Lecture 5: Stokes' Theorem on Manifold

Chenlin GU

DMA/ENS, PSL Research University

April 20, 2020

Chenlin GU (DMA/ENS)

Vector Analysis

April 20, 2020 1/38

Recap

• Green's theorem: transform an integral of 1-form to 2-form

$$\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial D} P \, dx + Q \, dy. \tag{0.1}$$

• Language of differential form: $\varphi = Pdx + Qdy$, then we have $\int_{\partial D} \varphi = \int_{D} d\varphi$ because

$$d\varphi = dP \wedge dx + dQ \wedge dy$$
$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \wedge dy.$$

• Question: Does it make sense for a general k-form φ and a general domain D?

Outline for section 1

Manifold

- Definition
- Differential Map on Manifold

2 Integration on Manifold

- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Outline

1 Manifold

• Definition

• Differential Map on Manifold

2 Integration on Manifold

- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Manifold

A manifold is an object that locally looks like that of \mathbb{R}^n .

Definition (Manifold)

A n-dimensional manifold is an object $(M, (f_{\alpha})_{\alpha \in I})$ such that a family of injective functions $f_{\alpha} : U_{\alpha} \subset \mathbb{R}^n \to M$:

$$\bigcirc \bigcup_{\alpha \in \mathbf{I}} \mathbf{f}_{\alpha}(\mathbf{U}_{\alpha}) = \mathbf{M}.$$

^② For any V =
$$f_{\alpha}(U_{\alpha}) \cap f_{\beta}(U_{\beta})$$
, that

$$\begin{aligned} \mathbf{f}_{\beta}^{-1} \circ \mathbf{f}_{\alpha} &: \mathbf{f}_{\alpha}^{-1}(\mathbf{V}) \to \mathbf{f}_{\beta}^{-1}(\mathbf{V}) \\ \mathbf{f}_{\alpha}^{-1} \circ \mathbf{f}_{\beta} &: \mathbf{f}_{\beta}^{-1}(\mathbf{V}) \to \mathbf{f}_{\alpha}^{-1}(\mathbf{V}) \end{aligned}$$

5/38

are differentiable.

③ (f_α)_{α∈I} is a maximal set.

We also call $(f_{\alpha})_{\alpha \in I}$ atlas and one function f_{α} local chart.

Remark: Usually, we admit that the manifold has countable basis.Chenlin GU (DMA/ENS)Vector AnalysisApril 20, 2020

Manifold

Manifold - Exploration of Maps

Definition

Manifold

Examples of manifold:

• \mathbb{R}^n .

- n-dimensional unit ball B₁.
- (n-1)-dimensional unit sphere \mathbb{S}^{n-1} .
- Torus.
- Projective space: $P^2 = (\mathbb{R}^3 \setminus 0) / \sim$.

Manifold

A non-trivial example of manifold: Projective space $P^2 = (\mathbb{R}^3 \setminus 0) / \sim$ that

$$(x, y, z) \sim (\lambda x, \lambda y, \lambda z), \lambda \neq 0.$$

One can use three maps to cover it and then add all the compatible maps

•
$$f_1 : \mathbb{R}^2 \to P^2, f_1(u, v) = [1, u, v].$$

• $f_2 : \mathbb{R}^2 \to P^2, f_2(u, v) = [u, 1, v].$
• $f_3 : \mathbb{R}^2 \to P^2, f_3(u, v) = [u, v, 1].$
Then we see that $f_2^{-1} \circ f_1(u, v) = f_2^{-1}([1, u, v]) = (\frac{1}{u}, \frac{v}{u}).$

r

Manifold

Definition (Orientable Manifold)

For a manifold $(M, (f_{\alpha})_{\alpha \in I})$ is said orientable iff for any two local charts f_{α}, f_{β} with common image, $d(f_{\beta}^{-1} \circ f_{\alpha})$ has positive determinant.

A famous counter example of non-orientable manifold: Möbius band.

