right)$. Because we have

$$
\begin{aligned}
\mathrm{f} & :=\mathrm{f}_{\beta}^{-1} \circ \mathrm{f}_{\alpha}: \mathrm{U}_{\alpha} \rightarrow \mathrm{U}_{\beta},\left(\mathrm{x}_{1}, \mathrm{x}_{2} \cdots \mathrm{x}_{\mathrm{n}}\right) \rightarrow\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \cdots \mathrm{y}_{\mathrm{n}}\right) \\
\varphi_{\alpha} & =(\mathrm{f})^{*}\left(\varphi_{\beta}\right)=\operatorname{det}\left(\frac{\partial\left(\mathrm{y}_{1}, \cdots \mathrm{y}_{\mathrm{n}}\right)}{\partial\left(\mathrm{x}_{1}, \cdots \mathrm{x}_{\mathrm{n}}\right)}\right) \omega_{\beta}(\mathrm{y}, \cdots \mathrm{y}) \mathrm{dx}_{1} \wedge \mathrm{dx}_{2} \cdots \wedge \mathrm{dx}_{\mathrm{n}}
\end{aligned}
$$

Then we have that

$$
\begin{aligned}
\int_{\mathrm{f}_{\alpha}\left(\mathrm{U}_{\alpha}\right)} \varphi & =\int_{\mathrm{U}_{\alpha}} \varphi_{\alpha}=\operatorname{det}\left(\frac{\partial\left(\mathrm{y}_{1}, \cdots \mathrm{y}_{\mathrm{n}}\right)}{\partial\left(\mathrm{x}_{1}, \cdots \mathrm{x}_{\mathrm{n}}\right)}\right) \omega_{\beta}(\mathrm{y}, \cdots \mathrm{y}) \mathrm{dx}_{1} \wedge \mathrm{dx}_{2} \cdots \wedge \mathrm{dx}_{\mathrm{n}} \\
& =\int_{\mathrm{U}_{\beta}} \operatorname{det}\left(\frac{\partial\left(\mathrm{y}_{1}, \cdots \mathrm{y}_{\mathrm{n}}\right)}{\partial\left(\mathrm{x}_{1}, \cdots \mathrm{x}_{\mathrm{n}}\right)}\right) \omega_{\beta}(\mathrm{y}, \cdots \mathrm{y}) \mathrm{dx}_{1} \mathrm{dx}_{2} \cdots \mathrm{dx}_{\mathrm{n}} \\
& =\int_{\mathrm{U}_{\beta}} \omega_{\beta} \mathrm{dy}_{1} \cdots \mathrm{dy}_{\mathrm{n}} \\
& =\int_{\mathrm{U}_{\beta}} \varphi_{\beta}
\end{aligned}
$$

Integration-decomposition of unity

Definition (Decomposition of unity)
Given a covering $M=\bigcup_{i=1}^{N} V_{i}$, we say $\left\{\theta_{i}\right\}_{1 \leqslant i \leqslant N}$ is an associated decomposition of unity if

- $0 \leqslant \theta_{\mathrm{i}} \leqslant 1$, differentiable and $\operatorname{supp}\left(\theta_{\mathrm{i}}\right) \subset \mathrm{V}_{\mathrm{i}}$.
- $\sum_{\mathrm{i}=1}^{\mathrm{N}} \theta_{\mathrm{i}}=1$.

Integration

Definition (Integration on Manifold)

Let φ a n -form on n -dimensional manifold M and $\left\{\mathrm{f}_{\alpha}, \mathrm{U}_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ local charts. Then we define that

$$
\begin{equation*}
\int_{\mathrm{M}} \varphi=\sum_{\alpha} \int_{\mathrm{U}_{\alpha}} \varphi_{\alpha} \tag{2.4}
\end{equation*}
$$

using the decomposition of unity $\left\{\theta_{\mathrm{i}}\right\}_{1 \leqslant i \leqslant N}$ associated to a covering of local charts $M=\bigcup_{i=1}^{N} V_{i}, V_{i}=f_{i}\left(U_{i}\right)$:

$$
\begin{equation*}
\int_{\mathrm{M}} \varphi=\sum_{\mathrm{i}=1}^{\mathrm{N}} \int_{\mathrm{M}} \varphi \theta_{\mathrm{i}} \tag{2.5}
\end{equation*}
$$

Remark: the interest is that $\operatorname{supp}\left(\varphi \theta_{\mathrm{i}}\right) \subset \mathrm{V}_{\mathrm{i}}$ and we can use a local chart to define its integration.

