Recall the definition of a cell $C \subseteq \mathbb{R}^n$: $\dim(C)$ is the maximal r s.t. there is a projection $\pi: \mathbb{R}^n \to \mathbb{R}^r$ s.t. $\pi(C)$ is an open cell.

Alternatively, if C is an (i_1, \ldots, i_m)-cell, then $\dim(C) = i_1 + \ldots + i_m$.

Let $X \subseteq \mathbb{R}^n$ be definable. The dimension of X, $\dim(X)$, is the maximal dimension of a cell $C \subseteq X$. If $X = \emptyset$, we set $\dim(X) = -\infty$.

Lemma: If $A \subseteq \mathbb{R}^m$ is an open cell, and $f: A \to \mathbb{R}^m$ is an injective definable map then $f(A)$ contains an open cell.

Proof: Clear if $m = 1$. Assume it holds for values $< m$.

Take a decomposition \mathcal{D} of \mathbb{R}^m which partitions $f(A)$, we get $f(A) = C_1 \cup \ldots \cup C_k$, C_i cells in \mathbb{R}^m.

and $A = f^{-1}(C_1) \cup \ldots \cup f^{-1}(C_k)$.

Refining \mathcal{D}, we may assume that if $f(C_i) \subseteq A$ then $f|_{f^{-1}(C_i)}$ is continuous. But then $f^{-1}(C_i)$ contains an open box B_i, on which f is continuous. The corresponding C_i is a cell, which contains $f(B)$. If we can show that $f(B)$ has dimension m then we will also have $\dim(C_i) = m$, i.e., C_i is open.

Otherwise, if $\dim C_i < m$, there is a definable homeomorphism π of C_i with an open cell of $\mathbb{R}^{\dim C_i}$ and we get a continuous injective map $g: B \to \mathbb{R}^{\dim C_i}$.

Write $B = B' \times (a, b)$, let $c \in (a, b)$,

$h: B' \to \mathbb{R}^{m-1}$ defined by $h(x) = g(x, c)$.

By IH, $h(B') \supseteq D$, D an open box in \mathbb{R}^{m-1}.

Let \(y \in D, x \in D' \) with \(f(x) = y \).

By continuity, if \(C' \) is sufficiently close to \(C \), then \(g(x, C') \in D \). This contradicts the injectivity of \(f \).

Proposition

1. If \(x \leq y \leq \mu^m \) with \(x, y \) definable, then \(\dim(x) \leq \dim(y) \).

2. If \(x \in \mathbb{R}^m, y \in \mathbb{R}^n \) are definable, and there is a definable bijection \(f: x \to y \), then \(\dim(x) = \dim(y) \).

3. If \(x, y \in \mathbb{R}^m \) are definable, then \(\dim(x \cup y) = \max \{ \dim x, \dim y \} \).

Proof

1. It is clear from the definition of \(\dim \).

2. Let \(D \) be a decomposition of \(\mathbb{R}^m \) partitioning \(x \) and \(x \subseteq D \), \(C \subseteq x \) implies \(f|_C \) is a homeomorphism. Let \(C \in D \), \(C \subseteq x \) be of dimension \(d = \dim(x) \).

Let \(\pi: \mathbb{R}^m \to \mathbb{R}^d \) be such that \(f|_C \) is a homeomorphism with an open cell of \(\mathbb{R}^d \). Then \(f|_C \) defines a homeomorphism between the open cell \(D \) and \(f(C) \). Writing \(f(C) \) as a union of cells in \(\mathbb{R}^n \), the proof of the lemma shows that necessarily one of those cells has \(\dim \geq d \). Since there is no injective map from an open box \(B \subseteq D \subseteq \mathbb{R}^d \) into an \(\mathbb{R}^k, k < d \). Hence \(\dim y \geq d \).

3. Let \(d = \dim(x \cup y) \), \(A \subseteq x \cup y \) a cell of dimension \(d \). Let \(p: \mathbb{R}^m \to \mathbb{R}^d \) s.t. \(p|A \) is a homeomorphism.

