2 hours 30 minutes. No documents allowed.

1. Exercise 1

The two parts of this first exercise are (essentially) independent.

Part 1. X is a Q-MC on $E = \mathbb{N} = \{1, 2, ...\}$ with Q defined by

$$Q(k, k+1) = \frac{k}{k+1}$$
 and $Q(k, 1) = \frac{1}{k+1}$

- (1) Explain, in a concise but complete way, why this chain is irreducible and aperiodic.
- (2) Show that this chain is null recurrent.
- (3) Compute $\lim_{n\to\infty} \mathbb{P}(X_n=2)/\mathbb{P}(X_n=3)$.

Part 2. X is now a Q-MC on $E = \mathbb{N} = \{1, 2, ...\}$ with Q defined by

$$Q(k, k+1) = \frac{k}{k+2}$$
 and $Q(k, 1) = \frac{2}{k+2}$.

Like in the first part, the chain is irreducible and aperiodic.

- (4) Show that this chain is positive recurrent. We recall that $\sum_{k=2}^{\infty} 1/(k(k+1)(k+2)) = 1/12$ (which may or may not be needed).
- (5) We call π the invariant probability for the chain: show that $\mathbb{E}_{\pi}[X_n] = \infty$ for all n.
- (6) With $T_k = \inf\{n = 1, 2, \ldots : X_n = k\}$, compute $\mathbb{P}_1(T_1 = n)$ and (verify with) $\mathbb{E}_1[T_1]$.
- (7) (*) We show now that, \mathbb{P}_{π} -a.s., $\limsup_{n \to \infty} X_n/n = 0.^1$
 - (a) Set τ_j the j^{th} visit to 1 by the chain and $\tau_0 := 0$. Explain briefly why τ_j is a stopping time and (still briefly) why $(\tau_j - \tau_{j-1})_{j=1,2,\dots}$ is an independent sequence with $(\tau_j - \tau_{j-1})_{j=2,3,\dots}$ is IID. Explain why the Law of Large Numbers implies $\lim_j (\tau_j - \tau_{j-1})/j = 0$ a.s..
 - (b) For n set $j_n = j_n(\omega)$ such that $\tau_{j_n-1} < n \leq \tau_{j_n}$. Prove that a.s. $j_n \sim n/\mathbb{E}_1[\tau_1]$ and then conclude.

2. EXERCISE 2

In the first part we consider the classical urn of Polya: we start with an urn that contains $R_0 > 0$ red balls and $B_0 > 0$ blue balls. At each time step we choose one ball from the urn and we put it back together with $\alpha > 0$ balls of the same color. Let R_n and B_n the number of red and blue balls at step n. So, $(R_{n+1}, B_{n+1}) = (R_n + \alpha, B_n)$ with probability $R_n/(R_n + B_n)$ and $(R_{n+1}, B_{n+1}) = (R_n, B_n + \alpha)$ with probability $B_n/(R_n + B_n)$. This defines the the two sequences (R_n) and (B_n) of random variables: of course $R_n + B_n = R_0 + B_0 + \alpha n$. We set $\mathcal{F}_n := \sigma(R_1, \ldots, R_n)$. We consider non random (R_0, B_0) , so we choose \mathcal{F}_0 trivial.

(1) Give the definition of Uniform Integrability (UI) for a sequence of random variables. Explain, by stating the appropriate theorems, why if a UI sequence (X_n) converges in law to X, then $\lim_n \mathbb{E}[X_n] = \mathbb{E}[X]$.

¹What is solution of the sup $X_n/n \leq 1$ (because $X_n \leq X_0 + n$). This fact is of interest because it shows that a stationary MC can be very different from an IID sequence: in the IID case we know that $\mathbb{E}[|X_1|] = \infty$ if and only if $\limsup_n X_n/n = 0$.

