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Motivation

NC(n) := {w ∈ Sn | `T (w) + `T (w−1c) = `T (c)}, where
T := {all transpositions of Sn}, `T associated length function
(�absolute length�);

c is a long cycle (n-cycle).

NC(n) is

equipped with a natural partial order (�absolute order�), and is
a lattice;

isomorphic to the poset of NonCrossing partitions of an n-gon
(�noncrossing partition lattice�), so it is counted by the
Catalan number Cat(n) = 1

n+1

(2n
n

)
.



Generalization to �nite Coxeter groups (or re�ection groups):

replace Sn with a Coxeter group W ;

replace T with R := {all re�ections of W }, and `T with `R ;

replace c with a Coxeter element of W .

the W -noncrossing partition lattice

NC(W , c) := {w ∈W | `R(w) + `R(w−1c) = `R(c)}

also equipped with a �W -absolute order�;

counted by the W -Catalan number Cat(W ) :=
∏

n

i=1
di+h
di

.

Cat(W ) appears in other combinatorial objects attached to (W , c):
cluster complexes, generalized associahedra, Cambrian fans and
lattices, subword complexes...
 �Coxeter-Catalan combinatorics�.
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Coxeter element of a Coxeter system

De�nition

A Coxeter system (W , S) is a group W equipped with a generating
set S of involutions, such that W has a presentation of the form:

W =
〈
S
∣∣ s2 = 1 (∀s ∈ S); (st)ms,t = 1 (∀s 6= t ∈ S)

〉
,

with ms,t ∈ N≥2 ∪ {∞} for s 6= t.

Coxeter element, �De�nition 0�

Write S := {s1, . . . , sn}. A Coxeter element of (W , S) is a product
of all the generators:

c = sπ(1) . . . sπ(n) for π ∈ Sn.

Fact: When W is �nite, all Coxeter elements of (W , S) are
conjugate. (ingredient: the Coxeter graph is a forest)
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Coxeter element of a real re�ection group

V real vector space of dimension n

W �nite subgroup of GL(V ) generated by re�ections

 W admits a structure of Coxeter system:

�x a chamber C of the hyperplane arrangement of W

take S := {re�ections through the walls of C}

De�nition (�Classical de�nition�)

Let W be a �nite real re�ection group. A Coxeter element of W is
a product (in any order) of all the re�ections through the walls of a
chamber of W .

Proposition

The set of Coxeter elements of W forms a conjugacy class.
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Complex re�ection group

V complex vector space of dimension n

W �nite subgroup of GL(V ) generated by �re�ections�
(r ∈ GL(V ) of �nite order and �xing pointwise a hyperplane)

Finite real re�ection groups can be seen as complex re�ection
groups.

But there are much more.
In general: no Coxeter structure, no privileged (natural, canonical)
set of n generating re�ections.
 how to de�ne a Coxeter element of W ?
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Digression: geometry of Coxeter elements in real groups

Assume W is real and irreducible.

Call h := Coxeter number = the order of a Coxeter element.

Fact: h = dn, the highest invariant degree of W .

d1 ≤ · · · ≤ dn degrees of homogeneous polynomials f1, . . . , fn such
that C[V ]W = C[f1, . . . , fn].

Proposition (Coxeter)

If c is a Coxeter element, then there exists a plane P ⊆ V stable

by c and on which c acts as a rotation of angle 2π
h
.

In particular, c admits e
2iπ
h (and e−

2iπ
h ) as an eigenvalue.
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Geometry of Coxeter elements in real groups

Better: c is e
2iπ
h -regular in the sense of Springer: it has a

e
2iπ
h -eigenvector v ∈ VC, which does not lie in the re�ecting

hyperplanes.

[Springer] : the set of ζ-regular elements (in a complex re�ection
group W ) form a W -conjugacy class.

