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Abstract We formulate the “real integral Hodge conjecture”, a version of
the integral Hodge conjecture for real varieties, and raise the question of its
validity for cycles of dimension 1 on uniruled and Calabi–Yau threefolds and
on rationally connected varieties.We relate it to the problemof determining the
image of the Borel–Haefliger cycle class map for 1-cycles, with the problem
of deciding whether a real variety with no real point contains a curve of even
geometric genus and with the problem of computing the torsion of the Chow
group of 1-cycles of real threefolds. New results about these problems are
obtained along the way.

Introduction

One of the central problems in the study of algebraic cycles of codimension k
on a smooth proper complex algebraic variety X consists in determining the

subgroup H2k
alg(X (C),Z) ⊆ H2k(X (C),Z) formed by their cycle classes.

Hodge theory provides a chain of inclusions
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H2k
alg(X (C),Z) ⊆ Hdg2k(X (C),Z) ⊆ H2k(X (C),Z), (0.1)

where Hdg2k(X (C),Z) denotes the set of those classes whose images
in H2k(X (C),C) have type (k, k) with respect to the Hodge decomposition.
By the Hodge conjecture, the first inclusion should become an equality after
tensoring withQ. It is customary to refer to the property that the first inclusion
is itself an equality as the integral Hodge conjecture. Despite its name, this
property can fail. Its study for specific X and k has nevertheless played a sig-
nificant role in recent years (see [36,108], [111, Chapter 6] and the references
therein, and Sect. 2.1 for a more detailed discussion).

Let now X denote a smooth proper real algebraic variety, by which we
mean a smooth proper scheme over R. With any algebraic cycle of codi-
mension k on X , Borel and Haefliger [13] have associated a cycle class
in Hk(X (R),Z/2Z). The study of the subgroup Hk

alg(X (R),Z/2Z) ⊆
Hk(X (R),Z/2Z) formed by these classes is a classical topic in real alge-
braic geometry (see [9, §11.3], [15], [84, Chapitres 3–4], [101, Chapter III]
and the references therein), related to the problem of C∞ approximation of
submanifolds of X (R) by algebraic subvarieties.

Despite the formal similarity between these two settings, one critical differ-
ence stands out: being expressed with torsion coefficients, the definition of the
subgroup Hk

alg(X (R),Z/2Z) misses any information that might come from
the Hodge theory of the underlying complex variety. The latter, however, does
have an influence on this subgroup (see, e.g., [105, Chapter IV, Corollary 4.4]
or [83]).

The main aim of the present work is to put forward and examine the real
integral Hodge conjecture, a statement for real algebraic varieties which is
analogous to the (complex) integral Hodge conjecture recalled above and
whose study refines, at the same time, that of Hk

alg(X (R),Z/2Z). In part I, we
formulate it (Sect. 2) and, focusing on the case of 1-cycles, study its conse-
quences (Sects. 3, 5) while part II (that is, [29]) establishes particular cases of
it, again for 1-cycles (see [29, §6, §7, §8, §§9.4–9.5]).

More specifically, we define, in Sect. 2, a subgroup

Hdg2kG (X (C),Z(k))0 ⊆ H2k
G (X (C),Z(k)), (0.2)

where G = Gal(C/R) acts on the space X (C) and on the group Z(k) =
(
√−1)kZ and where H2k

G (X (C),Z(k)) denotes G-equivariant cohomology
in the sense of Borel, by combining the Hodge condition in H2k(X (C),C)

with a topological condition in H2k
G (X (R),Z(k)) discovered by Kahn and

Krasnov [68,76]. When k ≤ 1, this topological condition is trivial; when
dim(X) ≤ 3 and k = 2, it is simply the requirement that the pull-back to
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any real point of X of the equivariant cohomology class under consideration
should vanish.

We prove that the subgroup (0.2) is compatible with cup products, pull-
backs and proper push-forwards (see Sect. 1.6.4 andTheorem1.21). It contains
the subgroup of H2k

G (X (C),Z(k)) formed by the equivariant cycle classes of
algebraic cycles of codimension k. The real integral Hodge conjecture refers
to the property that every element of (0.2) is the equivariant cycle class of
some algebraic cycle of codimension k. Just as in the complex situation, the
real integral Hodge conjecture sometimes fails, though it always holds when
k = 1 (an observation due to Krasnov) or k = dim(X) (see Sect. 2.3.2), it is
a birational invariant when k = 2 or k = dim(X) − 1 (see Sect. 2.3.3), and it
holds for projective spaces (see Sect. 2.3.4).

As was noted by Krasnov [76] and by van Hamel [105], there exists a
canonical map

H2k
G (X (C),Z(k)) → Hk(X (R),Z/2Z) (0.3)

which sends the equivariant cycle class of any codimension k algebraic
cycle to its Borel–Haefliger cycle class. Considering the image H of
Hdg2kG (X (C),Z(k))0 by this map now leads to a chain of inclusions analo-
gous to (0.1):

Hk
alg(X (R),Z/2Z) ⊆ H ⊆ Hk(X (R),Z/2Z). (0.4)

Obviously, if H �= Hk(X (R),Z/2Z), then Hk
alg(X (R),Z/2Z) �= Hk(X (R),

Z/2Z). This implication already explains all of the known examples of real
varieties X such that Hk

alg(X (R),Z/2Z) �= Hk(X (R),Z/2Z) for some k
(see Remark 2.7 (ii)). In Sect. 4.3, we provide an example that cannot be
explained by thismechanism. It is based on a degeneration argument to positive
characteristic, as in [104], to contradict the real integral Hodge conjecture.

Unlike the equality Hk
alg(X (R),Z/2Z) = Hk(X (R),Z/2Z), the real inte-

gral Hodge conjecture turns out to be an interesting property when X (R) = ∅

as well. When X (R) = ∅ and X has pure dimension d, we construct a canon-
ical map

H2d−2
G (X (C),Z(d − 1)) → Z/2Z (0.5)

which sends the equivariant cycle class of a reduced curve Z ⊆ X with nor-
malisation Z ′ to χ(Z ′,OZ ′) modulo 2 (see Theorem 3.6). In particular, the
equivariant cycle class of a geometrically irreducible curve on X determines its
geometric genusmodulo 2, whereas the other cycle classes we havementioned
do not. Considering the image of Hdg2d−2

G (X (C),Z(d−1))0 by this map now
provides a possible obstruction to the existence of a geometrically irreducible
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curve of even geometric genus on X , and, in particular, to the existence of a
geometrically rational curve. We give examples of this in Sects. 4.1–4.2. We
note that any smooth proper and geometrically irreducible variety of dimen-
sion ≥ 2 contains a geometrically irreducible curve of odd geometric genus
(see Proposition 3.9); the existence of a geometrically irreducible curve of even
geometric genus is a property which does not seem to have been considered
systematically before (though see [74, Example 41, Question 42]).

Let ψ denote the restriction of the map (0.3) for k = d − 1, if X (R) �= ∅,
or of the map (0.5), if X (R) = ∅, to the subgroup

H2d−2
G (X (C),Z(d − 1))0 ⊆ H2d−2

G (X (C),Z(d − 1))

cut out by the topological condition which enters the definition of (0.2) (dis-
regarding the Hodge condition). To draw consequences of the real integral
Hodge conjecture for 1-cycles, one quickly faces the problem of determining
the image of ψ . Using a new result of a purely topological nature established
in Sect. 1 (see Theorem 1.12), we solve it completely in Sect. 3 (see The-
orem 3.3), thus providing an answer to a question of van Hamel (see [105,
p. 93], where the map ρ1 is our (0.3) for k = d − 1).

When the2-torsion subgroupofPic(XC) is trivial (e.g.,when X (C) is simply
connected), the map ψ is surjective and we show that its kernel consists of
norms fromC toR of classes in H2d−2(X (C),Z). A direct relation follows, in
this case, between four motifs: the real integral Hodge conjecture, the complex
integral Hodge conjecture, the surjectivity of the Borel–Haefliger cycle class
map and the existence of geometrically irreducible curves of even geometric
genus (see Theorem 3.22).

Two theorems that we obtain as consequences of these results—in conjunc-
tion, in the case of Theorem B, with Voisin’s theorem according to which
complex uniruled or Calabi–Yau threefolds satisfy the integral Hodge conjec-
ture (see [108])—are the following. If M is an abelian group, we denote by
M[2∞] its 2-primary torsion subgroup.

Theorem A (see Theorem 3.16) Let X be a smooth, proper and geometrically
irreducible real variety, of dimension d ≥ 1. Assume that X satisfies the real
integral Hodge conjecture for 1-cycles and that H2(X,OX ) = 0.

(i) The subgroup Hd−1
alg (X (R),Z/2Z) ⊆ Hd−1(X (R),Z/2Z) is the exact

orthogonal complement, under the Poincaré duality pairing, of the image
of Pic(X)[2∞] by the Borel–Haefliger cycle class map Pic(X) →
H1(X (R),Z/2Z).

(ii) There exists a geometrically irreducible curve of even geometric genus
in X if and only if the natural map Pic(X)[2∞] → Pic(XC)G[2∞] is
onto.
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Theorem A applies, in particular, to surfaces of geometric genus zero.
Even in this case, its conclusions are new, except for (i) when XC is a sur-
face of geometric genus zero such that Pic(XC)[2] = 0 (Silhol, van Hamel;
see [84, Théorème 3.7.18]), an Enriques surface (Mangolte and van Hamel
[87]) or a birationally ruled surface (Kucharz [80]). Among the new corol-
laries of Theorem A, we find that any real Enriques surface contains a
geometrically irreducible curve of even geometric genus and that any real
surface of geometric genus zero such that H1(X (R),Z/2Z) �= 0 satisfies
H1
alg(X (R),Z/2Z) �= 0 (see Sect. 3.6.2).

Theorem B (see Corollary 3.23) Let X be a smooth and proper real threefold.
Assume that XC is rationally connected or is simply connected Calabi–Yau.
Then the real integral Hodge conjecture for X is equivalent to the equality
H2
alg(X (R),Z/2Z) = H2(X (R),Z/2Z), if X (R) �= ∅, or to the existence of

a geometrically irreducible curve of even geometric genus on X, if X (R) = ∅.

As Theorem B clearly illustrates, the existence of a geometrically irre-
ducible curve of even geometric genus must be considered as the analogue,
in the absence of real points, of the equality Hd−1

alg (X (R),Z/2Z) =
Hd−1(X (R),Z/2Z).
Over C, Voisin has proved the integral Hodge conjecture for 1-cycles on

uniruled or Calabi–Yau threefolds and, conditionally on the Tate conjecture for
surfaces over finite fields, on rationally connected varieties of any dimension
(see [108,110]). The analogy between the real and complex integral Hodge
conjectures, on the one hand, and the good properties of the real integral
Hodge conjecture, on the other hand, prompt the following question, which
serves as a guiding problem for [29]: if XC is a uniruled threefold, a Calabi–
Yau threefold, or a rationally connected variety, does X satisfy the real integral
Hodge conjecture for 1-cycles?

By Theorem A, a positive answer would imply that rationally connected
varieties (of positive dimension) over R satisfy Hd−1

alg (X (R),Z/2Z) =
Hd−1(X (R),Z/2Z) and contain geometrically irreducible curves of even geo-
metric genus. A conjecture of Kollár predicts that such varieties should even
contain geometrically rational curves (see [6, Remarks 20], [74, Question 42]).

In [29], we provide evidence towards a positive answer to the above question
by establishing the real integral Hodge conjecture for 1-cycles on X under any
of the following assumptions:

(1) X is a conic bundle over a variety which itself satisfies the real integral
Hodge conjecture for 1-cycles (e.g., X can be any conic bundle threefold);

(2) X is a Fano threefold with no real point;
(3) X is a threefold fibred over a curve into del Pezzo surfaces of degree δ,

when δ /∈ {1, 2, 4}, as well as in some cases for which δ ∈ {1, 2, 4} (see
[29] for precise statements).
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In viewofTheoremA, these results have concrete consequences.Among them:

(i) the existence of a geometrically irreducible curve of even geometric genus
in any smooth real quartic threefold;

(ii) the equality H2
alg(X (R),Z/2Z) = H2(X (R),Z/2Z) when X is the total

space of a fibration into cubic surfaces over a real curve B such that B(R)

is connected.

The determination of the subgroup Hk
alg(X (R),Z/2Z) also has conse-

quences on the problem of C∞ approximation of submanifolds of X (R) by
algebraic subvarieties. As an example, combining (ii) with a result of Akbulut
and King [4] (see also [16] and [29, §6.2]) shows that for any threefold X as
in (ii), any C∞ loop in X (R) can be approximated arbitrarily well by the real
locus of an algebraic curve.

Finally, we examine, in Sect. 5, the implications of the real integral Hodge
conjecture for the study of torsion 1-cycles on real varieties. We obtain, in
particular, the following theorem. Its proof relies, on the one hand, on Bloch–
Ogus theory, which we develop further in Sect. 5 for real varieties, and, on the
other hand, on the topological result alreadymentioned above (Theorem 1.12).

Theorem C (see Corollary 5.5) Let X be a smooth, proper and geometrically
irreducible real variety, of dimension d. Assume that CH0(XC) is supported
on a surface (such is the case, for instance, if XC is a uniruled threefold) and
that H2(X,OX ) = 0. If X satisfies the real integral Hodge conjecture for
1-cycles, then the image of CH1(X)[2∞] by the Borel–Haefliger cycle class
map

CH1(X) → Hd−1(X (R),Z/2Z)

is the exact orthogonal complement, under the Poincaré duality pairing, of the
subgroup H1

alg(X (R),Z/2Z) ⊆ H1(X (R),Z/2Z).

Theorem A (i) and Theorem C coincide in the case of surfaces.
For real threefolds X which satisfy the real integral Hodge conjecture,

Bloch–Ogus theory also enables us to control the torsion subgroup of the kernel
of the equivariant cycle class map CH1(X) → H2d−2

G (X (C),Z(d−1)). As an
example, we prove in Sect. 5 that for any smooth real quartic threefold X with
no real point, the abelian group CH1(X)tors is isomorphic to Z/2Z⊕ (Q/Z)30

(see Proposition 5.7; one can even determine the full structure of CH1(X), see
Remark 5.10 (i)). This relies on the real integral Hodge conjecture for such X ,
which we establish in [29].

In this article as well as in [29], we work over an arbitrary real closed field,
except when we use the specific archimedean properties of R, via the Stone–
Weierstrass theorem as in [29, §6] or via Hodge theory as in [29, §7]. The
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statements of Theorems A, B, C, established in the present article, remain true
in this generality,mutatis mutandis, while some of the results proved in [29] do
not. As is well known, and as we recall in [29, §9.1], the truth, over an arbitrary
real closed field, of an assertion such as the equality Hd−1

alg (X (R),Z/2Z) =
Hd−1(X (R),Z/2Z) or the existence of a geometrically irreducible curve of
even geometric genus in X is equivalent to the truth of the same assertion over
the reals together with a bound, in any bounded family of real varieties, on the
degree of the curves whose existence it predicts. Thus, for instance, it follows
from Theorem 3.16 (which is Theorem A over a real closed field) that in any
bounded family of geometrically rational surfaces X , every C∞ loop in X (R)

is homologically equivalent to the real locus of an algebraic curve of bounded
degree. For rationally connected threefolds, however, the same is not true, as
the real integral Hodge conjecture can fail for them over non-archimedean
real closed fields (see [29, §9]). This is in marked contrast with the situation
over algebraically closed fields of characteristic 0: by the Lefschetz principle,
Voisin’s theorem on the integral Hodge conjecture for rationally connected
threefolds readily extends to such fields.

The text is organised as follows. We devote Sect. 1 to the cohomological
tools that are used throughout the article (both reminders and new results); we
refer the reader to the introduction of Sect. 1 for more details. In Sect. 2, we
formulate the real integral Hodge conjecture, prove a few basic results about
it (e.g., its birational invariance for cycles of dimension 1 or of codimen-
sion 2) and raise the question of its validity for rationally connected varieties,
uniruled threefolds and Calabi–Yau threefolds overR. We proceed, in Sect. 3,
to relate the real integral Hodge conjecture for 1-cycles to the study of the
group Hd−1

alg (X (R),Z/2Z) and of geometrically irreducible curves of even
geometric genus. This leads us, in particular, to Theorems A and B. A num-
ber of examples of smooth, proper and geometrically irreducible varieties X
over R such that Hd−1

alg (X (R),Z/2Z) �= Hd−1(X (R),Z/2Z) or such that X
does not contain any geometrically irreducible curve of even geometric genus
are presented in Sect. 4. Finally, we develop Bloch–Ogus theory and apply
the real integral Hodge conjecture to the study of torsion 1-cycles in Sect. 5,
where we prove, in particular, Theorem C.

1 Cohomology of real algebraic varieties

We introduce, in this section, the cohomological tools on which this article
and its sequel [29] heavily depend. Some of these tools are standard (at least
for varieties over the field R of real numbers), while some are new. Let us
describe the organisation of Sect. 1.

For lack of an adequate reference to the existing literature, we first recall,
in Sect. 1.1, the formalism of sheaf cohomology and equivariant sheaf coho-
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mology for algebraic varieties over a real closed field, together with some of
the standard properties thatwe shall use throughout: the two spectral sequences
of equivariant cohomology; Poincaré duality à la Verdier; purity, equivariant
purity; covariant functoriality. Over the field of real numbers, these topics are
discussed in [105, Chapter II and Chapter III]. Over a real closed field, one
has to replace singular cohomology with semi-algebraic cohomology, a theory
first developed by Delfs and Knebusch (see [39,42]).

Letting G = Z/2Z, the G-equivariant cohomology groups of a space
endowed with the trivial action of G, with coefficients in Z/2Z, in Z, or
in the twisted integers Z(1), canonically decompose as direct sums of non-
equivariant cohomology groups. These decompositions appear in [68,76],
[105, Chapter III, §§6–7]. They play an essential role in the formulation of
the real integral Hodge conjecture (see Sects. 1.6.3 and 2.2). We discuss them
in Sect. 1.2, in the setting of semi-algebraic cohomology and with locally
constant sheaves as coefficients.

In Sect. 1.3, we show that in the case of the complex locus of a smooth real
algebraic variety with support in the real locus, the long exact sequence of
equivariant cohomology with support decomposes into canonically split short
exact sequences, when one works with Z/2Z coefficients (Proposition 1.3)
or with appropriately twisted integer coefficients (Proposition 1.7). Proposi-
tion 1.3 is an improvement on [106, §2.2]; Proposition 1.7 and its companion
Proposition 1.8, however, seem to be entirely new. The results of Sect. 1.3 are
used in Sect. 1.4, in Sect. 5 and in [29, proof of Theorem 6.1, Step 4].

The goal of Sect. 1.4 is to formulate and prove Theorem 1.12, a duality result
which combines, for any smooth and proper real variety, Poincaré duality for
the real locus with Lefschetz duality for the complement of the real locus in the
complex locus. Theorem 1.12 is new, and is key to the proofs of Theorem 3.3
and Theorem 5.4.

In Sect. 1.5, we establish a Lefschetz hyperplane theorem for equivariant
cohomology with twisted integral coefficients (Proposition 1.15). This will be
used in [29, proof of Theorem 7.1, §7.3].

Finally, we devote Sect. 1.6 to the equivariant cycle class map associated
with a smooth real algebraic variety, and to the topological constraint dis-
covered by Kahn [68] and Krasnov [76] that all algebraic cycle classes must
satisfy (see Theorem 1.18). A new result here is Theorem 1.21, which asserts
the compatibility of this topological constraint with proper push-forwards. Its
proof rests on the contents of Sect. 1.3 and on a relative version of Wu’s the-
orem due to Atiyah and Hirzebruch. Theorem 1.21 is used in Sect. 2.3.3 and
in [29, proofs of Theorem 6.1 and Theorem 8.1 (iv)].

In thewhole article, in an effort to keep the notation as tidy as possible (espe-
cially in the equivariant setting), we stick to cohomology and do not introduce
Borel–Moore homology. For smooth equidimensional varieties, this makes no

123



On the integral Hodge conjecture for real varieties

difference: ifF is a locally constant sheaf of abelian groups on an equidimen-
sional semi-algebraic space V subject to the assumptions of Sect. 1.1.4 below,
one could regard HBM

i (V,F ) as shorthand for Hdim(V )−i (V,F ⊗Z orV ),
where orV denotes the orientation sheaf of V (see [39, Chapter III, §9, The-
orem 9.3]). Some of the results below (e.g., Theorem 3.6) would extend to
singular varieties if one replaced cohomology with Borel–Moore homology.

1.1 Sheaf cohomology over real closed fields

We fix a real closed field R and set C = R(
√−1), G = Gal(C/R) and

Z( j) = (
√−1) jZ ⊂ C for j ∈ Z. ThusC is algebraically closed, the groupG

has order 2 andZ( j) is canonically isomorphic, as aG-module, toZ or toZ(1),
depending on the parity of j . If M is a G-module, we let M( j) = M ⊗Z Z( j)
and M[G] = M ⊗Z Z[G]; these G-modules fit into canonical short exact
sequences

0 → M → M[G] → M(1) → 0 (1.1)

and

0 → M(1) → M[G] → M → 0, (1.2)

which we shall refer to as the real-complex exact sequences. We denote the
field of real (resp. complex) numbers by R (resp. C). We use the term variety
(over R) as a synonym for separated scheme of finite type (over R).

For the whole of Sect. 1, we fix a variety X over R.

1.1.1 Semi-algebraic spaces and their cohomology

The set X (R) of rational points of X is a locally complete (hence affine)
semi-algebraic space in the sense of Delfs and Knebusch (see [40,41,43,93],
[45, Chapter I, Example 7.1], [39]). We shall always consider it as such;
thus, a sheaf of abelian groups on X (R) will refer to a sheaf on the semi-
algebraic site of X (R) (see [43, §1, §5]). We denote by H∗(X (R),F ) the
cohomology groups of such a sheaf. If F is the constant sheaf associated
with M , we simply write H∗(X (R), M). The semi-algebraic cohomology
groups H∗(X (R), M) are finitely generated ifM is a finitely generated abelian
group; when R = R, they coincide with the singular cohomology of the naive
topological space X (R), with coefficients in M (see [43, Proposition 6.2]).

