Exercise sheet 4:
Discrete subgroups of Lie groups

March 14, 2019

Exercise 1 (Tits representation of triangle groups). 1. Let x, y and z be real numbers. Verify the following identity:

$$\cos^2(x) + \cos^2(y) + \cos^2(z) + 2 \cos(x) \cos(y) \cos(z) - 1 = 4 \prod_{\varepsilon_y,\varepsilon_z \in \{-1,1\}} \cos \left(\frac{x + \varepsilon_y y + \varepsilon_z z}{2} \right).$$

2. Let $p, q, r \in \{2, \ldots, \infty\}$ and let M be the Coxeter diagram

$$
\begin{pmatrix}
1 & p & q \\
p & 1 & r \\
q & r & 1
\end{pmatrix}.
$$

Show that the Tits form of M has signature $(3, 0)$ when

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1$$

and signature $(2, 1)$ when

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1.$$

Exercise 2 (Reversed exercise 1). Let x, y, z be real numbers between 0 and $\frac{\pi}{2}$. We endow \mathbb{R}^3 with the bilinear form q whose matrix in the standard basis e_1, e_2, e_3 is

$$
\begin{pmatrix}
1 & -\cos(x) & -\cos(y) \\
-\cos(x) & 1 & -\cos(z) \\
-\cos(y) & -\cos(z) & 1
\end{pmatrix}.
$$

1. Assume that q is positive definite. Let v_1, v_2, v_3 be respectively unit vectors in $e_2^+ \cap e_3^+$, $e_3^+ \cap e_1^+$ and $e_1^+ \cap e_2^+$. Show that v_1, v_2 and v_3 form a triangle in the unit sphere $\{q = 1\}$ with angles x, y and z.

2. Assume now that q has signature $(2,1)$. Show that q is negative on $e_2^+ \cap e_3^+$, $e_3^+ \cap e_1^+$ and $e_1^+ \cap e_2^+$.

3. Let v_1, v_2, v_3 be respectively unit vectors in $e_2^+ \cap e_3^+$, $e_3^+ \cap e_1^+$ and $e_1^+ \cap e_2^+$. Show that v_1, v_2 and v_3 form a triangle in the hyperbolic plane $q = -1$ with angles x, y and z.

4. Assume now that q is degenerate. Show that $\ker q$ has dimension 1 and that q is positive definite on $V = \mathbb{R}^3 / \ker q$.

5. Let e_1^\perp, e_2^\perp and e_3^\perp denote the projections of e_1, e_2 and e_3 onto V. Show that $\langle e_1, e_2 \rangle = \pi - x$, $\langle e_2, e_3 \rangle = \pi - z$ and $\langle e_3, e_1 \rangle = \pi - y$.

Exercises 3 (Uniform hyperbolic lattices in all dimensions). Let q be the quadratic form on \mathbb{R}^n given by

$$q(x) = x_1^2 + \ldots + x_{n-1}^2 - \sqrt{2}x_n^2.$$

Define $\Gamma = O(q) \cap GL(n, \mathbb{Z}[\sqrt{2}])$. The goal of this exercise is to prove that Γ is a uniform lattice in $O(q)$.

Let \overline{q} denote the quadratic form

$$\overline{q}(x) = x_1^2 + \ldots + x_{n-1}^2 + \sqrt{2}x_n^2.$$

Image of q by the Galois automorphism of $\mathbb{Q}[\sqrt{2}]$. Let Q and Q' be the quadratic forms on $\mathbb{R}^n \times \mathbb{R}^n$ given respectively by

$$Q(u, v) = q(u + \sqrt{2}v) + \overline{q}(u - \sqrt{2}v)$$

and

$$Q'(u, v) = \frac{1}{\sqrt{2}} \left(q(u + \sqrt{2}v) - \overline{q}(u - \sqrt{2}v) \right).$$

1. Show that Q and Q' take integral values on $\mathbb{Z}^n \times \mathbb{Z}^n$.

Let G be the subgroup of $GL(\mathbb{R}^n \times \mathbb{R}^n)$ preserving Q and Q'.

2. Assume that there exists a sequence $(u_n, v_n) \in \mathbb{Z}^n \times \mathbb{Z}^n$ and a sequence $g_n \in G$ such that $g_n(u_n, v_n) \xrightarrow{n \to +\infty} 0$. Show that for n large enough, $Q(v_n) = Q'(v_n) = 0$. Deduce that $v_n = 0$ for n large enough.

3. Show that the G-orbit of the lattice $\mathbb{Z}^n \times \mathbb{Z}^n$ is compact in the space of lattices in $\mathbb{R}^n \times \mathbb{R}^n$.

$$2$$
Define
\[\varphi : \Gamma \to \text{GL}(\mathbb{Z}^n \times \mathbb{Z}^n) \]
\[A + \sqrt{2}B \mapsto \begin{pmatrix} A & 2B \\ B & A \end{pmatrix}. \]

4. Show that \(\varphi \) is an injective group morphism and that
\[\varphi(\Gamma) = G \cap \text{GL}(\mathbb{Z}^n \times \mathbb{Z}^n). \]

5. Show that there exists an isomorphism \(\psi : G \to O(q) \times O(\widetilde{q}) \) such that
\[\pi \circ \psi \circ \varphi = i, \]
where \(\pi : O(q) \times O(\widetilde{q}) \to O(q) \) denotes the projection on the first factor and \(i : \Gamma \to O(q) \) denotes the inclusion.

6. Conclude.