More topology on \mathbb{O}-minimal groups.

Let $(\mathbb{R}, +, -, 0, 1, <, \ldots)$ be \mathbb{O}-minimal, with $(\mathbb{R}, +, -, 0)$ an abelian group, and $1 > 0$.

We saw earlier two properties:

1. **Definable choice:** (1) If $S \subseteq \mathbb{R}^{m+n}$ is definable, then there is a definable $f: \pi^{-1}(S) \to \mathbb{R}^m$ such that $\Gamma(f) \subseteq S$.

2. **Definable selection:** (2) Each definable order relation on a definable set has a definable set of representatives.

Curve selection: If $a \in cl(X) \setminus X$, X definable, then there is a definable continuous $f: (0, \varepsilon) \to X$ for some $\varepsilon > 0$, such that $\lim_{t \to 0} \gamma(t) = a$.

Both these results are false in the \mathbb{O}-minimal structure $(\mathbb{R}, <)$: no canonical way of choosing an element between a & b when $a < b$.

Lemma: Let $C \subseteq \mathbb{R}^m$ be a bounded cell, $\pi: \mathbb{R}^m \to \mathbb{R}^{m-1}$ the projection on the first $m-1$ coordinates. Then $\pi(cl(C)) = cl(\pi(C))$.

Proof: $D = \pi^{-1}(C)$. Assume $C = (f, g)_D$, where $f: D \to \mathbb{R}$ is continuous and $f < g$ on D. By continuity of π, we have $\pi(cl(C)) = cl(\pi(C))$. Let $a \in cl(\pi(C)) \setminus \pi(C)$. Then there is a continuous definable map $\gamma: (0, \varepsilon) \to \pi(C)$ such that $\lim_{t \to 0} \gamma(t) = a$.

Since C is bounded, there is $r > 0$ such that $-r < f(x) < g(x) < r$ for all $x \in \pi(C)$. Define $\lambda: (0, \varepsilon) \to \mathbb{R}$ by $\lambda(t) = \frac{1}{2} (t + \gamma(t) + g(\gamma(t)))$.

Then $-r < \lambda(t) < r$, and by the monotonicity theorem, there is $S \subseteq \mathbb{R}$ such that $\lim_{t \to 0} \lambda(t) = S$. (Use that λ is continuous on some $(0, \varepsilon)$.) So $\lim_{t \to 0} (\gamma(t), \lambda(t))$ is a continuous function $(0, \varepsilon) \to C$ with limit (a, S) as $t \to 0$. So $(a, S) \in cl(C)$.

If C was not bounded, we could have had $\lim_{t \to 0} \lambda(t) = \pm \infty$.

(Continued...
If $C = \Gamma(f)$, by boundedness, if $a \in \text{cl}(\pi C)$, and f as before, then we get that ($a, \lim_{t \to 0} f \circ g(t)$) $\in \text{cl}(C)$.

Note $f: X \to Y$ continuous, Y Hausdorff imply $\Gamma(f)$ closed in $X \times Y$.

Lemma Let $X \subset \mathbb{R}^m$ be closed and bounded, $f: X \to \mathbb{R}^n$ be definable and continuous. Then $\Gamma(f)$ is bounded in \mathbb{R}^n.

Proof Suppose we may assume $n = 1$.

Suppose by contradiction that for every $t \in \mathbb{R}$ there is some $x \in X$ with $|f(x)| > t$. By definable choice there is a definable map $g: \mathbb{R}^+ \to X$ such that $|f \circ g(t)| > t$ for all $t \in \mathbb{R}^+$. But X is bounded, and by monotonicity, there is $r > 0$ at g is continuous on $(r, +\infty)$.

So $\lim_{t \to +\infty} g(x) \in X$, and because X is closed, $e X$.

This contradict the fact that $\lim_{t \to +\infty} |f \circ g(t)| = +\infty$, since f is continuous on X.

Proposition Let $f: X \to \mathbb{R}^m$, $X \subset \mathbb{R}^m$, be definable and continuous, and assume that X is closed and bounded. Then $f(X)$ is also closed and bounded.

