ON THE STABILITY OF GLOBAL SOLUTIONS
TO THE THREE DIMENSIONAL NAVIER-STOKES EQUATIONS

HAJER BAHOURI, JEAN-YVES CHEMIN, AND ISABELLE GALLAGHER

ABSTRACT. We prove a weak stability result for the three-dimensional homogeneous incom-
pressible Navier-Stokes system. More precisely, we investigate the following problem : if
a sequence (uo,n)nen of initial data, bounded in some scaling invariant space, converges
weakly to an initial data up which generates a global smooth solution, does uo,, generate a
global smooth solution ? A positive answer in general to this question would imply global
regularity for any data, through the following examples uo,n = nyo(n-) or uo,n = @o(- — Tn)
with |z, | = co. We therefore introduce a new concept of weak convergence (rescaled weak
convergence) under which we are able to give a positive answer. The proof relies on profile
decompositions in anisotropic spaces and their propagation by the Navier-Stokes equations.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

1.1. The Navier-Stokes equations. We are interested in the Cauchy problem for the three
dimensional, homogeneous, incompressible Navier-Stokes system

Ou+u-Vu—Au=—-Vp in Rt xR3
(NS) { divu=0
u‘tZO =Uuop,

where p = p(t,z) and v = (u',u?, u?)(t,r) are respectively the pressure and velocity of an

incompressible, viscous fluid.

As is well-known, the Navier-Stokes system enjoys two important features. First it formally
conserves the energy, in the sense that smooth and decaying solutions satisfy the following
energy equality for all times ¢ > 0:

1 ¢ 1
(11) SOy + [ IV ey d = Gl

Second, (NS) enjoys a scaling invariance property: defining the scaling operators, for any
positive real number A\ and any point xy of R3,

defl (t x—mxg defl t @
(12) Mot 0)  50(55. 552) and Aaolt) = So(55.5)

if u solves (NS) with data ug, then Ay ; u solves (NS) with data Ay ;,uo.

1.2. The Cauchy problem. We shall say that u € L2 ([0,T] x R3) is a weak solution

loc
of (NS) associated with the data ug if for any compactly supported, divergence free vector

field ¢ belonging to C*°([0,T] x R3) the following identity holds for all ¢+ < T

t
/u-qﬁ(t,:n)dx:/ uo(x)-¢(0,x)dx+//(u-Aqb—i—u@u:V¢+u~8t¢)(t’,x)da:dt',
R3 R3 0 Jr3

with
u®u: Vo def Z wub g .
1<5,k<3
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Weak solutions satisfying the energy inequality

1 t 1
(13) SO ey + | 170y @ < 50l

are said to be turbulent solutions, following the terminology of J. Leray [45].

We shall say that a familly (X7)rso of spaces of distributions defined over [0,T] x R? is
scaling invariant if for all T' > 0 one has, with notation (1.2),

VA>0,Vao € R?, u € Xp <= Mygou € Xy2p  with  [Juf x, = [[Axzoullx, s, -

Similarly a space X of distributions defined on R? will be said to be scaling invariant if
VA > 0,Vxg € Rg, ug € Xg <= A;onuo € Xy with HUOHXO = HAA,OCOUOHXO .

This leads to the following definition of a solution, which will be the notion of solution we
shall consider throughout this work.

Definition 1.1. A vector field u is a (scaled) solution to (NS) on [0, T], associated with the
data ug if it is a weak solution in Xr, where Xt belongs to a family of scaling invariant
spaces.

The energy conservation (1.1) is the main ingredient which enabled J. Leray to prove in [45]
that any initial data in L?(IR3) gives rise to (at least) one global turbulent solution to (NS).
The result is the following.

Theorem 1 ([45, 46]). Associated with any divergence free vector field in L?(R%) there is a
global in time turbulent solution. Moreover if d = 2 then this solution is unique.

Uniqueness in space dimension 2, which is proved in [46], is linked to the fact that L?(R?)
is scale invariant. In dimensions three and more, the question of the uniqueness of Leray’s
solutions is still an open problem; we refer to the recent work [34] for some numerical evidence
of non uniqueness. Related to that problem, a number of results have been proved concerning
the uniqueness, and global in time existence of solutions under a scaling invariant smallness
assumption on the data — note that smallness has to be measured in a scale invariant space
to have any relevance. Without such a smallness assumption, existence and uniqueness often
holds in a scale invariant space for a short time but nothing is known beyond that time, at
which some scale-invariant norms of the solution could blow up. The question of the possible
blow up in finite time of solutions to (NS) is actually one of the Millenium Prize Problems
in Mathematics. We shall not recall all the results existing in the literature concerning the
Cauchy problem in scale invariant spaces for the Navier-Stokes system; we refer for instance
to [2], [44], [49] and the references therein, for surveys on the subject. Let us nevertheless
recall that along with the fundamental Theorem 1, J. Leray also proved that if ug is a
divergence free vector field satisfying

(1.4) [uoll 2 (r3)l[Vuoll L2rsy < ¢

for a small enough ¢, then there is only one turbulent solution associated with ug, and the
bound (1.4) still holds for future times. Notice that the quantity [luo||p2(rs)||Vuollr2(rs) is
invariant by the scaling operator A ;,. Without the smallness assumption (1.4), the unique-
ness property holds at least for a short time, time at which the solution ceases to belong
to H': we recall the definition of (homogeneous) Sobolev spaces, given by the (semi-)norm

TP ( G d§>2 |
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Note that in d space dimensions, H*(R?) is a normed space only if s < d/2. Homogeneous
spaces are usually denoted by H? (R?) but since this paper is only concerned with homoge-
neous spaces we choose to drop the dot in the notation. J. Leray also proved that if one
turbulent solution w lies in L?([0, T]; L>(R%)), then all turbulent solutions associated with
the same initial data as u coincide with u on [0, T]. Thus L?([0, T]; L°*(R%)) is a uniqueness
class for the Navier-Stokes system. Let us now recall the following slightly more general

statement than the one described above: it is due to H. Fujita and T. Kato [21], who proved
that if up € H %(R3) is a divergence free vector field satisfying ||u0\|H b w9) < ¢ for a small
enough constant ¢, then there is only one turbulent solution associated with ug. It satisfies

t

)17 "% dt’ < |uo|)? :
O g g+ [ IO < ol
Without the smallness assumption, the uniqueness property holds at least for a short time,

time at which the solution ceases to belong to L%([0,T]; H 3 (R?)). Note that this generalizes
the Leray result since by interpolation

(15) Juoll?

b (e < luoll 2r3) [ Vuol| L2 (rs) -

Many results of this type are known to hold, for instance replacing H %(R?’) by the larger
Lebesgue space L3(R?) (see [33, 38, 62]). The best result known to this day on the uniqueness
of solutions to (NS) is due to H. Koch and D. Tataru [43]. It is proved, as most results of
the type, by a fixed point theorem in an appropriate Banach space. The smallness condition
is the following;:

def 1
[uollpavio—1 (s) = igg””‘fmUO”Lw(R%

1 1

+sup ([ () (1,)? dyit)” <.
:%eRg R2 MJ[0,R?|xB(z,R)

>

Note that the space BMO™! is again invariant by the scaling operators A z,- In the def-

inition of BMO™! norm above, the norm sup t%HemuoH Loo(R3) 1S equivalent to the Besov
>0

norm ||ug|| Balo (R3)" The Besov space By!, (R?) is actually the largest space in which any

scale and translation invariant Banach space of tempered distributions embeds; it is in fact
known that (NS) is illposed for initial data in By!, (R?) (see [10] and [28]), but for small

—1+3
data in By~ " for finite p global existence and uniqueness are known to hold (see [52]). More

on Besov spaces is provided in Appendix A, let us recall their definition here.