Proposition

c is a Coxeter element in W

m
c admits e

2iπ
h as an eigenvalue

m
c is e

2iπ
h -regular
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Coxeter element in a complex re�ection group

Now W is a well-generated, irreducible complex re�ection group:
W can be generated by n = dimV re�ections. De�ne the Coxeter
number h of W as the highest invariant degree: h := dn.

The set of elements of W having e
2iπ
h as eigenvalue

is non-empty and forms a conjugacy class of W [Springer] ;

= the set of elements having e
2iπ
h as eigenvalue.

De�nition (�classical de�nition�, Bessis '06)

Let W be a well-generated, irreducible complex re�ection group. A

Coxeter element of W is an element that admits e
2iπ
h as an

eigenvalue.

Bessis' seminal work related to Coxeter-Catalan combinatorics and
the dual braid monoid for complex groups uses this de�nition.



Classical de�nitions Extended de�nitions Galois automorphisms

Coxeter element in a complex re�ection group

Now W is a well-generated, irreducible complex re�ection group:
W can be generated by n = dimV re�ections. De�ne the Coxeter
number h of W as the highest invariant degree: h := dn.

The set of elements of W having e
2iπ
h as eigenvalue

is non-empty and forms a conjugacy class of W [Springer] ;

= the set of elements having e
2iπ
h as eigenvalue.

De�nition (�classical de�nition�, Bessis '06)

Let W be a well-generated, irreducible complex re�ection group. A

Coxeter element of W is an element that admits e
2iπ
h as an

eigenvalue.

Bessis' seminal work related to Coxeter-Catalan combinatorics and
the dual braid monoid for complex groups uses this de�nition.



Classical de�nitions Extended de�nitions Galois automorphisms

Coxeter element in a complex re�ection group

Now W is a well-generated, irreducible complex re�ection group:
W can be generated by n = dimV re�ections. De�ne the Coxeter
number h of W as the highest invariant degree: h := dn.

The set of elements of W having e
2iπ
h as eigenvalue

is non-empty and forms a conjugacy class of W [Springer] ;

= the set of elements having e
2iπ
h as eigenvalue.

De�nition (�classical de�nition�, Bessis '06)

Let W be a well-generated, irreducible complex re�ection group. A

Coxeter element of W is an element that admits e
2iπ
h as an

eigenvalue.

Bessis' seminal work related to Coxeter-Catalan combinatorics and
the dual braid monoid for complex groups uses this de�nition.



Classical de�nitions Extended de�nitions Galois automorphisms

Outline

1 �Classical� de�nitions of a Coxeter elements
... for a Coxeter system (W , S)
... for a real re�ection group
... for a complex re�ection group

2 Extended de�nitions
... with alternative Coxeter structures
... with re�ection automorphisms
... with other eigenvalues
Main result and consequences on Coxeter-Catalan
combinatorics

3 Galois automorphisms
Field of de�nition of W and Galois automorphisms
Galois action on conjugacy classes of Coxeter elements



Classical de�nitions Extended de�nitions Galois automorphisms

Outline

1 �Classical� de�nitions of a Coxeter elements
... for a Coxeter system (W , S)
... for a real re�ection group
... for a complex re�ection group

2 Extended de�nitions
... with alternative Coxeter structures
... with re�ection automorphisms
... with other eigenvalues
Main result and consequences on Coxeter-Catalan
combinatorics

3 Galois automorphisms
Field of de�nition of W and Galois automorphisms
Galois action on conjugacy classes of Coxeter elements



Classical de�nitions Extended de�nitions Galois automorphisms

Alternative Coxeter structures

In general a real re�ection group does not have a unique Coxeter
structure:

Example

Symmetry group of the regular hexagon = I2(6) ' A1 × A2

But unicity of the structure if �S must consist of re�ections� :

Rigidity Property (Observation/Folklore?)