Integration

Question: Is it well-defined ? Does it depend on how we do the decomposition of unity?
Let $\left\{\theta_{\mathrm{i}}\right\}_{1 \leqslant i \leqslant \mathrm{~N}}$ be the decomposition of unity associated to the covering $\left\{\mathrm{V}_{\mathrm{i}}\right\}_{1 \leqslant \mathrm{i} \leqslant \mathrm{N}}$, while $\left\{\eta_{\mathrm{j}}\right\}_{1 \leqslant \mathrm{j} \leqslant \mathrm{L}}$ the one associated to the covering $\left\{\mathrm{W}_{\mathrm{j}}\right\}_{1 \leqslant \mathrm{j} \leqslant \mathrm{L}}$. Then, observe that
$\left\{\theta_{\mathrm{i}} \eta_{\mathrm{j}}\right\}_{1 \leqslant \mathrm{j} \leqslant \mathrm{L}, 1 \leqslant \mathrm{i} \leqslant \mathrm{N}}$ decomposition of unity
\quad associated to $\left\{\mathrm{V}_{\mathrm{i}} \cap \mathrm{W}_{\mathrm{j}}\right\}_{1 \leqslant \mathrm{j} \leqslant \mathrm{L}, 1 \leqslant \mathrm{i} \leqslant \mathrm{N}}$.

$$
\begin{aligned}
\int_{\mathrm{M}} \varphi & =\sum_{i=1}^{\mathrm{N}} \int_{\mathrm{M}} \varphi \theta_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \sum_{\mathrm{j}=1}^{\mathrm{L}} \int_{\mathrm{M}} \varphi \theta_{\mathrm{i}} \eta_{\mathrm{j}} \\
& =\sum_{\mathrm{j}=1}^{\mathrm{L}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \int_{\mathrm{M}} \varphi \theta_{\mathrm{i}} \eta_{\mathrm{j}}=\sum_{\mathrm{j}=1}^{\mathrm{L}} \int_{\mathrm{M}} \varphi \eta_{\mathrm{j}} .
\end{aligned}
$$

Integration-decomposition of unity

Theorem (Decomposition of unity)
Given a covering $\mathrm{M}=\bigcup_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{V}_{\mathrm{i}}$, the decomposition of unity exists.

Proof.

Sketch of the proof:
Step 1: Existence of the function $\mathrm{C}_{\mathrm{c}}^{\infty}$.
Step 2: Change of coordinate.
Step 3: Normalization using the local compactness.

Outline for section 3

(1) Manifold

- Definition
- Differential Map on Manifold
(2) Integration on Manifold
- Differential Form on Manifold
- Integration
(3) Stokes' Theorem on Manifold

Manifold with boundary

A n-dimensional smooth manifold with boundary is an object locally looks like \mathbb{R}^{n} while the boundary $\partial \mathrm{M}$ looks like a hyper-plane $\mathbb{R}^{\mathrm{n}-1}$.

Manifold (with or without boundary)

Examples of manifold (with boundary):

- \mathbb{R}^{n}. (without boundary)
- n-dimensional unit ball B_{1}. (with boundary)
- ($\mathrm{n}-1$)-dimensional unit sphere $\mathbb{S}^{\mathrm{n}-1}$. (without boundary)
- Torus. (without boundary)
- Projective space: $\mathrm{P}^{2}=\left(\mathbb{R}^{3} \backslash 0\right) / \sim$. (without boundary)

Stokes' Theorem

Theorem (Stokes' Theorem)
Let M be an n-dimensional manifold with boundary, compact and oriented. Let φ be a $(\mathrm{n}-1)$-form. Then we have

$$
\begin{equation*}
\int_{\partial \mathrm{M}} \omega=\int_{\mathrm{M}} \mathrm{~d} \omega \tag{3.1}
\end{equation*}
$$

