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Abstract. Let (τx)x∈Zd be i.i.d. random variables with heavy (polynomial)
tails. Given a ∈ [0, 1], we consider the Markov process defined by the jump

rates ωx→y = τx
−(1−a)τy

a between two neighbours x and y in Z
d. We give

the asymptotic behaviour of the principal eigenvalue of the generator of this
process, with Dirichlet boundary condition. The prominent feature is a phase
transition that occurs at some threshold depending on the dimension. Our
method relies mainly on results proved in the Appendix, which are of indepen-
dent interest. They consist of a Gaussian-like upper bound on the transition
kernel of any symmetric nearest-neighbour continuous-time random walk on
Z

d, provided its jump rates are uniformly bounded from below, together with
an upper bound on the Green function when d > 3.

1. Introduction

For each site x ∈ Z
d, pick at random τx > 0, so that (τx)x∈Zd are independent and

identically distributed random variables. We call τ = (τx)x∈Zd the environment,
and write its law P (and the corresponding expectation E). Fixing a ∈ [0, 1] and an
environment τ , we define the Markov process (Xt)t>0 by the following jump rates :

ωx→y =

∣
∣
∣
∣

τx
−(1−a)τy

a if ‖x− y‖ = 1
0 otherwise

The associated infinitesimal generator is :

Lf(x) =
∑

y:‖x−y‖=1

ωx→y(f(y) − f(x))

The aim of this note is to investigate the behaviour of the principal eigenvalue of L
restricted to a large box. Define the box of size n by Bn = {−n, . . . , n}d, and Ln
the operator L restricted to this box, with Dirichlet boundary conditions. That is
to say Lnf = 1BnLf , defined for any function f : Z

d → R that vanishes outside
the box. Let λn be the smallest eigenvalue of −Ln. We write λ0

n for the eigenvalue
obtained in the particular case when a = 0.

We are particularly interested in the study of heavy tailed laws for the environ-
ment. A natural assumption (see the remark just after Theorem 1.1) is that the
tail P[τ0 > y] behaves like a power of y as y goes to infinity.
Assumption 1. There exists α > 0 such that :

(1.1) F (y) := P[τ0 > y] ≃
1

yα
(y → +∞)

More precisely, we say that a function f varies regularly with index ρ at infinity,
and write f ∈ RVρ, if for all κ > 0, f(κx)/f(x) → κρ as x→ +∞ (see [BGT] for a
monograph on regular variation).
Assumption 1’. There exists α > 0 such that F ∈ RV−α.

Assumption 1’ gives a precise sense to assumption 1, and is more general than just
assuming the equality (or equivalence) in equation (1.1). Note that, for 0 < α < 2,
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τ0 belongs to the domain of attraction of an α-stable law if and only if F ∈ RV−α
(see [Fel, Corollary XVII.5.2]). Assumption 1’ implies that for all ε > 0 :

(1.2) F (y)yα+ε −−−−−→
y→+∞

+∞ and F (y)yα−ε −−−−−→
y→+∞

0

and as a consequence, E[τβ0 ] is finite for all β < α, infinite for all β > α (and may
be finite or infinite when β = α).
Assumption 2. We will always assume that τ0 > 1, concentrating on “bad be-
haviours” at infinity.

We need to introduce the generalized inverse of 1/F , defined by :

h(x) = inf{y : 1/F (y) > x}

As F belongs to RV−α, one can see that h ∈ RV1/α (see for instance [Res, Proposi-

tion 0.8 (v)]). Loosely speaking, h(y) ≃ y1/α. We will recall later how h is related
to the asymptotic behaviour of maxima and sums of (τx) (see Proposition 1.2), but
let us first state (and comment) our main results.

Theorem 1.1. (1) For almost every environment, we have :

lim
n→∞

−
ln(λn)

ln(n)
=

∣
∣
∣
∣
∣
∣
∣
∣

max

(

2, 1 +
1

α

)

if d = 1

max

(

2,
d

α

)

if d > 2

(2) If d > 2 and α > d/2 or if d = 1 and α > 1, then there exist k1, k2 > 0
such that for almost every environment and n large enough :

k1

n2
6 λn 6

k2

n2

(3) If α < 1 and d 6= 2, then for any ε > 0, there exist η,M > 0 such that for
all n large enough :

P[η 6 anλn 6 M ] > 1 − ε

where

an =

∣
∣
∣
∣

nh(n) if d = 1
h(nd) if d > 3.

(4) Let an = ln(n)h(n2). If d = 2 and α < 1, then for any ε > 0, there exist
η,M > 0 such that for all n large enough :

P[η 6 anλ
0
n 6 M ] > 1 − ε

P[η 6 anλn 6 ln(n)M ] > 1 − ε

Let us now give some heuristics about the behaviour of (Xt). If a = 0, the
walk is in fact a time-change of the simple random walk : arriving at some site
x, it waits an exponential time of mean τx before jumping to a neighbouring site
chosen uniformly. When a 6= 0, things get more complicated. Suppose that the
walk arrives at some deep trap, that is a site x where τx is very large. Compared
with the a = 0 case, the walk will leave site x faster. On the other hand, once on
a neighbouring site, it will come back to x with very high probability. These two
competing effects can compensate remarkably in the limit, and indeed our main
results are independent of a (as they also are in [BČ05]).

We propose to call (Xt)t>0 a random walk among random traps. It seems to
us that for its relative simplicity, it should be considered one of the basic types of
random walks in random environments to study, just as is the random walk among
random conductances. Although one could have the feeling that theses two types
are basically the same, one attaching randomness to edges of the graph and the
other to sites, they exhibit very different behaviours. For instance, the reversible
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measure is not the uniform one in the case of random traps (it gives weight τx to
site x). Also, if d > 2, the random walk in random conductances tends to avoid
visiting regions where conductance is very low (and where time spent to ‘get out’
may be high). On the other hand, when walking among random traps, say for
a = 0, the path is the same as for the simple random walk, and the walk is not
enclined to avoid regions from which it takes a long time to get out. See [Al81] for
a nice discussion about this issue.

This type of walk gained interest when J.P. Bouchaud [Bou92] proposed it as
a phenomenological model to explain aging of spin glasses, and as a consequence,
what we call ‘random walk among random traps’ is also known as Bouchaud’s
model. Later on, [RMB00] introduced the full model as presented here (including
the a ∈ [0, 1]), which allows them to get more diverse aging scalings.

When E[τ0] is finite (in particular when α > 1), one can apply results of
[DFGW89] to prove that, under the averaged law, (Xt) is diffusive and converges
to Brownian motion after rescaling.

In one dimension, for a = 0 and α < 1, L.R.G. Fontes, M. Isopi and C.M. New-
man [FIN02] proved that almost surely the process was subdiffusive and obtained
convergence of the rescaled process to a singular diffusion, as well as aging. The
results have been extended to general a by G. Ben Arous and J. Černý in [BČ05].
Another (also subdiffusive) scaling limit was identified when d > 2, α < 1 and
a = 0 in [BČ07]. We refer to [BČ06] for a review on the subject. To our knowledge,
nothing was known in the case when a 6= 0 and d > 2.

This note comes as a partial answer to a question of [BČ06], initially directed
only to the one-dimensional case :

“What is the behaviour of the edge of the spectrum for the generator of the
dynamics ? This might be close to, but easier than the same question solved for
Sinai’s random walk by [BF08].”

Note that our method is in fact rather independent from the one used in [BF08],
and the main technical problems appear only when d > 2. Remark also that on the
complete graph and for a = 0, [BF05] got explicit formulas for the whole spectrum
and managed to link them with aging properties.
Remark. A natural choice of (τx) from the statistical physics’ point of view is the
following : first choose independently for each site a random variable −Ex with law
exponential of parameter 1, and define τx to be exp(−βEx), where β represents
the inverse of the temperature. Then one can check that F ∈ RV−1/β , and the
irregularity that appears at β = 1 for d 6 2 and at β = 2/d for larger d can be
regarded as a phase transition (the anomalous behaviour occurring for β large, that
is for small temperature, or in our context, small α).

It may seem surprising that this new phase transition does not appear at the
same threshold than the diffusive/subdiffusive transition (that at least for a = 0
occurs when α(= 1/β) = 1 in any dimension). The reason for this is the following :
although the principal eigenvalue will ‘feel’ the very deepest traps of the box (of
order nd/α), the process (when a = 0) will exit the box after visiting only some n2

sites, thus having seen only traps of order at most n2/α.
Before going on to show how Theorem 1.1 is a consequence of the results of the

following sections, we need to recall some facts about the asymptotic behaviour of
sums and maxima of (τx).