Let W be a �nite real re�ection group, R the set of all re�ections
of W . Let S , S ′ ⊆ R be such that (W , S) and (W , S ′) are both
Coxeter systems.
Then (W , S) and (W , S ′) are isomorphic Coxeter systems.

proof not enlightening! (case-by-case check on the classi�cation)
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New Coxeter elements

For a real re�ection group W , one may be able to construct a set S
of Coxeter generating re�ections, which do not come from a
chamber of the arrangement...

 Isomorphic, but not conjugate structures!

Example of I2(5).

De�nition

We call generalized Coxeter element of W a product (in any order)
of the elements of some set S , where S is such that:

S consists of re�ections;

(W , S) is a Coxeter system.
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Re�ection automorphisms

(W , S) and (W , S ′) are isomorphic Coxeter systems =⇒
there is an automorphism ψ of W mapping S to S ′.

Fact: ψ is then a re�ection automorphism of W , i.e., an
automorphism of W stabilizing the set R of all re�ections of W .

From the Rigidity Property we obtain:

Proposition

Let W be a �nite real re�ection group.

c is a generalized Coxeter element of W

m

c = ψ(c0) with ψ re�ection automorphism and c0 classical Coxeter

element of W .
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Replace e2iπ/h by another h-th root of unity

De�nition (�Extended de�nition�)

Let W be a well-generated, irreducible complex re�ection group,
and h its Coxeter number.

We call generalized Coxeter element an element of W that admits
a primitive h-th root of unity as an eigenvalue.

Equivalently, c is a generalized Coxeter element if and only if
c = wk where w is a classical Coxeter element and k ∧ h = 1.

Is this de�nition compatible with the extended de�nition for real
groups ?



Classical de�nitions Extended de�nitions Galois automorphisms

Replace e2iπ/h by another h-th root of unity

De�nition (�Extended de�nition�)

Let W be a well-generated, irreducible complex re�ection group,
and h its Coxeter number.

We call generalized Coxeter element an element of W that admits
a primitive h-th root of unity as an eigenvalue.

Equivalently, c is a generalized Coxeter element if and only if
c = wk where w is a classical Coxeter element and k ∧ h = 1.

Is this de�nition compatible with the extended de�nition for real
groups ?



Classical de�nitions Extended de�nitions Galois automorphisms

Replace e2iπ/h by another h-th root of unity

De�nition (�Extended de�nition�)

Let W be a well-generated, irreducible complex re�ection group,
and h its Coxeter number.

We call generalized Coxeter element an element of W that admits
a primitive h-th root of unity as an eigenvalue.

Equivalently, c is a generalized Coxeter element if and only if
c = wk where w is a classical Coxeter element and k ∧ h = 1.

Is this de�nition compatible with the extended de�nition for real
groups ?



Classical de�nitions Extended de�nitions Galois automorphisms

Four de�nitions

Classical de�nition Extended de�nition

W real
Product of re�ections
through the walls of a

chamber

∏
s∈S

s, for some S ⊆ R ,

with (W , S) Coxeter

W complex e
2iπ
h is eigenvalue

e
2ikπ
h is eigenvalue

for some k , k ∧ h = 1
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Compatibility of the extended de�nitions

Theorem (Reiner-R.-Stump)

Let c ∈W. The following are equivalent:

(i) c has an eigenvalue of order h;

(ii) c = ψ(w) where w is a classical Coxeter element and ψ is a

re�ection automorphism of W ;

(iii) c is a Springer-regular element of order h.

If W is real, this is also equivalent to:

(iv) There exists S ⊆ R such that (W , S) is a Coxeter system and

c is the product (in any order) of elements of S.
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Application to Coxeter-Catalan combinatorics

Corollary

W well-gen., irred. c.r.g., R = Refs(W ). Any property

known for classical Coxeter elements, and

�depending only on the combinatorics of the couple (W ,R)�,

extends to generalized Coxeter elements. This applies in particular

to Coxeter-Catalan combinatorics, e.g.:

the W -noncrossing partition lattices

NC(W , c) := {w ∈W | `R(w) + `R(w−1c) = `R(c)}

(for c a generalized Coxeter element) are isomorphic posets;

the number of reduced R-decompositions of a generalized

Coxeter element into re�ections is n!hn

|W | ;

the Hurwitz action of the braid group Bn on reduced

decompositions is transitive.
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Field of de�nition of W

De�nition

The �eld of de�nition KW of W is

KW := 〈trV (w),w ∈W 〉 .