Proof We already know that $f(X)$ is bounded, we need to show it is closed. Let $Y = \{f(\pi(x)), x \in X \}$ and write it as $Y = \bigcup_{i=1}^{k} \pi(C_i)$ where the C_i's are cells. As Y is closed, we have $Y = \text{cl}(\pi(C_1)) \cup \ldots \cup \text{cl}(\pi(C_k))$.

As Y is bounded so are the C_i's. If $\pi: \mathbb{R}^{m+n} \to \mathbb{R}^n$ is the projection on the first n coordinate, then $\text{cl}(\pi(C_i)) = \pi \text{cl}(C_i)$ [use the lemma with $m = 1$, induction on m].

Hence $\pi Y = \pi(\text{cl}(C_1) \cup \ldots \cup \text{cl}(C_k)) = \text{cl}(\pi C_1) \cup \ldots \cup \text{cl}(\pi C_k)$ is closed. And $\pi(Y) = f(X)$.

Corollary \(f : X \rightarrow \mathbb{R} \) continuous, definable, \(X \) closed, bounded non-empty. Then \(f \) attains its minimum and its maximum value.

Corollary \(f : X \rightarrow \mathbb{R}^n \) a continuous, injective definable map on a closed, bounded \(X \subseteq \mathbb{R}^m \), then \(f \) is a homeomorphism between \(X \) and \(f(X) \).

Indeed \(f \) maps closed, definable subsets of \(X \) to closed, definable subsets of \(X \), and therefore maps open, definable subsets of \(X \) to open, definable subsets of \(X \). But every open subset of \(X \) is a union of definable open subsets, hence \(f \) is open.

Cor: \(f : X \rightarrow \mathbb{R}^n \) continuous, definable, \(X \) closed, bounded \(\subseteq \mathbb{R}^m \), let \(Y = f(X) \). Then

(a) A definable set \(S \subseteq Y \) is closed iff \(f^{-1}(S) \) is closed.

(b) A definable map \(g : Y \rightarrow \mathbb{R}^p \) is continuous if and only if \(g \circ f : X \rightarrow \mathbb{R}^p \) is continuous.

Clean.

Proposition: Let \(X \subseteq \mathbb{R}^m \) be closed, bounded and definable, let \(A \subseteq X \times Y \subseteq \mathbb{R}^m \times \mathbb{R}^n \) definable. Then the projection map \(q : X \times Y \rightarrow Y \) maps definable, closed subsets of \(X \times Y \) onto definable, closed subsets of \(Y \).

Let \(A \subseteq X \times Y \) be definable and closed in \(X \times Y \), let \(y \in cl_Y(q(A)) \). So for each \(t > 0 \) there is \(a \in A \) such that \(|q(a) - y| < t \).

Notation: \(|(x_1, \ldots, x_n)| = \sup_{i} x_i^{+} \quad i = 1, \ldots, n\).
By definable choice + monotonicity, there is a definable continuous map \(\alpha : (0, \varepsilon) \to A \) such that
\[
|q \circ \alpha(t) - y| < t \text{ for all } t \in (0, \varepsilon) .
\]
Write \(\alpha(t) = (\beta(t), \gamma(t)) \). Then \(\lim_{t \to 0} \gamma(t) = y \).

As \(X \) is bounded it follows that \(\lim_{t \to 0} \beta(t) \) exists in \(R^n \),
and is in \(X \) because \(X \) is closed. So \((x, y) \in X \times Y \),
\(\lim_{t \to 0} \alpha(t) = (x, y) \), and therefore \((x, y) \in A \) because \(A \) is closed. So \(y \in q(A) \).

Definable paths: \((R^+, 0, 1, <)\)

Let \(X \subseteq R^n \). A definable path in \(X \) is a definable continuous map \(\gamma : [a, b] \to X \subseteq R^n \), where \(a, b \in R, a < b \).

We say that \(\gamma \) connects the points \(\gamma(a) \) and \(\gamma(b) \).