Outline

- Definition
- Differential Map on Manifold
- 2 Integration on Manifold
 - Differential Form on Manifold
 - Integration

3 Stokes' Theorem on Manifold

Differential Map on Manifold

Definition (Differential Map)

Let M_1 and M_2 be two differential manifolds, then a function (map) $\phi: M_1 \to M_2$ is said differentiable if for any local chart $f: U_1 \to M_1, g: U_2 \to M_2$ such that $\phi \circ f(U_1) \subset g(U_2)$, we have $g^{-1} \circ \phi \circ f: U_1 \to U_2$ is differentiable. In the case $M_2 = \mathbb{R}$, we call ϕ a differentiable function on M_1 .

Differential Map on Manifold

Differential Map on Manifold

Remark: The definition does not depend on the choice of local charts. For two pairs of charts in the definition,

$$\begin{split} f_1, f_2 &: U_1 \rightarrow M_1, \\ g_1, g_2 &: U_2 \rightarrow M_2. \end{split}$$

Then we have

$$g_2^{-1} \circ \phi \circ f_2 = \underbrace{(g_2^{-1} \circ g_1)}_{\text{differentiable}} \circ \left(g_1^{-1} \circ \phi \circ f_1\right) \circ \underbrace{(f_1^{-1} \circ f_2)}_{\text{differentiable}}.$$

Outline for section 2

1 Manifold

- Definition
- Differential Map on Manifold

2 Integration on Manifold

- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Outline

1 Manifold

- Definition
- Differential Map on Manifold

2 Integration on Manifold

- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Definition (Sub-manifold)

M is a sub-manifold of \mathbb{R}^m if $\mathbf{M}\subset\mathbb{R}^m$ and M is a manifold.

In the case of sub-manifold, the tangent space T_pM at $p \in M$ is easy to define: let f be a local chart around p, and f(0) = p then

 $T_pM:=\operatorname{Vect}\{df_0(e_1),df_0(e_1)\cdots df_0(e_n)\}.$

Then the k-form on M at p is defined as $\Lambda^{k}(T_{p}M)^{*}$.

Theorem (Whitney Embedding)

Every n-dimensional smooth manifold can be smoothly embedded in $\mathbb{R}^{2n}.$

Thus you can treat the manifold as sub-manifold in some sense.

A more abstract way to define the tangent plane.

Definition (Differentiable Curve on M)

Let $I = (a, b), \gamma : I \to M$ be a differential map, we call γ a differentiable curve on M.

Remark: A special example of differential map.

Definition (Tangent Vector)

Let $\gamma : I \to M$ a differential curve on a manifold M, with $\gamma(0) = p \in M$, and let D be the set of functions differentiable at p. Then we define the tangent vector at p to be $\gamma'(0)$, which is a derivative operator $\gamma'(0) : D \to \mathbb{R}$ that

$$\gamma'(0)\phi := rac{\mathrm{d}}{\mathrm{dt}}(\phi \circ \gamma)|_{\mathrm{t}=0}.$$

For local chart \mathbf{f}_α of M, it gives a local canonical basis so that $\phi\in \mathbf{D}$

$$\phi \circ f_{\alpha} = \phi(x_1, x_2, \cdots x_n),$$

then the differentiable curve $\{x_i\}_{1\leqslant i\leqslant n}$ gives a canonical partial derivative

$$rac{\partial}{\partial_{\mathrm{x}_{\mathrm{i}}}}\phi:=rac{\partial}{\partial_{\mathrm{x}_{\mathrm{i}}}}(\phi\circ\mathrm{f}_{lpha}).$$

Then $\left\{\frac{\partial}{\partial_{x_i}}\right\}_{1 \le i \le n}$ construct a canonical basis for T_pM under the local chart f_{α} .

Chenlin GU (DMA/ENS)

Moreover, for $\gamma : I \to M$ passing p ($\gamma(0) = p$), we have

$$\mathrm{f}_{lpha}^{-1}\circ\gamma=(\mathrm{x}_{1}(\mathrm{t}),\mathrm{x}_{2}(\mathrm{t})\cdots\mathrm{x}_{\mathrm{n}}(\mathrm{t})).$$

and then

$$\begin{split} \gamma'(0)\phi &= \frac{\mathrm{d}}{\mathrm{dt}}(\phi \circ \gamma)|_{t=0} \\ &= \frac{\mathrm{d}}{\mathrm{dt}}((\phi \circ f_{\alpha}) \circ (f_{\alpha}^{-1} \circ \gamma))|_{t=0} \\ &= \frac{\mathrm{d}}{\mathrm{dt}}(\phi(\mathbf{x}_{1}(t), \mathbf{x}_{2}(t) \cdots \mathbf{x}_{n}(t)))|_{t=0} \\ &= \sum_{i=1}^{n} \mathbf{x}_{i}'(0) \left(\frac{\partial}{\partial_{\mathbf{x}_{i}}}\phi\right). \end{split}$$

It does prove that T_pM is a tangent plane and we can construct the k-form on M at p is defined as $\Lambda^k(T_pM)^*$.