Definition 1.2. Let X be a radial function in D(R) such that X(t) = 1 for |[t| < 1 and X(t) = 0
for |t| > 2. For j € Z, the truncation operators are defined by

SF© RN f©) and A; L S, -8,

For all p in [1,00] and q in |0,00], and all s in R, with s < 3/p (or s < 3/p if ¢ = 1), the
homogeneous Besov space By , is defined as the space of tempered distributions f such that

def
1fllBs, =

27112 /|2

< 0.
049

In all other cases of indexes s, the Besov space is defined similarly, up to taking the quotient
with polynomials.
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The results recalled above tend to suggest that the initial data should satisfy some sort of
smallness assumption if one is to prove global existence and uniqueness of solutions. Actually
this turns out not to be the case: there are situations where global unique solutions are known
to exist despite the fact that the initial data is not small in Bgo%oo. That is the case in two
space dimensions as recalled above, as well as under some geometric assumptions (helicity,
axisymmetry without swirl...). Let us describe a result of that type, whose main interest is
that its proof gives an idea of the methods used in this work in a simple framework.

Theorem 2 ([15, 17]). Consider the sequence of divergence free vector fields

(1.6) uo,n () = uo(x) + (Uévvgvo) (21, 22, %)

with (vé, vg) a smooth, two-component, divergence free vector field, satisfying
(v, v})(x1,22,0) =0 if ug is not identically zero.

If ug gives rise to a unique, global solution to the Navier-Stokes equations, then so does ug p
as soon as n is large enough.

The case when up = 0 is proved in [15]. It consists in looking for the solution u,, as

’U,n(t,$) = (1}1’1)270) (t,xl,xg, %) —|—rn(t,:c)

where for all y3, v(-, y3) def (v!,v?)(-,y3) solves the two-dimensional Navier-Stokes equations
with data (v}, v3)(-, y3). We know that v is unique, and globally defined thanks to Theorem 1.
Then the key to the proof is that r, solves a perturbed Navier-Stokes equation of the type

Oyrp +71n-Vrp+v-Vrp+1r,-Vo—Arp, =—-Vp+ f,, divr, =0,

where the error term f,, contains derivatives in xg of (vl,v2,0) (t,xl,xg, %3), which are of
size roughly n~!, hence small. One can therefore solve the equation satisfied by r, using the
same methods as solving globally (NS) with small data and small force. In the case when wug
is not identically zero, the proof consists in looking for the solution under the form

x ~

up(t,z) = u(t,x) + (vl, UQ,O) (t,xl,xg, Zg) + 7 (t, )
with u the global solution associated with ug. Then the rough idea is that v decays at infinity
in 23 whereas due to the fact that (v}, v3)(z1,72,0) = 0, the vector field

(,017,02’ 0) <t7$17$27 %)

has a support roughly in 3 ~ n. So those two functions do not interact one with the other,
and the perturbed equation satisfied by 7, can again be solved globally.

It should be noted that the sequence ug, of Theorem 2 converges in the sense of distribu-
tions to ug. The goal of this work is to try to understand if such a property, which we can
call “weak stability”, holds more generally: we would like to address the question of weak
stability:

If (uo,n)nen, bounded in some scale invariant space Xy, converges to ug in the sense of
distributions, with uy giving rise to a global smooth solution, is it the case for ugp, when n
is large enough ?
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1.3. Strong stability results. Let us recall that it is proved in [1] (see [24] for the case

of Besov spaces B, ;+3/ P) that the set of initial data generating a global solution is open

in BMO™!. More precisely, denoting by VMO™! the closure of smooth functions in BMO ™1,
it is proved in [1] that if ug belongs to VMO™ and generates a global, smooth solution
to (NS), then any sequence (ug,)nen converging to ugp in the BMO™! norm also generates a
global smooth solution as soon as n is large enough. The question asked above addresses the
case when the sequence converges non longer strongly, but in the sense of distributions.

1.4. Weak stability results.

1.4.1. A stability result for weak convergence up to rescaling in B;;+3/p(R3). To answer the
above question, the first example that may come to mind is the case when uy = 0 (which
gives rise to the unique, global solution which is identically zero), and

1
=5
with &y an arbitrary divergence-free vector field. If the weak stability result we are after were
true, then since the weak limit of (ugp)nen is zero then for n large enough v, would give
rise to a unique, global solution. By scale invariance then so would @, and this for any &g,
so that would solve the global regularity problem for (NS). Another natural example is the
sequence

(1.8) UQ,n = Qo(- —2n) = Mz, Do,

T

(1.7) won(1) = 5~ Po(5-) = Ay, Bo(w) with  Tim (A, + Ai) ~

)\n n—00

with (2,)nen a sequence of R? going to infinity. Thus sequences built by rescaling fixed
divergence free vector fields according to the invariances of the equation have to be excluded
from our analysis, since solving (NS) for any smooth initial data seems out of reach. This
naturally leads to the following definition.

Definition 1.3 (Convergence up to rescaling). We say that a sequence (o, )nen defined on R?
converges up to rescaling to ¢ if @, converges to ¢ in the sense of distributions and if for all
sequences (A )nen of positive real numbers and for all sequences (xy,)nen in R? satisfying

1
(1.9) )\n—i—)\——i—\mn\—)oo n— oo,

the sequence (Ay, z,¥n)nen converges to 0 in the sense of distributions, as n goes to infinity.

The following result is a first answer to our question. Its proof is straightforward. We
choose to present it for pedagogical reasons, to relate the notion of convergence up to rescaling
to strong convergence in a larger scale invariant space.

Proposition 1.4. Let p and g be two real numbers in [1, oo and consider (ug n)neN & sequence

of divergence-free vector fields bounded in B, ;+3/ P(R3), converging up to rescaling to ug,

with ug giving rise to a global unique solution. Then the same holds for ug , as soon as n is
large enough.

Note that the same theorem actually holds in any scale invariant space strictly embedded
in BMO™!.

Proof. The proof of Proposition 1.4 relies on the following “profile decomposition” theorem,
which describes the lack of compactness of the embedding B, ;+3/ P into Bﬁ_’ ql-+3/ ? for in-
dices p < p and g < §. The proof of that result can be found in [3], following the pioneering
work of [27] in the framework of Sobolev spaces H*® and [35] for Sobolev spaces W*P. More
on profile decompositions is to be found in Section 2.
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Proposition 1.5 ([3]). Fix p < p and q < ¢ four real numbers in [1, co[ and consider (¢ )neN
a sequence of functions, bounded in B), ;+3/ P(R3) and converging weakly to some function ¢°.
Then up to extracting a subsequence (which we denote in the same way), there is a family
of functions (¢’)j>1 in B;;Jrg/p(R?’), and a family (x%)jzl of sequences of points in R3, as
well as a family of sequences of positive real numbers (h%) j>1, orthogonal in the sense that

if j # k then

; hn By j k \mﬁ—m%]
either h—k%—ﬁ—)oo asm—oo, or hl=h, and ———— 00 asn— o0
n n n

L
such that for all integers L > 1 the function 1/15 def on — @0 — Z Ao @’ satisfies
j=1

‘ L
hzri}solip (K HB};(I;—S/I;(RS) —0 asL — .

Moreover one has
(1.10) A(h%)—l,f(hz;)—lz{;‘pn —~ ), asn— oco.
Note that the result (1.10) is not explicitly stated in [3] but is easy to check. Proposi-

tion 1.4 is then an immediate consequence of Proposition 1.5. Indeed if (ugy) is bounded

in By, ,}H/ P(R?3), then one can decompose each of its components using Proposition 1.5, and
the convergence up to rescaling assumption, joint with (1.10), implies that all profiles are

zero. The sequence (ug,,) therefore converges strongly in Bj ;+3/ P(R3) and the result follows
from the strong stability in Bj ;+3/ P (R3) proved in [24] and recalled in Section 1.3. O

1.4.2. Stability under rescaled weak convergence. Considering Theorem 2, it is natural to try
to extend Proposition 1.4 to more general situations. Indeed the sequences

x
(111) UO,TL(x) = (Ué,U%,O)(l’l,xQ,f)
and
(1.12) Tom(x) = uo(z) + (T3, 72,0) (21, 19, —2) ,  with To(w1,72,0) =0
n
are not bounded in By, ;+3/ P (or in any such scale invariant space) but we do know that they

converge weakly to a vector field giving rise to a global solution, and that the same holds for
each term of the sequence as soon as soon as n is large enough. In order to understand in
what direction one can generalize Proposition 1.4 to take into account such examples, there
are two points to clarify on the sequences (1.11) and (1.12):
(1) what function spaces they are bounded in;
(2) what type of weak convergence (possibly after rescaling as in Definition 1.3) holds for
those sequences.