If \(\gamma : [a, b] \to X \) and \(\delta : [b, c] \to X \) are definable paths with \(\gamma(b) = \delta(b) \), then we may concatenate them.

To obtain \(\gamma \circ \delta : [a, c] \to X \), a path as well.

Proposition: Let \(X \subseteq R^n \) be definably connected (i.e., not the union of two disjoint non-empty definable open sets). Then any two points, can be connected by a definable path in \(X \).

Pf: Assume first that \(X \) is a cell. The proof is by induction on \(m \), and for \(m = 1 \), this is clear. For \(m > 1 \), let \(\pi \) be the projection on the first \(m-1 \) coordinates. \(D = \pi(X) \).

If \(X = \Gamma(f) \) then this is clear, as \(D \) is also connected.
If $X = (f,g)_D$, let (y,r) and (g,s) be two points in X, with $y,s \in D$. We will assume f and g take their values in R.

Let γ_1 be a path connecting (y,r) to $(y, f(y) + g(y)/2)$.
If $r \leq s$, let γ_2 be the path between $(y, f(y) + g(y)/2)$ and $(s, f(s) + g(s)/2)$ given by
$$(s(t)(f \circ s(t) + g \circ s(t))/2),$$
where s is a path connecting y to s. (If $y = s$, do nothing). Finally, let γ_3 be a path connecting $(s, g(s) + f(s)/2)$ to (s,s). Take $\gamma = \gamma_1 \circ \gamma_2 \circ \gamma_3$.

Using the group law, we may assume that the end point of $\text{dom}(\gamma_i)$ is the starting point of $\text{dom}(\gamma_{i+1})$ for $i = 1,2$.

In the general case, we take a decomposition of X into cells C_1, \ldots, C_k, such that for $1 \leq i < k$, either $C_i \cap \text{cl}(C_{i+1}) = \emptyset$, or $C_{i+1} \cap \text{cl}(C_i) = \emptyset$.

Let $\mathcal{I} = \{1,\ldots,k\}$ be maximal such that any two points of $\bigcup_{i \in \mathcal{I}} C_i$ can be connected by a path. We claim that $\mathcal{I} = \{1,\ldots,k\}$. Otherwise, let $C_\mathcal{I} = \bigcup_{i \in \mathcal{I}} C_i$.

Case 1. $\text{cl}(C_\mathcal{I}) \cap D_\mathcal{I} = \emptyset$.

Say $a \in \text{cl}(C_\mathcal{I}) \cap C_j$, $j \not\in \mathcal{I}$. Let b be a point in C_j.

If a point in C_j, then a and c are connected by a path, and so are a and b: since $b \in \text{cl}(C_\mathcal{I})$, there is $\gamma : (0,\varepsilon) \to C_\mathcal{I}$, with $\lim_{t \to 0} \gamma(t) = b$. Consequently

Case 2. $\text{cl}(C_\mathcal{I}) \cap D_\mathcal{I} = \emptyset$. So $C_\mathcal{I}$ is closed in X, and therefore $D_\mathcal{I}$ is open in X, but not closed.

Repeating the procedure with any $i \not\in \mathcal{I}$, we may
write $X = \bigcup_{i \in I} C_i$ as a disjoint union of C_{ij}, $I_j \subseteq \{1, \ldots, k\}$, each I_j maximal with the property that $C_{ij} = \bigcup_{i \in I_j} C_i$ is "part connected". So by the above, each C_{ij} is closed, and therefore also open, which contradicts the fact that X was connected.

Corollary: Let X and $Y \subseteq \mathbb{R}^n$ be definable, with X definably connected, $X \cap \text{bd}(Y) = \emptyset$. Then either $X \subseteq Y$ or $X \cap Y = \emptyset$.

Proof: Else, we can find $x \in X \setminus Y$, $y \in X \cap Y$.
Let $\gamma: [a, b] \rightarrow \mathbb{R}^n$ connect x and y inside X.
Let $c = \inf \{t \in [a, b] \mid \gamma(t) \in Y\}$. Then $\gamma(c) \in X \cap \text{bd}(Y)$.