Stokes' Theorem - Examples

- Green's theorem.
- Kelvin-Stokes theorem: in \mathbb{R}^{3}, let $\mathrm{F}=(\mathrm{P}, \mathrm{Q}, \mathrm{R})$ and Σ a closed surface, then

$$
\int_{\partial \Sigma} \mathrm{Fd} \gamma=\int_{\Sigma}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}\right) \mathrm{dydz}+\left(\frac{\partial \mathrm{P}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{x}}\right) \mathrm{dzdx}+\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{y}}\right) \mathrm{dxd} y
$$

- Gauss's theorem: in \mathbb{R}^{3}, let $\mathrm{F}=(\mathrm{P}, \mathrm{Q}, \mathrm{R})$ and S a closed surface and n the normal direction. Then

$$
\int_{\partial \mathrm{S}} \mathrm{~F} \cdot \mathrm{n}=\int_{\mathrm{S}} \nabla \cdot \mathrm{~F}
$$

Stokes' Theorem - Examples

Proof.

In Kelvin-Stokes theorem, we have $\omega=\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}$, which is a 1-form. Then we calculate its exterior differential

$$
\begin{aligned}
\mathrm{d} \omega & =\left(\frac{\partial \mathrm{P}}{\partial \mathrm{x}} \mathrm{dx}+\frac{\partial \mathrm{P}}{\partial \mathrm{y}} \mathrm{dy}+\frac{\partial \mathrm{P}}{\partial \mathrm{z}} \mathrm{dz}\right) \wedge \mathrm{dx} \\
& +\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{x}} \mathrm{dx}+\frac{\partial \mathrm{Q}}{\partial \mathrm{y}} \mathrm{dy}+\frac{\partial \mathrm{Q}}{\partial \mathrm{z}} \mathrm{dz}\right) \wedge \mathrm{dy} \\
& +\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}} \mathrm{dx}+\frac{\partial \mathrm{R}}{\partial \mathrm{y}} \mathrm{dy}+\frac{\partial \mathrm{R}}{\partial \mathrm{z}} \mathrm{dz}\right) \wedge \mathrm{dz} \\
& =\left(\frac{\partial \mathrm{R}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}\right) \mathrm{dy} \wedge \mathrm{dz}+\left(\frac{\partial \mathrm{P}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{x}}\right) \mathrm{dz} \wedge \mathrm{dx}+\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{y}}\right) \mathrm{dx} \wedge \mathrm{dy}
\end{aligned}
$$

Stokes' Theorem - Examples

Proof.

In Gauss's theorem, we have $\omega=\operatorname{Pdy} \wedge \mathrm{dz}+\mathrm{Qdz} \wedge \mathrm{dx}+\operatorname{Rdx} \wedge \mathrm{dy}$, which is a 2 -form. Then we calculate its exterior differential

$$
\begin{aligned}
\mathrm{d} \omega & =\left(\frac{\partial \mathrm{P}}{\partial \mathrm{x}} \mathrm{dx}+\frac{\partial \mathrm{P}}{\partial \mathrm{y}} \mathrm{dy}+\frac{\partial \mathrm{P}}{\partial \mathrm{z}} \mathrm{dz}\right) \wedge \mathrm{dy} \wedge \mathrm{dz} \\
& +\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{x}} \mathrm{dx}+\frac{\partial \mathrm{Q}}{\partial \mathrm{y}} \mathrm{dy}+\frac{\partial \mathrm{Q}}{\partial \mathrm{z}} \mathrm{dz}\right) \wedge \mathrm{dz} \wedge \mathrm{dx} \\
& +\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}} \mathrm{dx}+\frac{\partial \mathrm{R}}{\partial \mathrm{y}} \mathrm{dy}+\frac{\partial \mathrm{R}}{\partial \mathrm{z}} \mathrm{dz}\right) \wedge \mathrm{dx} \wedge \mathrm{dy} \\
& =\left(\frac{\partial \mathrm{P}}{\partial \mathrm{x}}+\frac{\partial \mathrm{Q}}{\partial \mathrm{y}}+\frac{\partial \mathrm{R}}{\partial \mathrm{z}}\right) \mathrm{dx} \wedge \mathrm{dy} \wedge \mathrm{dz}
\end{aligned}
$$

