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1. Exercise 1

Part 1.

(1) We have to prove that one can go from any integer i to any integer j in a finite number of steps
with positive probability. The chain has a positive probability to from i to 1 in the first step
and then make j − 1 steps from 1 to j. This settles the irreducibility. As for aperiodicity, it is
enough to notice that Q(1, 1) > 0.

(2) Let us show first that the chain is recurrent. Let A := {ω, (Xn(ω))n > 0 diverges to infinity}.
Clearly A ⊆

⋃
n > 1

⋂
k > n

{Xk+1(ω)−Xk(ω) = 1}. The RHS has a probability zero since using the ex-

plicit transition probabilities and passing to the limit one gets P(
⋂
k > n

{Xk+1(ω)−Xk(ω) = 1}) = 0.

To show null-recurrence we can compute the invariant measure (which exists and is unique up
to a multiplicative constant because the chain is irreducible and recurrent). The chain is then
positive recurrent if and only if any invariant measure has finite mass. The invariant measure
π has to satisfy for all k > 1, π(k + 1) = k

k+1
π(k), then π(k + 1) = 1

k+1
π(1). This implies that∑

k > 1

π(k) =∞ which concludes.

Alternatively, for this chain it is easy to compute P1(T1 = n), in fact there is only one excur-
sion from 1 to 1 (i.e., only one way to go from 1 to 1 without visiting 1). So P1(T1 = n) =
(1/2)(2/3) · · · ((n− 2)/(n− 1))((n− 1)/n)(1/(n+ 1)) = 1/(n(n+ 1)) = 1/n− 1/(n+ 1). Since∑∞

n=1 P1(T1 = n) = 1 the chain is recurrent. Added to that, E1[T1] =
∑∞

n=1 1/(n + 1) = ∞, so
the chain is null recurrent.

(3) limn P(Xn = 2)/P(Xn = 3) = 3
2
but this result requires techniques beyond what we did in

the course (sorry! We made a mistake). In any case, P(Xn = 2)/P(Xn = 3) = (P(Xn−1 =
1)/(P(Xn−2 = 1)Q(1, 2)/(Q(1, 2)Q(2, 3)) so it suffices to show that limn P(Xn = 1)/P(Xn+1 =
1) = 1. One way to proceed is proving that P(Xn = 1) ∼ log n (contact us if you want the non
elementary details for this).

Part 2.

(4) For exactly the same reasons (i.e. P(
⋂
k > n

{Xk+1(ω) − Xk(ω) = 1}) = 0) this new chain is

still recurrent. This time, when computing recurrence relations for an invariant measure, we
get π(k + 1) = k

k+2
π(k), which gives by recurrence for k > 1, π(k + 1) = 2

(k+1)(k+2)
. Since∑

k > 1

2
(k+1)(k+2)

= 1 < ∞ we deduce that the chain is positive recurrent. On course this result

can be achieved also by making explicit the law of T1 when X0 = 1. See point (6).
(5) Since the chain is defined on positive integers and starts at the invariant measure π, we have

Eπ[Xn] = Eπ[X0] for all n (since Xn
(d)
= X0). It is then enough to prove that Eπ[X0] = ∞. This

follows from the fact that kPπ(X0 = k) ∼ C
k
for some positive constant C as k →∞.

(6) When the chain starts at 1, we have {T1 = n} = {X0 = 1, X1 = 2, X2 = 3, . . . Xn−1 = n,Xn = 1}.

Then using the Markov property one directly gets P1(T1 = n) = (
n−1∏
k=1

Q(k, k + 1)) × Q(n, 1) =
1
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n(n+1)(n+2)

. This allows to deduce that E1[T1] =
∑
n > 1

nP1(T1 = n) = 4
∑
n > 2

1
n(n+1)

= 4
∑
n > 2

( 1
n
−

1
n+1

) = 2. This is coherent with the fact that E1[T1] = 1
µ(1)

= 2 (one can indeed compute
explicitely the invariant measure by normalizing the expression found at question (4)).

(7) Set call τj the jth visit to 1 by the chain. We set also τ0 := 0. By the Strong Markov Property and
recurrence, (τj−τj−1)j=1,2,... is an independent sequence and (τj−τj−1)j=2,3,... is IID. By the Law of
Large Numbers we have that limj τj/j = E1[τ1] a.s.. But this means that lim supj(τj−τj−1)/j = 0
a.s.. We know that for every n there exists a unique jn = jn(ω) such that τjn−1 < n ≤ τjn and
a.s. jn ∼ n/E1[τ1]. If Xn > εn then τjn − τjn−1 > εn ∼ εE1[τ1]jn, but this cannot happen for
infinitely many values of n, because lim supj(τj − τj−1)/j = 0 a.s..