Proposition 1.2. (1) For any ε > 0 and almost every environment :

n−(max(d,d/α)+ε)
∑

x∈Bn

τx → 0 (n→ +∞)
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(2) For any ε > 0 and almost every environment :

n−(max(d,d/α)−ε)
∑

x∈Bn

τx → +∞ (n→ +∞)

(3) There exists a random variable M∞ with values in (0,+∞) such that the
rescaled maxima converge in law to M∞ :

1

h(nd)
max
x∈Bn

τx ⇒M∞ (n → +∞)

(4) If α < 1, then there exists a random variable S∞ with values in (0,+∞)
such that the rescaled partial sums converge in law to S∞ :

1

h(nd)

∑

x∈Bn

τx ⇒ S∞ (n→ +∞)

Proof. For the first statement, it is a consequence of the law of large numbers if
α > 1, otherwise it is an application of [Pet, Theorem 6.9]. For the second one, it
comes again from the law of large numbers if α > 1. Otherwise, observe that the
sum is larger than the maximum of its terms, and

P

[

max
x∈Bn

τx 6 Mnd/α−ε
]

= (1 − F (Mnd/α−ε))(2n+1)d

Using the properties of F (see (1.2)), we see that the latter is the general term of a
convergent series, and we can apply the Borel-Cantelli lemma. Now the convergence
of the rescaled maxima is given in [Fel, Section VIII.8] or [Res, Proposition 1.11].
For the convergence of the partial sums, see [Fel, Section XVII.5]. �

Apart from this introduction, the paper is divided into four sections and an
Appendix. In Section 2, we use the variational characterization to get bounds on
λ0
n and λn that are sharp when α 6 1 or d = 1. We had to work harder to find a

good lower bound when d > 2 and α > 1. We introduce in Section 3 a time change
of (Xt) for which the uniform measure is reversible. For this new walk and when
d > 3, we can use results proved in the Appendix, giving upper bounds on the
Green function, to estimate the occupation time of Bn by the initial random walk
via a moments computation. For the two-dimensional case, the Green function
cannot be used but we can modify the former proof using directly the estimates on
the transition probabilities given in the Appendix. In Section 4, upper bounds for
λn are computed.

Let us see how to deduce part (1) of Theorem 1.1 from the rest of the paper.
Part (2) of Theorem 2.3 gives an upper bound on the exponent of the principal
eigenvalue, that needs to be improved when d > 3 and α > 1. This is done by
Theorem 3.7. Now for the associated lower bounds on the exponent of the principal
eigenvalue, they come from Theorem 4.1 and part (2) of Proposition 1.2 if d = 1 ;
from part (2) of Theorem 4.2 and Theorem 4.5 if d > 2.

Concerning part (2) of Theorem 1.1, if d = 1 and α > 1, the lower bound comes
from part (3) of Theorem 2.3. If d = 2 and α > 1, the lower bound is obtained
in Theorem 3.13. If d > 3 and α > d/2, the lower bound is given by part (2) of
Theorem 3.7. In any case, Theorem 4.5 gives the desired upper bound on λn.

Finally, for parts (3) and (4) of Theorem 1.1, part (1) of Theorem 2.3 gives
the desired result for λ0

n as well as a lower bound on λn. In dimension one, the
upper estimate on λn is given by Theorem 4.1 and part (4) of Proposition 1.2,
while if d > 2, it comes from part (1) of Theorem 4.2 together with part (3) of
Proposition 1.2.

We show in Section 5 that the distinguished path method (see e.g. [SC97, The-
orem 3.2.3]), that proved efficient in [FM06, Section 3] for random walks among
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random conductances, is bound to give an extra 1 in the exponent when d > 2
(for the one-dimensional case, [Chen, Section 3.7] proves that the method is sharp).
The Appendix (Section 6) is independent from the rest of the paper and provides
Gaussian-like upper estimates on the transition probabilities of symmetric random
walks with transition rates bounded from below. The strategy relies on Nash in-
equalities and an argument that dates back to E.B. Davies [Dav87], adapted to our
context.
Acknowledgments. The author would like to thank his Ph.D. advisors, Pierre
Mathieu and Alejandro Ramı́rez, for many insightful discussions about this work as
well as detailed comments on earlier drafts, and Gérard Ben Arous for suggesting
this problem.
Notations. The operator Ln is self-adjoint for the scalar product (·, ·) defined by :

(f, g) =
∑

f(x)g(x)τx

We write L2(Bn) for the set of functions that vanish outside Bn (equipped with
the former scalar product). For two points x, y ∈ Z

d, we write x ∼ y when they are
neighbours (that is, when ‖x− y‖ = 1). We define the Dirichlet form associated to
L :

E(f, g) = (−Lf, g) =
∑

x,y∈Z
d

x∼y

τax τ
a
y g(x)(f(x) − f(y))

=
∑

x,y∈Z
d

x∼y

τax τ
a
y g(y)(f(y) − f(x))

=
1

2

∑

x,y∈Z
d

x∼y

τax τ
a
y (f(y) − f(x))(g(y) − g(x))

(taking the half-sum of the last two expressions), and E0 the Dirichlet form obtained
when a = 0. We have :

(1.3) λn = inf
f∈L2(Bn)

f 6=0

E(f, f)

(f, f)

Assumption 2 gives that E(f, f) > E0(f, f), so it is clear that

(1.4) λn > λ0
n

We further need to define the boundary of Bn, as ∂Bn = Bn+1 \Bn. If K is some
set, |K| stands for its cardinal. We write Pτ

x for the law of the process starting
from site x (and Eτ

x for the corresponding expectation).
The real number C > 0 represents a generic constant that need not be the same

from an occurrence to another.

2. The variational formula

We will use here the variational characterization of λ0
n :

(2.1) λ0
n = inf

f∈L2(Bn)
f 6=0

E0(f, f)

(f, f)

We define

Cn = inf
{
E0(f, f) | f ∈ L2(Bn), f(0) = 1

}

Noting that Bn is a finite set, one can see by a compacity argument that the infimum
is reached for some function Vn. The behaviours of Cn and λ0

n are related in the
following way.
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Proposition 2.1. For any n and any environment, we have :

C2n
∑

x∈Bn
τx

6 λ0
n

λ0
2n+1 6 λ0

2n 6
Cn

maxBn τ

Proof. Considering the homogeneity of the quotient in (2.1), we can restrict the
infimum to be taken over all f with ‖f‖∞ = 1. Let f be such a function, and x0 ∈
Bn such that |f(x0)| = 1. Possibly changing f in −f , we can assume f(x0) = 1.
Noting that the function g = f(· + x0) is in L2(B2n) and satisfies g(0) = 1, we
have :

E0(f, f) = E0(g, g) > C2n

On the other hand, as ‖f‖∞ = 1, we have :

(f, f) 6
∑

x∈Bn

τx

and these lead to the first desired inequality.
The fact that λ0

2n+1 6 λ0
2n is clear from (2.1). Now let x1 ∈ Bn be such that

maxBn τ = τx1 , and consider the function h = Vn(· − x1) ∈ L2(B2n). We get :

E0(h, h) = E0(Vn, Vn) = Cn

But note that h(x1) = 1, therefore :

(h, h) > τx1 = max
Bn

τ

and we get the second inequality. �

We now precise the asymptotic behaviour of Cn.

Proposition 2.2. If d = 1, then :

Cn =
2

n+ 1

If d = 2, then there exist k1, k2 such that for all n :

k1

ln(n)
6 Cn 6

k2

ln(n)

If d > 3, then Cn converges to a strictly positive number.

Proof. We can regard Bn+1 as an electrical graph (see [LP, Chapter 2]), with each
edge representing a resistance of value 1. One can see that Vn is harmonic on every
point that is not 0 nor a point of ∂Bn. Thus it coincides with the potential on
the electrical graph, with the constraints that Vn(0) = 1 and Vn|∂Bn

= 0. The
number Cn is the effective conductance between 0 and ∂Bn. In dimension 1, a
direct computation gives the result. If d = 2, then we can use [LP, Proposition
2.14]. In larger dimension, the simple random walk is transient, and therefore (see
[LP, Theorem 2.3]) Cn converges to a strictly positive number. �

From this, we can deduce the following.