The main feature of the sequences defined in (1.11) and (1.12) is that they are not bounded in

any space By, ;+3/ P but rather in anisotropic spaces where the regularity in the third variable

scales like L>: for instance L?(R?; H %(R)), or L?(R?; L>°(R)). Notice that those spaces are
scaling invariant by the scaling operator A) ,, and satisfy the additional invariance for the
change of variable

(z1, 22, 23) — (21,22, Az3)
for any positive A. It seems therefore natural to work in those function spaces, or others
having the same scaling properties. Unfortunately H %(R) is not a Banach space, and that

fact makes analysis in H %(]R) rather awkward. We shall therefore trade H %(]R) off for the
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1

slightly smaller Besov space B2271: we define anisotropic Besov spaces as follows. These spaces
generalize the more usual isotropic Besov spaces seen in Definition 1.2, which are studied for
instance in [2, 9, 54, 59, 60].

Definition 1.6. With the notation of Definition 1.2, for (j,k) € Z?, the horizontal trunca-
tions are defined by

SEFE) © (2 H (61, &) f(6) and Al%fgh b

and the vertical truncations by

def ~ v def v v
SYFERET)fE) and AY =SV, - SY.

For all p in [1,00] and q in ]0,00], and all (s, s') in R?, with s < 2/p,s’ < 1/p (or s < 2/p
and s’ < 1/p if ¢ = 1), the anisotropic homogeneous Besov space Bp'y is defined as the space
of tempered distributions f such that

def

171 550 &

In all other cases of indexes s and s', the Besov space is defined similarly, up to taking the
quotient with polynomials.

)2k5+js HAhAvf”LP ,
q

< 00.

Notation. We shall in what follows use the following shorthand notation:

(1.13)
By def —1+2+s,7

/df def
= =By "7, Bse

pl’

’ def

pes Lpss’ s and B° ¥ Bs.

pl7

Let us point out that the scaling operators (1.2) satisfy

IAnso@lisg, = lellag,

The Navier-Stokes equations in anisotropic spaces have been studied in a number of frame-
works. We refer for instance, among others, to [4], [19], [30], [32], [51]. In particular in [4] it
is proved that if uy belongs to B, then there is a unique solution (global in time if the data
is small enough) in L2([0, T]; B'). That norm controls the equation, in the sense that as soon
as the solution belongs to L2([0, T]; B'), then it lies in fact in L ([0, T];B%) foralll <r < 0.
The space B! is included in L> and since the seminal work [45] of J. Leray recalled above,
it is known that the L?([0,7T]; L°(R3)) norm controls the propagation of regularity and also
ensures weak uniqueness among turbulent solutions. Thus the space B° is natural in this
context.

The initial data defined in (1.11) converges in the sense of distributions to the two-dimensional
vector field (u, ud,0) (1‘1, T2, 0), whereas the one defined in (1.12) converges in the sense of
distributions to ug. This leads naturally to a stronger notion of weak convergence, denoted
by rescaled weak convergence, which we shall call R-convergence.

Definition 1.7 (R-convergence). We say that a sequence (¢p,)nen of tempered distributions
defined on R3 R-converges to ¢ if ¢, converges to ¢ in the sense of distributions, and if for
all sequences (\p)nen of positive real numbers and for all sequences (,)nen in R3 satisfy-
ing (1.9), up to extracting a subsequence there is a tempered distribution 1 of (x1,x2) such
that (A, z,¢n)nen converges to 1) in the sense of distributions, as n goes to infinity.

The following examples give some insight into the type of sequences that can be considered
with Definition 1.7.

Proposition 1.8. Let u, be a sequence of positive real numbers converging to infinity. Then



8 H. BAHOURI, J.-Y. CHEMIN, AND I. GALLAGHER

def 1
S)(x) = /74/?(1)
weakly to 0 if and only if V) only depends on (x1, x3).

(2) The sequence go,(f) (x) def g0(2) (ml, Zo, E), with (2) a smooth function, R-converges
1

n

(1) The sequence ¢ (i>, with ¢! a smooth function, R-converges
Hn

weakly to ¢ (z1,z3,0).

Proof. (1) Obviously the sequence @S) converges to zero in the sense of distributions, and the

same goes for Aj 4, gog) if |x,| = 00. Now let (A\,)nen be a sequence of positive real numbers

going to zero or infinity, and for any (z,,)nen, consider the sequence (Ay, 4, <p7(11) (2))nen, which
is given by

1 T—
A3 () = @(1)< n) :
This sequence goes to zero in the sense of distributions as long as A, does not converge to
a constant. So assume now A, — 1. We notice that

Ar, ¢ @) =M@ — )

which again goes to zero in the sense of distributions if |z,| — co. Finally if |z, | is bounded,

then up to a subsequence we may assume that z, — a € R3 in which case A 1 . 909)
wn n

converges in the sense of distributions to (p(l)(x — a), and the assumption requires that go(l)

is a function of (x1,x2) only.

(2). Next consider the sequence gp,(f). Clearly it converges to ¢ (z1,x2,0) in the sense of

distributions, so let us check the R-convergence property. We have

1 (x1—%1pn T2 —Ton T3— T3n
A @) (p) = — ( , " ; ) :
An,xn(pn ( ) )\n('lp )\n 9 )\n )\n/.,Ln
which clearly goes to zero in the sense of distributions when (Ay,)nen goes to zero or infinity.
The same goes when A\, = 1 and (z1,,%2,) — 00, so let us finally assume that A, = 1
and (215, %2y) is bounded. In that case we write

(2)

A _ €T3 — I3 n
Lan Py (T) = o1 — T1n, T2 — Togn, ———

n

)

which, up to a subsequence, converges to zero or to a function of (x1,x2) depending on the
behaviour of the sequence 3 ,/p, and on the limit of (z1,,2z2,). This ends the proof of
Proposition 1.8. 0

Our main result is the following.

Theorem 3. Let ¢ be given in ]0,1[ and let ug in ng generate a unique global solution
to (NS) in L?(R*;BY). Let (ugn)nen be a sequence of divergence free vector fields bounded
in ng, such that ug , R-converges to ug. Then for n large enough, ug,, generates a unique,
global solution to (NS) in the space L*(R*;B').

Acknowledgments. We want to thank very warmly Pierre Germain for suggesting the
concept of rescaled weak convergence.

1.5. Main steps of the proof of Theorem 3.
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1.5.1. Anisotropic profile decomposition of the initial data. To prove Theorem 3, the first step
consists in the proof of an anisotropic profile decomposition of the sequence of initial data,
in the spirit of Proposition 1.5. Let us start by introducing some definitions and notations.

Definition 1.9. We say that two sequences of positive real numbers (AL),en and (A2),en
are orthogonal if

A2
/\fg—i-)\—?%oo, n— oo.

A family of sequences (()‘%)nEN)j is said to be a family of scales if \) =1 and if M, and Ak
are orthogonal when j # k.

Notation. For all points z = (z1,72,23) in R? and all vector fields v = (u',u?,u?), we

denote their horizontal projections by

Th def (z1,22) and ub def (ut,u?).

We shall be considering functions which have different types of variations in the x3 variable
and the xj, variable. The following notation will be used:

(] 5(x) < fan, Bs)

Clearly, for any function f, we have the following identity which will be of constant use all
along this work:

(1.14) 11£1s]
In all that follows, € is a given function in D(Bgs(0,1)) which has value 1 near Bgs(0,1/2).
For any positive real number 7, we denote

(1.15) 0, (z) def O(nx) and O, (xn) def 6y (zn,0).

In order to make notations as light as possible, the letter v (possibly with indices) will
always denote a two-component divergence free vector field, which may depend on the vertical
variable xj3.

1
so— 1
27p

BZI,SQ ~ /8 ||f||B;1’S2 .

Finally we define horizontal differentiation operators V" def (01,02) and divy def Vh. as well

as Ay def 0? 4+ 02, and we shall use the following shorthand notation: X3,Yy def x (R%, Y (R))

where X is a function space defined on R? and Y is defined on R.

Definition 1.10. Let p be a positive real number less than 1/2, fixed from now on.

