
(2.10) Proposition. Assume that there are tuples a and b, and a model M of T, such that $tp_T(b/M, a)$ is a heir of $tp_T(b/M)$, and $acl_T(M, a, b) \cap S \not\subseteq acl_T(M, a) \cup acl_T(M, b)$. Then $T_{P, S}$ has the independence property.

Proof. We choose an indiscernible sequence $(b_i), i \in \mathbb{N}$, of realisations of $tp_T(b/M, a)$, such that for every $i \in \mathbb{N}$, $tp_T(b_i/M, a, b_0, \ldots, b_{i-1})$ is the heir of $tp_T(b/M)$. Let $\varphi(x, a, b)$ be an $L(M)$-formula isolating the type over (M, a, b) of an element $\alpha \in acl_T(M, a, b) \cap S$, $\alpha \not\in acl_T(M, a) \cup acl_T(M, b)$. Then, for any i the elements satisfying $\varphi(x, a, b_i)$ are not in $acl_T(M, a, b_0, \ldots, b_{i-1})$ nor in $acl_T(M, b_j, j \in \mathbb{N})$. Let I be a subset of \mathbb{N}, and let T' be a completion of $T_{P, S}$. Consider the subset P^N of $N = acl_T(M, a, b_j, j \in \mathbb{N})$ defined as follows: T' tells us which elements of $acl_T(\emptyset)$ must be in P, and we let $P^N \cap acl_T(\emptyset)$ be this set. If $x \not\in acl_T(\emptyset)$, then $x \in P^N$ if and only if x satisfies $\varphi(x, a, b_i)$ for some $i \in I$. Then (N, P^N) embeds in a model of T', and in this model the sequence $(b_i), i \in \mathbb{N}$, is indiscernible. This shows that T' has the independence property, by ??? of [Po].

(3.7). Add at the beginning of the proof: moving \bar{c}_1 by an E-automorphism, we may assume that $tp_T(\bar{c}_1/E, \bar{a}, \bar{b})$ does not fork over E.

(3.10) Proposition. Assume that there is a model M of T, and tuples a and b which are independent over M and such that $acl_T(M, a, b) \neq dcl_T(acl_T(M, a), acl_T(M, b))$. Then T_A has the independence property.

Proof. The proof begins as in the paper. One needs however to make sure that the sequence $b_i, i \in \mathbb{N}$, is indiscernible in the sense of T_A. We are working in a big model M^* of T containing everything. We define σ to be the identity on A and on $acl_T(M, b_i, i \in \mathbb{N})$. Then the sequence $(b_i), i \in \mathbb{N}$, will be indiscernible in any model of T_A containing $(acl_T(M, b_i, i \in \mathbb{N}), \sigma)$. Let C be the set obtained by adjoining to $A \cup acl_T(M, b_i, i \in \mathbb{N})$ the elements satisfying $\varphi(x, a, b_i)$ for some $i \in \mathbb{N}$. Extend σ to an elementary (in the sense of N) permutation of C by imposing that σ is the identity on the set of elements satisfying $\varphi(x, a, b_i)$ if and only if $i \in I$. Then (C, σ) embeds in a model of T_A.

1