Theorem 2.3. (1) If α < 1, then for any ε > 0, there exist η,M > 0 such
that for all n large enough :

P

[

η 6
h(nd)

Cn
λ0
n 6 M

]

> 1 − ε

P

[

η 6
h(nd)

Cn
λn

]

> 1 − ε
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(2) For almost every environment, we have :

lim sup
n→∞

−
ln(λn)

ln(n)
6

∣
∣
∣
∣
∣
∣
∣
∣

max

(

2, 1 +
1

α

)

if d = 1

max

(

d,
d

α

)

if d > 2

(3) If E[τ0] is finite, then for almost every environment and all n large enough :

λn >
C2n

(2n+ 1)d(E[τ0] + 1)

Proof. Note first that as given by equation (1.4), we have that λn > λ0
n. The first

part of the theorem is a consequence of Propositions 2.1, 2.2 and parts (3) and (4)
of Proposition 1.2. For the second part, use part (1) of Proposition 1.2 instead.
The last part is an application of the law of large numbers. �

As far as lower bounds are concerned, parts (3) and (4) of Theorem 1.1 are now
obtained. However, part (1) of Theorem 1.1 is proved only for d 6 2 or α 6 1, and
part (2) only for d = 1. The following section provides the missing lower bounds.

3. Exit times and time-changed random walk

This section aims at finding good lower bounds for λn when d > 2 and α > 1.
To do so, we will use the exit times Tn from Bn :

Tn = inf{t > 0 : Xt /∈ Bn}

The principal eigenvalue and the exit time from Bn are indeed related by the
following (general) result :

Proposition 3.1. For any environment τ , any n ∈ N and t > 0, we have

e−tλn 6 sup
x∈Bn

Pτ
x[Tn > t] 6

supx∈Bn
Eτ
x[Tn]

t

Proof. Let ψn be the eigenfunction associated with the principal eigenvalue λn such
that supψn = 1.

Eτ
x[ψn(Xt)1{Tn>t}] = e−tλnψn(x)

Choosing x ∈ Bn such that ψn(x) = 1, we have :

Pτ
x[Tn > t] > Eτ

x[ψn(Xt)1{Tn>t}] = e−tλn

�

So our objective is to find a sharp upper bound for supx∈Bn
Eτ
x[Tn].

We introduce an auxiliary random walk. Let (Ji) be the jump instants of the

walk X , and define (J ′
i) by J ′

0 = 0 and J ′
i+1 − J ′

i = (Ji+1 − Ji)/τXJi
. let X̂ be the

random walk defined by :

X̂t = XJi for i such that J ′
i 6 t < J ′

i+1

The walk X̂ is a time change of X . More precisely, if A(t) =
∫ t

0 τX̂s
ds, we have :

XA(t) = X̂t

The jump rate of the walk X̂ from site x to a neighbour y is τax τ
a
y . The advantage

of considering X̂ instead of X is that it has symmetric jump rates that are bounded
away from 0. In this context and as shown in the Appendix, one can get good upper
bounds on the transition probabilities (and Green function when d > 3) of X̂ .

To give the ideas, consider the case when d > 3. Let Ĝ(·, ·) be the Green

function associated to X̂ (Ĝ(x, y) is the expected time spent on y by the walk
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starting from x). We can bound the expected time spent before exiting the box by

the total time spent in the box. We constructed X̂ so that the time spent by X at

some site y is τy times the time spent by X̂ at this same site, so we have :

(3.1) Eτ
x[Tn] 6

∑

y∈Bn

Ĝ(x, y)τy

We will see that the expectation of this sum behaves like n2 (we assume α > 1),
and that the probability to be far from the expectation by nd/α is of order n−d.
To estimate theses fluctuations, our method will be to compute moments after a
truncation and centring of the τx.

We need to introduce some definitions before stating the results proved in the
Appendix. If x and y are neighbours, let e be the edge between x and y and define
the weight of e by :

Q(e) =
1

√
τax τ

a
y

For a path γ, we define its natural length by :

|γ|τ =
∑

e∈γ

Q(e)

and for any x, y ∈ Z
d, the natural distance between x and y by :

(3.2) ∆τ (x, y) = inf {|γ|τ , γ simple path from x to y}

Proposition 3.2. If d > 3, then there exists C3 such that for any environment
and any x, y ∈ Z

d :

Ĝ(x, y) 6
C3

(1 + ∆τ (x, y))d−2

Proof. See part (3) of Theorem 6.1. �

3.1. The natural distance. The first thing we need to do to make the former
result effective is to compare ∆τ with the Euclidian distance ‖ · ‖. To do so, we
will use the fact that the law of the environment P is a product measure, in a
percolation-like argument.

Theorem 3.3. (1) For any environment and any x ∈ Z
d :

∆τ (0, x) 6 2‖x‖

(2) There exist c,M0, κ > 0 such that :

P [∆τ (0, x) < c‖x‖] 6 M0e
−2κ‖x‖

(3) Let An be the event : “∀x /∈ Bn : ∆τ (0, x) > c‖x‖”. There exists M1 such
that for all n :

P[An] > 1 −M1e
−κn

Proof. We denote by ‖ · ‖1 the graph distance on Z
d.

For any edge e, we have Q(e) 6 1 so it is clear that ∆τ (0, x) 6 ‖x‖1, and part (1)
follows comparing ‖ · ‖1 with ‖ · ‖.

Giving ourselves η ∈ (0, 1), we say that an edge is heavy if Q(e) > η. We write
Ae for the event “the edge e is heavy”, and p = P[Ae]. Note that Ae is independent
of (Ae′) for all edges e′ that are not adjacent to the edge e (and there are 4d − 1
adjacent edges). Let γ be a simple path. We bound from above the probability
that γ’s natural length is small using Markov inequality : for any k ∈ N and any
λ > 0, we have :

P[# heavy edges along γ 6 k] = P

[
∑

e∈γ

1Ae 6 k

]

6 eλkE
[

e−λ
∑

e∈γ 1Ae

]
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Thanks to the former remark, we can extract from γ a subset γ′ of edges such that
(Ae)e∈γ′ are independent random variables and (4d− 1)|γ′| > |γ|. It comes :

(3.3) P

[
∑

e∈γ

1Ae 6 k

]

6 eλk(pe−λ + 1 − p)|γ|/(4d−1)

We can now evaluate the probability for ∆τ (0, x) to be much smaller than ‖x‖1.
Take c > 0, it comes :

P [∆τ (0, x) < c‖x‖1] = P[∃γ from 0 to x s.t. |γ|τ < c‖x‖1]

6
∑

γ:0→x

P[|γ|τ < c‖x‖1]

For a given (simple) path γ, note that |γ|τ < c‖x‖1 implies that the number of
heavy edges along γ is smaller than c‖x‖1/η. Bounding the number of paths of
length l by (2d)l and using (3.3), it comes :

P [∆τ (0, x) < c‖x‖1] 6

+∞∑

l=‖x‖1

(2d)leλc‖x‖1/η(pe−λ + 1 − p)l/(4d−1)

Writing B(λ, p) = 2d(pe−λ + 1 − p)1/(4d−1), we have that if B(λ, p) < 1, then :

P [∆τ (0, x) < c‖x‖1] 6
(eλc/ηB(λ, p))‖x‖1

1 −B(λ, p)

and this inequality would give an exponential decay whenever eλc/ηB(λ, p) is strictly
smaller than 1. Choosing η close enough to 0, we can make p as close to 1 as desired,
and taking also λ large enough, we can ensure B(λ, p) < 1. Then taking c small
enough, the last required condition holds. The second part of the theorem is proved
using the equivalence between ‖ · ‖1 and ‖ · ‖.

Now for the last part, note that :

1 − P[An] 6
∑

x∈Zd\Bn

M0e
−2κ‖x‖ 6 e−κn

∑

x∈Zd

M0e
−κ‖x‖

the last sum being finite, this proves the last part of the theorem. �

3.2. In dimension three or more. In this part, we treat the case d > 3. As
announced before, we want now to control the fluctuations of the sum appearing in
the right-hand side of inequality (3.1), using a moment method. To do so, we need
to cut and centre the random variables (τx).

We first pick α′ < α. Remember that E[τα
′

0 ] is finite (and as we will see, it is
the only property we need to make this part work).

We define the following truncation of τx :

(3.4) τ̃x,n =

∣
∣
∣
∣

τx if τx 6 nd/α
′

0 otherwise

(observe that with high probability, we have τx = τ̃x,n for every x ∈ Bn), and let
τx,n = τ̃x,n − E[τ̃x,n].