We also view X (C) as a locally complete semi-algebraic space, namely as
the space of R-points of the Weil restriction from C to R of XC = X ⊗R C .
(To be precise, the Weil restriction makes sense when X is quasi-projective.
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In general, one proceeds by choosing an affine open cover and then gluing;
see [96, Lemma 5.6.1].) This semi-algebraic space carries a natural action
of G. If F is a G-equivariant sheaf of abelian groups on X (C), we denote
by H∗

G(X (C),F ) its equivariant cohomology groups (see [96, (6.1.3)]). We
simply write H∗

G(X (C), M) if F is the constant sheaf associated with a
G-module M . When R = R, this coincides with equivariant Betti coho-
mology of X (C) with coefficients in M . Finally, we recall that when M is
torsion, there are canonical isomorphisms H∗(X (C), M) = H∗

ét(XC , M) and
H∗
G(X (C), M) = H∗

ét(X, M) (see [96, Corollary 15.3.1]). It follows, as these
groups are finite when M is finite and as the G-module Q/Z(1) is canoni-
cally isomorphic to the group of roots of unity of C , that there are canonical
isomorphisms H∗

G(X (C),Z( j)) ⊗Z Z� = H∗
ét(X,Z�( j)) for all primes � and

all j .
More generally, for any G-invariant locally closed semi-algebraic subset

V ⊆ X (C), any G-equivariant sheaf of abelian groups F on V , any inte-
ger i and any G-invariant closed semi-algebraic subset Z ⊆ V , we denote by
Hi
G,Z (V,F ) the value on F of the i th right derived functor of the func-

tor of G-invariant global sections supported on Z . Let π : V → V/G
denote the quotient map (see [24, Corollary 1.6]). We denote by H i (G,F )

the sheaf, on V/G, defined as the sheafification of the presheaf U �→
Hi (G,F (π−1(U ))). We recall that the two spectral sequences of equivariant
cohomology with support in Z take the shape

E p,q
2 = H p

Z/G(V/G,H q(G,F )) ⇒ H p+q
G,Z (V,F ) (1.3)

and

E p,q
2 = H p(G, Hq

Z (V,F )) ⇒ H p+q
G,Z (V,F ) (1.4)

(see [59, Théorème 5.2.1]); the latter is the Hochschild–Serre spectral
sequence.

Viewing F [G] = F ⊗Z Z[G] as a G-equivariant sheaf with the diago-
nal action of G, let us now consider the spectral sequence (1.4) associated
with F [G] (rather than with F ). As Hq

Z (V,F [G]) = Hq
Z (V,F )[G], we

have E p,q
2 = 0 for p > 0 and E0,q

2 = Hq
Z (V,F ) (see [23, Chapter III,

Corollary 5.7, Proposition 5.9, Corollary 6.6]), hence

Hi
G,Z (V,F [G]) = Hi

Z (V,F ) (1.5)

for all i . Setting F (1) = F ⊗Z Z(1), the sequences (1.1) and (1.2) with
M = Z, tensored by F , therefore induce long exact sequences
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· · · → Hi
G,Z (V,F ) → Hi

Z (V,F ) → Hi
G,Z (V,F (1)) → Hi+1

G,Z (V,F ) → · · · (1.6)

and

· · · → Hi
G,Z (V,F (1)) → Hi

Z (V,F ) → Hi
G,Z (V,F ) → Hi+1

G,Z (V,F (1)) → · · · (1.7)

for any G-equivariant sheaf of abelian groups F on V . We will refer to the
map Hi

Z (V,F ) → Hi
G,Z (V,F ) appearing in (1.7) as the norm map.

1.1.2 Notation: the class ω and its variants

For any integer i ≥ 1, we shall denote by ωi
V ∈ Hi

G(V,Z(i)) the image of 1 ∈
Z/2Z = Hi (G,Z(i)) = Hi

G(pt,Z(i)) by pull-back with respect to the map
from V to the point, and by ωi

V,Z/2Z ∈ Hi
G(V,Z/2Z) the image of ωi

V by the

map Hi
G(V,Z(i)) → Hi

G(V,Z/2Z) induced by the surjectionZ(i) → Z/2Z.
The subscript V will be omitted when no confusion can arise. We shall write
ω (resp., ωZ/2Z) for ω1 (resp., ω1

Z/2Z). The notation is justified by the remark

that ωi (resp., ωi
Z/2Z) coincides with the i-fold cup product of ω (resp., ωZ/2Z)

with itself. Finally, we note that the map Hi
G,Z (V,F ) → Hi+1

G,Z (V,F (1))
which appears in (1.7) can be interpreted as the cup product with ω (see [69,
§A3]).

1.1.3 Cohomological dimension

For a G-module M , we shall consider the relative equivariant cohomol-
ogy groups H∗

G(X (C), X (R), M), defined as H∗
G(X (C), j!M), where j :

X (C)\X (R) ↪→ X (C) denotes the inclusion and j!M is the extension by
zero. These groups fit into the localisation long exact sequence

· · · Hi
G(X (C), X (R), M) Hi

G(X (C), M) Hi
G(X (R), M) · · ·

(induced by the exact sequence of G-equivariant sheaves 0 → j!M → M →
ι∗M → 0, where ι : X (R) ↪→ X (C) denotes the inclusion). As the action
of G on X (C) is discontinuous (see [59, §5.3]), it follows from the spectral
sequence (1.3) that

Hi
G(X (C), X (R), M) = Hi (X (C)/G, X (R), M) (1.8)

and

Hi
G(X (C)\X (R), M) = Hi ((X (C)\X (R))/G, M), (1.9)
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where M now also denotes the locally constant sheaf H 0(G, M) on
(X (C)\X (R))/G. By Delfs [39, Chapter II, Lemma 9.1], these two groups
vanish for i > 2 dim(X). In particular, the restriction map Hi

G(X (C), M) →
Hi
G(X (R), M) is an isomorphism if i > 2 dim(X).

1.1.4 Semi-algebraic Verdier duality and purity

Let f : V → W denote a continuous semi-algebraicmapbetween locally com-
plete semi-algebraic spaces over R. We assume that V and W are homology
manifolds (see [39, Chapter III, §3, Definition 1]) and denote by orV , orW their
orientation sheaves; these are locally constant sheaves with stalks isomorphic
to Z. We let orV/W = Hom( f ∗orW , orV ). The main examples of such man-
ifolds, in this article, will be the spaces X (R), X (C) and (X (C)\X (R))/G
for a smooth variety X over R (loc. cit., Example 3.3). For any noetherian
ring � and any T ∈ {V,W }, we let D+(T, �) denote the derived category of
bounded below complexes of sheaves of�-modules on the semi-algebraic site
of T . According to [50, Theorem 4.1], the derived direct image functor with
proper support R f! : D+(V, �) → D+(W, �), defined in [39, Chapter II,
§8], admits a right adjoint R f ! : D+(W, �) → D+(V, �).

The following statement combines Poincaré duality and a version of the
Thom isomorphism in the context of semi-algebraic spaces over real closed
fields.

Proposition 1.1 For any noetherian ring � and any bounded complex F of
sheaves of �-modules on W whose cohomology sheaves are locally constant,
there is a canonical isomorphism

R f !F = (
orV/W ⊗Z f ∗F

)[dim(V ) − dim(W )] (1.10)

in D+(V, �).

Proof Applying [50, Theorem 4.10] to V and toW yields a canonical isomor-
phism

R f !orW = orV [dim(V ) − dim(W )] (1.11)

in D+(V,Z). On the other hand, there is a canonical morphism

R f !orW ⊗L
Z f ∗Hom(orW ,F ) → R f !F (1.12)

(see [77, Proposition 3.1.11]). It suffices to prove that the latter is an isomor-
phism. By the triangulated five lemma, we may assume thatF is concentrated
in degree 0. After shrinkingW , we may assume thatF = M⊗Z orW for some
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�-module M . The �-module structure is now irrelevant; we may therefore
assume that � = Z. The question being compatible with filtered direct limits,
we may also assume that M is a finitely generated abelian group, and then
that M = Z or that M = Z/NZ for some N ≥ 1. In this case, the assertion
follows from [50, Theorem 4.10] applied four times (to V and to W , with
coefficients Z and Z/NZ). ��

When f is a closed embedding of pure codimension c, the isomor-
phism (1.10) with F = � = Z/2Z induces a canonical isomorphism

Hi−c(V,Z/2Z) = Hi
V (W,Z/2Z) (1.13)

for any i ∈ Z (see [77, Proposition 3.1.12]), and hence, by forgetting the
support, a Gysin map Hi−c(V,Z/2Z) → Hi (W,Z/2Z). By definition, the
fundamental class sV/W ∈ Hc

V (W,Z/2Z) of V in W is the image of the
constant section 1 ∈ H0(V,Z/2Z) by the isomorphism (1.13) for i = c.

More generally, if f is a proper semi-algebraic map (see [39, Chapter II,
Remark 7.6]) and if we let c = dim(W ) − dim(V ), the isomorphism (1.10)
yields, by adjunction, a canonical morphism R f∗(orV/W ⊗Z f ∗F ) → F [c],
since R f∗ = R f!. This morphism induces, in turn, a push-forward homomor-
phism

f∗ : Hi−c(V, orV/W ⊗Z f ∗F ) → Hi (W,F ) (1.14)

for any i ∈ Z. Pull-back and proper push-forward are related by the formula

f∗(α 
 f ∗β) = f∗α 
 β, (1.15)

valid in Hi+ j+c(W,F ⊗L
Z G ) for all α ∈ Hi (V, orV/W ⊗Z f ∗F ), β ∈

H j (W,G ), all i , j , and all bounded complexes of sheaves of abelian groupsF
and G on W with locally constant cohomology sheaves (and therefore also in
Hi+ j+c(W,F⊗ZG ) ifF andG are themselves just locally constant sheaves).
To prove (1.15), we note that the map β �→ f∗(α 
 f ∗β) is induced by a
morphismG → F⊗L

ZG [i+c] in D+(W,Z) that depends functorially onG . In
view of the general fact stated below (which could also be taken as a definition
for the cup product), this map can be interpreted, for all j and all G , as the
cup product with the class in Hi+c(W,F ) obtained by taking j = 0, G = Z,
β = 1, i.e., with the class f∗α.

Fact 1.2 LetA1,A2 be bounded above complexes of sheaves of abelian groups
on W and let x1 ∈ H0(W,A1), x2 ∈ H0(W,A2). We set A3 = A1 ⊗L

Z A2

and x3 = x1 
 x2 ∈ H0(W,A3). Letting ϕi : Z → Ai denote the morphism
in D−(W,Z) corresponding to xi , we have ϕ3 = (IdA1 ⊗ ϕ2) ◦ ϕ1.
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As explained in [37, §3.2.6], when V has pure dimension d andW is a point,
the isomorphism (1.10) with F = � = Z/NZ for a divisible enough N ≥ 1
induces, for any locally constant sheaf G of abelian groups of finite exponent
on V , a perfect Poincaré duality pairing

Hi
c (V,G ) × Hd−i (V,G ˇ⊗Z orV ) → Q/Z (1.16)

for every i ∈ Z, where Hi
c (V,G ) denotes semi-algebraic cohomology with

complete supports (see [39, Chapter II, §1]) and G ˇ= Hom(G ,Q/Z).

1.1.5 Equivariant purity

Wekeep the notation of Sect. 1.1.4 and assume, in addition, that the groupG =
Gal(C/R) acts on V andW and that f isG-equivariant; thus, the sheaves orV ,
orW , and orV/W are G-equivariant. Using a finite-dimensional approximation
of theBorel construction,we now transfer the results of Sect. 1.1.4 to the setting
of equivariant cohomology. LetG act on the n-dimensional semi-algebraic unit
sphere Sn ⊂ Rn+1 by the antipodal involution. For T ∈ {V,W }, the diagonal
action of G on T × Sn is free and discontinuous, hence the quotient semi-
algebraic space (T × Sn)/G is again a homology manifold. Moreover, if p :
T × Sn → T denotes the first projection, then for any G-equivariant sheafF
of abelian groups on T , the G-equivariant sheaf p∗F uniquely descends to a
sheafF ′ on (T × Sn)/G and for anyG-invariant closed semi-algebraic subset
Z ⊆ T , there are canonical isomorphisms

Hi
G,Z (T,F ) = Hi

G,Z×Sn (T × Sn, p∗F ) = Hi
(Z×Sn)/G((T × Sn)/G,F ′)

(1.17)

for every i < n, as follows from (1.3) and from the Leray spectral sequence
for p. If F is a locally constant G-equivariant sheaf of abelian groups (by
which we mean that it is a G-equivariant sheaf of abelian groups which, as
a sheaf of abelian groups, is locally constant), then F ′ is locally constant.
We note, however, that F being a constant sheaf does not imply that F ′ is
constant.

As a consequence, when f is a closed embedding of pure codimension c,
applying Proposition 1.1 to the inclusion of (V × Sn)/G in (W × Sn)/G for
a large enough n yields a canonical isomorphism

Hi−c
G (V, orV/W ⊗Z f ∗F ) = Hi

G,V (W,F ) (1.18)

for any i ∈ Z and any locally constantG-equivariant sheafF of abelian groups
on W . Similarly, when f is a proper semi-algebraic map, considering (1.14)
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for the map (V × Sn)/G → (W × Sn)/G induced by f for a large enough n
leads to a push-forward homomorphism

f∗ : Hi−c
G (V, orV/W ⊗Z f ∗F ) → Hi

G(W,F ) (1.19)

for any i ∈ Z and any locally constant G-equivariant sheaf F of abelian
groups on W , where c = dim(W ) − dim(V ).

In particular, if X is a smooth variety over R, purely of dimension d, we
obtain a canonical isomorphism

Hi−d
G (X (R),Z/2Z) = Hi

G,X (R)(X (C),Z/2Z) (1.20)

for any i ∈ Z by taking F = � = Z/2Z and V = X (R), W = X (C).
The equivariant fundamental class sG,X (R)/X (C) ∈ Hd

G,X (R)(X (C),Z/2Z)

of X (R) in X (C) is the image of the constant section 1 ∈ H0
G(X (R),Z/2Z)

by the isomorphism (1.20) for i = d.
We note that for any smooth variety X of pure dimension d over R, there

is a canonical isomorphism of G-equivariant sheaves orX (C) = Z(d) (see
[39, Chapter IV, §1, Example 1.7]). As a consequence, for any smooth vari-
ety X over R, any smooth subvariety Y ⊆ X of pure codimension k and any
G-module M , we find that orY (C)/X (C) = Z(−k) and we obtain a canonical
isomorphism

Hi−2k
G (Y (C), M(−k)) = Hi

G,Y (C)(X (C), M) (1.21)

for any i ∈ Z, by taking � = Z, F = M , V = Y (C), W =
X (C) in (1.18); and hence, by forgetting the support, also a Gysin map
Hi−2k
G (Y (C), M(−k)) → Hi

G(X (C), M).
More generally, for any proper morphism f : Y → X of smooth

equidimensional varieties over R and for any G-module M , if we let k =
dim(X) − dim(Y ), we obtain, in view of (1.19), a push-forward homomor-
phism

f∗ : Hi−2k
G (Y (C), M(−k)) → Hi

G(X (C), M) (1.22)

for any i ∈ Z, since orY (C)/X (C) = Z(−k). The projection formula

f∗(α 
 f ∗β) = f∗α 
 β (1.23)

now holds in Hi+ j+2k
G (X (C), (M ⊗Z M ′)(k)) for all G-modules M and M ′,

all α ∈ Hi
G(Y (C), M), β ∈ H j

G(X (C), M ′), and all i , j (see (1.15)).
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1.2 Canonical decompositions

Let F be a locally constant sheaf of abelian groups on X (R), with stalks
isomorphic to Z, viewed as a G-equivariant sheaf with the trivial action. For
any G-module M and any i ≥ 0, as G acts trivially on X (R), there is a
canonical isomorphism

Hi
G(X (R),F ⊗Z M) = Hi (X (R),F ⊗L

Z R�(G, M)). (1.24)

Indeed, for any G-equivariant sheaf of abelian groups G on X (R), there
is a canonical isomorphism Hi

G(X (R),G ) = Hi (X (R),RH 0(G,G )),
where RH 0(G, −) denotes the total right derived functor of the func-
torH 0(G, −) introduced just before (1.3); as RH 0(G,F ⊗Z M) = F ⊗L

Z
R�(G, M), this yields (1.24).

1.2.1 With Z/2Z coefficients

Let us apply (1.24) to M = Z/2Z. As Z/2Z is a field, there exists, in the
derived category of Z/2Z-modules, a canonical isomorphism

R�(G,Z/2Z) =
⊕

q≥0

Hq(G,Z/2Z)[−q]. (1.25)

(There is, in fact, a unique isomorphism inducing the identity on the coho-
mology groups.) As Hq(G,Z/2Z) = Z/2Z for all q ≥ 0, a canonical
decomposition

Hi
G(X (R),Z/2Z) =

⊕

0≤p≤i

H p(X (R),Z/2Z) (1.26)

results, for any i . We note that as the category of Z/2Z-modules is semisim-
ple, the derived cup product map R�(G,Z/2Z) ⊗L

Z/2Z R�(G,Z/2Z) →
R�(G,Z/2Z) has to coincide, via (1.25), with the direct sum, over all r ,
of the cup product maps

⊕

p+q=r

H p(G,Z/2Z) ⊗Z/2Z Hq(G,Z/2Z) → Hr (G,Z/2Z) (1.27)

shifted by −r . The cup product of x ∈ Hk
G(X (R),Z/2Z), y ∈ H �

G(X (R),

Z/2Z) in Hk+�
G (X (R),Z/2Z) can therefore be written, in terms of (1.26), as

x 
 y =
( ∑

p+q=r

x p 
 yq

)

0≤r≤k+�

(1.28)
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if x = (xp)0≤p≤k and y = (yq)0≤q≤�.
As an alternative way to obtain (1.26), one can identify Hi

G(X (R),Z/2Z)

with Hi (X (R) × (Sn/G),Z/2Z) for some n > i , via the Borel construc-
tion (see Sect. 1.1.5), and then apply the Künneth formula. This leads to
the same decomposition, as we have τ≤iR�(G,Z/2Z) = τ≤iRπ∗Z/2Z in
D+(X (R),Z/2Z) if π : X (R) × (Sn/G) → X (R) denotes the first projec-
tion.

1.2.2 With integral coefficients

Let us now apply (1.24) to M = Z( j) for j ∈ Z. In the derived category of
abelian groups, there exists a canonical isomorphism

R�(G,Z( j)) =
⊕

q≥0

Hq(G,Z( j))[−q], (1.29)

as can be seen from the standard explicit complex representing the total coho-
mologyof the cyclic groupG. (There is, in fact, a unique isomorphism inducing
the identity on the cohomology groups.) LettingF ( j) = F⊗ZZ( j), a canon-
ical decomposition

Hi
G(X (R),F ( j)) =

⊕

p+q=i

H p(X (R),F ⊗Z Hq(G,Z( j))) (1.30)

results, for any i . We note that Hq(G,Z( j)) = 0 if q �≡ j mod 2,
Hq(G,Z( j)) = Z/2Z if q ≡ j mod 2 and q > 0, and Hq(G,Z( j)) = Z
if q = 0 and j is even. By mapping Hi (X (R),F ) to Hi (X (R),F/2F ) =
Hi (X (R),Z/2Z) in the obvious way, we thus obtain a natural map

Hi
G(X (R),F ( j)) →

⊕

0≤p≤i
p≡i− j mod 2

H p(X (R),Z/2Z), (1.31)

which is an isomorphism if i > dim(X) (see [43, §5]) or if j is odd.
If Y ⊂ X is a closed subvariety of X , the exact same reasoning yields a

canonical decomposition

Hi
G,Y (R)(X (R),F ( j)) =

⊕

p+q=i

H p
Y (R)(X (R),F ⊗Z Hq(G,Z( j))).

(1.32)

123



O. Benoist, O. Wittenberg

We warn the reader that the formula (1.28) does not describe cup products
in equivariant cohomology with integral coefficients in terms of the decompo-
sitions (1.30).

1.2.3 Change of coefficients

Krasnov [76, Theorem 1.2, Theorem 1.3] has shown that the above canonical
decompositions of cohomology with coefficients in F ( j) and in Z/2Z are
compatible in the following sense: for any i and j , the reduction map

Hi
G(X (R),F ( j)) → Hi

G(X (R),F ( j) ⊗Z Z/2Z) = Hi
G(X (R),Z/2Z),

the natural map (1.31) and the decomposition (1.26) fit into a commutative
square

Hi
G(X (R),F ( j))

⊕

0≤p≤i
p≡i− j mod 2

H p(X (R),Z/2Z)

1+βF

Hi
G(X (R),Z/2Z)

⊕

0≤p≤i

H p(X (R),Z/2Z),

(1.33)

where the right-hand vertical arrow is the sum of the twisted Bockstein homo-
morphisms βF : H p(X (R),Z/2Z) → H p+1(X (R),Z/2Z), defined as the
boundary maps of the short exact sequence 0 → Z/2Z → F ⊗Z Z/4Z →
Z/2Z → 0, for 0 ≤ p ≤ i −1, and of the identity maps H p(X (R),Z/2Z) →
H p(X (R),Z/2Z), for 0 ≤ p ≤ i .

1.2.4 Effect on the real-complex short exact sequence

Let us consider the effect of the decomposition (1.26) on the real-complex
exact sequence (1.1) for M = Z/2Z. Applying the functor R�(G, −) to
this short exact sequence yields, via the canonical isomorphisms (1.25) and
R�(G,Z/2Z[G]) = Z/2Z, a distinguished triangle

⊕

q≥0

Z/2Z[−q] → Z/2Z →
⊕

q≥0

Z/2Z[−q] →
⊕

q≥−1

Z/2Z[−q]. (1.34)

The first map of (1.34) is the natural projection, the second map vanishes,
and the third is the natural inclusion. (Indeed, these induce the correct
maps after passing to cohomology, and the category of Z/2Z-modules
is semisimple.) Thus, the decomposition (1.26) identifies the canonical
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map Hn
G(X (R),Z/2Z) → Hn(X (R),Z/2Z) with the projection map

H0(X (R),Z/2Z)⊕· · ·⊕Hn(X (R),Z/2Z) → Hn(X (R),Z/2Z) and it iden-
tifies the map Hn

G(X (R),Z/2Z) → Hn+1
G (X (R),Z/2Z) induced by (1.1)

with the inclusion
⊕

0≤p≤n H
p(X (R),Z/2Z) ⊆ ⊕

0≤p≤n+1 H
p(X (R),

Z/2Z).

1.2.5 Decomposition of ω

The class ωi
Z/2Z ∈ Hi

G(X (R),Z/2Z) (defined in Sect. 1.1.2) is mapped, by
the canonical decomposition (1.26), to the unit element of the graded ring⊕

0≤p≤i H
p(X (R),Z/2Z), since this is so when X is a point and since (1.26)

is compatible with pull-backs.