Some separation properties.

Lemma: Let $A \subseteq \mathbb{R}^m$ definable, with A closed in B.
Then there is a definable function $f: B \rightarrow [0, 1]$ with $A = f^{-1}(0)$.

Proof: We assume $A \neq \emptyset$. Let $d(x, A) = \inf \{\|x - a\| : a \in A\}$ and define $f(x) = \min\{1, d(x, A)\}$.
Since A is closed, $A = f^{-1}(0)$.

Lemma: Let A_1 and A_2 be disjoint definable closed subsets of the definable set $B \subseteq \mathbb{R}^m$. Then there are disjoint definable open subsets U_1, U_2 of B with $A_i \subseteq U_i$ for $i = 1, 2$.

Proof: Let $f_1, f_2: B \rightarrow [0, 1]$ be continuous with $A_i = f_i^{-1}(0)$.
Let $U_1 = \{x \in B \mid f_1(x) < f_2(x)\}$, $U_2 = \{x \in B \mid f_2(x) < f_1(x)\}$.
Corollary (Shrinking of open coverings)

Let the definable set \(B \subseteq \mathbb{R}^m \) be the union of \(U_1, \ldots, U_n \), where the \(U_i \)'s are definable open \(\mu^B \). Then \(B = V_1 \cup \cdots \cup V_m \), where the \(V_i \)'s are definable open, and \(\text{cl}_B(V_i) \subseteq U_i \).

Proof: Assume \(V_1, \ldots, V_k \) have been defined s.t. \(V_1 \cup \cdots \cup V_k \cup V_{k+1} \cup \cdots \cup V_m = B \). Apply the previous lemma to

\[
A_k = B \setminus U_{k+1} \\
A_2 = B \setminus \left(\bigcup_{i=1}^{k} V_i \cup \bigcup_{j=k+2}^m U_j \right)
\]

\(A_k \) is open \(W_1, W_2 \), \(W_1 \cap W_2 = \emptyset \), \(A_i \subseteq W_i \).

Let \(V_{k+1} = B \setminus W_1 \); this is closed, contained in the open set \(U_{k+1} \). We know that \(V_{k+1} \cup (B \setminus W_2) = B \).

Hence, as \((B \setminus W_2) \) is closed, \(\text{int}_B V_{k+1} \cup B \setminus W_2 = B \).

Here is another application of the definable choice. Shrinking, but impractical unless you know what are the definable functions.

Def. Let \((R, \ldots)\) be a structure.

We consider the set \(\mathcal{F} \) of all \(\mu \)-definable functions \(X \to R, X \subseteq R^m \), \(m \geq 0 \). By \(\mu \)-definable, I mean that the graph of the function is defined by a formula \(\phi(x, y) \) with no parameters (other than the constants of the language).

We define \(\text{dcl}(A) \) to be the closure of \(A \) under the elements of \(\mathcal{F} \) (restricted to \(A^m \)). So in particular \(A \) will be a substructure of \(R \).

Exercise. Show that \(\text{dcl}(\text{dcl}(A)) = \text{dcl}(A) \).

Note. One does not need any hypothesis on \(R \) to make their definition; it is valid in any structure.
Recall Tarski's criterion: Let M,N be structures in a language L. To show $M \preceq N$ (i.e., every formula $\varphi(\bar{a})$, if $\bar{a} \in M$, then $M \models \varphi(\bar{a})$ if and only if $N \models \varphi(\bar{a})$) is without parameters, it suffices to show that whenever $\varphi(\bar{x},y)$ is a formula (without parameters), $\bar{a} \in M$, and $b \in N$ is such that

$$N \models \varphi(\bar{a},b)$$

then there is $\bar{d} \in M$ such that

$$N \models \varphi(\bar{a},b)$$

Then let $(R,+,\cdot,0,1,\leq,\ldots)$ be ω-minimal, let $A \subseteq R$. Then $\text{dcl}(A) \subseteq R$.

Proof: Use definable choice and Tarski's criterion.