We define Dy, % [~2+ i, 1 — 1] x [1/2,7/2) and Dy,  [—1 4,1 — ) x [1/2,3/2]. We denote
by S, the space of functions a belonging to m B** such that
(s,s")eDy
def
lalls, = sup |la]gss < o0
s,8")eDy,

Remark 1.11. Everything proved here would work choosing for D,, any set of the type [-2+
Wy, 1 —p] x[1/2, A], with A > 7/2. For simplicity we limit ourselves to the case when A = 7/2.

Proposition 1.12. Under the assumptions of Theorem 3 and up to the extraction of a

subsequence, the following holds. Let p > 2 be given. There is a family of scales (()\%)neN)jeN
and for all L > 1 there is a family of sequences ((h’gb)nEN)jeN going to zero when n goes to 0o
such that for any real number « in |0, 1], there are families of sequences of divergence-free
vector fields (for j € [1,L]), (vfl,a’L)neN, (w,jl,a,L)neN; (02:§L)neN; (’LUSZ;.L?Q,L)TLGN, (USZ}S,Z{,L)neN
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and (wg’lf(; 1 )nen all belonging to S,,, and a smooth, compactly supported function ug  such
that the sequence (ugn)nen can be written under the form

_ 0,00 0 .0,00,h 0,00,3 0,loc 0. .0,loc,h 0,loc,3
Uo,n = U0,cx + [(UOna L +h wOna L» wOn ,Q L)]h% + [(UOn a,L +h wOn « L’wO,n,a,L)]hg
Ji3 )
+ Z A/\J o, L + h‘n n « L7 wn,a,L)] i, + Pna,L
where ug o approximates ug in the sense that

1.1 li — =
(116) Tim [[ug.a — ol =0,

where the remainder term satisfies

(1.17) sy =0,

L—ooa—0 p_s
while the following uniform bounds hold:
0,00,3 0,loc 0,loc,3

def
M = Sup sup Sup(” UOnaL’wOnaL HBO + H vOnaL’wo,n,a,L)HBO
L>1 «€]0,1] neN

(1.18) L
+luoalls + 3N 0 g w0l )l ) < 00
j=1
and for all « in 10, 1],
def 0,00,3 0,1 0,loc,3
Mo = i‘;li liljlgL <H UOnaL7w0 ZOaL Hsu +| ”o;;Lawo,s,i,L)Hsu
(1.19) neN
+HuUOZHS +H naL’wnaL HS )
is finite. Finally, we have
0,1 0,loc,3
(1.20) Jim tim lmsup || (o, 20 Wora,) (Ol gy @2y = 0
(1.21Y (e, L), 3n(a, L) / ¥ < (e, L) ,Yn € N, (1 — 8, (02 1 wd%) = 0, and
0,00 0,00,3
(122) V(aaLﬂ?) 9 3”(04,[4»77)/ \V/TL Z n(a’Lvn) 9 eh,n(vomﬂ,L?wO Zoa L) = 0

The proof of this proposition is the purpose of Section 2.

Proposition 1.12 states that the sequence ug, is equal, up to a small remainder term, to
a finite sum of orthogonal sequences of divergence-free vector fields. These sequences are
obtained from the profile decomposition derived in [4] (see Proposition 2.2 in this work) by
grouping together all the profiles having the same horizontal scale A,, and the form they
take depends on whether the scale ), is identically equal to one or not. In the case when
An goes to 0 or infinity, these sequences are of the type Ay, [(v}; + hpwt, w%)] B With hy, a
sequence going to zero. In the case when )\, is identically equal to one, we deal with three

types of orthogonal sequences: the first one consists in ug o, an approximation of the weak

o . . loc,h loc,h loc,3 . . .
limit ug, the second one given by [(Uon ot hOw ool Yo e, Bl ho 18 uniformly localized

in the horizontal variable and vanishes at x3 = 0, while the horizontal support of the third

00,h 00,3 )]

oo,h 0 . .
one [(vo7n7a7L + hpw, oL Wona,r)] po 80€S to infinity.

Note that in contrast with classical profile decompositions (as stated in Proposition 1.5 for
instance), cores of concentration do not appear in the profile decomposition given in Proposi-
tion 1.12 since all the profiles with the same horizontal scale are grouped together, and thus
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the decomposition is written in terms of scales only. The price to pay is that the profiles are
no longer fixed functions, but bounded sequences.

Let us point out that the R-convergence of ug, to uy arises in a crucial way in the proof
of Proposition 1.12. It excludes in the profile decomposition of g, sequences of type (1.7)
and (1.8).

1.5.2. Proof of Theorem 3. Once Proposition 1.12 is known, the main step of the proof of The-
orem 3 consists in proving that each individual profile involved in the decomposition of Propo-
sition 1.12 does generate a global solution to (NS) as soon as n is large enough. This is based
on the following results concerning respectively profiles A)\% [(’Ufl ar T h%wfl}; L,w%’i L)] B
with A}, going to 0 or infinity, and profiles of horizontal scale one, see respectively Theo-
rems 4 and 5. Then, an orthogonality argument leads to the fact that the sum of the profiles
also generates a global regular solution for large enough n.

In order to state the results, let us define the function spaces we shall be working with.

Definition 1.13. — We define the space AZ’SI = LOO(]R*;B;’SI) N LQ(RJ“;B;H’S/) equipped

with the norm
def

Jall g % Nl e
’ 1
and we denote A>*" = A3 and A® = A%2.
/
— We denote by F,; any function space such that

') + HG/HL2(R+;B;+1’5/) )

HLOfHLQ(RJr;B;’JgLS’) SJ HfHF;;;,
where, for any non negative real number 7, L.f is the solution of OL.f — AL.f = f

. —1+2+s,5
with L; =, = 0. We denote F; =F,, " 7 and F*° = F3.

Examples. Using the smoothing effect of the heat flow as described by Lemma A.2; it is
easy to prove that the spaces L'(R*; Byg ) and LY(R*; B3 1) are continuously embedded
in F52. We refer to Lemma A.3 for a proof, along with other examples.

In the following we shall denote by To(A, B) a generic constant depending only on the quan-

tities A and B. We shall denote by 77 a generic non decreasing function from R™ into R™
such that
Ti(r)

(1.23) limsup ——= < o0,
r—0 r

and by 7., a generic locally bounded function from R™ into R*. All those functions may
vary from line to line. Let us notice that for any positive sequence (a,)nen belonging to €1,
we have

(1.24) > Tilan) < Too(Yan).-

The notation a < b means that an absolute constant C' exists such that a < Cb.

Theorem 4. A Iocally bounded function &1 from R* into R* exists which satisfies the
following. For any (vo,w3) in S, (see Definition 1.10), for any positive real number 3 such
that 8 < e1(||(vo, wi)||s,), the divergence free vector field

def _
Dy = [(vo — BVAL 03w, wi)] 5

generates a global solution ®g to (NS) which satisfies
(1.25) 125040 < Ti(ll(vo, wi) o) + B Too (Il (vo, w))lls,.) -
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Moreover, for any (s,s') in [—=1+ p,1 — p] x [1/2,7/2], we have, for any r in [1, c0],

1 3
(1.26) 1930 ety + g 198y < ol )l
The proof of this theorem is the purpose of Section 3. Let us point out that this theorem is a
global existence result for the Navier-Stokes system associated with a new class of arbitrarily
large initial data generalizing the example considered in [15], and where the regularity is
sharply estimated, in particular in terms of anisotropic norms.

The existence of a global regular solution for the set of profiles associated with the horizontal
scale 1 is ensured by the following theorem.

Theorem 5. Let us consider the initial data, with the notation of Proposition 1.12,

0 d_ef 0,00 0, .0,00,h 0,00,3 0,loc 0, .0,loc,h 0,loc,3

Om,a,L = U0, T [(Uo,n,a,L + MW o 10 wo,n,a,L)]hg + [(Uo,n,a,L + hyWo o 1> wO,ma,L)]h% :
There is a constant &g, depending only on ug and on M, such that if hY < &g, then the initial
data <I>87n7a7L generates a global smooth solution @27Q’L which satisfies for all s in [—14p, 1—p]
and all r in [1, 00],

(1.27) ) < Tolun, Ma)

H (I)g,oz,L "LT(R+;BS+%

The proof of this theorem is the object of Section 4. As Theorem 4, this is also a global
existence result for the Navier-Stokes system, generalizing Theorem 3 of [16] and Theorem 2
of [17], where we control regularity in a very precise way.