1.2.6 Covariant functoriality

Let X and Y be smooth equidimensional varieties over R. Let c = dim(X) −
dim(Y ). Let f : Y → X be a proper morphism. The push-forward map
f∗ : Hi−c

G (Y (R),Z/2Z) → Hi
G(X (R),Z/2Z) constructed in (1.19) can be

regarded, via the decompositions (1.26), as a map

f∗ :
⊕

0≤p≤i−c

H p(Y (R),Z/2Z) →
⊕

0≤p≤i

H p(X (R),Z/2Z). (1.35)

It follows at once from the interpretation of (1.26) in terms of the Borel
construction and of the Künneth formula (see Sect. 1.2.1), and from the pro-
jection formula (see (1.15)), that (1.35) coincides with the direct sum, over
p ∈ {0, . . . , i − c}, of the push-forward map f∗ : H p(X (R),Z/2Z) →
H p+c(X (R),Z/2Z) constructed in (1.14).

1.3 On the normal bundle of X (R) in X (C)

We fix a smooth variety X over R. Making use of the invertibility of the
equivariant Euler class of the normal bundle of X (R) in X (C), viewed as an
element of the non-equivariant cohomology ring of X (R) via the canonical
decompositions of Sect. 1.2, we investigate, in this section, the long exact
sequence of equivariant cohomology of X (C) with support in X (R).

1.3.1 With Z/2Z coefficients

With Z/2Z coefficients, we show that this long exact sequence decomposes
into canonically split short exact sequences.
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Proposition 1.3 Let X be a smooth variety over R. For every i ≥ 0, the
sequence

0 → Hi
G,X (R)(X (C),Z/2Z) → Hi

G(X (C),Z/2Z) → Hi
G(X (C)\X (R),Z/2Z) → 0

is exact and canonically split.

The exactness of this sequence and the role of the equivariant Euler class
appear in [7, Proposition 5.3.7] when i � 0 (in the setting of Poincaré duality
spaces) and in [106, Lemma 2.6] for all i ≥ 0. The description of a canon-
ical splitting is new and will be of importance in the sequel. The remainder
of Sect. 1.3.1 is devoted to constructing a canonical retraction of the left arrow
of the above sequence, for any i , thus proving Proposition 1.3. From now on,
we assume, as we may, that X is irreducible, and we let d = dim(X).

Definition 1.4 For the sake of simplicity, let us write H p = H p(X (R),

Z/2Z). We denote by γ ∈ H0 ⊕ · · · ⊕ Hd the image of the equivariant
fundamental class of X (R) in X (C), introduced in Sect. 1.1.5, by the compo-
sition

Hd
G,X (R)(X (C),Z/2Z) → Hd

G(X (C),Z/2Z) → Hd
G(X (R),Z/2Z) = H0 ⊕ · · · ⊕ Hd

of the forgetful map, the restriction map, and the canonical decomposi-
tion (1.26).

Lemma 1.5 The class γ is invertible in the graded ring H0 ⊕ · · · ⊕ Hd. In
other words, its degree 0 component is the constant section 1 ∈ H0.

Proof Let us denote the equivariant fundamental class by s ∈ Hd
G,X (R)(X (C),

Z/2Z). For any i , the composition of the equivariant purity isomorphism

Hi−d
G (X (R),Z/2Z)

∼−→ Hi
G,X (R)(X (C),Z/2Z) (1.36)

(see (1.20)) with the forgetful map

fi : Hi
G,X (R)(X (C),Z/2Z) → Hi

G(X (C),Z/2Z) (1.37)

and the restriction map

gi : Hi
G(X (C),Z/2Z) → Hi

G(X (R),Z/2Z) (1.38)

sends x ∈ Hi−d
G (X (R),Z/2Z) to x 
 gd( fd(s)) ∈ Hi

G(X (R),Z/2Z).
(Indeed, the two maps (1.36) and gi ◦ fi are induced by maps in the derived
category of sheaves on (X (R) × Sn)/G that do not depend on i . Hence so
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is their composition, which can therefore be interpreted, for all i , as the cup
product with a fixed class in Hd

G(X (R),Z/2Z) (see Fact 1.2). To compute
this class, one simply takes i = d.) By Sect. 1.2.1, this map can therefore be
identified, via the canonical decompositions (1.26), with the map

H0 ⊕ · · · ⊕ Hi−d → H0 ⊕ · · · ⊕ Hi (1.39)

given by multiplication by γ (see (1.28)). On the other hand, as the groups
Hi
G(X (C)\X (R),Z/2Z) and Hi

G(X (C), X (R),Z/2Z) vanish for i � 0
(see Sect. 1.1.3), the maps fi and gi are isomorphisms for i � 0. Hence γ is
invertible (note that H0 ⊕ · · · ⊕ Hi−d = H0 ⊕ · · · ⊕ Hd for i � 0, by [39,
Chapter II, Lemma 9.1]). ��

Thanks to Lemma 1.5, we may now consider, for any i , the composition

Hi
G(X (C),Z/2Z) → Hi

G,X (R)(X (C),Z/2Z) (1.40)

of the following maps: first the restriction map gi , then the canonical decom-
position Hi

G(X (R),Z/2Z) = H0⊕· · ·⊕Hi , then the map H0⊕· · ·⊕Hi →
H0 ⊕ · · · ⊕ Hi−d given by multiplication by γ −1 followed by projec-
tion onto the first i − d + 1 summands, then the canonical decomposition
H0 ⊕ · · · ⊕ Hi−d = Hi−d

G (X (R),Z/2Z) and finally the isomorphism (1.36).
According to the proof of Lemma 1.5, the map (1.40) is indeed a retraction
of fi . Thus, Proposition 1.3 is established.

Remarks 1.6 (i) If R = R, Krasnov has checked that γ coincides with the total
Stiefel–Whitney class of the tangent bundle of X (R) (see [76, Theorem 2.1]).

(ii) Let π0(X (R)) denote the set of semi-algebraic connected components
of X (R). For V ∈ π0(X (R)), let sV denote the image, in Hd

ét(X,Z/2Z) =
Hd
G(X (C),Z/2Z), of the equivariant fundamental class of V in X (C). For

x ∈ X (R), the image of sV by the evaluation map evx : Hd
ét(X,Z/2Z) →

Hd
ét(x,Z/2Z) = Z/2Z coincides with the evaluation at x of the image, by

the map (1.39) for i = d, of the non-zero element of H0 supported on V .
In view of Lemma 1.5, it follows that evx (sV ) = 0 if and only if x /∈ V :
the sV ’s form a canonical family of elements of Hd

ét(X,Z/2Z) which separate
the semi-algebraic connected components of X (R). This gives a further (and
entirely canonical) answer to a question of Colliot-Thélène and Parimala [33,
Remark 2.4.4]. At least for R = R, answers to this question had already been
given by Krasnov and by van Hamel, see [106, §2.3].

(iii) We have constructed not only a retraction of fi but also one of gi ◦ fi
since the map (1.40) factors, by definition, through gi . The kernel of this
retraction of gi ◦ fi , and therefore also the cokernel of gi ◦ fi , is canonically
isomorphic to Hi−d+1 ⊕ · · · ⊕ Hi .
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1.3.2 With integral coefficients

The assertion obtained by replacing Z/2Z with Z( j) in the statement of
Proposition 1.3 fails: already when X = A1

R and i = j = 1, the group
Hi
G,X (R)(X (C),Z( j)) is infinite while Hi

G(X (C),Z( j)) has order 2. It does
hold, however, when j has the correct parity, as we now show.

Proposition 1.7 Let X bea smooth, irreducible variety over R, of dimensiond.
Let j ≡ d − 1 mod 2. For every i ≥ 0, the sequence

0 → Hi
G,X (R)(X (C),Z( j)) → Hi

G(X (C),Z( j)) → Hi
G(X (C)\X (R),Z( j)) → 0

is exact and canonically split.

As in Sect. 1.3.1, we shall prove Proposition 1.7 by describing a canonical
retraction of the left arrow of the above sequence. Let us denote Z̃ = orX (R)

and Z̃( j) = Z̃ ⊗Z Z( j).

Proof In view of the canonical isomorphism of G-equivariant sheaves
orX (C) = Z(d), putting together the equivariant purity isomorphisms (1.18)
and the square (1.33) yields a commutative diagram

⊕

0≤p≤i−d
p≡i− j mod 2

H p Hi−d
G (X (R), Z̃( j − d))

∼∼
Hi
G,X (R)(X (C),Z( j))

H0 ⊕ · · · ⊕ Hi−d Hi−d
G (X (R),Z/2Z)

∼
Hi
G,X (R)(X (C),Z/2Z)

in which the leftmost vertical map is 1 + βZ̃ (see Sect. 1.2.3) and in which
the top left horizontal arrow is an isomorphism because j − d is odd
(see Sect. 1.2.2). The map 1 + βZ̃ admits an obvious canonical retraction,
namely the projectionmap. Following the isomorphisms in the above diagram,
this yields a canonical retraction of the rightmost vertical map. Composing
it with the map (1.40) constructed in Sect. 1.3.1 and with the natural map
Hi
G(X (C),Z( j)) → Hi

G(X (C),Z/2Z), we obtain the desired retraction. ��
Refining these ideas leads to the following integral variant of [76, Corol-

lary 3.2] and [106, Theorem 2.8]. We shall use it in Sect. 5 and in [29].

Proposition 1.8 Let X bea smooth, irreducible variety over R, of dimensiond.
For any i ≥ 0 and any j ∈ Z, the composition

Hi
G(X (C),Z( j)) →

⊕

0≤p<i−d
p≡i− j mod 2

H p(X (R),Z/2Z) (1.41)
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of the restriction map Hi
G(X (C),Z( j)) → Hi

G(X (R),Z( j)), of the
map (1.31), and of the natural projection is surjective.

Proof We shall in fact prove the surjectivity (and even produce a canonical
section) of the map obtained by composing (1.41) with the forgetful map

Hi
G,X (R)(X (C),Z( j)) → Hi

G(X (C),Z( j)) (1.42)

and with the equivariant purity isomorphism

Hi−d
G (X (R), Z̃( j − d))

∼−→ Hi
G,X (R)(X (C),Z( j)) (1.43)

(see (1.18)). As in the proof of Lemma 1.5, we remark that the composition
of the maps (1.43) and (1.42) with the restriction map Hi

G(X (C),Z( j)) →
Hi
G(X (R),Z( j)) exists at the derived level: this map can be written as

Hi−d(X (R), e) for some map

e : Z̃ ⊗L
Z R�(G,Z( j − d)) → R�(G,Z( j))[d]

in the derived category of sheaves of abelian groups on X (R). In view of
the decomposition (1.29), in view of Sect. 1.2.3, and in view of the proof of
Lemma 1.5, this map fits into the following commutative diagram, in which
τ>0 denotes the truncation functor:

Hi−d
G (X (R), Z̃( j − d))

Hi−d (X (R),e)
Hi
G(X (R),Z( j))

⊕

p+q=i−d

H p(X (R), Z̃ ⊗Z Hq (G,Z( j − d)))
⊕

p+q=i

H p(X (R), Hq (G,Z( j)))

⊕

0≤p<i−d
p≡i− j mod 2

H p(X (R),Z/2Z)

1+βZ̃

Hi−d (X (R),τ>0(e)) ⊕

0≤p<i−d
p≡i− j mod 2

H p(X (R),Z/2Z)

1+βZ

H0 ⊕ · · · ⊕ Hi−d−1
x �→xγ

H0 ⊕ · · · ⊕ Hi−d−1.

Here, for F = Z̃ or F = Z, the label 1 + βF denotes the sum of the
twisted Bockstein homomorphisms βF : H p → H p+1 (see Sect. 1.2.3) for
p < i − d − 1 and of the identity maps H p → H p for p < i − d.
By Lemma 1.5, the bottom horizontal map is injective; therefore, so

is the map Hi−d(X (R), τ>0(e)). As the latter is an endomorphism of a
finite-dimensional vector space, it must then be surjective. The proposition
follows. ��
Remark 1.9 One can prove, although we shall not use this fact, that the map
Hi−d(X (R), τ>0(e)) in the above diagram is given by x �→ x γ̃ +βZ̃(x)βZ̃(γ̃ ),
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where γ̃ ∈ H0⊕H2⊕· · · is such that γ = γ̃ +βZ̃(γ̃ ). In particular, the derived
cup product with integral coefficients, in terms of the decomposition (1.29),
is not just the sum of the individual cup product maps (in contrast with Z/2Z
coefficients; see (1.28)).

1.4 Two Poincaré dualities

If X is an irreducible, smooth and proper variety over R, of dimension d, there
cannot be, in general, a duality between the equivariant cohomology groups
Hi
G(X (C),Z/2Z) and H2d−i

G (X (C),Z/2Z), as the former group need not
vanish when i � 0. The following proposition provides a substitute.

Proposition 1.10 Let X be a smooth and proper variety over R, of pure dimen-
sion d. There is a canonical “trace” homomorphism

H2d
G (X (C), X (R),Q/Z(d)) → Q/Z; (1.44)

together with cup product, it induces, for any finite G-module M, a perfect
pairing of finite abelian groups

Hi
G(X (C), X (R), M) × H2d−i

G (X (C)\X (R),Hom(M,Q/Z(d))) → Q/Z
(1.45)

for any i ∈ Z.

Proof This is a reformulation of the semi-algebraic Poincaré duality (1.16)
applied to V = (X (C)\X (R))/G and to G = H 0(G, M), in view of the
isomorphisms (1.8) and (1.9), of the isomorphism orV = H 0(G,Z(d)) and
of the remark that by the properness of X , the cohomology of V with complete
supports coincides with the cohomology of X (C)/G relative to X (R) (see [39,
Chapter II, Theorem 5.1], [43, Theorem 2.3]). ��
Remarks 1.11 (i) When X (R) = ∅, Proposition 1.10 produces a canonical
duality between the étale cohomology groups Hi

ét(X, M) and

H2d−i
ét (X,Hom(M,Q/Z(d))). Contrary to what happens for the étale coho-

mology of varieties over a p-adic field (for which see [95, Lemma 2.9]), this
duality does not result from the formal combination of Poincaré duality for
the étale cohomology of XC with a duality in the Galois cohomology of R.
Such a combination only yields a duality for the modified (à la Tate) étale
hypercohomology of X (loc. cit., Lemma 2.10).

(ii) If M is a finitely generated G-module, applying Proposition 1.10
to M/nM for all n ≥ 1 yields, for any i ∈ Z, a pairing that iden-
tifies the profinite completion of the finitely generated abelian group
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Hi
G(X (C), X (R), M) with the Pontrjagin dual of the torsion abelian group

H2d−i
G (X (C)\X (R),Hom(M,Q/Z(d))).

Let us fix an irreducible, smooth and proper variety X over R, of dimen-
sion d. We now have two Poincaré dualities at our disposal: one for the
equivariant cohomology of X (C)\X (R), between the cohomological degrees i
and 2d − i [see Proposition 1.10], and one for the cohomology of X (R),
between the cohomological degrees i and d − i (see (1.16)). In the remain-
der of Sect. 1.4, we show how to reconcile these two seemingly incompatible
dualities in a single self-dual long exact sequence of cohomology groups.

Using the notation of Sect. 1.3.1, we first consider the localisation long
exact sequence

· · · δi
Hi
G(X (C), X (R),Z/2Z)

hi
Hi
G(X (C),Z/2Z)

gi
Hi
G(X (R),Z/2Z)

δi+1 · · · .

The maps fi : Hi
G,X (R)(X (C),Z/2Z) → Hi

G(X (C),Z/2Z) and gi ◦ fi are
injective, by Proposition 1.3 and Remark 1.6 (iii). The above sequence there-
fore remains exact if we replace Hi

G(X (C),Z/2Z) and Hi
G(X (R),Z/2Z)

with Coker( fi ) and Coker(gi ◦ fi ), respectively. In view of Proposition 1.3
and Remark 1.6 (iii), we obtain, in this way, a long exact sequence

· · · wi−1−−→ Hi−d ⊕ · · · ⊕ Hi−1 ui−→ Hi
G(X (C), X (R),Z/2Z)

vi
H i
G(X (C)\X (R),Z/2Z)

wi−→ Hi−d+1 ⊕ · · · ⊕ Hi ui+1−−→ · · ·
(1.46)

in which the arrows may be described as follows. Let us denote by ei the
restriction map ei : Hi

G(X (C),Z/2Z) → Hi
G(X (C)\X (R),Z/2Z). We have

vi = ei ◦ hi . The map wi is characterised by the property that wi (ei (x ′)),
for x ′ ∈ Hi

G(X (C),Z/2Z), is obtained by decomposing gi (x ′) according
to (1.26), then multiplying by γ −1 and projecting onto Hi−d+1 ⊕ · · · ⊕ Hi .
Finally, to compute ui (y) for y ∈ Hi−d ⊕ · · · ⊕ Hi−1, we multiply y
by γ , project onto Hi−d ⊕ · · · ⊕ Hi−1, view the result as an element of
Hi−1
G (X (R),Z/2Z) via (1.26) and apply the connecting homomorphism δi of

the localisation exact sequence.
Poincaré duality for X (R), in the form of (1.16), yields a trace map Hd →

Z/2Z (which is an isomorphism if and only if X (R) is semi-algebraically
connected). Let us denote by deg : ⊕

p≥0 H
p → Z/2Z its composition with

the projection map onto Hd . For every i , let us consider the pairing

(
Hi−d+1 ⊕ · · · ⊕ Hi

)
×

(
Hd−i ⊕ · · · ⊕ H2d−i−1

)
→ Z/2Z (1.47)
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defined by (x, y) �→ deg(xyγ ), where the products take place in the ring⊕
p≥0 H

p. This is a perfect pairing since the map H p × Hd−p → Z/2Z
given by (x, y) �→ deg(xy) is a perfect pairing for every p (see (1.16)) and γ

is invertible.

Theorem 1.12 For any irreducible, smooth and proper variety X over R,
the long exact sequence (1.46) is self-dual with respect to the perfect pair-
ings (1.45) and (1.47). In other words, if d denotes the dimension of X, then,
for every integer i , the duals of ui , vi , wi with respect to these pairings are
w2d−i , v2d−i , u2d−i , respectively.

Proof For x ∈ Hi
G(X (C), X (R),Z/2Z) and y ∈ H2d−i

G (X (C), X (R),Z/2Z),
we have vi (x) 
 y = x 
 y = x 
 v2d−i (y) in H2d

G (X (C), X (R),Z/2Z),
hence v2d−i is dual to vi . Thus, to prove the theorem, we only have to show
that

x 
 u2d−i (y) = deg(wi (x)yγ ) (1.48)

for any i ≥ 0, any x ∈ Hi
G(X (C)\X (R),Z/2Z) and any y ∈ Hd−i ⊕ · · · ⊕

H2d−i−1. Let us fix i , x and y. Let x ′ ∈ Hi
G(X (C),Z/2Z) be the image of x by

the canonical section of ei given by Proposition 1.3. Let x ′′ ∈ H0 ⊕ · · · ⊕ Hi

denote the decomposition of gi (x ′) via (1.26). As x ′ is annihilated by the
retraction (1.40), the product x ′′γ −1 belongs to Hi−d+1 ⊕ · · · ⊕ Hi ⊆ H0 ⊕
· · · ⊕ Hi . It follows that wi (x) = x ′′γ −1 and hence that

deg(wi (x)yγ ) = deg(x ′′y). (1.49)

On the other hand, if t ′′ ∈ Hd−i ⊕ · · · ⊕ H2d−i−1 denotes the projection
of yγ and t ′ ∈ H2d−i−1

G (X (R),Z/2Z) the element which corresponds to t ′′
via (1.26), we have

x 
 u2d−i (y) = x ′ 
 u2d−i (y) = x ′ 
 δ2d−i (t
′)

= δ2d(gi (x
′) 
 t ′) = deg(x ′′t ′′γ −1), (1.50)

where the last equality follows from Lemma 1.13 below (and the penultimate
one from [22, Chapter II, Theorem 7.1 (b)]). Finally, as x ′′γ −1 belongs to
Hi−d+1 ⊕ · · · ⊕ Hi , we have x ′′t ′′γ −1 = x ′′γ −1t ′′ = x ′′γ −1yγ = x ′′y;
in view of (1.49) and (1.50), this completes the proof of (1.48) and hence of
Theorem 1.12. ��
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Lemma 1.13 Let z ∈ H0 ⊕ · · · ⊕ H2d−1. The image of z by the composed
map

H0 ⊕ · · · ⊕ H2d−1 = H2d−1
G (X (R),Z/2Z)

δ2d−→ H2d
G (X (C), X (R),Z/2Z) = Z/2Z,

where the two canonical isomorphisms come from (1.26) and from Proposi-
tion 1.10, is equal to deg(zγ −1).

Proof We may assume that X (R) �= ∅. Let us consider the commutative
diagram

H0 ⊕ · · · ⊕ Hd Hd
G(X (R),Z/2Z)

∼
H2d
G,X (R)

(X (C),Z/2Z)
f2d

H2d
G (X (C),Z/2Z)

ε

Hd

deg

Hd (X (R),Z/2Z)
∼

H2d
X (R)

(X (C),Z/2Z) H2d (X (C),Z/2Z),

Z/2Z

in which the leftmost vertical arrow is the projection map and the horizontal
isomorphisms are the decomposition (1.26) and the equivariant purity iso-
morphism (1.18), with coefficients Z/2Z or Z/2Z[G]. The leftmost square
commutes by Sect. 1.2.4; the bottom triangle commutes as a consequence of
the fact that Hd is generated by classes supported onpoints. The hypothesis that
X (R) �= ∅ implies, by Proposition 1.10, that H2d

G (X (C)\X (R),Z/2Z) = 0.
It follows, by Proposition 1.3, that f2d is an isomorphism and that its inverse
is the map (1.40). From the definition of (1.40) and from the above diagram,
we deduce the commutativity of the bottom square of the following diagram,
whose vertical arrows are induced by (1.1):

H2d
G (X (C), X (R),Z/2Z) H2d−1

G (X (R),Z/2Z)
δ2d

H2d−1
G (X (C),Z/2Z)

g2d−1

Z/2Z H0 ⊕ · · · ⊕ H2d−1

ι H2d
G (X (R),Z/2Z) H2d

G (X (C),Z/2Z)
g2d

ε

H0 ⊕ · · · ⊕ H2d z �→deg(zγ −1)
Z/2Z = H2d (X (C),Z/2Z).

Themap g2d is surjective, asH
2d+1
G (X (C), X (R),Z/2Z) = 0 (seeSect. 1.1.3).

By Sect. 1.2.4, the map ι is the inclusion. As the top row and the right column
are exact, we see that an element of H0 ⊕ · · · ⊕ H2d−1 dies in the top left
corner if and only if it dies in the bottom right corner. This proves the lemma.

��
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1.5 A real Lefschetz hyperplane theorem

Weshall need, in [29, §7.3], a Lefschetz hyperplane theorem for the equivariant
Gysin map

Hi−2
G (Y (C),Z( j − 1)) → Hi

G(X (C),Z( j)) (1.51)

of a smooth ample hypersurface Y ⊂ X in a smooth and projective variety X
over R (see (1.21)). The usual formulation is correct when X (R) = ∅, as we
now check.