So \(p(A) = p(A \cap X) \cup p(A \cap Y) \), and one of them
Prop. Let \(S \subseteq \mathbb{R}^m \times \mathbb{R}^n \) be definable. For \(d \in \{-\infty, 0, 1, \ldots, \infty\} \) define
\[
S(d) = \{ a \in \mathbb{R}^m \mid \dim S_a = d \}.
\]
Then \(S(d) \) is definable, and
\[
\dim((S(d) \times \mathbb{R}^n) \cap S) = \dim S(d) + d.
\]

Let \(D \) be a decomposition of \(\mathbb{R}^{m+n} \) partitioning \(S \). Let \(C \in D \), \(\pi C \subseteq \mathbb{R}^m \). If \(C \) is an \((i_1, \ldots, i_{m+n})\)-cell, then \(\pi C \) is an \((i_1, \ldots, i_m)\)-cell, and for every \(a \in \pi C \), \(C_a \) is an \((i_{m+1}, \ldots, i_{m+n})\)-cell. So \(\dim(C) = \dim \pi C + \dim C_a \), \(\forall a \in \pi C \).

If \(A \) is a cell in \(\pi D \), and \(C_1, \ldots, C_k \in D \) are the cells above \(A \), which are contained in \(S \), then
\[
S_A = (C_1)_a \cup \cdots \cup (C_k)_a,
\]
so
\[
\dim S_A = \sup \dim(C_i)_a = \sup \dim C_i - \dim(A)
\]
by \(\ref{prop} \).

Note \(\dim S_A \) ind of \(a \in A \), whence \(A \subseteq S(d) \) if \(\dim S_a = d \).

So \(S(d) = \) union of cells, is definable.

Note \(d = \sup (\dim C_i) - \dim(A) \)
\[
= \dim(\bigcup_{i=1}^{k} C_i) - \dim(A)
\]
\[
= \dim(\bigcup_{a \in A} a \times S_a) - \dim A.
\]

i.e.
\[
\dim(\bigcup_{a \in A} a \times S_a) = \dim A + d
\]
\[
\dim((S(d) \times \mathbb{R}^n) \cap S) = \dim S(d) + d.
\]
\[\dim S = \max_{0 \leq d \leq n} (\dim S(d) + d) \]

(2) Let \(X \subseteq \mathbb{R}^n \) be definable, \(\vdash X \to \mathbb{R}^m \) a def. map. Then for each \(d \in \{0, \ldots, n\} \), the set \(S_f(d) = \{ a \in \mathbb{R}^m \mid \dim f^{-1}(a) = d \} \) is definable, and
\[\dim f^{-1}(S_f(d)) = d + \dim S_f(d). \]

(3) \(\dim (A \times B) = \dim(A) + \dim(B) \), \(A, B \) def.

Results on the boundary and the frontier of a definable set \(S \subseteq \mathbb{R}^m \).
\[\partial S = \text{frontier of } S = \overline{\partial S} \]
\[\text{bd}(S) = \partial S \setminus \text{int}(S) = \text{boundary of } S. \]

Aim: \(\dim \partial S < \dim S \) if \(S \neq \emptyset \).

This result holds in all 0-minimal structures.
The proof in the general case is quite long.
We will give a shorter proof, which uses a curve selection lemma, a lemma only true if the 0-minimal structure has a group law.
We work in an \mathcal{O}-minimal expansion $(\mathbb{R}, +, -, 0, <, \cdots)$ of an ordered abelian group (divisible). We set

$$|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0. \end{cases}$$

Curve selection

Let $X \subseteq \mathbb{R}$ be definable and non-empty. We will choose an element in X, using the same parameters over which X is defined, and maybe an additional parameter, denoted 1, which satisfies $1 > 0$.

If X has a least element, then we take this least element. If not, then X can be written as $I \cup Y$, where I is an interval, Y is definable, $Y \cap I = \emptyset$.

- **Case 1:** $I = (-\infty, a)$. Let $a' \in \mathbb{R}$ be maximal such that $(-\infty, a') \subseteq X$, and pick $a' - 1$.
- **Case 2:** $I = (a, b)$, $a, b \in \mathbb{R}$. Pick $\frac{a + b}{2}$.
- **Case 3:** $I = (a, +\infty)$. Let $a' \in \mathbb{R}$ be minimal such that $(a', +\infty) \subseteq X$ and choose $a' + 1$.

Case 4

$I = (-\infty, +\infty)$, Pick 0.

Important: This choice function only depends on X, not on the way it is described.

