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Gauss-Bonnet Theorem

Gauss-Bonnet Theorem

Theorem (Gauss-Bonnet Theorem)

Given a Σ a compact smooth surface in R3, we have∫
Σ

K dS = 2πχ(Σ). (1.1)

Right hand side: Euler characteristic.
Left hand side: total curvature - integral of Gaussian curvature.
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Euler Characteristic
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Euler Characteristic

Euler Characteristic - Polyhedra

Euler Characteristic

The Euler characteristic χ was classically defined for the surfaces
of polyhedra, according to the formula

χ = V + F − E.

where we have

V: number of vertex.

F: number of faces.

E: number of edges.

Chenlin GU (DMA/ENS) Vector Analysis April 29, 2020 5 / 18



Euler Characteristic

Euler Characteristic - Polyhedra Example 1
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Euler Characteristic

Euler Characteristic - Polyhedra Example 2
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Euler Characteristic

Euler Characteristic - 2D Surface

Theorem (Classification theorem)

The 2D compact orientable smooth surface Σ can be classified by its
number of genus g, and the Euler characteristic is

χ(Σ) = 2 − 2g. (2.1)
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Euler Characteristic

Euler Characteristic - 2D Surface
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Euler Characteristic

Euler Characteristic - 2D Surface

Theorem
Euler characteristic is invariant up to homeomorphism i.e. bijection
and continuous in two directions.
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Euler Characteristic

Euler Characteristic - Case for Sphere

Now Σ = S2.

It suffices to consider the case on the plane.

Suppose that R2 = ∪ni=1Pi, with boundary P0 where {Pi}06i6n are
polygons with Ei edges.

2E =
n∑
i=0

Ei,

n∑
i=1

(Ei − 2)π = 2π(V − E0) + (E0 − 2)π,

F = n + 1.

=⇒ V + F − E = 2.
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Euler Characteristic

Euler Characteristic - Case for Sphere
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Euler Characteristic

Euler Characteristic - Application
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Proof
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Proof

Local Gauss-Bonnet theorem

The key idea is the local version of Gauss-Bonnet theorem.∫
Σ

K dS = (2 − n)π −

∫
∂Σ

kg +
∑
i

θi.
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