Proposition 1.14 Let X be a smooth and projective variety over R, of dimen-
sion d. Let Y ⊂ X be a smooth ample hypersurface. Let j ∈ Z. If X (R) = ∅,
the map (1.51) is bijective for any i > d + 1 and is surjective for i = d + 1.

Proof LetU = X\Y . It suffices to check that Hi
G(U (C), M) = 0 for any i > d

and any finitely generated G-module M . This is true for i � 0, asU (R) = ∅

(see Sect. 1.1.3). On the other hand, if i > d, we have Hi (U (C), M)⊗Z Z� =
Hi
ét(UC , M⊗ZZ�) = 0 for every �, asUC is affine andC is algebraically closed

(see [85, Chapter VI, Theorem 7.2]), hence Hi (U (C), M) = 0. The desired
vanishing then follows, thanks to the real-complex exact sequence (1.7), by a
descending induction on i in which M is allowed to vary. ��

When X (R) �= ∅, some condition on the real Gysin maps

H p−1(Y (R),Z/2Z) → H p(X (R),Z/2Z) (1.52)

(see (1.13)) must appear in the formulation of a Lefschetz hyperplane theo-
rem as the ampleness of Y has no effect on the injectivity or surjectivity of
these maps. For example, the conclusion of Proposition 1.14 fails whenever
X (R) �= ∅ and Y (R) = ∅, since in this case Hi−2

G (Y (C),Z(i − 1)) = 0 and
Hi
G(X (C),Z(i)) �= 0 for i > 2d, by Sect. 1.1.3 and (1.30). The next propo-

sition generalises the surjectivity half of Proposition 1.14 when X (R) �= ∅.

Proposition 1.15 Let X be a smooth and projective variety over R, of dimen-
sion d. Let Y ⊂ X be a smooth ample hypersurface. Let i, j ∈ Zwith i ≥ d+1.
If (1.52) is surjective for every p ≥ 1 such that p ≡ i − j mod 2, then the
image of (1.51) is

{
α ∈ Hi

G(X (C),Z( j)); α|x = 0 for all x ∈ X (R)
}
,

where α|x ∈ Hi
G(x,Z( j)) = Hi (G,Z( j)) denotes the restriction of α to x.

We start with a lemma.
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Lemma 1.16 Let U be an affine variety over R, of dimension d. For any i > d
and any G-module M, the restriction map Hi

G(U (C), M) → Hi
G(U (R), M)

is an isomorphism.

Proof Writing M as the union of its finitely generated sub-G-modules, we
see that we may assume M to be finitely generated. The conclusion of the
lemma, which holds for i � 0 (see Sect. 1.1.3), then follows for i > d by a
descending induction, just as in the proof of Proposition 1.14, thanks to the
real-complex exact sequence (1.7) and to the vanishing, for i > d, of the
groups Hi (U (C), M) (see the proof of Proposition 1.14) and Hi (U (R), M)

(see [39, Chapter II, Lemma 9.1]). ��
Proof of Proposition 1.15 Let U = X\Y . The commutative diagram

Hi
G,Y (C)(X (C),Z( j))

θ iG,C
Hi
G(X (C),Z( j)) Hi

G(U (C),Z( j))

�

Hi
G,Y (R)(X (R),Z( j))

θ iG,R
Hi
G(X (R),Z( j)) Hi

G(U (R),Z( j))

(1.53)

has exact rows and its rightmost vertical map is an isomorphism by
Lemma 1.16.

Let θ
p
R : H p

Y (R)(X (R),Z/2Z) → H p(X (R),Z/2Z) denote the forgetful
map. Using the decompositions (1.30) and (1.32) (with F = Z), we see
that when i > d, the map θ iG,R can be identified with the direct sum, over
all p ≥ 0 with p ≡ i − j mod 2, of the maps θ

p
R . Thus, the maps θ

p
R for

p ≥ 1 such that p ≡ i − j mod 2 are all surjective if and only if the image
of θ iG,R coincides with the set of α ∈ Hi

G(X (R),Z( j)) whose component in

H0(X (R), Hi (G,Z( j))) vanishes, i.e., with the set of α such that α|x = 0 for
all x ∈ X (R). The proposition then follows by a chase in the diagram (1.53),
as θ

p
R and θ iG,C can be identified, respectively, with (1.52) and (1.51), via (1.13)

and (1.21).

Remarks 1.17 (i) One can also check that for i > d + 1, if (1.52) is injective
for every p ≥ 1 such that p ≡ i − j mod 2 and is surjective for every p ≥ 1
such that p �≡ i − j mod 2, then (1.51) is injective. However, the proof is
more involved and we shall not use this fact.

(ii) In the setting of Lemma 1.16, Scheiderer [96, Corollary 18.11] has
shown, at leastwhenM is torsion, the stronger (and significantlymore delicate)
fact that Hi

G(U (C),U (R), M) = 0 for all i > d.
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1.6 Cycle classes and topological constraints

We fix, in this section, an integer k and a smooth variety X over R.

1.6.1 The equivariant cycle class map

For any irreducible closed subvariety Y ⊂ X of codimension k, the equivari-
ant fundamental class of Y (C) in X (C) is the image of 1 by the canonical
isomorphism

Z = H2k
G,Y (C)(X (C),Z(k)) (1.54)

given by (1.21) when Y is smooth, and which stems from (1.21) by dévis-
sage in general (see [85, Chapter VI, §9]). We let cl(Y ) denote its image
in H2k

G (X (C),Z(k)). For a codimension k cycle Y = ∑
niYi on X , we let

cl(Y ) = ∑
nicl(Yi ). This assignment induces a homomorphism

cl : CHk(X) → H2k
G (X (C),Z(k)) (1.55)

from theChowgroup of codimension k cycles on X , aswas verified byKrasnov
[75, Proposition 2.1.1] when R = R. The proof given in loc. cit. carries over
to an arbitrary real closed field R in view of the homotopy invariance of semi-
algebraic cohomology (see [38], [43, §6]). The map cl is compatible with
proper push-forwards (by functoriality of push-forward maps), with products
(see [75, Proposition 2.1.3]) and with pull-backs (loc. cit., Proposition 2.3.3).

1.6.2 The Borel–Haefliger cycle class map

For any irreducible closed subvariety Y ⊂ X of codimension k, Borel
and Haefliger [13] (and Delfs [39, Chapter III, Theorem 3.7] over an
arbitrary real closed field) have proved the existence of a unique class
in Hk

Y (R)(X (R),Z/2Z), called the fundamental class of Y (R) in X (R),

whose restriction to Hk
Y 0(R)

(X0(R),Z/2Z) is the fundamental class of Y 0(R)

in X0(R) in the sense of (1.13), where Y 0 (resp. X0) denotes the complement,
in Y (resp. X ), of the singular locus of Y . We denote by clR(Y ) its image
in Hk(X (R),Z/2Z). For a codimension k cycle Y = ∑

niYi on X , we let
clR(Y ) = ∑

niclR(Yi ). This assignment induces a homomorphism

clR : CHk(X) → Hk(X (R),Z/2Z) (1.56)

(see [97, Proposition 3.4, Remark 3.5]), which is compatible with proper
push-forwards, products and pull-backs (e.g., as a consequence of the same

123



On the integral Hodge conjecture for real varieties

property for the equivariant cycle class and of Sect. 1.6.4 below). We define
Hk
alg(X (R),Z/2Z) to be the image of the map (1.56).

1.6.3 Topological constraints

Let us consider the composition

H2k
G (X (C),Z(k)) → H2k

G (X (R),Z(k)) →
⊕

0≤p≤2k
p≡k mod 2

H p(X (R),Z/2Z) (1.57)

of the restriction map from X (C) to the G-invariant semi-algebraic subspace
X (R) with the map (1.31) induced by the decomposition (1.30). For α ∈
H2k
G (X (C),Z(k)), we let αp ∈ H p(X (R),Z/2Z) denote the pth coordinate

of the image of α by (1.57).
The next theorem spells out the relationship between the equivariant cycle

class and the Borel–Haefliger cycle class, as well as a topological constraint,
expressed in terms of the Steenrod squares Sqi : Hk(X (R),Z/2Z) →
Hk+i (X (R),Z/2Z) (see [51], [90, Proposition 4.2]), which equivariant cycle
classes must satisfy. We take the convention that Sqi = 0 for i < 0 and recall
that Sq0 is the identity.

Theorem 1.18 Let X be a smooth variety over R. Let k be an integer. Let Y be
a cycle of codimension k on X and let α = cl(Y ) ∈ H2k

G (X (C),Z(k)). Then

αk+i = Sqi (clR(Y ))

for every i ∈ 2Z.

This theorem is due to Kahn [68] for Chern classes and to Krasnov [76]
in general (at least when R = R). A more general result will be proved
in Sect. 1.6.4.

The statement of Theorem 1.18 motivates the following definition.

Definition 1.19 We denote by H2k
G (X (C),Z(k))0 ⊆ H2k

G (X (C),Z(k)) the
subgroup consisting of those classes α which satisfy αk+i = Sqi (αk) for
every i ∈ 2Z.

Thanks to Theorem 1.18, we may now view the equivariant cycle class
map as a map cl : CHk(X) → H2k

G (X (C),Z(k))0. As a notable consequence
of Theorem 1.18, the Borel–Haefliger cycle class map factors through the
equivariant cycle class map; namely, it coincides with the composition of cl
with the map

H2k
G (X (C),Z(k))0 → Hk(X (R),Z/2Z) (1.58)
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defined by α �→ αk .

Remarks 1.20 (i) Let d = dim(X). The condition appearing in Definition 1.19
takes a particularly simple form for k = d − 1 since H p(X (R),Z/2Z) = 0
for p ≥ d + 1: the group H2d−2

G (X (C),Z(d − 1))0 consists of those α ∈
H2d−2
G (X (C),Z(d − 1)) such that αp = 0 for all p < d − 1.
(ii) Let us fix α ∈ H2k

G (X (C),Z(k)) and denote by ᾱ ∈ H2k
G (X (R),Z/2Z)

the class obtained by restricting to X (R) and by reducing the coefficients
modulo 2. For p ∈ Z, let ᾱp ∈ H p(X (R),Z/2Z) be the pth coordinate
of ᾱ in the decomposition (1.26). Then α ∈ H2k

G (X (C),Z(k))0 if and only if
ᾱk+i = Sqi (ᾱk) for every i ∈ Z. This follows from Sect. 1.2.3 and from the
Adem relation Sq2m+1 = βZ◦Sq2m (for which we refer the reader to Raynaud
[90, Proposition 4.2]).

(iii) For any even k and any α ∈ H2k
G (X (C),Z(k))0, the class α2

k belongs to
the image of the natural map H2k(X (R),Z) → H2k(X (R),Z/2Z). Indeed,
so does α2k by its very definition, and we have α2

k = Sqk(αk) = α2k . As noted
by Krasnov [76, Remark 4.8], this observation, in the case of equivariant cycle
classes, was known to Akbulut and King (see [5, Theorem A (b)]).

1.6.4 Compatibility with cup products, pull-backs, push-forwards

Using Sect. 1.2.3, the formula (1.28) and the Cartan formula (see [86, p. 91]),
it is easy to check that Definition 1.19 is compatible with cup products, in
the sense that for any k and �, cup product induces the horizontal arrows of a
commutative square

H2k
G (X (C),Z(k))0 × H2�

G (X (C),Z(�))0 H2k+2�
G (X (C),Z(k + �))0

Hk(X (R),Z/2Z) × H �(X (R),Z/2Z) Hk+�(X (R),Z/2Z)

whose vertical arrows are the maps (1.58). In addition, the topological con-
straints of Definition 1.19 and the map (1.58) are obviously compatible with
pull-backs. We verify, in Theorem 1.21 below, that they are also compatible
with push-forwards along proper maps. The proof of this fact does not depend
on Theorem 1.18. Applying Theorem 1.21 with � = 0 therefore gives an
independent proof of Theorem 1.18.

Theorem 1.21 Let X, Y be smooth, irreducible varieties over R.
Let f : Y → X be a proper morphism. Let � be an integer.
Let k = � + dim(X) − dim(Y ). Then

f∗
(
H2�
G (Y (C),Z(�))0

) ⊆ H2k
G (X (C),Z(k))0,
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where f∗ : H2�
G (Y (C),Z(�)) → H2k

G (X (C),Z(k)) is the push-forward homo-
morphism defined in (1.22). Moreover, the square

H2�
G (Y (C),Z(�))0

f∗
H2k
G (X (C),Z(k))0

H �(Y (R),Z/2Z)
f∗

Hk(X (R),Z/2Z),

whose lower horizontal arrow is the push-forward map defined in (1.14) and
whose vertical arrows are the maps (1.58) associated with Y and with X, is
commutative.

In view of Remark 1.20 (ii), Theorem 1.21 follows from Proposition 1.22
below.

Proposition 1.22 Let f : Y → X be a proper morphism between smooth,
irreducible varieties over R. Let n be an integer. Let m = n + 2 dim(X) −
2 dim(Y ). The square

Hn
G(Y (C),Z/2Z)

f∗
Hm
G (X (C),Z/2Z)

Hn
G(Y (R),Z/2Z) Hm

G (X (R),Z/2Z)

⊕

0≤p≤n

H p(Y (R),Z/2Z)
Sq◦ f∗◦Sq−1 ⊕

0≤p≤m

H p(X (R),Z/2Z),

whose vertical maps are the restriction maps composed with the decomposi-
tions (1.26), commutes. In the lower row of this diagram, the symbol f∗ denotes
the direct sum of the push-forward maps

f∗ : H p(Y (R),Z/2Z) → H p+dim(X)−dim(Y )(X (R),Z/2Z) (1.59)

over all p ≥ 0 (see (1.14)), while Sq = Sq0 + Sq1 + Sq2 + . . . is viewed
as an automorphism of the graded rings

⊕
0≤p≤n H

p(Y (R),Z/2Z) and
⊕

0≤p≤m H p(X (R),Z/2Z), and Sq−1 stands for its inverse.
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Proof As a consequence of Sect. 1.2.5 and of the formula (1.28), the diagram

Hn
G(Y (C),Z/2Z)

y �→y
ωi
Y (C),Z/2Z

Hn+i
G (Y (C),Z/2Z)

Hn
G(Y (R),Z/2Z)

y �→y
ωi
Y (R),Z/2Z

Hn+i
G (Y (R),Z/2Z)

⊕

0≤p≤n

H p(Y (R),Z/2Z)
⊕

0≤p≤n+i

H p(Y (R),Z/2Z)
projection

commutes for any i ≥ 0 (and similarly with X instead of Y ). In view of the
projection formula f∗(y 
 ωi

Y (C),Z/2Z) = f∗(y 
 f ∗ωi
X (C),Z/2Z) = f∗y 


ωi
X (C),Z/2Z (see (1.23)), we deduce that in order to prove Proposition 1.22,

we may replace n with n + i . In particular, we may, and will, assume that
n > 2 dim(Y ) + 1.

Let us then consider the commutative diagram (without the dotted arrows)

⊕

p≥0

H p(Y (R),Z/2Z)
f∗ ⊕

p≥0

H p(X (R),Z/2Z)

Hn−dim(Y )
G (Y (R),Z/2Z)

�

f∗
Hm−dim(X)
G (X (R),Z/2Z)

�
Hn
G(Y (C),Z/2Z)

f∗
Hm
G (X (C),Z/2Z)

Hn
G(Y (R),Z/2Z) Hm

G (X (R),Z/2Z)

⊕

p≥0

H p(Y (R),Z/2Z)
Sq◦ f∗◦Sq−1 ⊕

p≥0

H p(X (R),Z/2Z),

in which the upper horizontal f∗ denotes the direct sum of the maps (1.59)
over all p ≥ 0 (see Sect. 1.2.6 for the commutativity of the top square) and
the vertical arrows of the middle square are the Gysin maps associated with
the inclusions Y (R) ⊆ Y (C) and X (R) ⊆ X (C) (see (1.20)). As we have
seen in the proof of Lemma 1.5, these two Gysin maps are isomorphisms
since n > 2 dim(Y ) + 1 and m > 2 dim(X) + 1, and the bent arrows which
make the diagram commute are given by multiplication by the classes γY ∈⊕

p≥0 H
p(Y (R),Z/2Z) and γX ∈ ⊕

p≥0 H
p(X (R),Z/2Z) that one obtains

by applying Definition 1.4 to Y and to X . To prove that the diagram remains
commutative with the horizontal dotted arrow, it therefore suffices to check
that
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Sq( f∗(Sq−1(y))) = γX f∗(γ −1
Y y) (1.60)

for any y ∈ ⊕
p≥0 H

p(Y (R),Z/2Z), or, equivalently, that

f∗
(
Sq−1(y)Sq−1(γY )

) = Sq−1( f∗y)Sq−1(γX ) (1.61)

for any y ∈ ⊕
p≥0 H

p(Y (R),Z/2Z).
This last equality is a particular case of the relative variant of Wu’s theorem

due to Atiyah and Hirzebruch [1]. Namely, when R = R and X and Y are
proper, this is op. cit., Satz 3.2 applied to λ = Sq−1; indeed, with the notation
of loc. cit., one has Wu(Sq, Y ) = Sq−1(γY ) and Wu(Sq, X) = Sq−1(γX ),
according to Thom’s formula [86, p. 91] and to Remark 1.6 (i) (see [76, Theo-
rem 2.1]). When R = R but X and Y need not be proper, the proof given in [1,
§3.4] goes through verbatim once one remarks that if i denotes the composi-
tion of a closed embedding Y (R) ⊂ RN given byWhitney’s theorem (see [63,
Chapter 2, Theorem 2.14]) with an embedding of RN into the N -dimensional
sphere SN , the map ( f, i) : Y (R) → X (R) × SN is a closed embedding.

By a spreading out argument entirely similar to the one used in [42, §7],
one can deduce the validity of (1.60) over an arbitrary real closed field R
from the validity of (1.60) for all X , Y , f , y defined over R. (The point is
that (1.60) is of a purely cohomological nature. Spreading out allows one to
deduce cohomological statements over arbitrary real closed fields from the
same statements over R. For statements on algebraic cycles, the situation is
quite different, as we will see in [29, §9].)

To establish (1.60)without spreadingout, one can also, in the projective case,
apply the Riemann–Roch theorem of Panin and Smirnov [88, Theorem 2.5.4]
to semi-algebraic cohomology with Z/2Z coefficients. ��

2 The real integral Hodge conjecture

We formulate, in this section, a real analogue of the integral Hodge conjecture.

2.1 Reminders on the complex integral Hodge conjecture

Let k ≥ 0. Let X be a smooth and proper variety of pure dimension d over C.
A class α ∈ H2k(X (C),Z(k)) is Hodge if its image in H2k(X (C),C)

is of type (k, k) in the Hodge decomposition. Let Hdg2k(X (C),Z(k)) ⊆
H2k(X (C),Z(k)) denote the subgroup of Hodge classes. Classes of algebraic
cycles belong to Hdg2k(X (C),Z(k)). By definition, the integral Hodge con-
jecture for codimension k cycles on X holds if and only if the induced map
CHk(X) → Hdg2k(X (C),Z(k)) is surjective.
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The integral Hodge conjecture holds for k = 0 or k ≥ d (trivial) and for
k = 1 (this is the Lefschetz (1, 1) theorem). For all other values of k and d,
it fails in general. The first counterexamples were discovered by Atiyah and
Hirzebruch [2]. These are counterexamples for k = 2 and d ≥ 7. In the case of
1-cycles, Kollár [8] has shown that the integral Hodge conjecture fails for very
general hypersurfaces of degree δ in P4

C for some δ. The smallest value of δ

known to yield a counterexample is 48 (see [104, §5]), though it is expected that
any δ ≥ 6 should yield one: indeed, Griffiths and Harris [56, p. 32] conjecture
that if δ ≥ 6, the degree of any curve on a very general hypersurface of degree δ

in P4
C is a multiple of δ.

ByblowingupPd
C along a very general hypersurface of degree δ inP4

C ⊂ Pd
C,

one finds counterexamples to the integral Hodge conjecture among rational
varieties for all k ∈ {3, . . . , d − 2} (see [102, p. 113]). On the other hand, for
k ∈ {2, d − 1}, the integral Hodge conjecture for codimension k cycles on X
is a birational invariant (see [109, Lemma 15]) and in particular it holds for
rational varieties. The integralHodge conjecture can nevertheless fail for k = 2
among rationally connected varieties [36, Théorème 1.3], even for rationally
connected fourfolds [99, Corollary 1.6], although it holds for smooth cubic
fourfolds [109, Theorem 18]. For k = d − 1, the following question is open:

Question 2.1 (Voisin [109, Question 16]) Let X be a smooth, proper, ratio-
nally connected variety over C. Does X satisfy the integral Hodge conjecture
for 1-cycles?

Voisin [108, Theorem 2] proves that a complex projective threefold satisfies
the integral Hodge conjecture if it is uniruled or Calabi–Yau.1 This answers
Question 2.1 in the affirmative when dim(X) = 3. In higher dimensions, there
are partial results for Fano varieties (see [52,64]). In addition, using a theorem
of Schoen [98], Voisin [110, Theorem 1.6] shows that the Tate conjecture for
all surfaces over finite fields would imply a positive answer to Question 2.1.

2.2 The real formulation

Let k ≥ 0. Let X be a smooth and proper variety over R. According to
Theorem 1.18, the image of the equivariant cycle class map CHk(X) →
H2k
G (X (C),Z(k)) is contained in the subgroup H2k

G (X (C),Z(k))0 introduced
in Definition 1.19. As recalled in Sect. 2.1, it is also contained in the inverse
image Hdg2kG (X (C),Z(k)) ⊆ H2k

G (X (C),Z(k)) of Hdg2k(X (C),Z(k)) by

1 WemeanCalabi–Yau in the sense that KX � OX and H1(X,OX ) = H2(X,OX ) = 0. Totaro
has announced a proof of the integral Hodge conjecture for complex projective threefolds X
such that KX � OX . Abelian threefolds are dealt with in [58, Corollary 3.1.9]. The hypothesis
that KX � OX cannot be weakened to KX being torsion in view of [21, Theorem 0.1].
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the natural map H2k
G (X (C),Z(k)) → H2k(X (C),Z(k)). Hence we obtain a

map

cl : CHk(X) → Hdg2kG (X (C),Z(k))0 (2.1)

to the subgroup Hdg2kG (X (C),Z(k))0 = Hdg2kG (X (C),Z(k)) ∩ H2k
G (X (C),

Z(k))0 of those classes in H2k(X (C),Z(k)) which satisfy both the Hodge
condition and the topological condition.

Definition 2.2 Let k ≥ 0. Let X be a smooth and proper variety over R. We
say that the real integral Hodge conjecture for codimension k cycles on X
holds if the map (2.1) is surjective.