2. Exercise 2

In the first part we consider the classical urn of Polya: we start with an urn that contains B0 > 0
blue balls and R0 > 0 red balls. At each time step we choose one ball from the urn and we put it back
together with α > 0 balls of the same color. This defines the the two sequences (Rn) and (Bn) of random
variables: of course Rn +Bn = R0 +B0 + αn. We set Fn := σ(R0, R1, . . . , Rn).

(1) The family (Xn)n > 0 is UI if for each ε > 0, one can fine M > 0 such that sup
n

E[|Xn|; |Xn| >

M ] 6 ε. A sequence converges in L1 iff it is UI and converges in probability.
(2) This is a classical computation. Clearly the process Mn is Fn adapted and bounded, thus

integrable. Let (Tn)n > 0 the random variable denoting which color B or R picked at step
n. Then E[Mn+1|Fn] = E[Mn+11Tn+1=B|Fn] + E[Mn+11Tn+1=R|Fn]. Then one easliy sees that
Mn+11Tn+1=B = Rn

Rn+Bn+α
1Tn+1=B and Mn+11Tn+1=R = Rn+α

Rn+Bn+α
1Tn+1=B. We also have that

E[1Tn+1=B|Fn] = Bn
Bn+Tn

and E[1Tn+1=R|Fn] = Rn
Bn+Tn

. This concludes the martingale property.
The martingale is bounded thus UI.

(3) The martingale (Mn)n > 0 is bounded this converges a.s. and in L1. We have for p > n,
Mn = E[Mp|Fn]. Using the UI hypothesis, one can send p → ∞ and exange limits Mn =
limp E[Mp|Fn] = E[limpMp|Fn]. If M were a.s. constant, so would be M1 = E[M |F1] which is
clearly not the case.

(4) Clearly Yn is a bounded adapted process, thus the family is UI. Moreover using the same condi-
tionning on the value of the sample at time n+ 1 gives the martingale property.

(5) By the same boundedness argument, Yn converges to Y , a.s. and in L2. Moreover Y (ω) =

lim
n→∞

Rn(ω)
Rn(ω)+Bn(ω)

Rn(ω)+α
Rn(ω)+Bn(ω)+α

= lim
n→∞

Rn(ω)
Rn(ω)+Bn(ω)

Rn(ω)
Rn(ω)+Bn(ω)

= M(ω)2. Thus one can compute
E[Y ] = E[Y0] = E[M2] and E[M ] = E[M0]. The net result is

Var(M) =
αR0B0

(R0 +B0)2(R0 +B0 + α)
.

Since Var(M) > 0, M is not constant.
(6) By conditioning on the events Tn+1 = R and Tn+1 = B , we get that Rn+1 − Bn+1 = Rn −

Bn + δ(2 × 1Tn+1=R − 1). The martingale property then directly comes from the fact that
P(Tn+1 = R) = Rn

Rn+Bn
= Rn

R0+B0+nτ
and the independence between Tn+1 and Fn To be corrected:

not independent!.
(7) Using the relation Rn+1 − Bn+1 = Rn − Bn + δ(2× 1Tn+1=R − 1), one gets E[(Rn+1 − Bn+1)

2] =
E[(Rn−Bn)

2]+2δE[(Rn−Bn)(2×1Tn+1=R−1)]+δ2. Since a.s δ2(2×1Tn+1=R−1)2 = δ2. To conclude
it is enough to see that E[(Rn −Bn)(2× 1Tn+1=R − 1)] = E[E[(Rn −Bn)(2× 1Tn+1=R − 1)|Fn]] =
E[(Rn −Bn)E[(2× 1Tn+1=R − 1)|Fn]] = E[(Rn −Bn)

Rn−Bn
Rn+Bn

] = 1
R0+B0+nτ

E[(Rn −Bn)
2].
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(8) Set Cρ := Cρ,R0+B0,τ . We have that
∏n−1

j=0 aj ∼ C2ρn
2ρ, thus

∑∞
j=0

1∏j−1
k=0 ak

< ∞ (since ρ > 1
2
).

Moreover Zn ∼ Rn−Bn
Cρnρ

thus n2ρE[Z2
n] ∼

[
(R0 − B0)

2 + δ2
∑∞

j=0
1∏j−1

k=0 ak

]
C2ρn

2ρ which allows to
conclude.

(9) The martingale (Zn)n > 0 is bounded in L2 thus converges a.s. and in L2 (and in particular in
L1). Thus Rn−Bn

nρ
∼ Zn

Cρ
converges a.s. and in L1.
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