Proof of Theorem 3. Let us consider the profile decomposition given by Proposition 1.12. For
a given positive (and small) e, Assertion (1.17) allows to choose o, L and Ny (depending of
course on ¢) such that

(1.28) ¥n > No, (| pn,a,z

lL2@+B1) S €.
From now on the parameters o and L are fixed so that (1.28) holds. Now let us consider the
two functions €1, 71 and T (resp. ¢ and ’76) which appear in the statement of Theorem 4

(resp. Theorem 5). Since each sequence (h?,)nen, for 0 < j < L, goes to zero as n goes to
infinity, let us choose an integer N7 greater than or equal to Ny such that

3

0 LT (M) } '

Then for 1 < j < L (resp. j = 0), let us denote by ®7, . (resp. ®f) _) the global solution of (NS)
associated with the initial data

. i i3
[(Uil,a,L + hflwi,a,L’ wfl,a,Lﬂ hZL

0,00 0 .0,00,h 0,00,3 0,loc 0 ..0,loc,h 0,loc,3
<resp. U0, o + [(UO,n,a,L + hnwO,n,a,L7 wO,n,a,L)] h9 + [<UO,n,a,L + hnwO,n,a,L7 wO,n,a,L)] h%)

(1.29) Vn>Np, Vi€ {0,....L}, hi < min{el(/\/la)

given by Theorem 4 (resp. Theorem 5). We look for the global solution associated with ug
under the form

L
. def ;
a a tA
Up = upt? + Ry with  wiPP = E A)\%CI%,E + € pna,L s
7=0

recalling that A = 1, see Definition 1.9. As recalled in Section 1, A, @7, . solves (NS) with the

initial data Ay, [(v), , ; + it i

Ly W o L)] ,i by the scaling invariance of the Navier-Stokes
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equations. Plugging this decomposition into the Navier-Stokes equation therefore gives the
following equation on R, :
8tRn,e - ARn,s + div (Rn c®@ R, et R, e ® uapp + uapp ® R, s) + Vpn,z—:
=Fpe=F, +F. +F:,  with

def .
= le(etApn a,l ® etApn,a,L)

1.30 def .
( ) 2 = Z d1v N <I> c® empmmL + empn%L ® A/\%@ZM) and
d f . ;
FILUS Y div(A, @) @A),
0<yj,k<L
ik
and where (d1v Z Ok ( uloP

We shall prove that there is an integer N > Nj such that with the notation of Definition 1.13,
(1.31) Vn =N, ||Fn,€||}'19 < Ce,

where C only depends on L and M,. In the next estimates we omit the dependence of all
constants on « and L, which are fixed.

Let us start with the estimate of F7~1L,5~ Using the fact that B; is an algebra, we have

tA h tA
H P, @€ pn,a,LHLl(Rﬂ 1) 1)
SO )
: A A A
| divy, (et p?L,O&,L ® e Pn,a,L)HLl(RJr;Bg) S Het meéaLHL?(RJr;Bll))
and
tA 3 tA tA
H83 (6 Pn,a, L€ pn,a,L) ‘|L1(R+;B§iil+%) ~ e} (R+;B})
According to the examples page 11, we infer that
(1.32) |FL . )
p
In view of Inequality (1.28), Estimate (1.32) ensures that
(1.33) vn> Ny, |Ficllr S

Now let us consider F%E. By the scaling invariance of the operators A,; in L*(RT; B;) and
21
again the fact that B;’lp is an algebra, we get

HA)\%(I)%’E ® etApn,a,L + etApn oL @ A)\j ‘1)% EHLI (R+;B2)
(1.34) SN2+, B1) € prsa, | 2+ B1)

S 197 cll 2 sl pna,ll L2t ) -
Next we write, thanks to Estimates (1.25) and (1.27),

L
Z H%s}lm(wm < To(uo, Ma)
=0

L

3 (T 0w o) + BT (107, w2 s, )

Jj=1
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which can be written due to (1.24)

L L
ZH<I>%,EHL2(R+;31) < To(uo, Ma) + Too(M) + > B Too (M)

J=0

Using Condition (1.29) on the sequences (A} )nen implies that

HZ

It follows (of course up to a change of 75,) that for small enough e

(1.35) HZ

Thanks to (1.28) and (1.34), this gives rise to
(1.36) Vn > Ny, \|F37€||F19 < e (To(uo, Ma) + Tos(M)) .

L2(R+;BY)

< To(uo, Ma) + Toc(M) .

L2(R+;BY)

Finally let us consider Fs _. Recalling that o and L are fixed, it suffices to prove in view of the
examples page 11 that there is No > Nj such that for all n > Ny and for all 0 < j # k < L,

HA)\ZL(I) ® A/\’“(I’naHLl(w B S €

Using the fact that B! is an algebra along with the Holder inequality, we infer that for a
small enough ~ in |0, 1],

. k k
HA)\%(I).T]I,E ® AA’fL(I)n,auLl(RJr;m) < ”A)\J' a” (]R+ Bl)HAA'ﬁcI)nvf‘|L1%(R+;Bl) :
Notice that
Mg Bl 2 gy~ OAVICl 2 and
1
k
||AA17€L(I>”75’|L127«/(R+;81) (/\lrﬁl)v ” ”75”[,1%([[“;31) ’

For small enough ~, Theorems 4 and 5 imply that

< PYANG!
1800 ® Ay @k Ll ey S (5F)

n

We deduce that

YA e
Iy < CIRS o5 32 min{imtn)

0<j5,k<L n
J#k

As the sequences (M))nen and (AF),ex are orthogonal (see Definition 1.9), we have for any j
and k such that j # k

(NN
lim mln{—k,—.} =
n—00 )‘n )\ZL
Thus an integer No greater than or equal to N; exists such that
vn >N, |Ficlr S
Together with (1.33) and (1.36), this implies that
n> Ny = |[Frellro Se

which proves (1.31).
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Now, in order to conclude the proof of Theorem 3, we need the following results.

Proposition 1.14. Let p be in the inverval [2,00[. A constant Cy exists such that, if U is
in L*(R*;B}), ug in B) and f in F)) such that

1 oo
Juolsy + 1117y < ¢ exp(~Co [~ 10 @IEyde)

0
then the problem

Ju+diviuu+uU4+U®u)—Au=-Vp+ f
(NSp)

divu =0 and wup—g=uo
has a unique global solution in L?(R*; B}) which satisfies
lull L2@+:81) < lluollsy + 11l 7o -

Proposition 1.15. Let p € [2,4] be given and let u be a solution of (NS) which belongs
to L*(R*; B}) and with initial data ug in B®. Then u belongs to A° and satisfies
(1.37) vre[1,00], [[ull + ull

) S lluollo + el e sy -

L™ (R+;B%) Li(R+;BY3

Moreover, if p = 2 and if the initial data ug belongs in addition to B® for some s in the
interval [—1 4 p,1 — p|, then

(138)  vrelod], Jul, g gt < Tilluols) Tolluolls, fullzaes )

Finally, if p = 2 and if ug belongs to B** for some s’ greater than 1/2, then

(1.39) vr e [100], lull g+ 52,y < Tillluollgo.) To(lluollgo, lullr2@+m)) -

The proof of both propositions can be found in Appendix A.
Conclusion of the proof of Theorem 3. Let us fix p €]2,4[. By definition of uy'Y we have

+ HetA

app
2P 2t ) <HZAV S J—

iBL) -

Inequalities (1.28) and (1.35) imply that for n sufficiently large
HU%?HL%W;B;) < To(ug, Ma) + Too(M) + Ce.

Because of (1.31), it is clear that, if € is small enough,

[ Fnell o < 56Xp< Col|”3?§’”%2(u§+;zsl)>

which ensures thanks to Proposition 1.14 that ug, generates a global regular solution in the
space L?(RT; B;). Then the conclusion of the proof of Theorem 3 is a direct consequence of
Proposition 1.15. O

The proof of Theorem 3 is structured as follows. In Section 2 we prove Proposition 1.12.
Theorems 4 and 5 are proved in Sections 3 and 4 respectively. Appendix A is devoted to the
recollection of some material on anisotropic Besov spaces. We also prove in the Appendix
Proposition 1.14 and the anisotropic propagation of regularity result for the Navier-Stokes
system stated in Proposition 1.15.