Let us stress that this property can fail, just as the integral Hodge conjecture
can fail for varieties over C (see Sect. 2.1). We shall provide examples of
geometrically connected varieties over R for which it fails in Sect. 4.3, see
also Example 2.5 below.

We note that if Hq(X, �
p
X ) = 0 for all p, q such that p+q = 2k, (p, q) �=

(k, k), then Hdg2kG (X (C),Z(k))0 = H2k
G (X (C),Z(k))0 and the formulation

of the real integral Hodge conjecture makes sense over an arbitrary real closed
field (where Hodge theory is not readily available).

Definition 2.3 Let k ≥ 0. Let X be a smooth and proper variety over a real
closed field R. Assume that Hq(X, �

p
X ) = 0 whenever p + q = 2k and

(p, q) �= (k, k). We say that the real integral Hodge conjecture for codimen-
sion k cycles on X holds if the equivariant cycle class map cl : CHk(X) →
H2k
G (X (C),Z(k))0 is surjective.

Remarks 2.4 (i) Considering equivariant cohomology à la Bredon, rather
than à la Borel, leads to a factorisation CHk(X) → H2k,k

Br (X (C),Z) →
H2k
G (X (C),Z(k)) of the equivariant cycle class map cl (see [47, §§1–2]).

It would be interesting to determine what additional constraints on the image
of cl, if any, result from this.

(ii) By a norm argument, the map (2.1) tensored with Q is surjective if XC
satisfies the Hodge conjecture. Thus, there would be no point in formulating
a real variant of the Hodge conjecture with rational coefficients.

An intriguing feature of the real integral Hodge conjecture, one with no
analogue in the complex setting, is the existence of canonical “constant”
cohomology classes. Namely, let X be a smooth and proper variety over
a real closed field R and let k ≥ 0 be even, so that Z(2k) = Z(k).
We can view ω2k ∈ H2k

G (X (C),Z(2k)) (see Sect. 1.1.2) as an element
of H2k

G (X (C),Z(k)). This class is Hodge if R = R, being torsion, and it
belongs to H2k

G (X (C),Z(k))0 if (and only if) X (R) = ∅ (see Sect. 1.2.5).
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If X (R) = ∅, the integral Hodge conjecture on X therefore implies that ω2k

is algebraic, i.e., is the class of an algebraic cycle. Determining when ω2k is
algebraic is an interesting problem in its own right.

Example 2.5 Let X be the smooth projective anisotropic quadric of dimen-
sion n over R. By [11, Proposition 3.3, Proposition 3.5] and by comparison
with 2-adic cohomology, the class ω4 is algebraic if and only if −1 is a sum
of 7 squares in the function field R(X). By Pfister [89, Satz 5], such is the case
if and only if n ≤ 6.

In this example, the real integral Hodge conjecture for codimension 2 cycles
on X fails if n ≥ 7. This can be comparedwith [36, Théorème1.3]. In constrast,
the following question is open.

Question 2.6 Does there exist a smooth and proper variety of odd dimen-
sion d, over a real closed field R, such that X (R) = ∅ and ω2d−2 is not
algebraic?

Remarks 2.7 (i) Let X be a smooth and proper variety over R and let k ≥ 0.
If the restriction of the map (1.58) to the subgroup Hdg2kG (X (C),Z(k))0 is
not surjective, then Hk

alg(X (R),Z/2Z) �= Hk(X (R),Z/2Z). As far as we
are aware, this simple remark explains all of the examples that appear in the
literature of real varieties X and integers k such that Hk

alg(X (R),Z/2Z) �=
Hk(X (R),Z/2Z). We give an example of a different kind in Sect. 4.3 (see
Example 4.7); such an example necessarily underlies a defect of the real inte-
gral Hodge conjecture for codimension k cycles on X .

(ii) Let us justify the assertionmade in (i) about the existing literature. Exam-
pleswith k = 1, such as those of [92,100], fall under the scopeofRemark2.7 (i)
since the map (2.1) is surjective when k = 1 according to Proposition 2.8
below. Next, the examples given in [3, Theorem 6.9] and in [78, Theorem 3.1]
are examples in which even the map (1.58) is not surjective. Indeed, these
examples only depend on two properties of the subgroups Hk

alg(X (R),Z/2Z):
their stability under cup products, pull-backs and proper push-forwards, and
the fact that H0

alg(X (R),Z/2Z) �= H0(X (R),Z/2Z) when X is connected
while X (R) is not; as it turns out, the images of (1.58) form a system of sub-
groups that enjoy these properties aswell (see Sect. 1.6.4). The example of [10]
is an example of a class in H2(X (R),Z/2Z) whose square cannot be lifted to
H4(X (R),Z) (see [103], especially the end of §2); by Remark 1.20 (iii), the
map (1.58) again fails to be surjective in this case. Finally, in the examples fur-
nished by [79, Theorem 2.1], the map (1.58) fails once more to be surjective,
as we explain in Remark 2.12 below.
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2.3 First positive results

On a smooth and proper variety X of dimension d over a real closed field R,
the real integral Hodge conjecture for codimension k cycles holds if k = 0 or
k > d. For k = 0, this is a trivial assertion; for k > d, the restriction map
H2k
G (X (C),Z(k)) → H2k

G (X (R),Z(k)) is injective (see Sect. 1.1.3) with
kernel H2k

G (X (C),Z(k))0, so that the target of (2.1) vanishes. Let us now
consider, in Sects. 2.3.1 and 2.3.2 below, the more interesting cases where
k = 1 or k = d.

2.3.1 Divisors

It was observed by Krasnov that the Lefschetz (1, 1) theorem holds in the real
setting as well. The topological constraints provided by Theorem 1.18 do not
play any role here, as H2

G(X (C),Z(1))0 = H2
G(X (C),Z(1)).

Proposition 2.8 (Krasnov) Any smooth and proper variety over R satisfies
the real integral Hodge conjecture for codimension 1 cycles.

This can be checked by mimicking the usual proof of the Lefschetz (1, 1)
theorem and noting that the exponential short exact sequence on X (C) is
G-equivariant. We refer the reader to [75, Proposition 1.3.1], [87, Proposi-
tion 3.2], [105, Chapter IV, Theorem 4.1]. Over a real closed field, one has the
following substitute:

Proposition 2.9 Let X be a smooth variety over a real closed field R. The
cokernel of the equivariant cycle class map cl : Pic(X) → H2

G(X (C),Z(1))
is torsion-free. Assume, moreover, that X is proper and that H2(X,OX ) = 0.
Then X satisfies the real integral Hodge conjecture for codimension 1 cycles
in the sense of Definition 2.3.

Proof Let E = Coker
(
cl : Pic(X) → H2

G(X (C),Z(1))
)
. Let Br(X) =

H2
ét(X,Gm) and T (Br(X)) = Hom(Q/Z,Br(X)). Recall, from Sect. 1.1.1,

the canonical identification H2
G(X (C),Z(1))⊗Z Ẑ = H2

ét(X, Ẑ(1)), and con-
sider the commutative diagram

Pic(X) ⊗Z Ẑ H2
G(X (C),Z(1)) ⊗Z Ẑ E ⊗Z Ẑ 0

lim←−
n≥1

(
Pic(X)/nPic(X)

)
H2
ét(X, Ẑ(1)) T (Br(X)) 0,

in which the bottom row comes from the Kummer exact sequence in étale
cohomology and the vertical map on the right is determined by the rest of
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the diagram. The zigzag map lim←− Pic(X)/nPic(X) → E ⊗Z Ẑ vanishes since

its composition with the projection E ⊗Z Ẑ → E/nE vanishes for every n
while E is a finitely generated abelian group. The vertical map on the right
is therefore an isomorphism. As the abelian group T (Br(X)) is torsion-free
and as E is finitely generated, it follows that E is torsion-free. If X is proper
and satisfies H2(X,OX ) = 0, then NS(XC ) ⊗Z Q� = H2

ét(XC ,Q�) for any �

(by Hodge theory if C = C, by the Lefschetz principle in general) and hence
T (Br(XC )) = 0 (see [60, II, Corollaire 3.4]). As T (Br(X)) is torsion-free, a
norm argument now implies that T (Br(X)) = 0. It follows that E ⊗Z Ẑ = 0,
hence that E = 0. ��
2.3.2 Zero-cycles

On a smooth and proper variety of pure dimension d over R, one may consider
the real integral Hodge conjecture for zero-cycles in the sense of Definition 2.3
since Hq(X, �

p
X ) = 0 for p > d or q > d. We show that it always holds.

Proposition 2.10 Any smooth and proper variety of pure dimension d over a
real closed field satisfies the real integral Hodge conjecture for codimension d
cycles.

Proof Pick a point xi in each semi-algebraic connected component of X (R)

and a point y j in each semi-algebraic connected component of X (C). By
Theorem 1.18 and the next lemma, the classes cl(xi ) and cl(NC/R(y j )) gen-
erate H2d

G (X (C),Z(d))0. ��
Lemma 2.11 Let X be a smooth and proper variety of pure dimension d over
a real closed field R.

(i) Sending a connected component of XC to the cycle class of one of its closed
points defines a canonical isomorphism Zπ0(XC ) ∼−→ H2d(X (C),Z(d)).

(ii) The norm map H2d(X (C),Z(d)) → H2d
G (X (C),Z(d)) from (1.7) takes

its values in the subgroup H2d
G (X (C),Z(d))0 and fits into an exact

sequence

H2d (X (C),Z(d)) H2d
G (X (C),Z(d))0 Hd (X (R),Z/2Z) 0,

where the map on the right is the map (1.58) for k = d and where the map
on the left is injective if X is geometrically connected.

Proof Assertion (i) is a part of Poincaré duality and follows from [85, Chap-
ter VI, Theorem 11.1 (a)] by comparison with �-adic cohomology for every �.
Alternatively, although we do not do it here, it could be deduced from the
statement of Poincaré duality given in Proposition 1.1.
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The composition of the norm map which appears in (ii) with the natu-
ral map H2d

G (X (C),Z(d)) → H2d(X (C),Z(d)) coincides, if X is geo-
metrically irreducible, with multiplication by 2 on the torsion-free group
H2d(X (C),Z(d)) = Z. It is therefore injective in this case. The rest of the
assertion follows from the commutative diagram

H2d (X (C),Z(d)) H2d
G (X (C),Z(d)) H2d+1

G (X (C),Z(d + 1))

�
0

H2d
G (X (R),Z(d)) H2d+1

G (X (R),Z(d + 1)),

whose first row is exact and comes from (1.7). Indeed, the vertical map on
the right is an isomorphism (see Sect. 1.1.3) and the bottom horizontal map is
compatible with the decompositions (1.30) (see Sects. 1.2.3 and 1.2.4). ��
Remark 2.12 Thanks to Proposition 2.10, we can now extend [79, Theo-
rem 2.1] to the following purely cohomological statement, as promised in
Remark 2.7 (ii):

Let X be a smooth and proper variety of pure dimension d over a real
closed field R. Let k be an integer. Let αk ∈ Hk(X (R),Z/2Z) and βd−k ∈
Hd−k(X (R),Z/2Z). If αk and βd−k can be lifted, by the corresponding
maps (1.58), to α ∈ H2k

G (X (C),Z(k))0 and β ∈ H2d−2k
G (X (C),Z(d − k))0

such that the image of β in H2d−2k(X (C),Z(d−k)) vanishes (as is the case if
β = cl(y) for a cycle y algebraically equivalent to 0), then deg(αk 
 βd−k) =
0, where deg : Hd(X (R),Z/2Z) → Z/2Z denotes the total degree.

Indeed, letting γ = α 
 β, we have γ ∈ H2d
G (X (C),Z(d))0 and γd =

αk 
 βd−k by Sect. 1.6.4. By Proposition 2.10, there exists a zero-cycle z such
that γ = cl(z). It must have degree 0 since the image of γ in H2d(X (C),Z(d))

vanishes. Hence deg(γd) = 0.

2.3.3 Birational invariance

The integral Hodge conjecture for codimension k cycles on a smooth and
proper complex algebraic variety of pure dimension d is a birational invariant
when k = 2 or k = d − 1 (see [109, Lemma 15]). The real integral Hodge
conjecture enjoys the same birational invariance property.

Proposition 2.13 Let R be a real closed field. Let X denote a smooth and
proper variety of pure dimension d over R. Let k ∈ {2, d − 1}. If R = R, the
group

Coker
(
CHk(X) → Hdg2kG (X (C),Z(k))0

)
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is a birational invariant of X. If k = d − 1, so is the group

Coker
(
CHk(X) → H2k

G (X (C),Z(k))0
)
,

for any R.

Proof ByHironaka’s theorem [62, §5], it suffices to show that these groups are
invariant by any blowing-up with smooth centre. This, in turn, follows from
the next lemma and from the validity of the real integral Hodge conjecture for
divisors and for zero-cycles (Propositions 2.8, 2.9, and 2.10) on the centre of
the blowing-up. ��
Lemma 2.14 Let π : X ′ → X denote the blowing-up of a smooth irreducible
closed subvariety Z ⊂ X of codimension r. Let ι : E ↪→ X ′ denote the
inclusion of the exceptional divisor and τ : E → Z the projection. Let k be
an integer. Let ξ denote the image, by cl : Pic(E) → H2

G(E(C),Z(1)), of the
class of OE (1) (the tautological line bundle of the projective bundle τ ). There
is a natural isomorphism

H2k
G (X (C),Z(k))0 ⊕

k−1⊕

i=k−r+1

H2i
G (Z(C),Z(i))0 → H2k

G (X ′(C),Z(k))0

(2.2)

and, if R = R, a natural isomorphism

Hdg2kG (X (C),Z(k))0 ⊕
k−1⊕

i=k−r+1

Hdg2iG (Z(C),Z(i))0 → Hdg2kG (X ′(C),Z(k))0, (2.3)

both given by α ⊕ ⊕
(βi )i �→ π∗α + ∑

i ι∗(ξ k−i−1 
 τ ∗βi ).

Proof As is well known, the above formula defines an isomorphism of abelian
groups

H2k
G (X (C),Z(k)) ⊕

k−1⊕

i=k−r+1

H2i
G (Z(C),Z(i)) → H2k

G (X ′(C),Z(k)) (2.4)

(see [71, Théorème 2.2, Théorème 1.2]). When R = R, this isomor-
phism respects the Hodge decompositions. It only remains to be checked
that for any α ⊕ ⊕

(βi )i in the left-hand side of (2.4), if one sets γ =
π∗α + ∑

i ι∗(ξ k−i−1 
 τ ∗βi ), then γ ∈ H2k
G (X ′(C),Z(k))0 if and only if

α ∈ H2k
G (X (C),Z(k))0 and βi ∈ H2i

G (Z(C),Z(i))0 for every i . As cup prod-
ucts, push-forwards and pull-backs preserve the condition of Definition 1.19
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(see Sect. 1.6.4 and Theorem 1.21), the converse implication is clear. For the
direct implication, let

δ =
k−1∑

i=k−r+1

ξ k−i 
 τ ∗βi ∈ H2k
G (E(C),Z(k))

and let us assume that γ ∈ H2k
G (X ′(C),Z(k))0. As α = π∗γ , Theorem 1.21

shows that α ∈ H2k
G (X (C),Z(k))0. As δ = ι∗(γ − π∗α), it follows that

δ ∈ H2k
G (E(C),Z(k))0. To prove that βi ∈ H2i

G (Z(C),Z(i))0 for all i , we
now argue by induction on i . Assuming that i0 ∈ {k − r + 1, . . . , k − 1}
is such that βi ∈ H2i

G (Z(C),Z(i))0 for all i < i0, let us check that βi0 ∈
H2i0
G (Z(C),Z(i0))0. By the projection formula (1.23), we have

τ∗(ξ i0−k+r−1 
 δ) = βi0 +
i0−1∑

i=k−r+1

τ∗ξ i0−i+r−1 
 βi (2.5)

since τ∗ξm = 0 for m < r − 1 and τ∗ξ r−1 = 1 ∈ H0
G(Z(C),Z). By

the compatibility of Definition 1.19 with push-forwards and cup products
(see Sect. 1.6.4 and Theorem 1.21), the left-hand side of (2.5) belongs to
H2i0
G (Z(C),Z(i0))0. By our assumption on i0, so does the second term of the

right-hand side; hence βi0 ∈ H2i0
G (Z(C),Z(i0))0. ��

2.3.4 Projective spaces

We finally consider the case of projective spaces.

Proposition 2.15 For all integers 0 ≤ k ≤ d, the real integral Hodge conjec-
ture holds for codimension k cycles on Pd

R.

Proof By Fulton [53, Theorem 3.3 (b)], the Chow group CHd(Pd
R × Pd

R) is
generated by the classes of Pi

R × Pd−i
R for 0 ≤ i ≤ d . The class of the

diagonal�Pd
R
may then be determined by computing the intersection numbers

[�Pd
R
] · [Pi

R × Pd−i
R ] = 1:

[�Pd
R
] =

d∑

i=0

[Pi
R × Pd−i

R ] ∈ CHd(Pd
R × Pd

R). (2.6)

Let α ∈ H2k
G (Pd(C),Z(k))0. We let the correspondence (2.6) act on α.

For i < k, one has [Pi
R × Pd−i

R ]∗α = 0. Indeed, H2k
G (Pi (C),Z(k)) →
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H2k
G (Pi (R),Z(k)) is injective by Sect. 1.1.3, so that H2k

G (Pi (C),Z(k))0 = 0.
For i > k, one also has [Pi

R × Pd−i
R ]∗α = 0 in view of the vanishing of

H2k−2i
G (Pd−i (C),Z(k − i)) in this range. We deduce:

α = [�Pd
R
]∗α = [Pk

R × Pd−k
R ]∗α.

The latter class is algebraic because the whole group H2k
G (Pk(R),Z(k))0 con-

sists of algebraic classes by Proposition 2.10. ��

2.4 Main question

The results of Voisin [108,110] on the integral Hodge conjecture for complex
varieties (discussed in Sect. 2.1) and the good basic properties of the real
integralHodge conjecture (see Sect. 2.3) lead us to raise the following question:

Question 2.16 Let X be a smooth, proper and geometrically irreducible vari-
ety over R. If the underlying complex variety XC is a uniruled threefold, a
Calabi–Yau threefold, or a rationally connected variety, does X satisfy the
real integral Hodge conjecture for 1-cycles?

In Sects. 3 and 5 below, we explore the meaning and implications of a
positive answer to this question. In [29], we shall provide positive answers for
various classes of uniruled threefolds (and, in higher dimensions, for iterated
conic bundles over these threefolds, or over arbitrary surfaces). As far as we
know, the answer to Question 2.16 may be in the affirmative in full generality.

For Calabi–Yau threefolds and for rationally connected varieties, one might
wish to extendQuestion2.16 to arbitrary real closedfields, usingDefinition2.3.
However, we shall give in [29] various examples which show that the resulting
question would have a negative answer, at least for rationally connected three-
folds with a rational point and for (simply connected) Calabi–Yau threefolds
with no rational point. (It is still conceivable that over an arbitrary real closed
field, rationally connected varieties with no rational point may satisfy the real
integral Hodge conjecture for 1-cycles.)

3 Cycles of dimension 1

The goal of this section is to investigate the relationship between the real
integral Hodge conjecture for 1-cycles, on the one hand, and the complex
integral Hodge conjecture for 1-cycles, the study of the Borel–Haefliger cycle
class map, and the question of the existence of curves of even geometric genus
in a given variety, on the other hand. For the whole of Sect. 3, we fix a real
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closed field R and a smooth, proper and geometrically irreducible variety X
over R, of dimension d.

3.1 Summary

Before examining the integral Hodge conjecture for 1-cycles, we must study
the target H2d−2

G (X (C),Z(d − 1))0 of the equivariant cycle class map.
A key role will be played by two homomorphisms

ψ : H2d−2
G (X (C),Z(d − 1))0 → M and ψ ′ : Pic(XC )G [2∞] → M ∗,

where M is a 2-torsion abelian group and M ∗ = Hom(M ,Z/2Z). Their
definitions, given in Sect. 3.2, are of a purely topological nature. Theorem 3.3,
whose proof relies on the self-dual long exact sequence of Theorem 1.12,
asserts that the images of ψ and ψ ′ are exact orthogonal complements under
the natural pairingM × M ∗ → Z/2Z; in particular, the map ψ is surjective
if Pic(XC )[2] = 0. We show, in Sect. 3.5, that under the same assumption, the
kernel of ψ coincides with the image of the norm map

NC/R : H2d−2(X (C),Z(d − 1)) → H2d−2
G (X (C),Z(d − 1)).

Thus, we obtain, in this case, a complete description of the group
H2d−2
G (X (C),Z(d − 1))0.
To defineψ andψ ′ and to prove these results,we have to distinguish between

the two cases X (R) = ∅ and X (R) �= ∅. The definitions and arguments, in
these two cases, are entirely distinct, but run parallel.

In Sect. 3.3, we study the map ϕ = ψ ◦ cl : CH1(X) → M . It turns out
that ϕ coincides with the Borel–Haefliger cycle class map when X (R) �= ∅,
and that when X (R) = ∅, this map computes the geometric genus modulo 2
of the curves lying on X .

We gather several consequences of these results in Sect. 3.6. In the case
of surfaces X with H2(X,OX ) = 0, we obtain a statement of independent
interest on the image of the Borel–Haefliger cycle class map and on the exis-
tence of curves of even geometric genus (Corollary 3.17), which generalises,
in particular, the work of Mangolte and van Hamel [87] on Enriques surfaces.
In the case of simply connected Calabi–Yau or rationally connected three-
folds, we obtain, by combining these results with the work of Voisin [108],
an equivalence between the real integral Hodge conjecture and the surjectivity
of the Borel–Haefliger cycle class map and the existence of a curve of even
geometric genus (Corollary 3.23).
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3.2 The map ψ and its image

We first define the 2-torsion abelian group M and the homomorphisms ψ

and ψ ′. Once M is defined, we setM ∗ = Hom(M ,Z/2Z).

Definition 3.1 If X (R) = ∅, we letM = Z/2Z, we define

ψ : H2d−2
G (X (C),Z(d − 1))0 → M

by ψ(x) = x 
 ω2 for any x (see Sect. 1.1.2 for the definition of ω2 ∈
H2
G(X (C),Z(2))), which makes sense as H2d

G (X (C),Z(d + 1)) = Z/2Z in
view of Proposition 1.10 and Remark 1.11 (ii), and we define

ψ ′ : Pic(XC )G[2∞] → M ∗

as the restriction toPic(XC )G[2∞]of themapPic(XC )G → Br(R) = Z/2Z =
M ∗ whichmeasures the obstruction to representing aG-invariant divisor class
on XC by a G-invariant divisor (see [60, III, §5.4]).

