PROCESSUS STOCHASTIQUES 29-01-2021

2 hours 30 minutes. No documents allowed.

1. ExERCISE 1

Part 1.

(1) We have to prove that one can go from any integer i to any integer j in a finite number of steps with positive probability. The chain has a positive probability to from i to 1 in the first step and then make $j-1$ steps from 1 to j. This settles the irreducibility. As for aperiodicity, it is enough to notice that $Q(1,1)>0$.
(2) Let us show first that the chain is recurrent. Let $A:=\left\{\omega,\left(X_{n}(\omega)\right)_{n \geqslant 0}\right.$ diverges to infinity $\}$. Clearly $A \subseteq \bigcup_{n \geqslant 1} \bigcap_{k \geqslant n}\left\{X_{k+1}(\omega)-X_{k}(\omega)=1\right\}$. The RHS has a probability zero since using the explicit transition probabilities and passing to the limit one gets $\mathbb{P}\left(\bigcap_{k \geqslant n}\left\{X_{k+1}(\omega)-X_{k}(\omega)=1\right\}\right)=0$. To show null-recurrence we can compute the invariant measure (which exists and is unique up to a multiplicative constant because the chain is irreducible and recurrent). The chain is then positive recurrent if and only if any invariant measure has finite mass. The invariant measure π has to satisfy for all $k \geqslant 1, \pi(k+1)=\frac{k}{k+1} \pi(k)$, then $\pi(k+1)=\frac{1}{k+1} \pi(1)$. This implies that $\sum_{k \geqslant 1} \pi(k)=\infty$ which concludes.
Alternatively, for this chain it is easy to compute $\mathbb{P}_{1}\left(T_{1}=n\right)$, in fact there is only one excursion from 1 to 1 (i.e., only one way to go from 1 to 1 without visiting 1). So $\mathbb{P}_{1}\left(T_{1}=n\right)=$ $(1 / 2)(2 / 3) \cdots((n-2) /(n-1))((n-1) / n)(1 /(n+1))=1 /(n(n+1))=1 / n-1 /(n+1)$. Since $\sum_{n=1}^{\infty} \mathbb{P}_{1}\left(T_{1}=n\right)=1$ the chain is recurrent. Added to that, $\mathbb{E}_{1}\left[T_{1}\right]=\sum_{n=1}^{\infty} 1 /(n+1)=\infty$, so the chain is null recurrent.
(3) $\lim _{n} \mathbb{P}\left(X_{n}=2\right) / \mathbb{P}\left(X_{n}=3\right)=\frac{3}{2}$ but this result requires techniques beyond what we did in the course (sorry! We made a mistake). In any case, $\mathbb{P}\left(X_{n}=2\right) / \mathbb{P}\left(X_{n}=3\right)=\left(\mathbb{P}\left(X_{n-1}=\right.\right.$ $1) /\left(\mathbb{P}\left(X_{n-2}=1\right) Q(1,2) /(Q(1,2) Q(2,3))\right.$ so it suffices to show that $\lim _{n} \mathbb{P}\left(X_{n}=1\right) / \mathbb{P}\left(X_{n+1}=\right.$ $1)=1$. One way to proceed is proving that $\mathbb{P}\left(X_{n}=1\right) \sim \log n$ (contact us if you want the non elementary details for this).

Part 2.

