STOCHASTIC PROCESSES 29-01-2021

2 hours 30 minutes. No documents allowed.

1. Exercise 1

The two parts of this first exercise are (essentially) independent.
Part 1. X is a Q-MC on $E=\mathbb{N}=\{1,2, \ldots\}$ with Q defined by

$$
Q(k, k+1)=\frac{k}{k+1} \quad \text { and } \quad Q(k, 1)=\frac{1}{k+1} .
$$

(1) Explain, in a concise but complete way, why this chain is irreducible and aperiodic.
(2) Show that this chain is null recurrent.
(3) Compute $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=2\right) / \mathbb{P}\left(X_{n}=3\right)$.

Part 2. X is now a Q-MC on $E=\mathbb{N}=\{1,2, \ldots\}$ with Q defined by

$$
Q(k, k+1)=\frac{k}{k+2} \quad \text { and } \quad Q(k, 1)=\frac{2}{k+2}
$$

Like in the first part, the chain is irreducible and aperiodic.
(4) Show that this chain is positive recurrent. We recall that $\sum_{k=2}^{\infty} 1 /(k(k+1)(k+2))=1 / 12$ (which may or may not be needed).
(5) We call π the invariant probability for the chain: show that $\mathbb{E}_{\pi}\left[X_{n}\right]=\infty$ for all n.
(6) With $T_{k}=\inf \left\{n=1,2, \ldots: X_{n}=k\right\}$, compute $\mathbb{P}_{1}\left(T_{1}=n\right)$ and (verify with) $\mathbb{E}_{1}\left[T_{1}\right]$.
(7) (\star) We show now that, \mathbb{P}_{π}-a.s., $\limsup _{n} X_{n} / n=0 .{ }^{1}$
(a) Set τ_{j} the $j^{\text {th }}$ visit to 1 by the chain and $\tau_{0}:=0$. Explain briefly why τ_{j} is a stopping time and (still briefly) why $\left(\tau_{j}-\tau_{j-1}\right)_{j=1,2, \ldots}$ is an independent sequence with $\left(\tau_{j}-\tau_{j-1}\right)_{j=2,3, \ldots}$ is IID. Explain why the Law of Large Numbers implies $\lim _{j}\left(\tau_{j}-\tau_{j-1}\right) / j=0$ a.s..
(b) For n set $j_{n}=j_{n}(\omega)$ such that $\tau_{j_{n}-1}<n \leq \tau_{j_{n}}$. Prove that a.s. $j_{n} \sim n / \mathbb{E}_{1}\left[\tau_{1}\right]$ and then conclude.

2. ExERCISE 2

In the first part we consider the classical urn of Polya: we start with an urn that contains $R_{0}>0$ red balls and $B_{0}>0$ blue balls. At each time step we choose one ball from the urn and we put it back together with $\alpha>0$ balls of the same color. Let R_{n} and B_{n} the number of red and blue balls at step n. So, $\left(R_{n+1}, B_{n+1}\right)=\left(R_{n}+\alpha, B_{n}\right)$ with probability $R_{n} /\left(R_{n}+B_{n}\right)$ and $\left(R_{n+1}, B_{n+1}\right)=\left(R_{n}, B_{n}+\alpha\right)$ with probability $B_{n} /\left(R_{n}+B_{n}\right)$. This defines the the two sequences $\left(R_{n}\right)$ and $\left(B_{n}\right)$ of random variables: of course $R_{n}+B_{n}=R_{0}+B_{0}+\alpha n$. We set $\mathcal{F}_{n}:=\sigma\left(R_{1}, \ldots, R_{n}\right)$. We consider non random (R_{0}, B_{0}), so we choose \mathcal{F}_{0} trivial.
(1) Give the definition of Uniform Integrability (UI) for a sequence of random variables. Explain, by stating the appropriate theorems, why if a UI sequence $\left(X_{n}\right)$ converges in law to X, then $\lim _{n} \mathbb{E}\left[X_{n}\right]=\mathbb{E}[X]$.

[^0](2) Show that $\left(M_{n}\right)_{n=0,1, \ldots}$, with $M_{n}=R_{n} /\left(R_{n}+B_{n}\right)$ is an UI martingale.
(3) Explain why $M=\lim _{n} M_{n}$ exists a.s. and in \mathbb{L}^{1}. Explain also (by at least sketching the proof given in the course) why $M_{n}=\mathbb{E}\left[M \mid \mathcal{F}_{n}\right]$. Deduce that M is not a constant.
(4) Show that $\left(Y_{n}\right)_{n=0,1, \ldots}$, with $Y_{n}=R_{n}\left(R_{n}+\alpha\right) /\left(\left(R_{n}+B_{n}\right)\left(R_{n}+B_{n}+\alpha\right)\right)$, is also an UI martingale
(5) Compute the variance of M and conclude, once again, that M is not a constant.