Definition 3.2 If X (R) �= ∅, we letM = Hd−1(X (R),Z/2Z), we define

ψ : H2d−2
G (X (C),Z(d − 1))0 → M

to be the map (1.58), and, noting that M ∗ = H1(X (R),Z/2Z) (see (1.16))
and that Pic(XC )G = Pic(X) as X (R) �= ∅ (see [19, 8.1/4]), we define

ψ ′ : Pic(XC )G[2∞] → M ∗

as the restriction to Pic(XC )G[2∞] = Pic(X)[2∞] of the Borel–Haefliger
cycle class map Pic(X) → H1(X (R),Z/2Z) (see (1.56)).

Theorem 3.3 For any smooth, proper and geometrically irreducible vari-
ety X, of dimension d, over a real closed field R, the images of ψ and
of ψ ′ are exact orthogonal complements under the natural perfect pairing
M × M ∗ → Z/2Z.

Proof We first prove the theorem under the assumption that
X (R) = ∅. In this case, we have to show that ψ is surjective if and only
if ψ ′ = 0. Let us consider the commutative square

Z/2Z = H0
G(X (C),Q2/Z2(−1)) H2

G(X (C),Q2/Z2(1))

H0(G,Q2/Z2(−1)) ∼
�

H2(G,Q2/Z2(1)),
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in which the horizontal maps are the cup product with ω2 and the vertical
maps come from theHochschild–Serre spectral sequence (1.4). Applying (1.1)
and (1.2), we see that the bottom horizontal map is an isomorphism. On the
other hand, by Proposition 1.10 and Remark 1.11 (ii), the top horizontal map
composed with the inclusion H2

G(X (C),Q2/Z2(1)) ⊆ H2
G(X (C),Q/Z(1))

is dual to ψ . Hence ψ is surjective if and only if the vertical map on
the right is injective. By (1.4), this amounts to the surjectivity of the
natural map H1

G(X (C),Q2/Z2(1)) → H1(X (C),Q2/Z2(1))G , or equiva-
lently, of H1

ét(X,Q2/Z2(1)) → H1
ét(XC ,Q2/Z2(1))G . The Kummer exact

sequence in étale cohomology identifies the latter map with Pic(X)[2∞] →
Pic(XC )G[2∞], which is surjective if and only if ψ ′ = 0.

We henceforth assume that X (R) �= ∅. Let us state two lemmas.
As H0(G,Q/Z(1)) = Z/2Z and H1(G,Q/Z(1)) = 0, the spectral

sequence (1.3) induces a canonical isomorphismM ∗ = H1(X (R),Z/2Z)
∼−→

H1
G(X (R),Q/Z(1)).

Lemma 3.4 Through this identification ofM ∗ with H1
G(X (R),Q/Z(1)), the

image of ψ ′ is the image of the restriction map H1
G(X (C),Q/Z(1)) →

H1
G(X (R),Q/Z(1)).

Proof The boundary maps of the exact sequence 0 → Z(1) → Q(1) →
Q/Z(1) → 0 and the isomorphism Pic(X)tors = H1

ét(X,Q/Z(1)) =
H1
G(X (C),Q/Z(1)) stemming from the Kummer sequence fit into a diagram

Pic(X)tors
⋂

H1
G(X (C),Q/Z(1)) H1

G(X (R),Q/Z(1)) = M ∗
�

Pic(X)
cl H2

G(X (C),Z(1)) H2
G(X (R),Z(1)) = M ∗,

(3.1)

where we identify H2
G(X (R),Z(1)) with M ∗ by means of (1.31). In terms

of these identifications, the rightmost vertical map of (3.1) is the identity map
of M ∗, as follows from the commutative square

H1(X (R), H0(G,Q/Z(1))) ∼ H1
G(X (R),Q/Z(1))

H1(X (R), H1(G,Z(1))) ∼ H2
G(X (R),Z(1)),

(3.2)

whose horizontal maps are the edge homomorphisms of the spectral
sequences (1.3). According to [30, (3.8) and §3.3.1], the left square of (3.1)
commutes after tensoringwithZ� for every prime �; therefore (3.1) is a commu-
tative diagram. By Theorem 1.18, the image of Pic(X)[2∞] inM ∗, via (3.1), is
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the image of ψ (see (1.58)). It is also the image of Pic(X)tors since 2M ∗ = 0.
The lemma follows. ��
Lemma 3.5 The restriction map induces an isomorphism

H2d−2
G (X (C),Z(d − 1))0

∼−→ H2d−2
G (X (C)\X (R),Z(d − 1)).

Proof We recall that a canonical retraction of the forgetful map

H2d−2
G,X (R)(X (C),Z(d − 1)) → H2d−2

G (X (C),Z(d − 1)) (3.3)

was constructed in Sect. 1.3.2. By Proposition 1.7, the lemma will follow
if we check that the kernel of this retraction is H2d−2

G (X (C),Z(d − 1))0.
Let us take up, from Sect. 1.3.1, the notation H p = H p(X (R),Z/2Z). Let
α ∈ H2d−2

G (X (C),Z(d − 1)). As in Sect. 1.6.3, we denote by αp ∈ H p the
image of α by (1.57) for p ≡ d − 1 mod 2. Unravelling the definition of the
canonical retraction of (3.3) constructed in Sect. 1.3.2, while taking Sect. 1.2.3
into account, shows that α belongs to its kernel if and only if the component
in H p of the class

∑

0≤i≤d−3
i≡d−1 mod 2

(αi + βZ(αi )) γ −1 ∈ H0 ⊕ · · · ⊕ Hd−2 (3.4)

is trivial for each p ≡ d − 1 mod 2 such that p ≤ d − 3. Here, the product
takes place in the ring H0 ⊕ · · · ⊕ Hd−2 and βZ : Hi → Hi+1 denotes the
ordinary Bockstein homomorphism (see Sect. 1.2.3). On the other hand, we
have α ∈ H2d−2

G (X (C),Z(d − 1))0 if and only if αp = 0 for each p ≤ d − 3
such that p ≡ d−1 mod 2. To see that these two conditions are equivalent, we
note that if αp �= 0 for some p ≡ d − 1 mod 2 and if p denotes the smallest
such integer, then the component in H p of (3.4) is αp. ��

Let us resume the proof of Theorem3.3 under the assumption that X (R)�=∅.
The map u2 appearing in (1.46) can be inserted into a diagram

H0 ⊕ H1 = H1
G(X (R),Z/2Z)

δ2

H1
G(X (R),Q/Z(1)) = H1

H1 H2−d ⊕ · · · ⊕ H1 u2 H2
G(X (C), X (R),Z/2Z) H2

G(X (C), X (R),Q/Z(1)),

(3.5)

in which the leftmost arrows are the obvious inclusions, the vertical maps
are the connecting homomorphisms of the localisation exact sequences, and
the canonical isomorphisms of the first row are the decomposition (1.26)
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and the identification used in the statement of Lemma 3.4. A glance at the
description of u2 given after (1.46) shows that this diagram commutes. In
addition, the map from the bottom left H1 to the top right H1 is the identity
map. It follows, in view of Lemma 3.4, that the kernel of the composition
θ ′ : H1 → H2

G(X (C), X (R),Q/Z(1)) of all of the maps of the bottom row
of (3.5) coincides with the image of ψ ′.

Now, let θ : H2d−2
G (X (C)\X (R),Z(d − 1)) → Hd−1 denote the compo-

sition of the natural map H2d−2
G (X (C)\X (R),Z(d − 1)) → H2d−2

G (X (C)\
X (R),Z/2Z), of the map w2d−2 : H2d−2

G (X (C)\X (R),Z/2Z) → Hd−1 ⊕
· · · ⊕ H2d−2 appearing in (1.46), and of the projection map Hd−1 ⊕ · · · ⊕
H2d−2 → Hd−1. The description of w2d−2 given after (1.46) shows, in view
of Sect. 1.2.3, thatψ coincideswith the composition of θ with the isomorphism
of Lemma 3.5. Hence ψ and θ have the same image.

By Theorem 1.12, Proposition 1.10, and Remark 1.11 (ii), the Pontrjagin
dual of θ is θ ′. The kernel of θ ′ and the image of θ are therefore exact orthogonal
complements. ��

3.3 The effect of ψ on cycle classes

We set ϕ = ψ ◦ cl : CH1(X) → M .

Theorem 3.6 Let X be a smooth, proper and geometrically irreducible variety
over a real closed field R. If X (R) �= ∅, the map ϕ is the Borel–Haefliger
cycle class map. If X (R) = ∅, the map ϕ is characterised by the property
that

ϕ(B) =
{
1 if B is geometrically irreducible and has even geometric genus,
0 otherwise

for any integral proper curve B ⊆ X.

Proof When X (R) �= ∅, this is Theorem 1.18 applied with i = 0. Let us
assume that X (R) = ∅. If B is not geometrically integral, then, as a 1-cycle
on X , it is the norm of a 1-cycle on XC , so that cl(B) belongs to the image of
the norm map

H2d−2(X (C),Z(d − 1)) → H2d−2
G (X (C),Z(d − 1)).

In view of the real-complex long exact sequence (1.7), it follows that cl(B) 


ω = 0, henceϕ(B) = 0.Wemay therefore assume that B is geometrically irre-
ducible. Let B ′ denote its normalisation andπ : B ′ → X the naturalmorphism.
The push-forward map π∗ : H2

G(B ′(C),Z(2)) → H2d
G (X (C),Z(d + 1))

is an isomorphism since its Pontrjagin dual π∗ : H0
G(X (C),Q/Z(1)) →

123



O. Benoist, O. Wittenberg

H0
G(B ′(C),Q/Z(1)) is one (see (1.23) and Proposition 1.10). As a conse-

quence, if ψB′ : H0
G(B ′(C),Z) → Z/2Z denotes the map associated with B ′

by Definition 3.1, the square

Z = H0
G(B ′(C),Z)

π∗

ψB′
Z/2Z

H2d−2
G (X (C),Z(d − 1))

ψ
Z/2Z

is commutative. By Theorem 3.3 and Lemma 3.7 below, the mapψB′ is surjec-
tive if and only if B ′ has even genus. As the vertical arrow on the left maps 1
to cl(B), this completes the proof of Theorem 3.6. ��
Lemma 3.7 (Geyer) Let B be a smooth, proper and geometrically integral
curve over a real closed field R. If B(R) = ∅, the natural map Pic(B)[2∞] →
Pic(BC )G[2∞] is surjective if and only if B has even genus.

Proof This follows from the work of Geyer (see [54, p. 91], extended to real
closed fields in [73, §10]; see also [55, §2]). We sketch a complete argument
for the reader’s convenience. First, as B(R) = ∅ and B is a curve, by a theorem
of Witt [112] extended by Pfister to real closed fields (see [72, Theorem 4.1]
and the references therein), one can write−1 as a sum of two squares in R(B).
In other words, the natural map Br(R) → Br(B) vanishes. Hence, the exact
sequence of low degree terms of the Hochschild–Serre spectral sequence takes
the form

0 Pic(B) Pic(BC)G Br(R) 0. (3.6)

Let g denote the genus of B.

Sublemma 3.8 Let L ∈ Pic(BC )G. If deg(L) ≡ g mod 2, then L ∈ Pic(B).

Proof After tensoring L with a large power of an ample line bundle, we may
assume that deg(L) > 2g − 2. The Riemann–Roch theorem then implies that
dimC H0(BC , L) is odd. On the other hand, this integer kills the image of L
in Br(R) (see [82, Theorem 6] or [55, p. 160]). ��

The sublemma implies the lemma when g is even. Suppose now g is odd.
By (3.6) there exists L ∈ Pic(BC )G with L /∈ Pic(B). By the sublemma, its
degree must be even. By adding to L a suitable multiple of the class of a closed
point of B, we may assume that deg(L) = 0. As Pic0(BC ) is divisible, there
exists L0 ∈ Pic0(BC ) such that L = 2L0. Then L − NC/R(L0) is an element
of Pic(BC )G[2]which does not belong to Pic(B)[2], thus completing the proof
of the lemma. ��

123



On the integral Hodge conjecture for real varieties

3.4 Connection with the first intermediate index

According to Theorem 3.6, the map ϕ : CH1(X) → M is surjective if and
only if

(i) the map clR : CH1(X) → Hd−1(X (R),Z/2Z) is surjective, if X (R)�=∅;
(ii) X contains a geometrically integral curve of even geometric genus, if

X (R) = ∅.

The first condition is a classical one in real algebraic geometry. Since the
second one is not, and will play a prominent role in what follows when
X (R) = ∅, we devote this section to explaining a few general facts about
it.

In the sequel, we shall encounter many examples of varieties, over the reals,
which do not contain a curve of even geometric genus (see Sect. 4 and [29,
§9.2]). The following proposition illustrates the sharpness of such examples.

Proposition 3.9 Let X be a smooth, proper and geometrically irreducible
variety, of dimension ≥ 2, over R (or, more generally, over an infinite perfect
field). Then X contains a geometrically irreducible curve of odd geometric
genus. If X (R) �= ∅, then X contains a geometrically irreducible curve of
even geometric genus.

Proof Wefirst assume that X is a surface. In this case, if H denotes a very ample
divisor on X , a general member of the linear system |4H | is a geometrically
irreducible curve with odd geometric genus, as follows from the adjunction
formula. If X (R) �= ∅, let π : X ′ → X denote the blowing-up of a point
of X (R), with exceptional divisor E , and let H ′ denote an ample divisor
on X ′. The image, by π , of a general member of the linear system |4nH ′ + E |,
for n � 0, is a geometrically irreducible curve with even geometric genus,
according to the adjunction formula. The general case of Proposition 3.9 can be
proved by applying these arguments to the desingularisation of an appropriate
surface lying in X . ��

The existence of a curve of even geometric genus is conveniently expressed
in terms of the intermediate indices of X , introduced by Kollár [74, Defini-
tion 1] following [49]. We recall that for any i , the i th intermediate index
indi (X) is, by definition, the gcd of the integers χ(X, E) when E ranges over
the coherent sheaves on X supported on a closed subset of dimension ≤ i .
Clearly

indd(X) | indd−1(X) | · · · | ind0(X)

and ind0(X) is the gcd of the degrees of the closed points of X . The next state-
ment, a consequence of standard results on Grothendieck groups of coherent
sheaves (see [12], [26, §8]), summarises some basic properties of these indices.
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Proposition 3.10 ([74, Proposition 4]) For any proper variety X and any i ,
we have indi (X) = gcd χ(Z ,OZ ) = gcd χ(Z ′,OZ ′), where Z ranges over
the integral closed subvarieties of X of dimension ≤ i and Z ′ denotes the
normalisation of Z.

We can now relate ind1(X) to curves of even genus. Note that if X is
a nonempty proper variety over R, then ind0(X) = 1 if X (R) �= ∅ and
ind0(X) = 2 otherwise.

Corollary 3.11 Let X be a nonempty proper variety over R. If X (R) �= ∅ or
if X contains a geometrically irreducible curve of even geometric genus, then
ind1(X) = 1. Otherwise ind1(X) = 2.

As another consequence of Proposition 3.10, we note that for any proper and
geometrically irreducible curve B over R such that B(R) = ∅, the geometric
genus and the arithmetic genus of B have the same parity (both are congruent
to 1− ind1(B) modulo 2). Replacing the word “geometric” with “arithmetic”
in the statements of Theorem 3.6 and Corollary 3.11 would therefore make no
difference.

Finally, we recall how the parity of the genus behaves in a cover of curves.

Proposition 3.12 Let f : E → F be a finite morphism between smooth,
proper and geometrically irreducible curves over R. Assume that F(R) = ∅

and that F has even geometric genus. Then E has even geometric genus if and
only if f has odd degree.

Proof Apply the degree formula χ(E,OE ) ≡ deg( f )χ(F,OF ) mod 2 (see
[61] or [74, Lemma 5 (2)]). ��
Remark 3.13 Let X be a smooth and proper variety, defined over an arbitrary
field. Let i be an integer. Associating, with an integral dimension i cycle
on X , the Euler characteristic of its structure sheaf determines a morphism
CHi (X) → Z/indi−1(X)Z which factors through algebraic equivalence (see
[74, Proposition 14]). When the ground field is real closed and i = 1, more is
true: this morphism even factors through homological equivalence, according
to Theorem 3.6.

We do not know whether this assertion remains valid for all values
of ∼ i . For i = 1, it does not extend to arbitrary fields, as the following
example shows. Let X denote the smooth projective quadric threefold over
C((t))((u))((v)) defined by the anisotropic quadratic form 〈1, t, u, tu, v〉.
Using the Hochschild–Serre spectral sequence, one checks that H4

ét(X,Z2(2))
is torsion-free. On the other hand, it follows from [70, Theorem 5.3 and Theo-
rem 3.8] that CH1(X)tors has order 2 and is generated by a class whose image
in Z/ind0(X)Z = Z/2Z does not vanish.
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3.5 The cokernel of the norm map

Proposition 3.14 Let X be a smooth, proper and geometrically irreducible
variety, of dimension d, over a real closed field R. If Pic(XC )[2] = 0, then ψ

fits into an exact sequence

H2d−2(X (C),Z(d − 1)) H2d−2
G (X (C),Z(d − 1))0

ψ
M 0, (3.7)

where the first map is the norm map from (1.7).

It is part of the assertion of Proposition 3.14 that the norm map takes its
values in the subgroup H2d−2

G (X (C),Z(d −1))0 ⊆ H2d−2
G (X (C),Z(d −1)).

Proof The following lemma immediately implies Proposition 3.14 when
X (R) = ∅.

Lemma 3.15 Under the assumptions of the proposition, the group
H2d−1(X (C),Z) is finite of oddorder.Cupproductwithω ∈ H1

G(X (C),Z(1))
induces a surjection

H2d−2
G (X (C),Z(d − 1)) � H2d−1

G (X (C),Z(d))[2] (3.8)

whose kernel is the image of the norm map and it induces an isomorphism

H2d−1
G (X (C),Z(d))[2] ∼−→ H2d

G (X (C),Z(d + 1)). (3.9)

If X (R) �= ∅, it also induces an isomorphism

H2d
G (X (C),Z(d + 1)) ∼−→ H2d+1

G (X (C),Z(d + 2)). (3.10)

To deduce Proposition 3.14 from Lemma 3.15 when X (R) �= ∅, we con-
sider the commutative diagram

H2d−2
G (X (C),Z(d − 1)) H2d+1

G (X (C),Z(d + 2))

�

H2d−2
G (X (R),Z(d − 1)) H2d+1

G (X (R),Z(d + 2))

�
⊕

0≤p≤d−1
p≡d−1 mod 2

H p(X (R),Z/2Z)
⊕

0≤p≤d−1
p≡d−1 mod 2

H p(X (R),Z/2Z),
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in which the horizontal arrows are the cup product with ω3 and the lower
vertical maps are the maps (1.31). The commutativity of the lower square
follows from Sects. 1.2.3 and 1.2.4. By Lemma 3.15, the top horizontal map is
surjective and its kernel is the image of the norm map. The upper vertical map
on the right is an isomorphism by Sect. 1.1.3. Hence the composition of the
vertical maps on the left is surjective and its kernel is the image of the norm
map. Proposition 3.14 is now established. ��
Proof of Lemma 3.15 As Pic(XC )[2] = 0, the 2-torsion subgroup of
H1
ét(XC ,Q2/Z2) is trivial. By Poincaré duality, the group H2d−1

ét (XC ,Z2) =
H2d−1(X (C),Z) ⊗Z Z2 is therefore 2-divisible. The group H2d−1(X (C),Z)

being finitely generated, it must then be finite of odd order. On the other hand,
as 2ω = 0, the cohomology class x 
 ω is 2-torsion for any x , hence (3.8)
is well-defined. It follows from these remarks and from the real-complex long
exact sequence (1.7) that (3.8) is surjective, with kernel the image of the norm
map.

The norm map H2d(X (C),Z(d)) → H2d
G (X (C),Z(d)) is injective as its

composition with the natural map H2d
G (X (C),Z(d)) → H2d(X (C),Z(d)) is

multiplication by 2 on the group H2d(X (C),Z(d)) = Z (see Lemma 2.11 (i)).
Putting together this injectivity, the remarks that H2d−1(X (C),Z) has odd
order and that 2ω = 0, and the exact sequence (1.7), we deduce that (3.9) is
an isomorphism.

If X (R) �= ∅, the natural map H2d
G (X (C),Z(d)) → H2d(X (C),Z(d)) is

surjective (see Lemma 2.11 (i)). On the other hand, we have H2d+1(X (C),

Z(d)) = 0 as X (C) has cohomological dimension 2d (see [39, Chapter II,
Lemma 9.1]). Hence the exact sequence (1.7) implies that (3.10) is an isomor-
phism in this case. ��

3.6 Wrapping up

We now combine the contents of Sects. 3.2–3.5 and deduce various results on
the Borel–Haefliger cycle class map for 1-cycles, on the existence of curves
of even genus, and on the real integral Hodge conjecture for 1-cycles.

In accordance with common usage, for a smooth and proper variety X , we
set H1(X (R),Z/2Z) = Hd−1(X (R),Z/2Z) and write H alg

1 (X (R),Z/2Z) =
clR(CH1(X)) and H1

alg(X (R),Z/2Z) = clR(Pic(X)), where clR denotes the
Borel–Haefliger cycle class maps for curves or for divisors.

3.6.1 Nomenclature

We have seen in Theorem 3.6 that ϕ = ψ ◦ cl : CH1(X) → M detects the
genus modulo 2 if X (R) = ∅ and is the Borel–Haefliger cycle class map if
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X (R) �= ∅. Let us analyse the variousways inwhichϕ can fail to be surjective.
First, if ψ is not surjective, we say that there is a topological obstruction to
the surjectivity of ϕ. When R = R, one can further factor ϕ as

CH1(X) → Hdg2d−2
G (X (C),Z(d − 1))0 ⊆ H2d−2

G (X (C),Z(d − 1))0
ψ−→ M .

If R = R, we say that there is aHodge-theoretic obstruction to the surjectivity
of ϕ if ψ is surjective but its restriction to Hdg2d−2

G (X (C),Z(d − 1))0 is not.
Finally, if R = R (resp., if H2(X,OX ) = 0), we speak of a cycle-theoretic
obstruction to the surjectivity of ϕ if the Hodge-theoretic (resp., topological)
obstruction vanishes but ϕ still fails to be surjective.

There can be a topological obstruction only if Pic(XC )[2] �= 0, by Theo-
rem 3.3; there can be a Hodge-theoretic obstruction only if H2(X,OX ) �= 0;
and there can be a cycle-theoretic obstruction only if the real integral Hodge
conjecture for 1-cycles fails for X . Examples illustrating all of these obstruc-
tions will be given in Sect. 4.