(4) For exactly the same reasons (i.e. $\left.\mathbb{P}\left(\bigcap_{k \geqslant n}\left\{X_{k+1}(\omega)-X_{k}(\omega)=1\right\}\right)=0\right)$ this new chain is still recurrent. This time, when computing recurrence relations for an invariant measure, we get $\pi(k+1)=\frac{k}{k+2} \pi(k)$, which gives by recurrence for $k \geqslant 1, \pi(k+1)=\frac{2}{(k+1)(k+2)}$. Since $\sum_{k \geqslant 1} \frac{2}{(k+1)(k+2)}=1<\infty$ we deduce that the chain is positive recurrent. On course this result can be achieved also by making explicit the law of T_{1} when $X_{0}=1$. See point (6).
(5) Since the chain is defined on positive integers and starts at the invariant measure π, we have $\mathbb{E}_{\pi}\left[X_{n}\right]=\mathbb{E}_{\pi}\left[X_{0}\right]$ for all n (since $X_{n} \stackrel{(d)}{=} X_{0}$). It is then enough to prove that $\mathbb{E}_{\pi}\left[X_{0}\right]=\infty$. This follows from the fact that $k \mathbb{P}_{\pi}\left(X_{0}=k\right) \sim \frac{C}{k}$ for some positive constant C as $k \rightarrow \infty$.
(6) When the chain starts at 1 , we have $\left\{T_{1}=n\right\}=\left\{X_{0}=1, X_{1}=2, X_{2}=3, \ldots X_{n-1}=n, X_{n}=1\right\}$. Then using the Markov property one directly gets $\mathbb{P}_{1}\left(T_{1}=n\right)=\left(\prod_{k=1}^{n-1} Q(k, k+1)\right) \times Q(n, 1)=$
$\frac{4}{n(n+1)(n+2)}$. This allows to deduce that $\mathbb{E}_{1}\left[T_{1}\right]=\sum_{n \geqslant 1} n \mathbb{P}_{1}\left(T_{1}=n\right)=4 \sum_{n \geqslant 2} \frac{1}{n(n+1)}=4 \sum_{n \geqslant 2}\left(\frac{1}{n}-\right.$ $\left.\frac{1}{n+1}\right)=2$. This is coherent with the fact that $\mathbb{E}_{1}\left[T_{1}\right]=\frac{1}{\mu(1)}=2$ (one can indeed compute explicitely the invariant measure by normalizing the expression found at question (4)).
(7) Set call τ_{j} the $j^{\text {th }}$ visit to 1 by the chain. We set also $\tau_{0}:=0$. By the Strong Markov Property and recurrence, $\left(\tau_{j}-\tau_{j-1}\right)_{j=1,2, \ldots}$ is an independent sequence and $\left(\tau_{j}-\tau_{j-1}\right)_{j=2,3, \ldots}$ is IID. By the Law of Large Numbers we have that $\lim _{j} \tau_{j} / j=\mathbb{E}_{1}\left[\tau_{1}\right]$ a.s.. But this means that $\lim \sup _{j}\left(\tau_{j}-\tau_{j-1}\right) / j=0$ a.s.. We know that for every n there exists a unique $j_{n}=j_{n}(\omega)$ such that $\tau_{j_{n}-1}<n \leq \tau_{j_{n}}$ and a.s. $j_{n} \sim n / \mathbb{E}_{1}\left[\tau_{1}\right]$. If $X_{n}>\varepsilon n$ then $\tau_{j_{n}}-\tau_{j_{n}-1}>\varepsilon n \sim \varepsilon \mathbb{E}_{1}\left[\tau_{1}\right] j_{n}$, but this cannot happen for infinitely many values of n, because $\lim _{\sup }^{j}\left(\tau_{j}-\tau_{j-1}\right) / j=0$ a.s..

2. ExERCISE 2

In the first part we consider the classical urn of Polya: we start with an urn that contains $B_{0}>0$ blue balls and $R_{0}>0$ red balls. At each time step we choose one ball from the urn and we put it back together with $\alpha>0$ balls of the same color. This defines the the two sequences $\left(R_{n}\right)$ and $\left(B_{n}\right)$ of random variables: of course $R_{n}+B_{n}=R_{0}+B_{0}+\alpha n$. We set $\mathcal{F}_{n}:=\sigma\left(R_{0}, R_{1}, \ldots, R_{n}\right)$.
(1) The family $\left(X_{n}\right)_{n \geqslant 0}$ is UI if for each $\varepsilon>0$, one can fine $M>0$ such that $\sup \mathbb{E}\left[\left|X_{n}\right| ;\left|X_{n}\right|>\right.$ $M] \leqslant \varepsilon$. A sequence converges in \mathbb{L}^{1} iff it is UI and converges in probability.
(2) This is a classical computation. Clearly the process M_{n} is \mathcal{F}_{n} adapted and bounded, thus integrable. Let $\left(T_{n}\right)_{n} \geqslant 0$ the random variable denoting which color B or R picked at step n. Then $\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[M_{n+1} 1_{T_{n+1}=B} \mid \mathcal{F}_{n}\right]+\mathbb{E}\left[M_{n+1} 1_{T_{n+1}=R} \mid \mathcal{F}_{n}\right]$. Then one easliy sees that $M_{n+1} 1_{T_{n+1}=B}=\frac{R_{n}}{R_{n}+B_{n}+\alpha} 1_{T_{n+1}=B}$ and $M_{n+1} 1_{T_{n+1}=R}=\frac{R_{n}+\alpha}{R_{n}+B_{n}+\alpha} 1_{T_{n+1}=B}$. We also have that $\mathbb{E}\left[1_{T_{n+1}=B} \mid \mathcal{F}_{n}\right]=\frac{B_{n}}{B_{n}+T_{n}}$ and $\mathbb{E}\left[1_{T_{n+1}=R} \mid \mathcal{F}_{n}\right]=\frac{R_{n}}{B_{n}+T_{n}}$. This concludes the martingale property. The martingale is bounded thus UI.
(3) The martingale $\left(M_{n}\right)_{n} \geqslant 0$ is bounded this converges a.s. and in \mathbb{L}^{1}. We have for $p \geqslant n$, $M_{n}=\mathbb{E}\left[M_{p} \mid \mathcal{F}_{n}\right]$. Using the UI hypothesis, one can send $p \rightarrow \infty$ and exange limits $M_{n}=$ $\lim _{p} \mathbb{E}\left[M_{p} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[\lim _{p} M_{p} \mid \mathcal{F}_{n}\right]$. If M were a.s. constant, so would be $M_{1}=\mathbb{E}\left[M \mid \mathcal{F}_{1}\right]$ which is clearly not the case.
(4) Clearly Y_{n} is a bounded adapted process, thus the family is UI. Moreover using the same conditionning on the value of the sample at time $n+1$ gives the martingale property.
(5) By the same boundedness argument, Y_{n} converges to Y, a.s. and in \mathbb{L}^{2}. Moreover $Y(\omega)=$ $\lim _{n \rightarrow \infty} \frac{R_{n}(\omega)}{R_{n}(\omega)+B_{n}(\omega)} \frac{R_{n}(\omega)+\alpha}{R_{n}(\omega)+B_{n}(\omega)+\alpha}=\lim _{n \rightarrow \infty} \frac{R_{n}(\omega)}{R_{n}(\omega)+B_{n}(\omega)} \frac{R_{n}(\omega)}{R_{n}(\omega)+B_{n}(\omega)}=M(\omega)^{2}$. Thus one can compute $\mathbb{E}[Y]=\mathbb{E}\left[Y_{0}\right]=\mathbb{E}\left[M^{2}\right]$ and $\mathbb{E}[M]=\mathbb{E}\left[M_{0}\right]$. The net result is