Obs.: in case you want to check your result, the law of M is known and for $R_{0}=B_{0}=\alpha=1$ it is $U(0,1)$, whose variance is $1 / 12$.

Now we slightly generalize the model (urn of Friedman): when putting back the ball we have chosen together with α balls of the same color, we put also β balls of the other color (the general case can be treated, but choose $\beta<\alpha$). We define this way two new sequences $\left(R_{n}\right)$ and (B_{n}) of random variables: this time $R_{n}+B_{n}=R_{0}+B_{0}+(\alpha+\beta) n$. The filtration we choose is once again defined by $\mathcal{F}_{n}:=\sigma\left(R_{1}, \ldots, R_{n}\right)$. We set

$$
\delta:=\alpha-\beta, \quad \tau:=\alpha+\beta \quad \text { and } \quad \rho:=\frac{\delta}{\tau}
$$

For what follows you may want to use that for $a, b, c>0$ we have

$$
\prod_{j=0}^{n}\left(1+\frac{a}{b+c j}\right) \stackrel{n \rightarrow \infty}{\sim} C_{a, b, c} n^{a / c}
$$

where ${ }^{2} C_{a, b, c}>0$. As usual, $f(n) \sim g(b)$ means $\lim _{n} f(n) / g(n)=1$.
(6) Set $Z_{0}:=R_{0}-B_{0}$ and

$$
Z_{n}:=\left(R_{n}-B_{n}\right) / \prod_{j=0}^{n-1}\left(1+\frac{\delta}{R_{0}+B_{0}+\tau j}\right)
$$

for $n=1,2, \ldots$. Compute $\mathbb{E}\left[R_{n+1}-B_{n+1} \mid \mathcal{F}_{n}\right]$ and infer that $\left(Z_{n}\right)$ is a martingale.
(7) Show that

$$
\mathbb{E}\left[\left(R_{n+1}-B_{n+1}\right)^{2}\right]=\left(1+\frac{2 \delta}{R_{0}+B_{0}+n \tau}\right) \mathbb{E}\left[\left(R_{n}-B_{n}\right)^{2}\right]+\delta^{2}=: a_{n} \mathbb{E}\left[\left(R_{n}-B_{n}\right)^{2}\right]+\delta^{2}
$$

that is (no need to show it, no probability involved)

$$
\mathbb{E}\left[\left(R_{n}-B_{n}\right)^{2}\right]=\left(\left(R_{0}-B_{0}\right)^{2}+\delta^{2} \sum_{j=0}^{n-1} \frac{1}{\prod_{k=0}^{j-1} a_{k}}\right) \prod_{j=0}^{n-1} a_{j}
$$

where empty sums should be read as zero, as well as empty products should be read as one.
(8) Show that if $\rho>1 / 2$ we have $\sup _{n} \mathbb{E}\left[Z_{n}^{2}\right]<\infty$.
(9) Explain why we therefore have (if $\rho>1 / 2$) that $\lim _{n}\left(R_{n}-B_{n}\right) / n^{\rho}$ exists a.s. and in \mathbb{L}^{1}.

Conclusion and curiosities: let us admit it, the result is extremely surprising. The Friedman urn seems a minor modification of the Polya urn, but point (9) says that $\lim _{n} R_{n} /\left(R_{n}+B_{n}\right)=1 / 2$ a.s.. In the Polya urn $\lim _{n} R_{n} /\left(R_{n}+B_{n}\right)$ is a non trivial random variable!

The fact that $\lim _{n} R_{n} /\left(R_{n}+B_{n}\right)=1 / 2$ a.s. is true for every $\rho \in(0,1)$ and this general result can be obtained by arguments similar to the one we just used. For more on this: D. A. Freedman, Bernard Friedman's urn, Ann. Math. Statist. 36 (1965), 956-970.

[^1]
[^0]: ${ }^{1}$ What is is obvious is that $\lim \sup _{n} X_{n} / n \leq 1$ (because $X_{n} \leq X_{0}+n$). This fact is of interest because it shows that a stationary MC can be very different from an IID sequence: in the IID case we know that $\mathbb{E}\left[\left|X_{1}\right|\right]=\infty$ if and only if $\lim \sup _{n} X_{n} / n=0$.

[^1]: ${ }^{2}$ Actually, $C_{a, b, c}=\Gamma(b / c) / \Gamma((a+b) / c)$ but you will not need that.