3.6.2 Varieties with H2(X,OX ) = 0

Assume that H2(X,OX ) = 0 (“no Hodge-theoretic obstruction”) and that X
satisfies the real integral Hodge conjecture for 1-cycles (“no cycle-theoretic
obstruction”). Then, by Theorem 3.3, the image of ϕ = ψ ◦cl : Pic(X) → M
is the orthogonal complement of the image ofψ ′ (“the topological obstruction
controls the image of ϕ”). Combining this with Theorem 3.6 and Proposi-
tion 3.9,we have nowestablished the following statement, inwhich clR denotes
the two Borel–Haefliger cycle class maps Pic(X) → H1(X (R),Z/2Z) and
CH1(X) → Hd−1(X (R),Z/2Z).

Theorem 3.16 Let X be a smooth, proper and geometrically irreducible vari-
ety over a real closed field R. Assume that dim(X) > 0, that H2(X,OX ) = 0
and that X satisfies the real integral Hodge conjecture for 1-cycles.

(i) The subgroups clR(CH1(X)) and clR(Pic(X)[2∞]) are exact orthogonal
complements under the Poincaré duality pairing.

(ii) There exists a geometrically irreducible curve of even geometric genus
in X if and only if the natural map Pic(X)[2∞] → Pic(XC )G[2∞] is
onto.

In particular, ifPic(XC )[2] = 0, then H alg
1 (X (R),Z/2Z) = H1(X (R),Z/2Z)

and X contains a geometrically irreducible curve of even geometric genus.

According to Proposition 2.9, the hypotheses of Theorem 3.16 are met for
surfaces of geometric genus zero.
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Corollary 3.17 Let X be a smooth, proper and geometrically irreducible sur-
face over a real closed field R, such that H2(X,OX ) = 0.

(i) The subgroups clR(Pic(X)) and clR(Pic(X)[2∞]) of H1(X (R),Z/2Z)

are exact orthogonal complements under the Poincaré duality pairing.
(ii) There exists a geometrically irreducible curve of even geometric genus

in X if and only if the natural map Pic(X)[2∞] → Pic(XC )G[2∞] is
onto.

In particular, ifPic(XC )[2] = 0, then H1
alg(X (R),Z/2Z) = H1(X (R),Z/2Z)

and X contains a geometrically irreducible curve of even geometric genus.

Remarks 3.18 (i)At leastwhen R = R, the particular case ofCorollary 3.17 (i)
when Pic(XC )[2] = 0 was known to Silhol [101, Theorem III.3.4] for geomet-
rically rational surfaces and to van Hamel [105, Chapter IV, Corollary 4.4 and
Chapter III, Lemma 8.9] in general; see also [84, Théorème 3.7.18]. Corol-
lary 3.17 (ii), on the other hand, is new even when Pic(XC )[2] = 0.

(ii) Assume that R = R. According to [68, Théorème 4], the map clR
sends the isomorphism class of a line bundle on X to the first Stiefel–Whitney
class of the line bundle it induces on X (R). In particular, if KX denotes the
canonical divisor class of X and w1(X (R)) the first Stiefel–Whitney class of
the tangent bundle of X (R), then clR(KX ) = w1(X (R)). On the other hand,
for an Enriques surface X , the group Pic(X)[2∞] has order 2 and is generated
by KX . Corollary 3.17 (i) therefore recovers the theorem of Mangolte and
van Hamel [87, Theorem 4.4] according to which if X is an Enriques surface,
the subgroup H1

alg(X (R),Z/2Z) is the orthogonal complement of w1(X (R))

(so that the equality H1
alg(X (R),Z/2Z) = H1(X (R),Z/2Z) holds if and only

if every connected component of X (R) is orientable). Corollary 3.17 (i) may
be viewed as a generalisation of this result to all surfaces of geometric genus
zero and all real closed fields.

(iii) Corollary 3.17 (i) was known to Kucharz when R = R and XC is
birationally ruled (see [80, Proposition 1.6]; note that NS(X) is torsion-free in
this case, so that clR(Pic(X)[2∞]) = clR(Pic0(X)[2∞]) = clR(Pic0(X))).

(iv) Both assertions of Corollary 3.17 fail if we drop the assumption
H2(X,OX ) = 0 (see Examples 4.5 and 4.6; these are K3 surfaces).

Example 3.19 ByCorollary 3.17 (ii), every Enriques surface over a real closed
field contains a geometrically irreducible curve of even geometric genus.
Indeed, if X is such a surface, then H2(X,OX ) = 0 and Pic(XC )[2∞] is
generated by the canonical class KXC , which comes, by pull-back, from the
class KX in Pic(X)[2].

As a consequence of Corollary 3.17 (i), we obtain a lower bound on the size
of the subgroup H1

alg(X (R),Z/2Z) ⊆ H1(X (R),Z/2Z), yielding a positive
result concerning the question raised in [28, Remark 5.2].
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Corollary 3.20 Let X be a smooth, proper and geometrically irreducible sur-
face over a real closed field R. Assume that H2(X,OX ) = 0. Then

dimZ/2Z H1
alg(X (R),Z/2Z) ≥ 1

2
dimZ/2Z H1(X (R),Z/2Z).

In particular, if H1(X (R),Z/2Z) �= 0, then H1
alg(X (R),Z/2Z) �= 0.

Proof By Corollary 3.17 (i), we have H1
alg(X (R),Z/2Z)⊥ ⊆ H1

alg(X (R),

Z/2Z). ��
Remarks 3.21 (i) This bound is sharp: if E is an elliptic curve over R, if
X → E is a conic bundle surface with smooth fibres over E(R), and
if X (R) is connected and nonempty while E(R) has two connected com-
ponents, it is an exercise to check that dimZ/2Z H1(X (R),Z/2Z) = 2 while
dimZ/2Z H1

alg(X (R),Z/2Z) = 1.

(ii) There are surfaces X over R with H2(X,OX ) �= 0 (e.g., K3 surfaces)
such that H1(X (R),Z/2Z) �= 0 but H1

alg(X (R),Z/2Z) = 0 (see [84, Exem-
ple 4.5.9]).

3.6.3 A criterion for the real integral Hodge conjecture

In the next statements, the real integral Hodge conjecture over an arbitrary real
closedfield ismeant in the sense ofDefinition 2.3. Similarly,when R �= R, “the
complex integral Hodge conjecture for 1-cycles on XC”when H2(X,OX ) = 0
simply refers to the surjectivity of the cycle class map clC : CH1(XC ) →
H2d−2(X (C),Z(d − 1)).

Theorem 3.22 Let X be a smooth, proper and geometrically irreducible vari-
ety over a real closed field R. Assume that Pic(XC )[2]=0, that H2(X,OX )=0,
and that XC satisfies the complex integral Hodge conjecture for 1-cycles.
Then X satisfies the real integral Hodge conjecture for 1-cycles if and only if
the following hold:

(i) if X (R) �= ∅, then H1(X (R),Z/2Z) = H alg
1 (X (R),Z/2Z);

(ii) if X (R) = ∅, then X contains a geometrically irreducible curve of even
geometric genus.

Proof The exact sequence of Proposition 3.14 fits into a commutative diagram

H2d−2(X (C),Z(d − 1)) H2d−2
G (X (C),Z(d − 1))0

ψ
M 0

CH1(XC )

clC

CH1(X)

cl
ϕ
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whose bottom horizontal map is the proper push-forward. The map clC is
surjective by assumption. Hence the surjectivity of cl is equivalent to that of ϕ.
The latter is, in turn, equivalent to (i)–(ii), by Theorem 3.6. ��

For smooth proper threefolds X that are rationally connected, or Calabi-
Yau (in the sense that KX � OX and H1(X,OX ) = H2(X,OX ) = 0), the
complex integral Hodge conjecture for 1-cycles was proved by Voisin [108,
Theorem 2] when R = R. Using comparison with étale cohomology and the
Lefschetz principle, the same holds for an arbitrary real closed field R. One
deduces:

Corollary 3.23 Let X be a smooth and proper threefold over a real closed
field R. Assume that X is rationally connected or is simply connected Calabi–
Yau. Then the real integral Hodge conjecture for X is equivalent to the equality
H alg
1 (X (R),Z/2Z) = H1(X (R),Z/2Z), if X (R) �= ∅, or to the existence of

a geometrically irreducible curve of even geometric genus, if X (R) = ∅.

4 Examples

We now provide various examples of smooth, proper and geometrically irre-
ducible varieties X over R such that one of the two equalities
ind1(X) = 1 (when X (R) = ∅) or H1(X (R),Z/2Z) = H alg

1 (X (R),Z/2Z)

(when X (R) �= ∅) fails. We recall that when X (R) = ∅, the condition
ind1(X) = 1 is equivalent to the existence of a curve of even genus in X
(see Corollary 3.11). All of these examples illustrate the obstructions to the
surjectivity of ϕ : CH1(X) → M described in Sect. 3.6.1.

4.1 Topological obstructions

The easiest examples are curves of positive genus. For a curve, only a
topological obstruction can prevent ϕ from being surjective, since the map
cl : CH1(X) → H2d−2

G (X (C),Z(d − 1))0 is an isomorphism when d = 1.

Example 4.1 (with real points) If X is a curve and X (R) has at least two
connected components, then H1(X (R),Z/2Z) �= H alg

1 (X (R),Z/2Z).

Example 4.2 (with no real point) If X is a curve of odd genus and X (R) = ∅,
then ind1(X) = 2 (see Corollary 3.11).

ByTheorem3.3, topological obstructions can only occur if Pic(XC)[2] �= 0.
Curves of positive genus satisfy the stronger property that the abelian variety
Pic0(XC) is non-zero. Let us now show that surfaces with Pic0(XC) = 0 can
also carry topological obstructions. The surfaces used in the next two examples
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even satisfy Hi (X,OX ) = 0 for all i > 0: they illustrate the sharpness of the
last statement of Corollary 3.17.

Example 4.3 (with real points) Let X be a real Enriques surface such that X (R)

is non-orientable (such surfaces exist; see, e.g., [46, Theorem 2.2]). By
the theorem of Mangolte and van Hamel [87, Theorem 1.1] recalled in
Remark 3.18 (ii), we then have H1(X (R),Z/2Z) �= H alg

1 (X (R),Z/2Z). This
is explained by a topological obstruction (see Remark 3.18 (ii) and the discus-
sion in Sect. 3.6.2).

As we have seen in Example 3.19, the map ϕ is always surjective for an
Enriques surface with no real point. To provide an analogue of Example 4.3 in
the case with no real point, we resort to Campedelli surfaces instead. These are
minimal surfaces of general type with Hi (X,OX ) = 0 for i > 0 and K 2

X = 2.
The precise surfaces we use below were constructed, overC, by Godeaux [57,
§6], and are also described in [91, §2.1]. We endow them with an appropriate
real structure.

Example 4.4 (with no real point) Let ζ be a primitive eighth root of unity. Let
f : P6(C) → P6(C) be the map defined by

f ([x0 : · · · : x6]) = [ζ x1 : x0 : ζ 2x3 : x2 : ζ 3x5 : x4 : x6].

Let H denote the group of diffeomorphisms of P6(C) generated by f . One
checks that H = Z/16Z and that the index 2 subgroup K = Z/8Z ⊂ H
acts holomorphically on P6(C) while the other elements of H act anti-
holomorphically. Let us identify ( f 2)∗O(1) with O(1) by mapping x0
to ζ x0 and let us consider the endomorphism of the complex vector space
H0(P6(C),O(2)) induced by f 2 and by this identification. The family
(xi x j )0≤i≤ j≤6 forms an eigenbasis. Let �i denote the eigenspace associated
with ζ 2i . For (Q0, . . . , Q3) ∈ ∏3

i=0 �i , let Y ⊂ P6(C) denote the subvariety
defined by Q0 = · · · = Q3 = 0. By an explicit computation based on the
Bertini theorem for linear systems, one checks that if Q0, . . . , Q3 are general,
then Y is a smooth surface that does not meet the fixed locus of f 8, hence does
not meet the fixed locus of any nontrivial element of H . Moreover, one checks
that there is a Zariski dense set of quadruples (Q0, . . . , Q3) for which Y is
stable under f . As a consequence, we can choose (Q0, . . . , Q3) such that Y
is a smooth surface on which H acts freely. The quotient S = Y/K is then
a smooth projective complex surface on which f induces a fixed-point free
antiholomorphic involution σ . There exist a real projective surface X and an
isomorphism X (C) � S throughwhich complex conjugation corresponds to σ

(see [101, Proposition I.1.4]). We then have X (R) = ∅. As Y is a simply con-
nected étale cover of both XC and X , we have π ét

1 (XC) = K and π ét
1 (X) = H ,
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hence H1
ét(XC,Z/2Z) = Z/2Z and H1

ét(X,Z/2Z) = Z/2Z. By the Kummer
exact sequence, we deduce that Pic(XC)[2] = Z/2Z and Pic(X)[2] = 0.
Corollary 3.17 (ii) now implies that ind1(X) = 2.

4.2 Hodge-theoretic obstructions

The next two examples are K3 surfaces. As such surfaces are simply con-
nected, they cannot carry a topological obstruction; however, they may carry a
Hodge-theoretic obstruction. These examples illustrate the importance of the
hypothesis H2(X,OX ) = 0 in Corollary 3.17.

Example 4.5 (with real points) Examples of quartic surfaces X ⊂ P3
R such

that H1(X (R),Z/2Z) �= H1
alg(X (R),Z/2Z) are given in [14, Example 3.4 (c)

and (d)] and [84, Exemple 4.5.9]. As a further example, take X to be a very
general small real deformation of a smooth quartic surface containing a real
line.The cohomology class of the line deforms to a classα ∈ H1(X (R),Z/2Z)

such that deg(α 
 clR(OX (1))) �= 0 ∈ Z/2Z by Ehresmann’s theorem,
and H1

alg(X (R),Z/2Z) is generated by clR(OX (1)) by the Noether–Lefschetz
theorem. Since deg(clR(OX (1)) 
 clR(OX (1))) = 0 ∈ Z/2Z, one has α /∈
H1
alg(X (R),Z/2Z).

Example 4.6 (with no real point) Let X ⊂ P3
R be a very general quartic surface

such that X (R) = ∅. As CH1(X) is generated by the class of a hyperplane
section, which has genus 3, Theorem 3.6 immediately implies that X does
not contain any geometrically irreducible curve of even geometric genus. This
example was first noted by Kollár, see [32, p. 15, Remarque (3)].

4.3 Cycle-theoretic obstructions (failures of the real integral Hodge
conjecture)

We now give examples, with or without real points, of cycle-theoretic obstruc-
tions to the surjectivity of ϕ. In view of Proposition 2.8, such obstructions
cannot occur on curves or surfaces. The examples we give are simply con-
nected threefolds which satisfy H2(X,OX ) = 0. As such, they cannot carry a
topological or Hodge-theoretic obstruction. Their construction relies on Kol-
lár’s specialisation method to provide counterexamples to the integral Hodge
conjecture (see [8]), as implemented by Totaro [104]. To the best of our knowl-
edge, Example 4.7 constitutes a new kind of example of a real variety X such
that H1(X (R),Z/2Z) �= H alg

1 (X (R),Z/2Z) (see Remark 2.7 (i)). Here, the
underlying phenomenon is a defect of the complex integral Hodge conjecture.

Example 4.7 (with real points) The example will be a hypersurface X ⊂ P1
Q×

P3
Q of bidegree (4, 4). Let us first fix a prime number p (for instance p = 2)
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and choose f p ∈ Z[u, v, x0, . . . , x3], bihomogeneous of bidegree (4, 4) in
(u, v), (x0, . . . , x3), whose zero locus X fp ⊂ P1

Q × P3
Q is smooth and whose

reduction modulo p is equal to v(u3x40 + u2vx41 + uv2x42 + v3x43). Let us
choose fR ∈ Q[u, v, x0, . . . , x3], bihomogeneous of bidegree (4, 4), such
that X fR ⊂ P1

Q × P3
Q is a smooth hypersurface containing P1

Q × {[1 : 0 :
0 : 0]}. Such fR exist as a consequence of the refined Bertini theorem of [67,
Theorem 7]. Finally, let f ∈ Q[u, v, x0, . . . , x3] be arbitrarily close to fR in
the real topology and to f p in the p-adic topology, and let X = X f . As f is
p-adically close to f p, the argument used in the proof of [104, Theorem 3.1]
shows that every curve in XC has even degree over P1

C. A fortiori, every curve
in X has even degree over P1

R: the push-forward map H1(X (R),Z/2Z) →
H1(P1(R),Z/2Z)must vanish on H alg

1 (X (R),Z/2Z). On the other hand, as f
is close to fR, this push-forward map is surjective. (Its surjectivity is indeed
invariant under small real deformations, by Ehresmann’s theorem.) Hence
H1(X (R),Z/2Z) �= H alg

1 (X (R),Z/2Z).

Example 4.8 (with no real point) Let B be a smooth, projective conic over Q
such that B(R) = ∅. Let p be a prime of good reduction for B, i.e., such
that there exists a smooth Z(p)-scheme B with generic fiber B and special
fiberP1

Fp
. LetY = B×P3, Y = B×P3, andY0 = Y ⊗Fp = P1

Fp
×P3

Fp
. Let

OY (4, 4) be the dual of ω⊗2
B �ωP3 . As H1(Y ,OY (4, 4)) = 0, the restriction

map H0(Y ,OY (4, 4)) → H0(Y0,OY0(4, 4)) is onto. In addition, its kernel
is Zariski dense in H0(Y,OY (4, 4)) (viewed as an affine space overQ).We can
therefore choose a section f ∈ H0(Y ,OY (4, 4)) which reduces to v(u3x40 +
u2vx41 + uv2x42 + v3x43) ∈ H0(Y0,OY0(4, 4)) modulo p, where [u : v] and
[x0 : x1 : x2 : x3] respectively denote the homogeneous coordinates of P1

Fp

and of P3
Fp
, and such that the zero locus X f ⊂ B × P3 is smooth over Q. Let

X = X f ⊗Q R. The argument used in the proof of [104, Theorem 3.1] shows
that every curve in XC has even degree over BC. A fortiori, every curve in X
has even degree over BR. By Proposition 3.12, it follows that every curve in X
has odd genus, so that ind1(X) = 2.

In view of Examples 4.7 and 4.8, it is natural to ask:

Question 4.9 Does there exist a smooth, proper and geometrically irreducible
variety X overR such that XC satisfies the complex integral Hodge conjecture
for 1-cycles, but such that X has a cycle-theoretic obstruction to the surjectivity
of ϕ?

Although we do not know any variety over R with these properties, we will
exhibit such examples over non-archimedean real closed fields in [29, §9.2].

123



O. Benoist, O. Wittenberg

5 Bloch–Ogus theory and torsion 1-cycles

In this section, we apply Bloch–Ogus theory to investigate the consequences
of the real integral Hodge conjecture for the study of the group CH1(X)tors
and of its image in H1(X (R),Z/2Z) by the Borel–Haefliger cycle class map.
The main result is Theorem 5.4. We illustrate its applicability in Sect. 5.4 by
computing CH1(X)tors for a smooth quartic threefold X over a real closed
field R, under the assumption that X satisfies the real integral Hodge conjec-
ture and that X (R) = ∅. As a preliminary step, we prove, in Sect. 5.2, that the
defect of the real integral Hodge conjecture, for a threefold, can be interpreted
in terms of unramified cohomology; this is a real analogue of a theorem of
Colliot-Thélène and Voisin [36]. Along the way, we also obtain some new
technical results of independent interest in Sect. 5.1, such as the vanishing
of the upper differentials in the coniveau spectral sequence for the equivari-
ant cohomology of X (C) with coefficients in an arbitrary G-module M (see
Proposition 5.1 (vi)), an assertion which was previously known only when M
is one of Z/2Z, Q/Z, Q/Z(1) (due to the work of Colliot-Thélène, Parimala,
Scheiderer, van Hamel; see [33, §3.1], [34, §3], [96, Proposition 19.8], [106,
§2]).

5.1 Complements on Bloch–Ogus theory

We collect, in Sect. 5.1, some results on Bloch–Ogus theory in the context of
equivariant semi-algebraic cohomology. General references for this theory are
[20,31]. It was applied in real algebraic geometry in [33], [96, Chapter 19],
[34,65,106] with Z/2Z coefficients and in [11, §2] with Z2 coefficients.

We fix a G-module M . Applying [31, Remark 5.1.3 (3)] to the cohomology
theory with supports (X, Z) �→ H∗

G,Z(C)(X (C), M), we obtain the coniveau
spectral sequence, which, in view of (1.21), takes the form

E p,q
1 =

⊕

Z⊆X

lim−→
U⊆Z

Hq−p
G (U (C), M(−p)) ⇒ H p+q

G (X (C), M) (5.1)

for any smooth variety X over R; here, the direct sum ranges over the irre-
ducible Zariski closed subsets Z ⊆ X of codimension p and the direct limit
ranges over the dense Zariski open subsets U ⊆ Z . Clearly E p,q

r = 0 for all
r ≥ 1 whenever p > q.

This cohomology theory with supports satisfies the étale excision and
homotopy invariance axioms of [31, §5.1, §5.3], as a consequence of the
semi-algebraic implicit function theorem (see [44, Example 5.1]), for étale
excision, and of (1.17) and [38, Corollary 4.5], for homotopy invariance. By
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[31, Corollary 5.1.11 and Proposition 5.3.2], we deduce, for any p, q, a canon-
ical isomorphism

E p,q
2 = H p(X,H

q
X (M)) (5.2)

if H
q
X (M) denotes the Zariski sheaf associated with the presheaf U �→

Hq
G(U (C), M).
We denote by N pHi

G(X (C), M) ⊆ Hi
G(X (C), M) the subgroup of those

classes α for which there exists a Zariski closed subset Z ⊆ X of codimen-
sion ≥ p such that α is supported on Z(C). The filtration thus defined, called
the coniveau filtration, is the one determined by (5.1).

The preceding discussion also applies with equivariant cohomology
replaced by cohomology (or we may simply apply it to XC viewed as a geo-
metrically reducible variety over R in the naive way). We let π : XC → X
denote the projection map andH q

XC
(M) the Zariski sheaf, on XC , associated

with the presheaf U �→ Hq(U (C), M). The next proposition summarises the
analogues, for semi-algebraic cohomology with coefficients in Z, of some of
the statements of [11, §2] (assertions (i), (ii), (iii)) and of [96, Chapter 19] and
[106, §1.7–§2] (assertions (iv), (v), (vi)).

Proposition 5.1 Let X be a smooth variety over R, of dimension d.

(i) Let M be a G-module. For every p, q ≥ 0, there are canonical iso-
morphisms H

q
X (M[G]) = π∗H q

XC
(M) and H p(X, π∗H q

XC
(M)) =

H p(XC ,H
q
XC

(M)).

(ii) For every q ≥ 0, the sheavesH q
X (Z(q−1)) andH q

X (Z[G]) are torsion-
free.