Chenlin GU (DMA/ENS)

Vector Analysis

Differential Form on Manifold: Pullback

Recap: Pull-Back is the idea of df_p .

- $f : \mathbb{R}^n \to \mathbb{R}^m$ a C^1 differential map.
- $df_p : \mathbb{R}^n \to \mathbb{R}^m$.
- $\varphi \in \Lambda^{k}(\mathbb{R}^{m})^{*}$.
- "Pull-back" means pull the differential form \mathbb{R}^m to that of \mathbb{R}^n .
- $f^* \varphi \in \Lambda^k(\mathbb{R}^n)^*$: for $v_1 \cdots v_k \in \mathbb{R}^n$

$$(\mathbf{f}^*\varphi)_{\mathbf{p}}(\mathbf{v}_1,\mathbf{v}_2,\cdots\mathbf{v}_k) := \varphi_{\mathbf{f}(\mathbf{p})}(\mathrm{df}_{\mathbf{p}}(\mathbf{v}_1),\mathrm{df}_{\mathbf{p}}(\mathbf{v}_2)\cdots\mathrm{df}_{\mathbf{p}}(\mathbf{v}_k)) \ . \tag{2.1}$$

Differential Form on Manifold: Pullback

Generalization: Pull-Back on manifold

- $f_{\alpha} : U_{\alpha} \to M$ a local chart.
- $df_0: T_0U_\alpha \rightarrow T_pM, \forall \phi \in D(M),$

$$(\mathrm{df}_{\alpha})_0(\mathrm{v})(\phi) = \mathrm{d}(\phi\circ\mathrm{f}_{\alpha})_0(\mathrm{v}) = \sum_{\mathrm{i}=1}^{\mathrm{n}} [\mathrm{v}]_{\mathrm{i}} \Big(\frac{\partial}{\partial_{\mathrm{x}_{\mathrm{i}}}} \Big) \phi.$$

In another word, $(df_{\alpha})(v) = \sum_{i=1}^{n} [v]_{i} \frac{\partial}{\partial_{x_{i}}}$.

- $\varphi \in \Lambda^{k}(T_{p}M)^{*}$.
- "Pull-back" means pull the differential form M to that of U_{α} .

•
$$f_{\alpha}^* \varphi \in \Lambda^k(T_0 U_{\alpha})^*$$
: for $v_1 \cdots v_k \in \mathbb{R}^n$

$$\left((\mathbf{f}_{\alpha}^{*}\varphi)_{0}(\mathbf{v}_{1},\mathbf{v}_{2},\cdots\mathbf{v}_{k}):=\varphi(\mathrm{df}_{\alpha}(\mathbf{v}_{1}),\mathrm{df}_{\alpha}(\mathbf{v}_{2})\cdots\mathrm{df}_{\alpha}(\mathbf{v}_{k}))\right).$$
(2.2)

We define that $\varphi_{\alpha} := f_{\alpha}^* \varphi$.

Outline

1 Manifold

- Definition
- Differential Map on Manifold

2 Integration on Manifold

- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Definition (Integration of n-form on \mathbb{R}^n)

Let $\varphi_{\alpha} = \omega_{\alpha} dx_1 \wedge dx_2 \cdots \wedge dx_n$, then we have

$$\int \varphi_{\alpha} = \int \omega_{\alpha} \, \mathrm{d} x_1 \cdots \mathrm{d} x_n.$$

Definition (Integration on Manifold)

Let φ a n-form on n-dimensional manifold M and $\{f_\alpha, U_\alpha\}_{\alpha \in A}$ local charts. Then we define that

$$\int_{\mathrm{M}\cap f_{\alpha}(\mathrm{U}_{\alpha})} \varphi := \int_{\mathrm{U}_{\alpha}} \varphi_{\alpha}.$$
(2.3)

Question: Is it well-defined?