16 H. BAHOURI, J.-Y. CHEMIN, AND I. GALLAGHER

2. PROFILE DECOMPOSITIONS

2.1. An anisotropic profile decomposition. The study of the defect of compactness in
Sobolev embeddings originates in the works of P.-L. Lions (see [47] and [48]), L. Tartar
(see [58]) and P. Gérard (see [26]) and earlier decompositions of bounded sequences into a
sum of “profiles” can be found in the studies by H. Brézis and J.-M. Coron in [11] and M.
Struwe in [57]. Our source of inspiration here is the work [27] of P. Gérard in which the defect
of compactness of the critical Sobolev embedding H* C L? is described in terms of a sum of
rescaled and translated orthogonal profiles, up to a small term in LP. This was generalized
to other Sobolev spaces by S. Jaffard in [35], to Besov spaces by G. Koch [42], and finally to
general critical embeddings by H. Bahouri, A. Cohen and G. Koch in [3] : see Proposition 1.5
for a statement. We refer also to [6, 7, 8] for Sobolev embeddings in Orlicz spaces and [20]
for an abstract, functional analytic presentation.

In the pionneering works [5] (for the critical 3D wave equation) and [50] (for the critical 2D
Schrodinger equation), this type of decomposition was introduced in the study of nonlinear
partial differential equations. The ideas of [5] were revisited in [41] and [22] in the context
of the Schrodinger equations and Navier-Stokes equations respectively, with an aim at de-
scribing the structure of bounded sequences of solutions to those equations. These profile
decomposition techniques have since then been succesfully used in order to study the possible
blow-up of solutions to nonlinear partial differential equations, in various contexts; we refer

for instance to [25], [31], [36], [37], [39], [40], [53], [55].

Before stating the result, let us give the definition of anisotropic scaling operators: for any
two sequences of positive real numbers (&,,)neny and (7, )nen, and for any sequence (2, )nen
of points in R3, we denote

def 1 Th — Tph T3 — Tp3
AEny’Yn,l’n¢($) = ¢ ( = ’ = > :

En En Tn

Observe that the operator A, -, z, is an isometry in the space Bqu for any 1 < p < oo and
any 0 < ¢ < oo — recall the definition of those spaces in (1.13). Notice also that when the
sequences (g,) and () are equal, then the operator A., -, ., reduces to the isotropic scaling
operator A, ;. defined in (1.2), and such isotropic profiles will be the ones to disappear in the
profile decomposition thanks to the assumption of R-convergence. We also have a definition
of orthogonal triplets of sequences, analogous to Definition 1.9.

Definition 2.1. We say that two triplets of sequences (¢!,~%, x%),en with £ belonging

to {1,2}, where (£, 7" )nen are two sequences of positive real numbers and x!, are sequences
in R3, are orthogonal if, when n tends to infinity,

12 1 2

_ Ep €

either —;—1——’{‘—1—’%’4—7—?%00
e2 el o~
n n n n

1 .1
or (en,Yn) = (en,m) and  |(zg)" 7 — (a7)" 7| = oo,

l V4

xn,h xn,S)
k' ok )
87’L ’Y'fl

The cornerstone to the proof of Proposition 1.12 is the following proposition.

k ~k def
where we have denoted (xf;)en’% = (

Proposition 2.2. Let (p,)nen and ¢g belong to 887(1 for some 0 < q < 1, with (¢,) con-
verging to ¢¥ in the sense of distributions as n goes to infinity. Let p > 2 be given. For all
integers £ > 1 there is a triplet of orthogonal sequences in the sense of Definition 2.1, denoted
by (e,~°, 28 )nen and functions ¢ in 887(1 such that up to extracting a subsequence, one can
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write the sequence (py,)nen under the following form, for each L > 1:
L
(2.1) on ="+ Aoy e ar 6+,
=1

where L satisfies

(2.2) limsup |95 — 0, L—oo.
n—r00 Pl

Moreover the following stability result holds:

¢
(2.3) > ¢l S sup lnllgo + lIdollso -
0>1 n

The proof follows word for word the proof of Theorem 3 in [4], up to straightforward
modifications of the indices of the Besov spaces at play.

Remark 2.3. If two scales appearing in the above decomposition are not orthogonal, then
they can be chosen to be equal. We shall therefore assume from now on that is the case: two
sequences of scales are either orthogonal, or equal.

Remark 2.4. By density of smooth, compactly supported functions in ng, one can write
for each integer ¢
o = da +ro with |rgll oy <a
2,q

where gbﬁl are arbitrarily smooth and compactly supported, and moreover

(2.4) > (Ieh g0 + lIrblize) S sup llenllzo + ol -
0>1 "

2.2. Proof of Proposition 1.12. The proof of Proposition 1.12 is structured as follows.
First we write down a profile decomposition for any bounded, R-converging sequence of
divergence free vector fields, following the results of the previous section. Next we reorganize
the profile decomposition by grouping together all profiles having the same horizontal scale
and finally we check that all the conclusions of Proposition 1.12 hold.

2.2.1. Profile decomposition of R-converging divergence free vector fields. In this section we
start with the anisotropic profile decomposition of sequences of Bg?q given in Proposition 2.2
and we use the assumption of R-convergence (see Definition 1.7) to eliminate from the profile
decomposition all isotropic profiles. Finally we study the particular case of divergence free
vector fields. Under this assumption, we are able to restrict our attention to (rescaled) vector
fields with slow vertical variations.

Let us first prove the following result.

Proposition 2.5. Let (¢,) and ¢g belong to 887(1 for some 0 < g < 1, with (y,) R-converging

to ¢° as n goes to infinity. Then with the notation of Proposition 2.2, the following result
holds:

(2.5) ¥0>1, lim (v6)~tel € {0, 00} .

Remark 2.6. This proposition shows that if one assumes that the weak convergence is actu-
ally an R-convergence, then the only profiles remaining in the decomposition are those with
truly anisotropic horizontal and vertical scales. This eliminates profiles of the type n¢(nx)
and ¢(- — xp,) with |x,| — oo, for which clearly the conclusion of Theorem 3 is unknown in
general (see the discussion in Section 1).
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Proof of Proposition 2.5. To prove (2.5) we consider the decomposition provided in Proposi-
tion 2.2 and we assume that there is & € N such that (7%)~'e* goes to 1 as n goes to infinity.
We rescale the decomposition (2.1) to find, choosing L > k,

k § : A L
3 (SD QOO) Asn 'yn qub +A 1 1 zﬁqvbn
k> k? n Rk ok
TL 7L n n
where
ek def xy, — xh
6k

Now let us take the weak limit of both sides of the equality as n goes to infinity. By Defini-

tion 1.7 we know that the left-hand side goes weakly to a function depending only on (x1, x3)

(up to an extraction), denoted by 1;(5[?1,:62). Concerning the right-hand side, we start by

noticing that

¢ {_:Z

20 or 200 = Ay ¢ ¢ =0,
n ok T T

€
eh

n

as n tends to infinity, for any value of the Sequences 'yn, n, and z¥. So we can restrict the
sum on the right-hand side to the case when ¢/ /ef — 1. Then we write similarly

so there only remain indexes £ such that €//7, — 0 or 1. Finally we use the fact that
if £ /4¢ — 1, then the weak limit of Al ek #* can be other than zero only if a5t = ab* e R3,

and similarly if z—:fl / 'yf; — 0, then the weak limit of A 12 gt kqﬁg can be other than zero only
Z

Ty

if 2% h — ah € R? and (af, 5 — zF 5) /75 — a3 € R. So let us define

¢
Sl’L(k‘)def{1<€<L/€ ek xfgk%ae’kER?’,ETZ%l} and
Tn

L

L Lk f
T x
SOL(k )def{1<€<L/e ek, fl’f1—>ah cR?, 71’37—>a3 €R, —>0}
Tn v

Actually by orthogonality the set S'%(k) only contains one element, which is k. So for
each L > 1, as n goes to infinity we have finally

ALy ave =t Y e a e ).

£eS0.L (k)

421
Since the left-hand side tends to 0 in By, ” P as L tends to infinity, uniformly in n € N, we

deduce that ¢* must be independent of z3. That is a contradiction since ¢* belongs to B°.
It follows that (7%)~'ek goes to 0 or infinity as n goes to infinity.