Fact: the representation V of W can be realized over KW , so KW

is the smallest �eld over which one can write all matrices of W .

Examples

KW = Q i� W crystallographic (Weyl group)

W = H3 or H4 : KW = Q(
√
5)

W = I2(m) : KW = Q(cos 2π
m

)
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Galois action on W

Let Γ := Gal(KW /Q). For γ ∈ Γ an w ∈W , de�ne γ(w) by acting
on the coe�cients of the matrix of w written in KW .

Problem: W is not necessarily preserved by the action of Γ.

But: γ(W ) is the �same� re�ection group as W in the classi�cation,
so they are conjugate: γ(W ) = aWa−1, for a ∈ GL(V ).

W
γ−→ γ(W )

a−1(−)a−−−−−→ a−1γ(W )a = W

 obtain a re�ection automorphism ψ of W , associated to γ,
de�ned modulo conjugation by an element of the normalizer
NGL(V )(W ).

Such an automorphism ψ is called Galois automorphism of W
attached to γ.
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Galois automorphisms of W

The character of ψ (seen as a representation of W ) is
w 7→ γ(trV (w)).

Any Galois automorphism of W is a re�ection automorphism.

Let φ be a re�ection automorphism of W . Then φ is a Galois
automorphism of W attached to γ ∈ Γ if and only if φ satis�es

∀w ∈W , trV (φ(w)) = γ(trV (w)).

Theorem (Marin-Michel '10)

Let W be an irreducible complex re�ection group.

Any re�ection automorphism of W is a Galois automorphism

(associated to some γ ∈ Γ).
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Simply transitive action of Γ

Via Galois automorphisms, Γ = Gal(KW /Q) does not act directly
on W , but on NGL(V )(W )-conjugacy classes of W .

 action of Γ on
Cox(W ) := {conjugacy classes of generalized Coxeter elements}
[Marin-Michel] and [RRS] =⇒ this action is transitive.

Theorem (Reiner-R.-Stump)

The action of Γ = Gal(KW /Q) on Cox(W ) is simply transitive :

∀C ,C ′ ∈ Cox(W ), ∃!γ ∈ Γ,C ′ = γ · C .

Consequence: |Cox(W )| = [KW : Q].

The proof?
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The �proof�

Lemma

The number of conjugacy classes of generalized Coxeter elements is

|Cox(W )| =
#integers in [1, h] that are coprime to h

#integers in [1, h] coprime to h among m1, . . . ,mn

,

where m1, . . . ,mn are the exponents of W (mi = di − 1)

2. Prove that [KW : Q] = ϕ(h)
ϕW (h) (*) ... case-by-case.

(*) is equivalent to Malle's characterization of KW for W
well-generated:

Theorem (Malle)

Let ζ = e2iπ/h and GW be the setwise stabilizer of
{
ζm1 , . . . , ζmn

}
in the Galois group Gal(Q(ζ)/Q).
Then KW is equal to the �xed �eld Q(ζ)GW .

Equivalently, KW is generated by the coe�cients of the

characteristic polynomial of any Coxeter element of W .
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Further results and questions...

The property of transitivity of re�ection automorphisms on
regular elements of order h extends to Springer's regular
elements of arbitrary order.

the characterization of generalized Coxeter elements for real
groups extends to Shephard groups (those nicer complex
groups with presentations �à la Coxeter�).

for the other well-generated complex groups, there is no
canonical form of presentation, and not (yet?) a
�combinatorial� vision of Coxeter elements.

Danke schön !
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