Let f_{α}, f_{β} two charts such that $f_{\alpha}(U_{\alpha}) = f_{\beta}(U_{\beta})$. Because we have

$$f := f_{\beta}^{-1} \circ f_{\alpha} : U_{\alpha} \to U_{\beta}, (x_1, x_2 \cdots x_n) \to (y_1, y_2, \cdots y_n)$$
$$\varphi_{\alpha} = (f)^*(\varphi_{\beta}) = \mathsf{det}\left(\frac{\partial(y_1, \cdots y_n)}{\partial(x_1, \cdots x_n)}\right) \omega_{\beta}(y, \cdots y) \mathrm{d}x_1 \wedge \mathrm{d}x_2 \cdots \wedge \mathrm{d}x_n.$$

Then we have that

$$\begin{split} \int_{f_{\alpha}(U_{\alpha})} \varphi &= \int_{U_{\alpha}} \varphi_{\alpha} = \det\left(\frac{\partial(y_{1}, \cdots y_{n})}{\partial(x_{1}, \cdots x_{n})}\right) \omega_{\beta}(y, \cdots y) dx_{1} \wedge dx_{2} \cdots \wedge dx_{n} \\ &= \int_{U_{\beta}} \det\left(\frac{\partial(y_{1}, \cdots y_{n})}{\partial(x_{1}, \cdots x_{n})}\right) \omega_{\beta}(y, \cdots y) dx_{1} dx_{2} \cdots dx_{n} \\ &= \int_{U_{\beta}} \omega_{\beta} dy_{1} \cdots dy_{n} \\ &= \int_{U_{\beta}} \varphi_{\beta}. \end{split}$$

Chenlin GU (DMA/ENS)

Integration-decomposition of unity

Definition (Decomposition of unity)

Given a covering $M = \bigcup_{i=1}^{N} V_i$, we say $\{\theta_i\}_{1 \leq i \leq N}$ is an associated decomposition of unity if

•
$$0 \leq \theta_i \leq 1$$
, differentiable and $\operatorname{supp}(\theta_i) \subset V_i$.

•
$$\sum_{i=1}^{N} \theta_i = 1.$$

Definition (Integration on Manifold)

Let φ a n-form on n-dimensional manifold M and $\{f_\alpha, U_\alpha\}_{\alpha \in A}$ local charts. Then we define that

$$\int_{\mathcal{M}} \varphi = \sum_{\alpha} \int_{\mathcal{U}_{\alpha}} \varphi_{\alpha}, \qquad (2.4)$$

using the decomposition of unity $\{\theta_i\}_{1 \leq i \leq N}$ associated to a covering of local charts $M = \bigcup_{i=1}^{N} V_i, V_i = f_i(U_i)$:

$$\int_{M} \varphi = \sum_{i=1}^{N} \int_{M} \varphi \theta_{i}.$$
(2.5)

Remark: the interest is that $\operatorname{supp}(\varphi \theta_i) \subset V_i$ and we can use a local chart to define its integration.

Chenlin GU (DMA/ENS)

Vector Analysis

April 20, 2020 29 / 38

Question: Is it well-defined ? Does it depend on how we do the decomposition of unity?

Let $\{\theta_i\}_{1 \leq i \leq N}$ be the decomposition of unity associated to the covering $\{V_i\}_{1 \leq i \leq N}$, while $\{\eta_j\}_{1 \leq j \leq L}$ the one associated to the covering $\{W_j\}_{1 \leq j \leq L}$. Then, observe that

 $\begin{array}{l} \{\theta_i\eta_j\}_{1\leqslant j\leqslant L,1\leqslant i\leqslant N} \mbox{ decomposition of unity} \\ \mbox{ associated to } \{V_i \ \cap W_j\}_{1\leqslant j\leqslant L,1\leqslant i\leqslant N}. \end{array}$

$$\begin{split} \int_{M} \varphi &= \sum_{i=1}^{N} \int_{M} \varphi \theta_{i} = \sum_{i=1}^{N} \sum_{j=1}^{L} \int_{M} \varphi \theta_{i} \eta_{j} \\ &= \sum_{j=1}^{L} \sum_{i=1}^{N} \int_{M} \varphi \theta_{i} \eta_{j} = \sum_{j=1}^{L} \int_{M} \varphi \eta_{j}. \end{split}$$

Integration-decomposition of unity

Theorem (Decomposition of unity)

Given a covering $M = \bigcup_{i=1}^{N} V_i$, the decomposition of unity exists.