Proposition (Definable choice) $(\mathbb{R}, +, -, 0, 1, <, \cdots)$

(1) If $S \subseteq R^{m+n}$ is definable non-empty, $\pi : R^{m+n} \to R^m$. Then there is a definable map $f : \pi(S) \to R^m$ such that $f(f) \subseteq S$.

(2) Each definable equivalence relation on a definable set \(X \) has a definable set of representatives.

\[\begin{align*}
\text{Pf:} \quad (1) & \text{ When } n = 1, \text{ we saw how to define the function } f. \text{ We use induction on } n: \\
& \text{if } S \subseteq R^{n+m+1}, \text{ consider } \pi_1 : R^{n+m+1} \to R^{n+m}. \\
& \text{We have a definable } f_1 : f_1(\pi_1(S)) \to R, \text{ such that } f_1(\pi_1(S)) \subseteq S. \text{ Then } f_1(\pi_1(S)) \text{ is definable, as well as } \pi_1(\pi_1(S)) \in R^{n+m}. \\
& \text{By IH, there is a definable map } f_2 : \pi_1(\pi_1(S)) \to R^n \text{ such that } f_2(\pi_1(S)) \subseteq \pi_1(\pi_1(S)). \text{ We then define } \\
& f : \pi_1(S) \to R^{n+m+1} \text{ by } f(x) = (f_2(x), x_1, x_2(x)) \text{.}
\end{align*} \]

(2) Consider the set \(\{ e(A) \mid A \text{ an equivalence class } \} \), where \(e \) is a choice function for \(S \subseteq X^2 \to X \), with \(S_a = \text{equivalence class of } a \) for \(a \in X \).

Theorem (Curve selection lemma). Let \(S \subseteq R^n \) be definable, and \(b \in cl(S) \). There is a continuous definable map \(\gamma : [0, r) \to S \) for some \(r \in R^{>0} \), such that \(\gamma(0, r) \subseteq S \) and \(\gamma(0, r) = b \).

\[\text{Pf: Let } X = \{ (t, x) \in R \times R^n \mid x \in S, \sup |x_i - b_i| < t \} \]

\[(x = (x_1, \ldots, x_n), b = (b_1, \ldots, b_n)) \]

Let \(\pi : R^{1+n} \to R \) be the projection on the first coordinate. Because \(b \in cl(S) \setminus S \), \(\pi(X) = R^{>0} \). Applying the definable choice, we get a definable function \(\gamma : R^{>0} \to S \). By continuity, there is some \(r > 0 \) such that \(\gamma|([0, r)) = \gamma(0, r) \). Extend \(\gamma \) to \([0, r)\) by setting \(\gamma(0) = b \).

i.e., each coordinate function is continuous.
Lemma. Let $A \subseteq \mathbb{R}^m \times \mathbb{R}^p$ be definable. Let

$$M = \{ x \in \mathbb{R}^m \mid \text{cl}(A_x) \neq (\text{cl}(A))_x \}.$$

Then M is definable, of dimension $< m$. If $m = 1$, then M is finite.

Proof. We always have $\text{cl}(A_x) \subseteq (\text{cl}(A))_x$, because $(\text{cl}(A))_x$ is closed, contains A_x.

Suppose by way of contradiction that M has dimension m. Hence it contains an open cell C.

For every $x \in C$, we can find a box $B = \prod_{i=1}^p (a_i, b_i)$ such that $B \cap (\text{cl}(A))_x \neq \emptyset$, $B \cap A_x = \emptyset$.

Using definable choice and definable continuity (and shrinking C), we may assume that we have

continuous functions $a_i, b_i : C \to \mathbb{R}$,

let $U = \{ (x, y) \in C \times \mathbb{R}^p \mid a_i(x) < y < b_i(x), i = 1 \ldots p \}$. Then U is open in $\mathbb{R}^m \times \mathbb{R}^p$, disjoint from A, but intersects $\text{cl}(A)$: this is impossible.

Hence $\dim(M) < m$.

Note: we used the "definable choice", which only holds when we have a group. The result with $m = 1$ holds without this assumption, but the proof is much longer.

Theorem. Let $A \subseteq \mathbb{R}^m$ be definable.