(iii) The real-complex exact sequence (1.1) induces an exact sequence

0 → H
q
X (Z(q − 1)) → π∗H q

XC
(Z) → H

q
X (Z(q))

H
q+1
X (Z(q − 1)) → π∗H q+1

XC
(Z) → H

q+1
X (Z(q)) → 0

for every q ≥ 0.
(iv) Let q > d. Let M be a G-module. Let us denote by ι : X (R) → X the nat-

ural morphism of sites from the semi-algebraic site of X (R) to the small
Zariski site of X. The natural mapH q

X (M) → ι∗Hq(G, M) is an isomor-
phism. In addition, one has H p(X,H

q
X (M)) = H p(X (R), Hq(G, M))

for all p ≥ 0.
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(v) For j ∈ Z and i ≥ 0, the restriction map Hi
G(X (C),Z( j)) →

Hi
G(X (R),Z( j)) and the decomposition (1.30) induce an isomorphism

Hi
G(X (C),Z( j))/Ni−d Hi

G(X (C),Z( j)) ∼−→
⊕

0≤p<i−d
p≡i− j mod 2

H p(X (R),Z/2Z).

(vi) The differential E p,q
r → E p+r,q−r+1

r of the coniveau spectral
sequence (5.1) vanishes for all p, q, r such that r ≥ 2 and q > d and for
any G-module M.

Proof The first isomorphism of (i) follows from (1.5). The second one is
obtained in [34, Lemma 2.2.1 (a)] with Z/2Z coefficients and in [11, Proposi-
tion 2.1] in the setting of 2-adic cohomology. The arguments given there apply
verbatim with equivariant semi-algebraic cohomology with coefficients in M .

For any prime number �, the sheaf associated withU �→ Hq
ét(U,Z�(q−1))

is torsion-free (see [11, Proposition 2.2], where the assumption that � = 2 is
not used; the underlying argument, which rests on the Bloch–Kato conjecture,
goes back to [27, Proof of Theorem 1] and to [36, Théorème 3.1] and does
not depend on the nature of the ground field R). By the comparison between
equivariant semi-algebraic cohomology and �-adic cohomology, it follows that
the sheaf H q

X (Z(q − 1)) is torsion-free. Applying this to XC and noting that
H

q
X (Z[G]) = π∗H q

XC
(Z(q − 1)), we see that H q

X (Z[G]) is torsion-free as
well. The proof of (ii) is complete.

Assertion (iii) follows from (i) and (ii). This is observed in [11, Proposi-
tion 2.5] for 2-adic cohomology and the same proof applies here.

Assertion (iv) for torsion G-modules M is due to Scheiderer [96, Corol-
lary 6.9.1 and Corollary 19.5]. We adapt his arguments to an arbitrary
G-moduleM as follows.The restrictionmapHq

G(U (C), M) → Hq
G(U (R), M)

is an isomorphism for any q > d and any affine open subset U ⊆ X , by
Lemma 1.16. In addition, the map Hq

G(U (R), M) → H0(U (R), Hq(G, M))

induced by the spectral sequence

Ea,b
2 (U ) = Ha(U (R), Hb(G, M)) ⇒ Ha+b

G (U (R), M)

(see (1.3)) becomes an isomorphismafter sheafificationwith respect toU , since
the sheaf associated with the presheaf U �→ Ea,b

2 (U ) vanishes when a > 0
according to [96, Proposition 19.2.1] (see also the proof of [106, Lemma 1.2]).
All in all, we obtain the desired isomorphism H

q
X (M)

∼−→ ι∗Hq(G, M). On
the other hand, the functor ι∗ is exact, by [96, Theorem 19.2]. By the Leray
spectral sequence for ι, assertion (iv) follows.

Assertion (vi) forM = Z/2Z is due to vanHamel [106,Theorem2.1].Based
on Proposition 1.8, we extend his arguments to integral coefficients. In fact, we
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shall prove (v) and (vi) forM = Z( j) simultaneously. To this end, we first note
that by purity for semi-algebraic cohomology, the group H p

Z(R)(X (R),Z/2Z)

vanishes for any closed subset Z ⊆ X of codimension > p. (See (1.13) and
the proof of [85, Chapter VI, Lemma 9.1].) Hence the restriction map induces
a map

Hi
G(X (C),Z( j))/Ni−d Hi

G(X (C),Z( j)) →
⊕

0≤p<i−d
p≡i− j mod 2

H p(X (R),Z/2Z),

(5.3)

which is surjective by Proposition 1.8. Let us now consider the coniveau
spectral sequence (5.1) associated with M = Z( j). We have E p,q

2 =
H p(X (R), Hq(G,Z( j))) whenever q > d, according to (iv) and to (5.2).
The target of (5.3) can therefore be rewritten as

⊕
0≤p<i−d E

p,i−p
2 . On the

other hand, the domain of (5.3) has the same cardinality as
⊕

0≤p<i−d E
p,i−p∞ ,

which is finite. As E p,i−p∞ is a subquotient of E p,i−p
2 for all p and as (5.3) is

surjective, it follows that (5.3) is an isomorphism and that E p,i−p∞ = E p,i−p
2

for p < i − d. We have thus established (v), as well as (vi) for M = Z( j)
(with q = i − p).

It remains to check (vi) for an arbitrary G-module M , which we now fix.
The map Hq(G, N ( j)) → Hq(G, M( j)) induced by the natural morphism
of G-modules N = Z(H0(G,M)) ⊕ Z(1)(H

0(G,M(1))) → M is surjective for
q = 0 and any j , therefore also for any q and any j since the boundary map
Hq−1(G, M( j + 1)) → Hq(G, M( j)) of (1.1) is surjective when q > 0
(see [23, Chapter III, Corollary 5.7, Proposition 5.9, Corollary 6.6]). For
q > 0, this is a surjection between Z/2Z-vector spaces, hence it is a split
surjection. We deduce that the group H p(X (R), Hq(G, N )) surjects onto
H p(X (R), Hq(G, M)) for all p ≥ 0 and all q > 0. This remark, together
with assertion (iv) for the G-modules M and N and with assertion (vi) for the
G-module N (which we have already shown to hold) implies assertion (vi)
for M . ��

5.2 Coniveau and the real integral Hodge conjecture for 1-cycles

If X is a smooth, proper and irreducible complex variety of dimension d
such that CH0(X) is supported on a surface (i.e., such that there exists a
closed subvariety Y ⊆ X of dimension ≤ 2 such that CH0(Y ) � CH0(X)),
Colliot-Thélène and Voisin [36, Corollaire 3.12] have shown that the defect
of the integral Hodge conjecture for 1-cycles on X is measured by the group
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Hd−3(X,H d
X (Q/Z(d − 1))). We establish, in Proposition 5.2 below, an ana-

logue of this statement for real varieties.
For a variety X defined over a real closed field R, a G-module M and any

q ≥ 0, we set H q
X (M)0 = Ker

(
H

q
X (M) → ι∗Hq(G, M)

)
(notation as in

Proposition 5.1 (iv)).

Proposition 5.2 Let X be a smooth, proper and geometrically irreducible
variety, of dimension d, over a real closed field R. If CH0(XC ′) is supported
on a surface for every algebraically closed field C ′ containing R, there is a
canonical isomorphism

Hd−3(X,H d
X (Q/Z(d − 1))0) = Coker

(
CH1(X) → H2d−2

G (X (C),Z(d − 1))0
)

tors
.

If moreover R = R or H2(X,OX ) = 0, the real integral Hodge con-
jecture (see Sect. 2.2) holds for 1-cycles on X if and only if the group
H (d−3)(X,H d

X (Q/Z(d − 1))0) vanishes.

Proof Let us consider the commutative square

H d
X (Q/Z(d − 1)) H d+1

X (Z(d − 1))
�

ι∗Hd(G,Q/Z(d − 1)) ∼
ι∗Hd+1(G,Z(d − 1)),

(5.4)

whose horizontal maps come from the short exact sequence 0 → Z → Q →
Q/Z → 0. The vertical map on the right is an isomorphism, by Proposi-
tion 5.1 (iv). Hence the kernel of the top horizontal map isH d

X (Q/Z(d −1))0
and we therefore obtain, in view of Proposition 5.1 (ii), a short exact sequence

0 H d
X (Z(d − 1)) H d

X (Q(d − 1)) H d
X (Q/Z(d − 1))0 0.

(5.5)

The sheaf H d
X (Q(d − 1)) is a direct summand of π∗H d

XC
(Q). By Proposi-

tion 5.1 (i), it follows that Hd−3(X,H d
X (Q(d − 1))) injects into Hd−3(XC ,

H d
XC

(Q)). The latter group vanishes since CH0(XC ′) is supported on a
surface for every algebraically closed fieldsC ′ containingC (see [36, Proposi-
tion 3.3 (ii)], whose proof goes through over an arbitrary algebraically closed
field of characteristic 0 provided one replaces the hypothesis on CH0(XC )

with the same hypothesis on CH0(XC ′) for allC ′). In view of (5.5), we deduce
that

Hd−3(X,H d
X (Q/Z(d − 1))0) = Hd−2(X,H d

X (Z(d − 1)))tors. (5.6)
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Let us nowconsider the coniveau spectral sequence (5.1) forM = Z(d−1).We
have Hd−2(X,H d

X (Z(d − 1))) = Ed−2,d
2 (see (5.2)). By Proposition 5.1 (vi)

and in view of the fact that E p,q
1 = 0 for p > q, we also have Ed−2,d∞ =

Ed−2,d
2 . On the other hand, we have

Nd−1H2d−2
G (X (C),Z(d − 1)) = Im

(
CH1(X)→H2d−2

G (X (C),Z(d − 1))
)

(5.7)

as a consequence of equivariant purity (see (1.21)) and

Nd−2H2d−2
G (X (C),Z(d − 1)) = H2d−2

G (X (C),Z(d − 1))0 (5.8)

according to Proposition 5.1 (v) applied with i = 2d − 2, j = d − 1. As the
quotient of (5.8) by (5.7) is Ed−2,d∞ , we conclude that

Hd−2(X,H d
X (Z(d − 1))) = Coker

(
CH1(X) → H2d−2

G (X (C),Z(d − 1))0
)
. (5.9)

Togetherwith (5.6), this proves the first statement. If R = R or H2(X,OX )=0,
the cycle class map CH1(XC ) ⊗Z Q → Hdg2d−2(X (C),Q(d − 1)) is
onto (we use the convention that all classes are Hodge if H2(X,OX )=0):
by the Lefschetz principle one reduces to the case C = C, for
which see [81, p. 91]. It follows, by a trace argument, that the torsion
subgroup of the right-hand side of (5.9) is canonically isomorphic to

Coker
(
CH1(X) → Hdg2d−2

G (X (C),Z(d − 1))0
)
, as desired. ��

Remarks 5.3 (i) According to the generalisedBloch conjecture, the hypothesis
that CH0(XC ′) is supported on a surface for every algebraically closed fieldC ′
containing R should be equivalent to the vanishing of Hi (X,OX ) for all i ≥ 3
(see [66, §3], [107, Théorème 22.17], [111, Conjecture 1.11]).

(ii) If R has infinite transcendence degree over Q (for instance, if R = R),
the group CH0(XC ′) is supported on a surface for every algebraically closed
field C ′ containing R if and only if it is so for C ′ = C (by an argument known
as decomposition of the diagonal, see [18, Appendix to Lecture 1]).

(iii) As a consequence of Proposition 5.2, if X is a real threefold such that
CH0(XC) is supported on a surface (for instance, a uniruled threefold), the
defect of the real integral Hodge conjecture for X is measured by the subgroup
H3
nr(X,Q/Z(2))0 of the unramified cohomology group H3

nr(X,Q/Z(2)) =
H0(X,H 3

X (Q/Z(2))) consisting of those classes whose restriction to any real
point of X vanishes.
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5.3 Torsion 1-cycles

Thanks to Proposition 5.2, we are now in a position to derive consequences of
the real integral Hodge conjecture on the study of CH1(X)tors.

If X is a smooth, proper and irreducible variety of dimension d over R,
we denote by λ : CH1(X)tors → H2d−3

ét (X,Q/Z(d − 1)) Bloch’s Abel–
Jacobi map. (See [17] for its construction over an algebraically closed
field; the construction goes through over a real closed field, as explained
in [106, Theorem 3.1].) The map λ takes its values in the inverse image
H2d−3
G (X (C),Q/Z(d − 1))0 of H2d−2

G (X (C),Z(d − 1))0 by the boundary
map

H2d−3
G (X (C),Q/Z(d − 1)) → H2d−2

G (X (C),Z(d − 1)) (5.10)

since the composition of λ with this boundary map coincides with the equiv-
ariant cycle class map (see [35, Corollaire 1] and Theorem 1.18).

In the next statements, we denote by clR the two Borel–Haefliger cycle class
maps Pic(X) → H1(X (R),Z/2Z) and CH1(X) → Hd−1(X (R),Z/2Z).

Theorem 5.4 Let X be a smooth, proper and geometrically irreducible vari-
ety, of dimension d, over a real closed field R. Assume that R = R or
H2(X,OX ) = 0, and that X satisfies the real integral Hodge conjecture for
1-cycles. Finally, assume that for every algebraically closed field C ′ contain-
ing R, the group CH0(XC ′) is supported on a surface.

(i) Bloch’s Abel–Jacobi map induces a surjection

λ : CH1(X)tors � H2d−3
G (X (C),Q/Z(d − 1))0

(even an isomorphism if d ≤ 3).
(ii) The subgroup clR(CH1(X)[2∞]) and the image of the map

H2
G(X (C),Z(1)) → H2

G(X (R),Z(1)) = H1(X (R),Z/2Z)

obtained by composing the restriction map and the decomposition (1.30)
are exact orthogonal complements under the Poincaré duality pairing.

In view of Proposition 2.9 and Theorem 1.18, Theorem 5.4 (ii) has the
following corollary. It is the twin of Theorem 3.16 (i); when d = 2, the two
are equivalent.

Corollary 5.5 Let X be as in Theorem 5.4. If H2(X,OX ) = 0, the subgroups
clR(CH1(X)[2∞]) and clR(Pic(X)) are exact orthogonal complements under
the Poincaré duality pairing.
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Proof of Theorem 5.4 We start with (i). It is well known that λ is injective
if d ≤ 3 (see [35, Corollaire 1]). It is also a general fact that Im(λ) =
Nd−2H2d−3

G (X (C),Q/Z(d − 1)) (see [106, Theorem 3.1]). These remarks,
together with (5.8) and with the next lemma, imply (i).

Lemma 5.6 The inverse image of Nd−2H2d−2
G (X (C),Z(d−1)) by the bound-

ary map (5.10) is equal to Nd−2H2d−3
G (X (C),Q/Z(d − 1)).

Proof Let us denote by Ap,q
r (resp., B p,q

r ) the term E p,q
r (resp., E p,q+1

r ) of
the coniveau spectral sequence (5.1) associated with M = Q/Z(d − 1) (resp.,
M = Z(d−1)). The short exact sequence 0 → Z → Q → Q/Z → 0 induces
a morphism of cohomology theories with supports H∗

G,Z(C)(X (C),Q/Z(d −
1)) → H∗+1

G,Z(C)(X (C),Z(d − 1)) in the sense of [31, §5.1] and, hence, a
morphism of spectral sequences

Ap,q
1 H p+q

G (X (C),Q/Z(d − 1))

B p,q
1 H p+q+1

G (X (C),Z(d − 1)).

(5.11)

The sheaf H q
X (Q(d − 1)) vanishes for q > d, being a direct summand of

π∗H q
XC

(Q); hence, the boundarymapH q
X (Q/Z(d−1)) → H

q+1
X (Z(d−1))

is an isomorphism for q > d and is surjective for q = d. We deduce, on the
one hand, that Ap,q

2
∼−→ B p,q

2 for q > d (thanks to (5.2)), and, on the other
hand, that the sequence

0 H d
X (Q/Z(d − 1))0 H d

X (Q/Z(d − 1)) H d+1
X (Z(d − 1)) 0

(5.12)

is exact (as we have already observed its exactness on the left, in (5.4)). Now,
our hypothesis that X satisfies the real integral Hodge conjecture for 1-cycles
implies, by Proposition 5.2, that Hd−3(X,H d

X (Q/Z(d−1))0) = 0. It follows,

in view of (5.12) and (5.2), that Ad−3,d
2 ↪→ Bd−3,d

2 . Thus, the map Ap,q
2 →

B p,q
2 is injective for all p, q such that p + q = 2d − 3 and q ≥ d. As the

differentials B p−r,q+r−1
r → B p,q

r vanish for r ≥ 2 and q ≥ d (indeed, even
for q ≥ d + 1 − r , see Proposition 5.1 (vi)), we conclude that Ap,q∞ ↪→ B p,q∞
for all p, q such that p + q = 2d − 3 and q ≥ d. ��

We now deduce (ii) from (i). By (i), by Theorem 1.18, and by the compati-
bility between λ and the equivariant cycle class map (see [35, Corollaire 1]),
we have
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clR(CH1(X)[2∞]) = clR(CH1(X)tors) = ψ
((

H2d−2
G (X (C),Z(d − 1))0

)
tors

)
,

where ψ is as in Definition 3.2.
From this point on, we proceed as in the proof of Theorem 3.3. Let us

take up, from Sect. 1.3.1, the notation H p = H p(X (R),Z/2Z). The map u2
appearing in (1.46) can be inserted into a diagram

H0 ⊕ H1 = H1
G(X (R),Z/2Z)

δ2

H2
G(X (R),Z(1)) = H1

H1 H2−d ⊕ · · · ⊕ H1 u2 H2
G(X (C), X (R),Z/2Z) H3

G(X (C), X (R),Z(1)),

(5.13)

in which the leftmost arrows are the obvious inclusions, the vertical maps
are the connecting homomorphisms of the localisation exact sequences, and
the canonical isomorphisms of the first row are the decompositions (1.26)
and (1.30). By the description of u2 given after (1.46), this diagram com-
mutes. In addition, the map from the bottom left H1 to the top right H1 is
the identity map. It follows that the kernel of the composition θ ′

1 : H1 →
H3
G(X (C), X (R),Z(1)) of all of the maps of the bottom row of (5.13) coin-

cides with the image of the map appearing in the statement of Theorem 5.4 (ii).
Let θ : H2d−2

G (X (C)\X (R),Z(d−1)) → Hd−1 denote the map defined at
the end of the proof of Theorem3.3 and let θ1 : H2d−3

G (X (C)\X (R),Q/Z(d−
1)) → Hd−1 denote its composition with the boundary map arising from the
short exact sequence 0 → Z → Q → Q/Z → 0. As remarked during the
proof of Theorem 3.3, the map ψ coincides with the composition of θ with

the isomorphism of Lemma 3.5. Hence ψ
((

H2d−2
G (X (C),Z(d − 1))0

)
tors

)

is equal to the image of θ1.
Unravelling the definitions of θ1 and of θ ′

1 and applying Theorem 1.12,
Proposition 1.10, and Remark 1.11 (ii), we see that the Pontrjagin dual of θ ′

1
is θ1. The kernel of θ ′

1 and the image of θ1 are therefore exact orthogonal
complements, which completes the proof of (ii). ��

5.4 An example: torsion 1-cycles on real quartic threefolds

To illustrate the contents of Sect. 5, we now determine the torsion subgroup
of the Chow group of 1-cycles of a real quartic threefold with no real point.

Proposition 5.7 Let R be a real closed field and X ⊂ P4
R a smooth quartic

threefold such that X (R) = ∅. If X satisfies the real integral Hodge conjecture
for 1-cycles, then there exists an isomorphism of abelian groupsCH1(X)tors �
Z/2Z ⊕ (Q/Z)30.
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We shall prove, in [29, §7], that if R = R, then X does satisfy the real
integral Hodge conjecture for 1-cycles (an assertion which is equivalent to the
existence of a geometrically irreducible curve of even geometric genus in X , by
Theorem 3.22), so that the conclusion of Proposition 5.7 holds unconditionally
in this case. We do not know whether the conclusion of Proposition 5.7 holds
with no assumption on R.

Proof of Proposition 5.7 Applying [94, Theorem 6] or the rational connect-
edness of Fano varieties shows that the group CH0(XC ′) is supported on a
point for every algebraically closed field C ′ containing R. We can therefore
apply Theorem 5.4 (i) and conclude that Bloch’s Abel–Jacobi map induces
an isomorphism CH1(X)tors = H3

G(X (C),Q/Z(2)). The latter group is an
extension of H4

G(X (C),Z(2))tors by H3
G(X (C),Z(2))⊗Z Q/Z. The next two

lemmas now imply the proposition.

Lemma 5.8 There is a canonical isomorphism H4
G(X (C),Z(2)) = Z ⊕

Z/2Z, the first summand being generated by cl(L + L̄), where L ⊂ XC
denotes a line and L̄ its conjugate.

Proof The class cl(L+L̄) ∈ H4
G(X (C),Z(2))generates a subgroupof index2,

by Proposition 3.14. In addition, this class is not divisible by 2. Indeed, if it
were, one would deduce, by taking the cup product with the class ofOX (1), the
surjectivity of the natural map H6

G(X (C),Z(3)) → H6(X (C),Z(3)) = Z,
whichwould contradict Proposition2.10 since X (R) = ∅. The lemma follows.

��
Lemma 5.9 The finitely generated abelian group H3

G(X (C),Z(2)) has
rank 30.

Proof Let us apply the Lefschetz fixed-point theorem to the complex conju-
gation involution of X (C) (over an arbitrary real closed field, see [25]). As
this involution has no fixed point, we deduce from the canonicalG-equivariant
isomorphisms H2i (X (C),Q) = Q(−i) for i ∈ {0, 1, 2, 3} and from the van-
ishing of H1(X (C),Q) and of H5(X (C),Q) that the generator of G acts on
H3(X (C),Q) with trace 0. On the other hand, the vector space H3(X (C),Q)

has dimension 60 (see [48, Example 5.24]). This implies the lemma, since
H3
G(X (C),Q) = H3(X (C),Q)G . ��

Remarks 5.10 (i) When R = R, one can exploit the structure of the group
of real points of the intermediate Jacobian of X to verify that in the situation
of Proposition 5.7, Theorem 5.4 (i) allows one to produce, at the price of a
significantly more involved computation, an isomorphism CH1(X) � Z ⊕
Z/2Z ⊕ (R/Z)30.

(ii) It is possible to perform the computations of Proposition 5.7 for some
smooth quartic threefolds with real points. In this setting, Lemma 5.9 still
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holds, by [101, Chapter I, p. 12, (2.5)], and [29, Proposition 7.7] allows us to
prove, when R = R, that at least some of these varieties still satisfy the real
integral Hodge conjecture. As an example, we have verified that CH1(X)tors �
Z/2Z ⊕ (Q/Z)30 if X has homogeneous equation x40 + x41 = x42 + x43 + x44 .
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