When d > 4, we can prove the following proposition, that roughly speaking
says that fluctuations of order nd/α

′

of the exit time from 0 occur with probability
smaller than n−d. But when d = 3, our method no longer works for large α′, so we
restrict ourselves to α′ 6 2. But as we will see in the proof of Theorem 3.7, this
restriction is of no consequence for our purpose.
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Proposition 3.4. We assume d > 4 or α′ 6 2. For any β > d/α′, there exist
δ, C > 0 such that for all n :

P

[∣
∣
∣
∣
∣

∑

x∈Bn

τx,n
(1 + c‖x‖)d−2

∣
∣
∣
∣
∣
> nβ

]

6
C

nd+δ

Proof. Let m be an integer. We have :

E





(
∑

x∈Bn

τx,n
(1 + c‖x‖)d−2

)2m




=
∑

x1,...,x2m

1

(1 + c‖x1‖)d−2
· · ·

1

(1 + c‖x2m‖)d−2
E[τx1,n · · · τx2m,n]

=

m∑

k=1

∑

e1+···+ek=2m
ei>2

Ce1,...,ek

∑

y1,...,yk
yi 6=yj

k∏

i=1

1

(1 + c‖yi‖)ei(d−2)
E[τ ei

yi,n]

6 C(m)
m∑

k=1

∑

e1+···+ek=2m
ei>2

k∏

i=1

∑

x∈Bn

1

(1 + c‖x‖)ei(d−2)
|E[τ ei

0,n]|

︸ ︷︷ ︸

=:Πn
e1,...,ek

(3.5)

where, to get the second equality, we chose to decompose x1, . . . , x2m the following
way : let k be the cardinal of {x1, . . . , x2m}. We have {x1, . . . , x2m} = {y1, . . . , yk}.
Then ei represents then number of occurences of yi in x1, . . . , x2m. We then use the
fact that the random variables (τx,n)x∈Zd are independent to split the expectation
in product form. Note that as τx,n is a centred random variable, the cases when
ei = 1 for some i do not contribute to the sum, so it is enough to consider cases
when ei > 2 (and this implies k 6 m). It is a nice combinatorics exercise to check
that Ce1,...,ek

is the multinomial coefficient associated with (e1, . . . , ek) divided by
k!, but the important fact is that this term does not depend on n.

Comparing with an integral, we can see that
∑

x∈Bn
(1 + c‖x‖)−ei(d−2) is boun-

ded by :
∣
∣
∣
∣

C ln(n) if d > 4 or ei > 3
Cn in any case

On the other hand, |E[τ ei
0,n]| is bounded when n goes to infinity if ei 6 α′, and

otherwise

(3.6) |E[τ ei
0,n]| 6 E[|τ0,n|

(ei−α
′)+α′

] 6 (nd/α
′

)ei−α
′

E[|τ0,n|
α′

] 6 Cneid/α
′−d

We first treat the case d > 4. We choose m as the smallest integer larger than (or
equal to) α′/2. All the Πn

e1,...,ek
are bounded by C ln(n)m when n goes to infinity

except :

Πn
2m 6 C ln(n)n2md/α′−d

It comes, using Markov inequality, that there exists C such that for all n :

P

[∣
∣
∣
∣
∣

∑

x∈Bn

(1 + c‖x‖)2−dτx,n

∣
∣
∣
∣
∣
> nβ

]

6 Cn−d ln(n)mn2m(d/α′−β)

which proves the desired result. We are left with the case when d = 3 and α′ 6 2.
We choose m = 2 in (3.5) and get :

Πn
2,2 6 Cn2n12/α′−6 and Πn

4 6 C ln(n)n12/α′−3
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and it comes that :

P

[∣
∣
∣
∣
∣

∑

x∈Bn

(1 + ‖x‖)2−dτx

∣
∣
∣
∣
∣
> nβ

]

6 Cn−3 ln(n)n4(3/α′−β)

which ends the proof of the proposition. �

The next step is to lift this estimate to the sum of Ĝ(0, x)τ̃x,n.

Proposition 3.5. We assume d > 4 or α′ 6 2. There exists M such that for any
β > d/α′, there exist δ, C > 0 such that for all n :

P

[
∑

x∈Bn

Ĝ(0, x)τ̃x,n > Mn2 + nβ

]

6
C

nd+δ

Proof. We begin introducing the estimate given by Proposition 3.2 :

(3.7)
∑

x∈Bn

Ĝ(0, x)τ̃x,n 6 C3

∑

x∈Bn

τ̃x,n
(1 + ∆τ (0, x))d−2

Using part (3) of Proposition 3.3, we choose C′ such that :

(3.8) P[AC′ ln(n)] > 1 −
C

nd+1

Now conditionally on AC′ ln(n), the sum on the right in inequality (3.7) is bounded,
up to a constant, by :

∑

x∈BC′ ln(n)

τ̃x,n +
∑

x∈Bn

τ̃x,n
(1 + c‖x‖)d−2

Note that for the first term, we have :
∑

x∈BC′ ln(n)

τ̃x,n 6 C ln(n)dnd/α
′

Comparing with an integral, there exists M̃ such that for all n :
∑

x∈Bn

C3

(1 + c‖x‖)d−2
6 M̃n2

And we have :

P

[
∑

x∈Bn

Ĝ(0, x)τ̃x,n > M̃E[τ0]n
2 + nβ ,AC′ ln(n)

]

6 P

[

C3

∑

x∈Bn

τ̃x,n
(1 + c‖x‖)d−2

> M̃E[τ0]n
2 + nβ − C ln(n)dnd/α

′

]

6 P

[

C3

∑

x∈Bn

τx,n
(1 + c‖x‖)d−2

> nβ − C ln(n)dnd/α
′

]

and we apply Proposition 3.4. What happens on the complement of AC′ ln(n) is
controlled by equation (3.8). �

We can now carry this result back to supx∈Bn
Eτ
x[Tn].

Proposition 3.6. We assume d > 4 or α′ 6 2. There exists M ′ such that for any
β > d/α′, almost every environment and n large enough :

sup
x∈Bn

Eτ
x[Tn] 6 nβ +M ′n2
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Proof. We first need to relate Eτ
x[Tn] with the estimates proved before (which con-

cern only Eτ
0 [Tn]). Let T xn be the exit time from x+Bn. Since for any x ∈ Bn, we

have Bn ⊆ x + B2n, it comes that almost surely Tn 6 T x2n, so Eτ
x[Tn] 6 Eτ

x[T
x
2n],

the latter having same law as Eτ
0 [T2n] under P.

Let M ′ > 0 and let i be an integer. We consider :

(3.9) P

[

sup
n>2i

supx∈Bn
Eτ
x[Tn]

nβ +M ′n2
> 1

]

6

∞∑

j=i

P

[

sup
2j6n<2j+1

supx∈Bn
Eτ
x[T

x
2n]

nβ +M ′n2
> 1

]

We bound the general term of this series by

P

[

sup
x∈B

2j+1

Eτ
x[T

x
2j+2 ] > 2jβ +M ′22j

]

which we bound by Aj + |B2j+1 |A′
j , where :

(3.10) Aj = P

[

∃x ∈ B2j+2 : τx > 2(j+2)d/α′
]

A′
j = P




∑

x∈B2j+2

Ĝ(0, x)τ̃x,2j+2 > 2jβ +M ′22j





We first estimate Aj . Take α′′ such that α′ < α′′ < α. It comes from assumption 1’
(see (1.2)) that for all y large enough :

P[τ0 > y] 6 y−α
′′

One gets that for j large enough :

Aj 6 1 −
(

1 − 2−jdα
′′/α′

)|B2j+2 |

= 1 − exp
(

|B2j+2 |2−jdα
′′/α′

(1 + o(1))
)

which is the general term of a convergent series.
Now for A′

j , using Proposition 3.5, we see that choosing M ′ = 16M , the term

|B2j+1 |A′
j is bounded by C2−jδ for some δ > 0. Therefore, the series in the right-

hand side of 3.9 converges (and tends to 0 when i goes to infinity), which proves
the proposition. �

We now have everything in hand to conclude !

Theorem 3.7. (1) If d/α > 2, then for almost every environment :

lim sup
n→∞

−
ln(λn)

ln(n)
6
d

α

(2) If d/α < 2, then there exists C such that for almost every environment and
all n large enough :

λn >
C

n2

Proof. If d > 4 or α 6 2, it is a consequence of Proposition 3.6 together with
Proposition 3.1 (making α′ tend to α). Now if d = 3 and α > 2, then in particular
E[τ2

0 ] is finite, so we can choose α′ = 2, and as d/2 < 2, part (2) of the theorem
still holds. �
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3.3. The two-dimensional case. In two dimensions, the lower bound given by
part (3) of Theorem 2.3 is of the following form :

λn >
C

ln(n)n2

We will now show that, provided α > 1, the ln(n) term appearing before is irrele-
vant, i.e. that in fact :

λn >
C

n2

The technique we used in Section 3.2 of computing the Green function of X̂ cannot
directly apply in this setting, so we will consider the expected time spent by X̂ at
some site x ∈ Bn before exiting the box, say Ĝn(0, x) if the walk is starting from
0, and study

∑

x∈Bn

Ĝn(0, x)τx = Eτ
0 [Tn]

where

T̂n = inf{t : X̂t /∈ Bn} and Ĝn(x, y) = Eτ
x

[
∫ T̂n

0

1{X̂t=y}
dt

]

The problem we face is the dependence between the random variables Ĝn(0, x) and
τx. When d > 3, it was enough to use the Gaussian-like upper bounds proved in
the Appendix together with some “universal” control on the natural distance, but
now T̂n also comes into play. The following proposition gives a control on T̂n that
holds uniformly over the environment τ .