Then $\dim(\text{cl}(A) - A) < \dim(A)$.
The proof is by induction on n. It is obvious for $n = 1$: if \(\dim(A) = 0 \) then \(\delta(A) = \emptyset \) and if \(\dim(A) = 1 \), \(\delta(A) \) consists of points or is empty.

We assume $n > 1$, and that the result holds for $n-1$. Let \(\text{cl}_i(A) = \{ x \in \mathbb{R}^n \mid x \in \text{cl}(A \cap \{ y_i = x_i \}) \} \) for $i = 1, \ldots, n$.

Step 1 \(\dim(\text{cl}(A \setminus A) \leq \sup_i \dim(\text{cl}_i(A) \setminus A) \)

Indeed, \(\text{cl}_i(A) \subseteq \text{cl}(A) \). Apply the previous lemma, and obtain that \(\text{cl}(A \setminus \text{cl}_i(A) \) is contained in a finite union of hyperplanes \(\{ x_i = a_{i,j} \} \) \(j = 1, \ldots, l_i \).

Indeed we are looking at the set \(\{ x_i \in \mathbb{R} \mid \text{cl}(Ax_i) \neq \text{cl}(A)x_i \} \)

which is finite.

Permute the coordinates, we get that for $i = 2, \ldots, n$,

\[
\text{cl}(A) \setminus \text{cl}(A) \leq \bigcup_{j=1}^{l_i} \{ x_i = a_{i,j} \}
\]

Hence \(\text{cl}(A) \setminus \bigcup_{i=1}^{n} \text{cl}_i(A) \) is contained in the finite set of points \(\{ a_{11}, \ldots, a_{1n}, a_{21}, \ldots, a_{2n}, \ldots, a_{nn} \} \times \cdots \times \{ a_{n1}, \ldots, a_{nn} \} \).

In particular, \(\dim(\text{cl}(A \setminus A) \leq \sup_i \dim(\text{cl}_i(A) \setminus A) \)

Step 2 Show \(\dim(\text{cl}_i(A) \setminus A) < \dim(A) \), for any i.

Let $a = (a_1, \ldots, a_n) \in A$. As \(\dim(\{ x_i = a_i \} = n-1 \), the IH gives that either \(\text{cl}(A \setminus \{ x_i = a_i \} \setminus A \setminus \{ x_i = a_i \} \) is empty, or has dimension $< \dim(\{ x_i = a_i \} \). The result then follows from the following exercise:

Exercise Let $A \subseteq B \subseteq \mathbb{R}^m$ be definable, $A \neq \emptyset$. Assume that for every $x \in \mathbb{R}^m$, \(\dim(A_x) < \dim(B_x) \), or $A_x = \emptyset$.

Then \(\dim(A) < \dim(B) \).
Indeed, one applies it to \(\text{cl}_i(A) \setminus A \subseteq \text{cl}_i(A) \).

The induction hypothesis tells us that \(\dim \text{cl}_i(A)_{\alpha_i} = \dim(A)_{\alpha_i} \).

Corollary Let \(\phi \neq S \subseteq T \subseteq \mathbb{R}^m \) be definable, with \(\dim(S) = \dim(T) \). Then \(S \) has non-empty interior \(\text{int}_T(S) \) in \(T \), and

\[
\dim(S \setminus \text{int}_T(S)) < \dim(S).
\]

By letting \(\text{cl}_T \) denote closure in \(T \), then

\[
S \setminus \text{int}_T(S) = S \cap \overline{T \setminus S} = \text{cl}_T(T \setminus S) \setminus (T \setminus S)
\]

\(a \in S \setminus \text{int}_T(S) \): Here is a small box containing a set \(B \cap T \neq S \), i.e. \(B \cap (T \setminus S) \neq \emptyset \).

By the thm: \(\dim \text{cl}_T(T \setminus S) \setminus (T \setminus S) < \dim(T \setminus S) \leq \dim(S) \).

Corollary Let \(S \subseteq \mathbb{R}^m \) be definable. Then

\[
\dim(\text{cl}(S) \setminus \text{int}(S)) < m.
\]

Proof If \(\dim(S) < m \), then we know \(\dim(\text{cl}(S)) < m \), so this is clear. Assume \(\dim(S) = m \).

So \(\dim(\text{cl}(S) \setminus S) < m \), \(\dim(S \setminus \text{int}_{\mathbb{R}^m}(S)) < m \),

which gives the conclusion.