STOCHASTIC PROCESSES, 29-01-2021

- (2) Show that $(M_n)_{n=0,1,\dots}$, with $M_n = R_n/(R_n + B_n)$ is an UI martingale.
- (3) Explain why $M = \lim_n M_n$ exists a.s. and in \mathbb{L}^1 . Explain also (by at least sketching the proof given in the course) why $M_n = \mathbb{E}[M|\mathcal{F}_n]$. Deduce that M is not a constant.
- (4) Show that $(Y_n)_{n=0,1,\dots}$, with $Y_n = R_n(R_n + \alpha)/((R_n + B_n)(R_n + B_n + \alpha))$, is also an UI martingale (5) Compute the variance of M and conclude, once again, that M is not a constant.
- Obs.: in case you want to check your result, the law of M is known and for $R_0 = B_0 = \alpha = 1$ it is U(0,1), whose variance is 1/12.

Now we slightly generalize the model (urn of Friedman): when putting back the ball we have chosen together with α balls of the same color, we put also β balls of the other color (the general case can be treated, but choose $\beta < \alpha$). We define this way two new sequences (R_n) and (B_n) of random variables: this time $R_n + B_n = R_0 + B_0 + (\alpha + \beta)n$. The filtration we choose is once again defined by $\mathcal{F}_n := \sigma(R_1, \ldots, R_n)$. We set

$$\delta := \alpha - \beta, \quad \tau := \alpha + \beta \quad \text{and} \quad \rho := \frac{\delta}{\tau}.$$

For what follows you may want to use that for a, b, c > 0 we have

$$\prod_{j=0}^{n} \left(1 + \frac{a}{b+cj} \right) \stackrel{n \to \infty}{\sim} C_{a,b,c} n^{a/c}.$$

where² $C_{a,b,c} > 0$. As usual, $f(n) \sim g(b)$ means $\lim_{n \to \infty} f(n)/g(n) = 1$.

(6) Set $Z_0 := R_0 - B_0$ and

$$Z_n := (R_n - B_n) / \prod_{j=0}^{n-1} \left(1 + \frac{\delta}{R_0 + B_0 + \tau j} \right) \,,$$

for n = 1, 2, ... Compute $\mathbb{E}[R_{n+1} - B_{n+1}|\mathcal{F}_n]$ and infer that (Z_n) is a martingale. (7) Show that

$$\mathbb{E}\left[\left(R_{n+1} - B_{n+1}\right)^{2}\right] = \left(1 + \frac{2\delta}{R_{0} + B_{0} + n\tau}\right)\mathbb{E}\left[\left(R_{n} - B_{n}\right)^{2}\right] + \delta^{2} =: a_{n}\mathbb{E}\left[\left(R_{n} - B_{n}\right)^{2}\right] + \delta^{2},$$

that is (no need to show it, no probability involved)

$$\mathbb{E}\left[(R_n - B_n)^2\right] = \left((R_0 - B_0)^2 + \delta^2 \sum_{j=0}^{n-1} \frac{1}{\prod_{k=0}^{j-1} a_k}\right) \prod_{j=0}^{n-1} a_j,$$

where empty sums should be read as zero, as well as empty products should be read as one.

- (8) Show that if $\rho > 1/2$ we have $\sup_n \mathbb{E}[Z_n^2] < \infty$.
- (9) Explain why we therefore have (if $\rho > 1/2$) that $\lim_{n \to \infty} (R_n B_n)/n^{\rho}$ exists a.s. and in \mathbb{L}^1 .

Conclusion and curiosities: let us admit it, the result is extremely surprising. The Friedman urn seems a minor modification of the Polya urn, but point (9) says that $\lim_n R_n/(R_n + B_n) = 1/2$ a.s.. In the Polya urn $\lim_n R_n/(R_n + B_n)$ is a non trivial random variable!

The fact that $\lim_n R_n/(R_n + B_n) = 1/2$ a.s. is true for every $\rho \in (0, 1)$ and this general result can be obtained by arguments similar to the one we just used. For more on this: D. A. Freedman, *Bernard Friedman's urn*, Ann. Math. Statist. 36 (1965), 956-970.

²Actually, $C_{a,b,c} = \Gamma(b/c)/\Gamma((a+b)/c)$ but you will not need that.