Proposition 3.8. There exists Ĉ > 0 such that for almost any τ and any x ∈ Bn :

Pτ
x

[

T̂n >
Ĉn2

4

]

6
1

3

Remark. Numerical factors are chosen for practical purposes, but the result would
hold with 1/3 replaced by any strictly positive constant.

Proof. From Theorem 6.1 (or the comments following Proposition 6.2), we know
that there exists C2 such that for any x, y ∈ Z

2, any t > 0 and almost any τ :

(3.11) Pτ
x[X̂t = y] 6

C2

t

It then comes that

Pτ
x[X̂3C2|Bn| ∈ Bn] =

∑

y∈Bn

Pτ
x[X̂3C2|Bn| = y] 6

1

3

which gives the desired result. �

Now conditionally on T̂n 6 Ĉn2 and using once again equation (3.11), we have :

(3.12) Ĝn(0, x) 6 1 +

∫ Ĉn2

1

C2

t
6 1 + ln(Ĉn2)

Such an inequality is good for x close to 0, but too weak in general, and we need to
use more refined estimates. If we assume that T̂n 6 Ĉn2 together with ∆τ (0, x) >
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c‖x‖ (note that ∆τ (0, x) 6 2‖x‖ is always true, as given by part (1) of Theorem 3.3),
we get, using Theorem 6.1 :

Ĝn(0, x) 6

∫ Ĉn2

0

Pτ
0 [X̂t = x]dt

6 1 +

∫ max(1, ‖x‖

8e2 )

1

C2e
−3∆τ (0,x)/4

t
dt+

∫ Ĉn2

1

C2e
−3∆τ (0,x)2/64e2t

t
dt

6 1 + C2 ln+

(
‖x‖

8e2

)

e−3c‖x‖/4 +

∫ Ĉn2

1

C2e
−3c‖x‖2/64e2t

t
dt =: gn(x)

(3.13)

where ln+(x) := max(0, ln(x)). The great advantage of this estimate is that gn is
deterministic. We can now follow the same procedure as in Section 3.2 : we will
prove that the random variable

∑

x∈Bn
gn(x)τx has mean of order n2, then control

its fluctuations, and then carry these results back to the exit times Tn. We begin
with the statement concerning the mean, which is purely deterministic.

Proposition 3.9. There exists M such that for all n large enough :

(3.14)
∑

x∈Bn

gn(x) 6 Mn2

Proof. We recall the definition of gn :

gn(x) = 1 + C2 ln+

(
‖x‖

8e2

)

e−3c‖x‖/4 +

∫ Ĉn2

1

C2e
−3c‖x‖2/64e2t

t
dt

The “1” term gives an n2 contribution in the sum (3.14). As ln+

(
‖x‖
8e2

)

e−3c‖x‖/4

tends to 0 when ‖x‖ tends to infinity, its contribution in the sum is negligible. Now
for the last part, note that if x = (x1, x2) ∈ {1, . . . , n}2, then :

e−3c‖x‖2/64e2t 6

∫ x1

x1−1

∫ x2

x2−1

e−3c(u2+v2)/64e2t dudv

We get :
∑

x∈Bn

e−3c‖x‖2/64e2t 6 4n+ 1 + 4
∑

x∈{1,...,n}2

e−3c‖x‖2/64e2t

6 4n+ 1 + 4

∫ ∞

0

∫ ∞

0

e−3c(u2+v2)/64e2t dudv

6 4n+ 1 +
64πe2t

3c

From this we deduce that :

∑

x∈Bn

∫ Ĉn2

1

e−3c‖x‖2/64e2t

t
dt 6 (4n+ 1) ln(Ĉn2) +

64πe2Ĉ

3c
n2

which proves the proposition. �

Now let α′ be such that 1 < α′ < α and α′ 6 2. Remember that E[τα
′

0 ] is
finite. Define the truncation τ̃ as in (3.4) (with d = 2), and the centred τx,n =
τ̃x,n − E[τ̃x,n].

Proposition 3.10. For any β > 2/α′, there exists δ, C > 0 such that for all n :

P

[∣
∣
∣
∣
∣

∑

x∈Bn

gn(x)τx,n

∣
∣
∣
∣
∣
> nβ

]

6
C

n2+δ
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Proof. Note that gn(·) 6 C ln(n). We proceed through the computation of moments
as in (3.5) to get, for any integer m :

E





(
∑

x∈Bn

gn(x)τx,n

)2m


 6 C ln(n)2m
m∑

k=1

∑

e1+···+ek=2m
ei>2

n2k
k∏

i=1

|E[τ ei

0,n]|

︸ ︷︷ ︸

=:Πn
e1,...,ek

Recall that (from equation (3.6) and the fact that α′ 6 2)

|E[τ ei
0,n]| 6 Cn2ei/α

′−2

We obtain, for any sequence e1, . . . , ek such that e1 + · · · + ek = 2m :

Πn
e1,...,ek

6 Cn4m/α′

Now we choose m large enough so that :
(

4

α′
− 2β

)

m < −2

and apply Markov inequality. �

We now lift this estimate to the sum
∑

x∈Bn
Ĝn(0, x)τ̃x,n. We write Bn for the

event T̂n 6 Ĉn2.

Proposition 3.11. There exist M ′, δ, C > 0 such that for all n :

P

[
∑

x∈Bn

Ĝn(0, x)τ̃x,n > M ′n2,Bn

]

6
C

n2+δ

Proof. First, using part (3) of Proposition 3.3, we choose C′ such that :

(3.15) P[AC′ ln(n)] > 1 −
C

n3

On the events AC′ ln(n) and Bn, we get (see (3.12) and (3.13)) :
∑

x∈Bn

Ĝn(0, x)τ̃x,n 6 C ln(n)
∑

x∈BC′ ln(n)

τ̃x,n +
∑

x∈Bn

gn(x)τ̃x,n

The first term is bounded by C ln(n)3n2/α′

. We choose M ′ = ME[τ0] + 1 with M
given by Proposition 3.9. It comes :

P

[
∑

x∈Bn

Ĝn(0, x)τ̃x,n > M ′n2,AC′ ln(n),Bn

]

6 P

[

C ln(n)3n2/α′

+
∑

x∈Bn

gn(x)τx,n > n2

]

and we conclude using Proposition 3.10 (recalling that 2/α′ < 1). The probability
of non-occurrence of AC′ ln(n) is controlled by equation (3.15). �

We then carry this result back to the exit times :

Proposition 3.12. There exists M ′′ such that for almost every environment and
for n large enough, we have :

sup
x∈Bn

Eτ
x

[

Tn1{T̂4n64Ĉn2}

]

6 M ′′n2
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Proof. Let T̂ xn be the time spent by X̂ before exiting x+Bn. We have :

Eτ
x

[

Tn1{T̂4n64Ĉn2}

]

6 Eτ
x

[

T x2n1{T̂x
2n64Ĉn2}

]

the latter having same law under P as Eτ
0 [T2n1B2n ]. Let M ′ > 0 and let i be an

integer. We consider :

(3.16) P



 sup
n>2i

supx∈Bn
Eτ
x

[

Tn1{T̂4n64Ĉn2}

]

M ′′n2
> 1





6

∞∑

j=i

P



 sup
2j6n<2j+1

supx∈Bn
Eτ
x

[

T x2n1{T̂x
2n64Ĉn2}

]

M ′′n2
> 1





We can bound the general term of this series by Aj + |B2j+1 |A′
j where :

Aj = P

[

∃x ∈ B2j+2 : τx > 22(j+2)/α′
]

A′
j = P




∑

x∈B2j+2

Ĝ2j+2(0, x)τ̃x,2j+2 > M ′′22j ,B2j+2





The first term, Aj , is the general term of a convergent series (it is the same as in
(3.10)). By Proposition 3.11, we see that if we choose M ′′ = 16M ′, then |B2j+1 |A′

j

is bounded by C2−jδ. Therefore, the series in the left-hand side of 3.16 converges
(and tends to 0 when i tends to infinity), which proves the proposition. �

We can now conclude :

Theorem 3.13. If d = 2 and α > 1, then there exists C > 0 such that for almost
every environment and all n large enough :

λn >
C

n2

Proof. Proposition 3.1 tells us that :

e−tλn 6 sup
x∈Bn

Pτ
x[Tn > t]

We decompose this the following way :

Pτ
x[Tn > t] 6 Pτ

x[T̂4n > 4Ĉn2] + Pτ
x[Tn > t, T̂4n 6 4Ĉn2]

The first term is smaller than 1/3 as given by Proposition 3.8. As for the second
term, Proposition 3.12 shows that for almost every environment and all n large
enough :

sup
x∈Bn

Pτ
x[Tn > 3M ′′n2, T̂4n 6 4Ĉn2] 6

supx∈Bn
Eτ
x

[

Tn1{T̂4n64Ĉn2}

]

3M ′′n2
6

1

3

Combining the two leads to the fact that for almost every environment and all n
large enough :

e−3M ′′n2λn 6
2

3

which proves the desired result. �



PRINCIPAL EIGENVALUE FOR RANDOM WALK AMONG RANDOM TRAPS ON Z
d 17

4. Upper bounds

We now give upper bounds on λn. Our method is clear from equation (1.3), that
we recall here :

λn = inf
f∈L2(Bn)

f 6=0

E(f, f)

(f, f)

Picking a function in L2(Bn) gives an upper bound, and the problem is to choose
the function well enough (i.e. looking more or less like the eigenfunction) to get a
sharp bound.

4.1. The one-dimensional case.

Theorem 4.1. We assume d = 1. There exists C > 0 such that for almost every
environment and all n large enough :

λn 6
C

n
∑

x∈Bn/4
τx

Proof. For a = 0, a “triangle function” that takes the value 0 on −(n + 1) and
(n + 1), the value 1 on 0 and is piecewise linear would do well. But for general a,
this function is not appropriate, and we will construct instead a function that looks
like it, but is constant around deep traps.

Let M > 0 be such that P[τ0 > M ] 6 1/8. Because of the law of large numbers,
one gets :

1

n
|{k ∈ {−n− 1, . . . , 0} : τk > M}|

a.s.
−−−−→
n→∞

1

8
Almost surely, for n large enough, the two following conditions are satisfied :

(4.1) |{k ∈ {−n− 1, . . . , 0} : τk > M}| 6
n

4

(4.2) |{k ∈ {0, . . . , n+ 1} : τk > M}| 6
n

4

Let us first construct the left part of our function : let l : −N → R be such that
l(k) = 0 for all k < −n, and for all k ∈ {−n, . . . , 0} :

l(k) − l(k − 1) =

∣
∣
∣
∣

0 if τk−1 > M or τk > M
1/n otherwise

The function l is made in such a way that for all k for which it makes sense :

(4.3) τak τ
a
k+1(l(k + 1) − l(k))2 6

M2a

n2

Moreover, when (4.1) is satisfied, there are at most half of the edges on which
the function is constant, so l(0) > 1/2. In this case, and as for any k we have
l(k) − l(k − 1) 6 1/n, it comes that l(k) > 1/4 when k > −n/4.

We define in the same way a right part r : N → R such that r(k) = 0 for all
k > n, and for all k ∈ {n, . . . , 0} :

r(k) − r(k + 1) =

∣
∣
∣
∣

0 if τk > M or τk+1 > M
1/n otherwise

The function r satisfies the same small variation property as in (4.3). Similarly,
when (4.2) is satisfied, we have that r(0) > 1/2 and r(k) > 1/4 for all k 6 n/4.

Now we connect the two parts l and r preserving this small variation property.
Let m = min(l(0), r(0)). We define f : Z → R by

f(x) =

∣
∣
∣
∣

min(l(x),m) if x < 0
min(r(x),m) otherwise
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We have therefore :

E(f, f) 6
2M2a

n
On the other hand, for n large enough, (4.1) and (4.2) are satisfied, and in this case
m > 1/2 and f(k) > 1/4 for all k such that −n/4 6 k 6 n/4. Thus :

(f, f) >
1

16

∑

−n/46k6n/4

τk

and we finally obtain, for all n large enough :

λn 6
E(f, f)

(f, f)
6

32M2a

n
∑

x∈Bn/4
τx

�

4.2. Large dimension, anomalous behaviour. The results proved in this part
are in fact valid in any dimension and for any α > 0, but they are sharp only in
the regime given in the title, that is for d > 2 and 2α 6 d.

Theorem 4.2. (1) For any ε > 0, there exists M > 0 such that for all n large
enough :

P

[

λn max
Bn−1

τ 6 M

]

> 1 − ε

(2) For any ε > 0 and almost every environment :

nd/α−ελn −−−−→
n→∞

0

Proof. Let K be the set of first and second neighbours of 0, namely K = {x ∈ Z
d :

1 6 ‖x‖ 6 2}, and c the number of edges from a point of {x : ‖x‖ = 1} to a point of
{x : ‖x‖ = 2}. Write Mx = maxx+K τ . If we choose the function that takes value
1 on site x ∈ Bn−1 and its neighbours, and 0 elsewhere, namely :

f(z) =

∣
∣
∣
∣

1 if ‖z − x‖ 6 1
0 otherwise

then we see that for any x ∈ Bn−1 :

(4.4) λn 6
c(Mx)

2a

τx
Let xn ∈ Bn−1 be such that τxn = maxBn−1 τ . We have :

λn 6
c(Mxn)2a

maxBn−1 τ

So we get :

P

[

λn max
Bn−1

τ > M

]

6 P
[
c(Mxn)2a > M

]

Now recall that Mxn is the maximum over all neighbours and second neighbours of
xn, so it should look like taking the maximum over all neighbours and second neigh-
bours of, say, 0. More precisely, conditionally on maxBn−1 τ = τz for some fixed
z, the law of (τx)x∈Bn−1\{z} is invariant under permutation. Therefore, provided
z ∈ Bn−2 \K and conditionally on maxBn−1 τ = τz , the random variables Mz and
M0 have the same law. Summing over all z ∈ Bn−2 \K, we get that conditionally
on the event En that xn ∈ Bn−2 \K, the random variables M0 and Mxn have the
same law. We obtain :

P
[
c(Mxn)2a > M

]
6 P

[
c(M0)

2a > M
]
+ P [Ecn]

The law of xn being uniform in Bn−1, we have that P [Ecn] goes to 0 when n goes
to infinity. First part of the theorem comes choosing M large enough.
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We now turn to the second assertion of the proposition. Defining :

Mn = max
x∈Bn−1

τx
(Mx)2a

we will show that for any ε > 0 :

(4.5)
Mn

nd/α−ε
a.s.

−−−−→
n→∞

+∞

which will prove the result via equation (4.4). There exists k > 0 such that
P[(Mx)

2a > k] < 1/2. Thus (note that Mx and τx are independent) :

P

[
τx

(Mx)2a
> y

]

>
P[τx > ky]

2
=
F (ky)

2

Hence, for all K > 0 :

P[Mn 6 nd/α−εK] 6

(

1 −
F (kKnd/α−ε)

2

)(2n−1)d

and recalling that, as a consequence of assumption 1’ (see (1.2)), for all β < α,
F (y) 6 y−β for all y large enough, one can see that the term on the right-hand side
of the former equality is the general term of a convergent series, and thus apply the
Borel-Cantelli lemma. �

4.3. Regular behaviour. In what follows our assumption will be that E[τa0 ] is
finite. In particular, all results will be valid under the condition that E[τ0] is finite
(or if a = 0).

We write (ei)16i6d for the canonical base of R
d.

Proposition 4.3. Let f : [−1, 1]d → R be a continuous function. If E[τa0 ] is finite,
then for all i ∈ {1, . . . , d} :

(4.6)
1

(2n+ 1)d

∑

x∈Bn

τax τ
a
x+ei

f(x/n)
a.s.

−−−−→
n→∞

E[τa0 ]2
∫

[−1,1]d
f(x)dx

Proof. If f is piecewise constant, then the limit (4.6) is proved by separating the
sum over Bn into two parts B′

n and B′′
n so that (τax τ

a
x+ei

)x∈B′
n

and (τax τ
a
x+ei

)x∈B′′
n

are two families of independent random variables, and then applying the law of
large numbers. For a continuous f , one can approximate uniformly f by piecewise
constant functions from above and below, and the result follows. �

For all f : [−1, 1]d → R and all integer n, we define the function fn : Z
d → R by

fn(x) = f(x/n) if x ∈ Bn, and fn(x) = 0 otherwise. Note that fn ∈ L2(Bn).