The case of divergence free vector fields.  Putting together Propositions 2.2 and 2.5 along
with Remark 2.4 and the fact that ug , is divergence free we obtain the following result.

Proposition 2.7. Under the assumptions of Theorem 3, the following holds. Let p > 2
be given. For all integers £ > 1 there is a triplet of orthogonal sequences in the sense of
Definition 1.9, denoted by (£, 7., x5 )nen and for all o in ]0,1[ there are arbitrarily smooth

divergence free vector fields (QSQZ, 0) and (—VhA}jlf)gqﬁfx,qﬁfx) with qﬂb/Z’K and ¢%, compactly
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supported, and such that up to extracting a subsequence, one can write the sequence (ug n )neN
under the following form, for each L > 1:

L ¢
~ £ _
Uom = U0+ Y Aeg og e (S + 70 A G )
=1 n

(2.6)
+ (0" = VA o)
where @bmn’L and 1% are independent of o and satisfy

(2.7) timsup (|G g+ [WEllg, ) =0, L — o0,
n—00 Pl Pl

while %’“J and r’, are independent of n and L and satisfy for each £ € N

~h,( ¢
(2.8) 176" g0 + llrallo < o

Moreover the following properties hold:
Ve>1,  lim (y) el € {0,00},

2‘9 n—oo
(29) and lim (75)7tel =
n—oo

VAR
OO:>¢a:a:

)

as well as the following stability result, which is uniform in «:

(2.10) > (165" lso + [I75*
>1

|30 + [|uolgo -

go + [ @allgo + lIrallse) < sup (|uo,n
n

Proof of Proposition 2.7. First we decompose the third component ugm according to Propo-
sition 2.2 and Remark 2.4: with the above notation, this gives rise to
L
(2.11) g =+ D Act e e (06, +75) + 0
/=1

with lim sup ||’¢J£ Il 5o ) L7250 (). Moreover thanks to Proposition 2.5, we know that for all £ > 1,
n—00 P,

lim (74)'<!, € {0, 00}

n—oo

Next thanks to the divergence-free assumption we recover the profile decomposition for uloljn.

Indeed there is a two-component, divergence-free vector field VhLCom such that
ug,n = VhLCo,n — VhAﬂlagug,n,
where VI = (=01, 02), and some function ¢ such that
ul = Vo — VEA 1 9gud
Now since 53u8’n = —divy ug,n and u]&n is bounded in Bqu, we deduce that VhJ'Com is a

bounded sequence in ng and similarly for Vthp. Thus, applying again the profile decom-
position of Proposition 2.2 and Remark 2.4, we get

L
J_ ~ ~
(2.12) V' Com = Viyp = Z Az 50 ze (¢g’£ + ?’2’2) +ypt
=1

L .
%0 and ||7A°ha’£||30 < a. Moreover Proposition 2.5 ensures that

with limsup |91 .
n—00 21
for all £ > 1, we have lim (3%)7'& € {0, 00}.

n—oo

21
p’'p
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3

Finally, by the divergence free assumption, ug’n is bounded in B; ;’5 which implies that
necessarily ¢f, = r{ = 0 in the case when li_)rn (v2)"lel = oo (see Lemma 5.3 in [4]). Up to
n o0

relabelling the various sequences appearing in (2.11) and (2.12), Proposition 2.7 follows. [

2.2.2. Regrouping of profiles according to horizontal scales. With the notation of Proposi-
tion 2.7, let us define the following scales: €9 =% = 1, and 2 = 0, so that uy = Ago o 0 ug.

In order to proceed with the re-organization of the profile decomposition provided in Propo-
sition 2.7, we introduce some more definitions, keeping the notation of Proposition 2.7. For

a given L > 1 we define recursively an increasing (finite) sequence of indexes ¢; € {1,...,L}
by

¢ k
213) 4 %0, 0 Ymin {e e {tp+1,....L}/ %} ~0 and (¢ | rL(sff’)} ,

" k'=0

where for 0 < ¢ < L, we define I'?(f) as the set of all indices having the same horizontal
scale Efl, namely (recalling that by Remark 2.3 if two scales are not orthogonal, then they
are equal)

(2.14) riEl) = def {K’ {1,...,L} /¥ =& and £5(4Y)” 1—>0,n—>oo}.

We call £(L) the largest index of the sequence (¢;) and we may then introduce the following
partition:

L(L)
(2.15) {e e{l,...,L} /(L) = o} = J T,
k=0

We shall now regroup profiles in the decomposition (2.6) of wug,, according to the value of
their horizontal scale. We fix from now on an integer L > 1.

Construction of the profiles for £ = 0. Before going into the technical details of the construc-
tion, let us discuss an example explaining the computations of this paragraph. Consider the
particular case when ug ,, is given by

upn(x) = up(x) + (vg(xh, 27 "x3) + wg’h(xh, 2_2"363), 0) + (vg(arl +n,xe,2” "x3), O) ,

with 118 and wg’h smooth (say in Bi’j for all s,s" in R) and compactly supported. Recall
that the notation v for a vector field always stands for a two component vector field. Let us
assume that (uon)nen R-converges to ug, as n tends to infinity. Then we can write

ug,n () = uo(x) + (v8 fc(ﬂ«“h,?_”ﬂ%)’o) + (vgff(xh,Q—%?,),o) ,

with O’IOC(y) def vg(y)—i—wg’h(yh, 27 "ys3) and Ug’zo(y) v)(y1+n, y2,y3). We notice that Vg,

0, loc
and Uo are uniformly bounded in B°, but also in Bsf for any s in R and s > 1/2.
Moreover since ug,, — ug, we have vJ(xy,0) + wh(wy,0) = 0, hence vgifc(xh,O) = 0. The
initial data ug, has therefore been re-written as

ugn () = up(x) + (vg 10 (2, 27" 3), 0) + (vgflo(a:h, 27"23),0) with vngc(a:h, 0)=0

and Where the support in xy, of UO Oc(azh, 27"z3) is in a fixed compact set whereas the support

in xy, of Uo ~°(xn, 2 "x3) escapes to infinity. This is of the same form as in the statement of
Proposition 1.12.

When considering all the profiles having the same horizontal scale (1 here), the point is
therefore to choose the smallest vertical scale (2" here) and to write the decomposition in



ON THE STABILITY OF GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 21

terms of that scale only. Of course that implies that contrary to usual profile decompositions,
the profiles are no longer fixed functions in B°, but sequences of functions, bounded in B°.

In view of the above example, let £; be an integer such that 'nyO is the smallest vertical scale
going to infinity, associated with profiles for 1 < ¢ < L, having 1 for horizontal scale. More
precisely we ask that

by _

Tn min

erL(1)

where according to (2.14),
rta) = {K'E {1,...,L} /" =1 and +f - 0, n—)oo}.

Notice that the minimum of the sequences v/ is well defined in our context thanks to the fact
that due to Remark 2.3, either two sequences are orthogonal in the sense of Definition 1.9,
or they are equal. Remark also that ¢, is by no means unique, as several profiles may have
the same horizontal scale as well as the same vertical scale (in which case the concentration
cores must be orthogonal).