$$
\operatorname{Var}(M)=\frac{\alpha R_{0} B_{0}}{\left(R_{0}+B_{0}\right)^{2}\left(R_{0}+B_{0}+\alpha\right)} .
$$

Since $\operatorname{Var}(M)>0, M$ is not constant.
(6) By conditioning on the events $T_{n+1}=R$ and $T_{n+1}=B$, we get that $R_{n+1}-B_{n+1}=R_{n}-$ $B_{n}+\delta\left(2 \times 1_{T_{n+1}=R}-1\right)$. The martingale property then directly comes from the fact that $\mathbb{P}\left(T_{n+1}=R\right)=\frac{R_{n}}{R_{n}+B_{n}}=\frac{R_{n}}{R_{0}+B_{0}+n \tau}$ and the independence between T_{n+1} and \mathcal{F}_{n} To be corrected: not independent!.
(7) Using the relation $R_{n+1}-B_{n+1}=R_{n}-B_{n}+\delta\left(2 \times 1_{T_{n+1}=R}-1\right)$, one gets $\mathbb{E}\left[\left(R_{n+1}-B_{n+1}\right)^{2}\right]=$ $\mathbb{E}\left[\left(R_{n}-B_{n}\right)^{2}\right]+2 \delta \mathbb{E}\left[\left(R_{n}-B_{n}\right)\left(2 \times 1_{T_{n+1}=R}-1\right)\right]+\delta^{2}$. Since a.s $\delta^{2}\left(2 \times 1_{T_{n+1}=R}-1\right)^{2}=\delta^{2}$. To conclude it is enough to see that $\mathbb{E}\left[\left(R_{n}-B_{n}\right)\left(2 \times 1_{T_{n+1}=R}-1\right)\right]=\mathbb{E}\left[\mathbb{E}\left[\left(R_{n}-B_{n}\right)\left(2 \times 1_{T_{n+1}=R}-1\right) \mid \mathcal{F}_{n}\right]\right]=$ $\mathbb{E}\left[\left(R_{n}-B_{n}\right) \mathbb{E}\left[\left(2 \times 1_{T_{n+1}=R}-1\right) \mid \mathcal{F}_{n}\right]\right]=\mathbb{E}\left[\left(R_{n}-B_{n}\right) \frac{R_{n}-B_{n}}{R_{n}+B_{n}}\right]=\frac{1}{R_{0}+B_{0}+n \tau} \mathbb{E}\left[\left(R_{n}-B_{n}\right)^{2}\right]$.
(8) Set $C_{\rho}:=C_{\rho, R_{0}+B_{0}, \tau}$. We have that $\prod_{j=0}^{n-1} a_{j} \sim C_{2 \rho} n^{2 \rho}$, thus $\sum_{j=0}^{\infty} \frac{1}{\prod_{k=0}^{j-1} a_{k}}<\infty$ (since $\rho>\frac{1}{2}$). Moreover $Z_{n} \sim \frac{R_{n}-B_{n}}{C_{\rho} n^{\rho}}$ thus $n^{2 \rho} \mathbb{E}\left[Z_{n}^{2}\right] \sim\left[\left(R_{0}-B_{0}\right)^{2}+\delta^{2} \sum_{j=0}^{\infty} \frac{1}{\prod_{k=0}^{j-1} a_{k}}\right] C_{2 \rho} n^{2 \rho}$ which allows to conclude.
(9) The martingale $\left(Z_{n}\right)_{n \geqslant 0}$ is bounded in \mathbb{L}^{2} thus converges a.s. and in \mathbb{L}^{2} (and in particular in \mathbb{L}^{1}). Thus $\frac{R_{n}-B_{n}}{n^{\rho}} \sim \frac{Z_{n}}{C_{\rho}}$ converges a.s. and in \mathbb{L}^{1}.