Proposition 4.4. Let f : [−1, 1]d → R be a twice continuously differentiable func-
tion that takes value 0 on the boundary of [−1, 1]d. If E[τa0 ] is finite, then :

n2

(2n)d
E(fn, fn)

a.s.

−−−−→
n→∞

E[τa0 ]2
∫

[−1,1]d
‖∇f(x)‖2

2dx

Recall the following equality :

E(fn, fn) =

d∑

i=1

∑

x∈Bn

τax τ
a
x+ei

(

f
(x

n

)

− f

(
x+ ei
n

))2

As we assumed f to be twice continuously differentiable, it comes that for all ε > 0
and n large enough :

∀x ∈ Bn : x+ ei ∈ Bn ⇒

∣
∣
∣
∣
∣

(

f
(x

n

)

− f

(
x+ ei
n

))2

−
1

n2

∂f

∂xi

(x

n

)2
∣
∣
∣
∣
∣
6

ε

n2
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and note that if x ∈ Bn and x + ei /∈ Bn, then f(x/n) = f((x + ei)/n) = 0, so
this case does not contribute to the sum. The result follows using the previous
proposition.

Theorem 4.5. If E[τa0 ] is finite, then there exists C such that almost surely, for
all n large enough :

λn 6
C

n2

nd
∑

x∈Bn/2
τx

Proof. Taking f(x) =
∏d
i=1 sin

(
πxi

2

)
in Proposition 4.4, we get that for almost

every environment :

E(fn, fn) ∼
dπ2

4

(2n)d

n2
E[τa0 ]2 (n→ +∞)

On the other hand, if x ∈ Bn/2, then f(x) > 2−d/2, thus :

(fn, fn) > 2−d/2
∑

x∈Bn/2

τx

therefore the proposition holds for any C > 23d/2−2dπ2
E[τa0 ]2. �

5. The distinguished path method

We present here a more direct method to get a lower bound on λn (close to the one
presented e.g. in [SC97, Theorem 3.2.3], but adapted to treat the case of Dirichlet
boundary condition), and show that it does not provide a sharp estimate when
d > 2. Note that in dimension one, [Chen, Section 3.7] proves that this technique
is always sharp, and one can verify that it gives indeed the expected lower bound.
This method also proved efficient in larger dimension in [FM06, Section 3] in the
context of random walks among random conductances.

For all x ∈ Bn, we give ourselves a path γn(x) from some point of ∂Bn to x (that
apart from the starting point, visits only points in Bn). Let γn(x) = (x0, . . . , xl).
For an edge e, we note e ∈ γn(x) if e = (xi, xi+1) for some i, and in this case, we
write df(e) = f(xi+1) − f(xi), and Q(e) = τaxiτaxi+1 . Let En be the set of edges
that go from a point of Bn to a point of Bn ∪ ∂Bn. We give ourselves a weight
function Wn : En → (0,+∞). We define the Wn-length of a path γ as :

ln(γ) =
∑

e∈γ

1

Wn(e)

Note that, as we assumed that τ > 1, we have that Q(e) > 1 (and there is equality
when a = 0). Using Cauchy-Schwarz inequality, we get :

f(x)2 =




∑

e∈γn(x)

df(e)





2

6
∑

e∈γn(x)

1

Wn(e)Q(e)

∑

e∈γn(x)

df(e)2Wn(e)Q(e)

6 ln(γn(x))
∑

e∈γn(x)

df(e)2Wn(e)Q(e)

∑

x∈Bn

f(x)2τx 6
∑

x∈Bn

ln(γn(x))τx
∑

e∈γn(x)

df(e)2Wn(e)Q(e)

6
∑

e∈En

df(e)2Q(e)Wn(e)
∑

x:e∈γn(x)

ln(γn(x))τx
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Note that

E(f, f) =
∑

e∈En

df(e)2Q(e)

So letting

Mn := max
e∈En

Wn(e)
∑

x:e∈γn(x)

ln(γn(x))τx

we obtain the following lower bound on λn (similar to [SC97, Theorem 3.2.3]) :

λn >
1

Mn

Let us see that, however Wn and γn(x) are chosen, it cannot lead to a sharp bound
if d > 2 and α < d. Let z ∈ Bn/2 be such that τz is maximal. The site z is such

that τz ≃ nd/α and |γn(z)| > n/2. Now choose e ∈ γn(z) so that Wn(e) is maximal.
We have :

Mn >
∑

e′∈γn(z)

Wn(e)

Wn(e′)
τz > |γn(z)|τz & n1+d/α

where we would have hoped to find nmax(2,d/α). So this method cannot give the
appropriate exponent if α < d.

Still, note that if one chooses Wn constant equal to 1, and the shortest paths
for (γn(x))x∈Bn , one can show using results of [BK65] that Mn is indeed of order
nmax(2,1+d/α), which gives an alternative proof of a lower bound for the principal
eigenvalue when α > d.

6. Appendix

In this section, we prove upper estimates on the transition kernel and Green
function of any symmetric nearest-neighbour continuous-time random walk on Z

d,
provided its jump rates are uniformly bounded from below. For any pair of neigh-
bours x ∼ y in Z

d, we give ourselves ωxy and consider the Markov process (Zt)t>0

with jump rate between x and y given by ωxy. We assume theses jump rates to be
symmetric (ωxy = ωyx) and bounded from below by 1 (ωxy > 1). The generator of
this process is given by :

Lf(x) =
∑

y∼x

ωxy(f(y) − f(x))

We write pt(x, z) for the probability for Zt to be at site z starting from x, and g(·, ·)
for the associated Green function.

We define the natural length of a path γ = (x0, . . . , xl) by :

|γ|ω =

l∑

i=1

(
ωxi−1xi

)−1/2

and the natural distance between any two points x, y ∈ Z
d by :

(6.1) ∆ω(x, y) = inf {|γ|ω, γ simple path from x to y}

Of course, the restriction on simple paths can be omitted without change, it is just
a matter of convenience for part 3.1. We will prove the following Gaussian-like
upper bounds on the transition kernel and Green function of (Zt) :

Theorem 6.1. There exists C2 such that for any x, y ∈ Z
d and any t > 0 :

(1) If 8de2t > ∆ω(x, y), then :

pt(x, y) 6
C2

td/2
exp

(

−
3∆ω(x, y)2

32de2t

)
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(2) If 8de2t 6 ∆ω(x, y), then :

pt(x, y) 6
C2

td/2
exp

[

−
1

4
∆ω(x, y)

(

ln

(
∆ω(x, y)

8de−2t

)

− 1

)]

6
C2

td/2
exp

[

−
3

4
∆ω(x, y)

]

(3) If d > 3, then there exists C3 such that for any x, y ∈ Z
d :

g(x, y) 6
C3

(1 + ∆ω(x, y))d−2

We will use Nash inequalities to prove this result, adapting a strategy due to
E.B. Davies [Dav87] generalized by E.A. Carlen, S. Kusuoka and D.W. Stroock
[CKS87].
Remarks.

(1) One could be surprised to see the failure of the Gaussian upper bound to
hold for all t > 0. Indeed, such an inequality is proved for all t > 0 in
[Dav, Theorem 3.2.7] in a continuous-space context. The difference comes
from the exponential part that appears in (6.3), which is not there in the
continuous case. But it is not a technical artefact. Indeed, as t goes to 0,
pt(x, y) behaves like a polynomial in t in our discrete-space context, so the
Gaussian upper bound cannot hold for small times.

(2) One should not be mislead to believe that something special happens when
8de2t = ∆ω(x, y). We wrote the results this way because we found it more
convenient, but they do not aim at being optimal (and the willing reader
can improve them by a more detailed analysis). Also, note that C2, C3 can
be made explicit, and depend only on the dimension.

(3) The previous results no longer hold (even qualitatively) without the as-
sumption that the jump rates are bounded away from 0. We refer to [FM06]
or [BBHK07] for evidence of the anomalous behaviour of the return prob-
abilities in this case.

(4) The case of discrete-time random walks has been treated in [HS93] (or
equivalently in Theorem 14.12 of the monograph [Woe]).

Due to the symmetry of the transition rates, it is clear that the uniform measure
is reversible, and L self-adjoint. In this Appendix, we understand scalar products
and Lp norms to be taken with respect to the uniform measure.