Proof.

Sketch of the proof:

Step 1: Existence of the function C_c^{∞} .

Step 2: Change of coordinate.

Step 3: Normalization using the local compactness.

Outline for section 3

1 Manifold

- Definition
- Differential Map on Manifold

2 Integration on Manifold

- Differential Form on Manifold
- Integration

3 Stokes' Theorem on Manifold

Manifold with boundary

A n-dimensional smooth manifold with boundary is an object locally looks like \mathbb{R}^n while the boundary ∂M looks like a hyper-plane \mathbb{R}^{n-1} .

Manifold (with or without boundary)

Examples of manifold (with boundary):

- \mathbb{R}^n . (without boundary)
- n-dimensional unit ball B₁. (with boundary)
- (n-1)-dimensional unit sphere S^{n-1} . (without boundary)
- Torus. (without boundary)
- Projective space: $P^2 = (\mathbb{R}^3 \setminus 0) / \sim$. (without boundary)

Stokes' Theorem

Theorem (Stokes' Theorem)

Let M be an n-dimensional manifold with boundary, compact and oriented. Let φ be a (n-1)-form. Then we have

$$\int_{\partial M} \omega = \int_{M} d\omega. \tag{3.1}$$

Chenlin GU (DMA/ENS)

Stokes' Theorem - Examples

- Green's theorem.
- Kelvin–Stokes theorem: in \mathbb{R}^3 , let F = (P, Q, R) and Σ a closed surface, then

$$\int_{\partial \Sigma} F \, d\gamma = \int_{\Sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dz$$

• Gauss's theorem: in \mathbb{R}^3 , let F = (P, Q, R) and S a closed surface and n the normal direction. Then

$$\int_{\partial \mathbf{S}} \mathbf{F} \cdot \mathbf{n} = \int_{\mathbf{S}} \nabla \cdot \mathbf{F}.$$

Stokes' Theorem - Examples

Proof.

In Kelvin–Stokes theorem, we have $\omega = Pdx + Qdy + Rdz$, which is a 1-form. Then we calculate its exterior differential

$$d\omega = \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy + \frac{\partial P}{\partial z}dz\right) \wedge dx$$

+ $\left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy + \frac{\partial Q}{\partial z}dz\right) \wedge dy$
+ $\left(\frac{\partial R}{\partial x}dx + \frac{\partial R}{\partial y}dy + \frac{\partial R}{\partial z}dz\right) \wedge dz$
= $\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) dy \wedge dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) dz \wedge dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \wedge dy.$

Stokes' Theorem - Examples

(

Proof.

In Gauss's theorem, we have $\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$, which is a 2-form. Then we calculate its exterior differential

$$\begin{split} \mathrm{d}\omega &= \left(\frac{\partial P}{\partial x}\mathrm{d}x + \frac{\partial P}{\partial y}\mathrm{d}y + \frac{\partial P}{\partial z}\mathrm{d}z\right) \wedge \mathrm{d}y \wedge \mathrm{d}z \\ &+ \left(\frac{\partial Q}{\partial x}\mathrm{d}x + \frac{\partial Q}{\partial y}\mathrm{d}y + \frac{\partial Q}{\partial z}\mathrm{d}z\right) \wedge \mathrm{d}z \wedge \mathrm{d}x \\ &+ \left(\frac{\partial R}{\partial x}\mathrm{d}x + \frac{\partial R}{\partial y}\mathrm{d}y + \frac{\partial R}{\partial z}\mathrm{d}z\right) \wedge \mathrm{d}x \wedge \mathrm{d}y \\ &= \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right)\mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z. \end{split}$$

Chenlin GU (DMA/ENS)