We write (Pt)t>0 for the semi-group associated to Z, and ‖Pt‖p→q for the norm
of Pt as an operator from Lp to Lq. We define the Dirichlet forms E,E0 :

E(f, g) =
1

2

∑

x,y∈Z
d

x∼y

ωxy(f(y) − f(x))(g(y) − g(x))

E0(f, g) =
1

2

∑

x,y∈Z
d

x∼y

(f(y) − f(x))(g(y) − g(x))

Proposition 6.2. There exists C1 > 0 such that the following Nash inequality
holds for all f :

‖f‖
2+4/d
2 6 C1E(f, f)‖f‖

4/d
1

Proof. Applying [Woe, Proposition 14.1] together with [Woe, Corollary 4.12], it is
clear that the inequality holds with E0 instead of E. As E0(f, f) 6 E(f, f), we get
the announced result. �
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At this step, we can derive, following [Nash58] (or Theorem 2.1 of [CKS87]),
that there exists C such that for all t > 0 :

sup
x,y

pt(x, y) = ‖Pt‖1→∞ 6
C

td/2

But this is not a sharp bound when x and y are far one from the other. Davies’s
idea [Dav87] is the following : let ψ : Z

d → R be some function, let s ∈ R, and
consider the following semi-group :

Qs,tf = e−sψPt(e
sψf)

The aim is to find an upper bound for

‖Qs,t‖1→∞ = sup
x,y

e−sψ(x)pt(x, y)e
sψ(y)

From now on, we assume the following on ψ :

(6.2) ∀x, y x ∼ y ⇒ ωxy(ψ(y) − ψ(x))2 6 1

and define

(6.3) I(s) = ds2(1 + e|s|)2/4

Proposition 6.3 ([CKS87]). There exists C2 > 0 such that for any x, y ∈ Z
d and

any t > 0 :

(6.4) pt(x, y) 6
C2

td/2
exp (3I(s)t/2 − s(ψ(y) − ψ(x)))

Proof. We follow closely [CKS87, Section 3]. In our context, we can define directly
Γ(·, ·) of [CKS87, Theorem 3.7] as :

Γ(f, g)(x) =
1

2

∑

y∼x

ωxy(f(y) − f(x))(g(y) − g(x))

and we can verify the Leibnitz rule :

E(fg, h) =
∑

x∈Zd

f(x)Γ(g, h)(x) +
∑

x∈Zd

g(x)Γ(f, h)(x)

together with the Cauchy-Schwarz inequality

|Γ(f, g)| 6 Γ(f, f)1/2Γ(g, g)1/2

Now a direct computation gives :

(6.5) E(esψf2p−1, e−sψf) − E(f2p−1, f)

=
1

2

∑

x∼y

ωxy[e
−sψ(x)f(x)f2p−1(y) − e−sψ(y)f(y)f2p−1(x)][esψ(x) − esψ(y)]

which is the equivalent of [CKS87, (3.12)-(3.13)]. From this, one can follow the
computations of the proof of [CKS87, Theorem 3.9] to get inequalities [CKS87,
(3.10)-(3.11)] with Γ(sψ)2 replaced by I(s), as we have :

Γ(sψ)2 := max(‖e−2sψΓ(esψ, esψ)‖∞, ‖e
2sψΓ(e−sψ, e−sψ)‖∞) 6 I(s)

Indeed :

e−2sψ(x)Γ(esψ, esψ)(x) =
1

2

∑

y∼x

ωxy(1 − es(ψ(y)−ψ(x)))2

Note that |1 − eu|/(1 + eu) 6 |u|/2, which implies that

|1 − es(ψ(y)−ψ(x))| 6 |s||ψ(y) − ψ(x)|(1 + es(ψ(y)−ψ(x)))/2
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As ωxy > 1, property (6.2) implies that for x ∼ y, we have |ψ(y)−ψ(x)| 6 1. Using
again property (6.2), it comes that, for all x ∈ Z

d :

e−2sψ(x)Γ(esψ , esψ)(x) 6 ds2(1 + e|s|)2/4 = I(s)

and the same inequality holds with ψ replaced by −ψ. (note that there is a typo-
graphical error in the last inequality of the proof of [CKS87, Theorem 3.9], where
one should read 2p−1

p2 instead of 2p−1
2 . Also, one should read that [CKS87, (3.11)]

is valid for all p ∈ [2,+∞) instead of [1,+∞). To prove second part of [CKS87,
(3.17)], one can write yp−xp as p

∫ y

x
tp−1dt and apply Cauchy-Schwarz inequality).

Now we can use the Nash inequality we obtained in Proposition 6.2, and apply
[CKS87, Theorem 3.25] (choosing ρ = 1/2), which proves the proposition. �

We define a distance between x and y by :

(6.6) ∆ω(x, y) = sup{ψ(y) − ψ(x) | ψ satisfies (6.2)}

We postpone the proof that this distance is indeed the natural distance introduced
in equation (6.1) to the next proposition, but let us first prove Theorem 6.1.

Proof of Theorem 6.1. Let x, y ∈ Z
d. We choose ψ(·) = ∆ω(x, ·). Seeing (6.4), the

point is to choose s in order to have 3I(s)t/2−s(ψ(y)−ψ(x)) = 3I(s)t/2−s∆ω(x, y)
minimal, to get the sharpest possible bound.

To simplify a little, we first remark that 3I(s)/2 6 2ds2e2|s|.
If 0 6 s 6 1, then 3I(s)/2 6 2de2s2. If 8de2t > ∆ω(x, y), then choosing

s = ∆ω(x,y)
8de2t 6 1, we have :

3I(s)t/2 − s∆ω(x, y) 6 2de2s2t− s∆ω(x, y) = −
3∆ω(x, y)2

32de2t

and part (1) of the theorem comes.
If s > 1, then s2 = exp(2 ln(s)) 6 exp(2(s − 1)) and it comes that 3I(s)/2 6

2de−2e4s. If 8de2t 6 ∆ω(x, y), then s = 1
4 ln

(
∆ω(x,y)
8e−2dt

)

is larger than 1 and part

(2) comes.
What is left is to see how to derive part (3) from the previous estimates, assuming

that d > 3. We will show first that g(x, y) = O(∆ω(x, y)2−d) as ∆ω(x, y)2−d goes
to infinity, and then that it is uniformly bounded. We have :

g(x, y) =

(
∫ ∆ω(x,y)

8de2

0

+

∫ +∞

∆ω(x,y)

8de2

)

pt(x, y) dt

= I1 + I2

where

I2 6 C2

(
3∆ω(x, y)2

32de2

)1−d/2 ∫ ∞

0

u−d/2 exp(−1/u) du =
C

∆ω(x, y)d−2

and, if ∆ω(x, y) > 2d :

I1 6

(
∆ω(x, y)

8de−2

)1−d/2 ∫ e−4

0

u−d/2 exp

(

−
∆ω(x, y)

4
(ln(1/u) − 1)

)

du

6

(
∆ω(x, y)

8de−2

)1−d/2

exp

(

−
3

4

(
∆ω(x, y)

4
−
d

2

))∫ e−4

0

u−d/2e−d/2(ln(1/u)−1)du

O(∆ω(x, y)2−d)

We now show that g(·, ·) is bounded.
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Proposition 6.4. If d > 3, then there exists C such that for any x, y ∈ Z
d

g(x, y) 6 C

Proof. Note that for any function f :

E(f, f) > E0(f, f) > 0

Thus we can apply [Woe, lemma 2.24] to get that

g(x, x) 6 g0(x, x)

where g0 is the Green function of the simple random walk. (one needs to be careful
that the generators of the random walks are not invertible operators, but see the
proof of [Woe, Theorem 2.25] to work things out). To conclude, note that g0(x, x)
does not depend on x, and g(x, ·) is maximal on x. �

Part (3) of the theorem now follows. �

Finally, we check that the distances introduced in (6.1) and (6.6) are indeed the
same.

Proposition 6.5. The distance defined in equation (6.6) is the natural distance :

∆ω(x, y) = inf {|γ|ω, γ simple path from x to y}

Proof. Let ∆′
ω(x, y) be the infimum given above. Let ψ be a function that satisfies

(6.2). Then for all x1, x2 neighbours, we have :

ψ(x2) − ψ(x1) 6 (ωx1x2)
−1/2

so for any simple path γ that goes from x to y, summing the former inequality
along the path, it comes that :

ψ(y) − ψ(x) 6 |γ|ω

and ∆ω(x, y) 6 ∆′
ω(x, y). On the other hand, for x fixed, choose ψ(y) = ∆′

ω(x, y).
Then ψ satisfies (6.2), so ∆ω(x, y) > ∆′

ω(x, y). �
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Université de Provence, CMI, 39 rue Joliot Curie, 13013 Marseille, France ; PUC
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