Now we denote
(2.16) B0 < (),

and we notice that h2 goes to zero as n goes to infinity for each L. Note also that h% depends
on L through the choice of £, since if L increases then £, may also increase; this dependence
is omitted in the notation for simplicity. Let us define (up to a subsequence extraction)

Z
¢ def .. ( ¢ n3>
(2.17) a = nlggo T b 7
We then define the divergence-free vector fields
0,loc,h def Tht ¢ Y3 73
»10C, 5 n,
(2.18) vO,n,a,L(y) = Z Do (y “Tuhs 7000 hO~L - 7)
cerli(1) nm n
aflERQ
and
¢
0,loc def hA—1 ¢ ¢ Y3 Tng3
e () = (= oo VAT D506, 08) (n — b oy — 5
(2.19) bt MXL:( : hnvﬁ " "R
af‘GRQ
By construction we have
0,loch __ ha-1 0,loc,3
O,no,fx,L =-V Ah O3 0,7:),2,L~
Similarly we define
l
0,00,h def Thit ¢ Y3 Tn,3
(220) ,UO,;.:a,L(y) = Z gba (yh “Tphs 300 hO'y - ,.;LZ )
¢ert(1) nin n
lay, |=00
and
'LUO ,00 (y) dﬁf Z ( 163¢ ¢€ ) <yh Z Y3 foB)
= - —zh, SN I
(2.21) pment e hwﬁ “ R RN T o

|a|=o00
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By construction we have again
O,oo,h _ h -1 070073
Wy o, = -V Ah 83w0,n,a,L'

Moreover recalling the notation

[flho (2) = f(zn, hyas)

def 1 Th — Tph T3 — Tp3
A'Snﬁmxnd)(x) = ¢< = ) = ) 9
En Tn

and

one can compute that

~ 1
h,l ha-1 Y4 Y4 o 0,loc,h 0 0,loc,h 0,loc,3
(2.22) Z A1t at (% Tl VA, 83¢a,¢a) - [(UO,n,a,L + hnwo,n,a,vao,n,a,L)]hg
n

2erl (1)
aﬁGRQ
and
~ 1
h,0 ha—1g £ £\ _ [7,000h 0, 0,00,h 0,00,3
(223) Z Mgt (% _77v Ay 9300, Pa | = [(Uo,n,a,L+hnwo,n,a,vao,n,a,L)]h2‘
Lerk(1) "
|a£|=oo

0,loc,h 0,loc 0,00,h 0,00 . . .
Let us now check that vy, ' 1, wo' o 1> Vo'n b, a0 Wo'n o 1 satisfy the bounds given in the

statement of Proposition 1.12. We shall only study vg’:fz}z and wg’f; ;, as the other study

. . . . . 0,1 .
is very similar. On the one hand, by translation and scale invariance of B,{ and using

definitions (2.18) and (2.19), we get
0,loc,h “ht 0,loc,3 ¢
(2.24) logmarllze <D léa‘llso and Jwg,rells < D ldalls -
>1 £>1

By (2.10), we infer that

(2.25) HUSZK&’FLHBO + ||w8:2),2,3LHBO < C uniformly in a,L,n.

Moreover for each given «, the profiles are as smooth as needed, and since in the above sums

by construction ’yflgL < 7%, one gets also after an easy computation

(2.26) VseR,Vs' >1/2, Hv&’iﬁi’}}:HB;S/ + ||v8”lz(;’L « < C(a) uniformly inn,L.
»q »q

|B§
Estimates (2.25) and (2.26) give easily (1.18) and (1.19).

Finally let us estimate U(O)::?,Z,hL(.’O) and wg”izz?L(‘,O) in BY;(R?) and prove (1.20). On the
one hand by assumption we know that ug, — o in the sense of distributions. On the other
hand we can take weak limits in the decomposition of ug , provided by Proposition 2.7. We
recall that by (2.9), if €/ /75 — oo then ¢ = rf, = 0. Then we notice that clearly

L 4

n — 0 or g,

¢ =00 = Ayt f =0
for any value of the sequences 7, 2!, and any function f. Moreover
Yo 0 = Myt f =0

for any sequence of cores z‘ and any function f, so we are left with the study of profiles such
that £ = 1 and 72 — co. Then we also notice that if 7% — oo, then with Notation (2.17),

(2.27) laf] =00 => Ay e 0 f = 0.
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Consequently for each L > 1 and each « in |0, 1[, we have in view of (2.11) and (2.12), as n
goes to infinity

¢
-
3 L ¢ ¢ n,3 £
U, n_wn - Z ra('_xn,h? "YE ) - u0+ Z ¢ )
£erL(1) n EeFL (1)
s.t.ay E]R2
—at,
L 7h,L ~h,l l n, L h,¢ 14
thO,n — i - Z Ta ( — Tnho ’YZ ) - Vie+ Z bq ( —ah,O).
¢erL(1) " eerk(1)
s.t. aﬁERQ

By hypothesis the sequence (ug’n)ngN converges weakly to u3 and the sequence (VﬁCg,n)neN
converges weakly to Vi, so for each L > 1 and all « in 0, 1], we have as n goes to infinity

¢
=
L ¢ ¢ 3 £
—ty — Z Ta(‘_xn,h7T/L) - Z ¢o(- — az,, 0)
£eTL(1) " ¢erL(1)
s.t.ay £ cR?
(2.28) . y L —at,
~] n,
—y — Z o (- _xn,h7T) - Z <Z5 — aj,, 0).
£erL(1) n ZeFL (1)
s.t.ap £ cR?

Now let n > 0 be given. Then thanks to (2.7) and (2.8), there is Ly > 1 such that for
all L > Ly there is ap < 1 (depending on L) such that for all L > Ly and o < «p, uniformly
inn €N
~ht 0 (T Tng
B0 + H Z ( Ta 7Ta)( _xn,h?T)’
LeTL(1) n

Using the fact that B° is embedded in L>°(R; B ;(R?)), we infer from (2.28) that for L > Lo
and a < ag

BOSU'

| @tk

(2.29) H Z ba’ (-~ afl,O)‘ BY | (R?) =1
ek (1) 21
s.t. aﬁERQ
and
(2.30) | X e, .0
ek (1) 21
s.t. aflEIR2
But by (2.18), we have
0, h T3
ocC n,
Vo.m,onL(* Z o ( _fcnhv L )
tert(1 "
ah€R2
and by (2.19) we have also
0,loc, 3 / x?ﬂ,i&
wO n,q, L Z ¢ ( n Jho T ,-Yé ) '
ZeFL "

ay, ER2
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It follows that we can write for all L > Ly and a < ag,

. 0,loc,h e
lim sup [|vg ., (+ )l g , r2) < I ok —aho HBO (R2)
n—00 ZEFL( )
ay L €R?

<7

thanks to (2.29). A similar estimate for wgzlf";’i:(-, 0) using (2.30) gives finally

0,loc,h 0,loc,3
(2.31) lim lim lim sup (HUO 132,L<'70H|381(R2) + ||w0,rZZ¢,L('vO)HBgl(R2)) =0.
o : :

L—ocoa—0 5

The results (1.21) and (1.22) involving the cut-off function 6 are simply due
the profiles are compactly supported.

to the fact that

Construction of the profiles for £ > 1. The construction is very similar to the previous one.
We start by considering a fixed integer j € {1,...,£(L)}. Then we define an integer Ej_ SO

that, up to a sequence extraction,

: 0
Vi o= min 7,
Lerk(e,?)

where as in (2.14)

I (ey,) = & {Ele {1,...,L} /e =&! and £ (Y)' =0, n—>oo}.

Notice that necessarily =1 # 1. Finally we define

idef ¢;, €\ _
h%,:egn]('ynj) t

o
By construction we have that k), — 0 as n — oo (recall that e =& ).
for j < £(L)

Then we define

h def “ht 1‘51 h Ef{ ), 3
(2.32) LW E D (yh o s )
erk(e,)
and
f l 17 l
J def h 1 ¢ LTnh En Tn3
wn,a,L(y) - hj 7 —V A 83¢ (z)a Yn — sgj ) h] 7( Y3 ,ny
KEFL(aff) nn " nin

and we choose
(2.33) LL)<j<L = v, =0 and wl, , =
We notice that

jh _ _ha-1 7,3
wn,a,L \% Ah a3wn,o¢,L
Defining
i def ¢
N =&y,

a computation, similar to that giving (2.22) implies directly that

>

~ N,

ht  AMoha—lna £ 0
(% S ngba,gba)
(234) ZEFL(aij) n

J
En s TnTn

3
= A)\gL [( n a,L + hn n,q, L’ wgl,avL)]th ’
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Notice that since 5f{ # 1 as recalled above, we have that )\% — 0 or co as n — oo.
The a priori bounds for the profiles (v 21; Iz fl?; 1)1<j<rL are obtained exactly as in the pre-

vious paragraph: let us prove that

Z(” naLHBO + [|w naLHBO )<C, and

j=1

VseR, Vs >1/2, Z(anaLHB”/+||wnaL||Bss)§C(a).
§>1

(2.35)

We shall detall the argument for the first inequality only, and in the case of v L as the

study of wn w1, 1s similar. We write, using the definition of vn o, 10 (2.32),

L l 4 V4
§ : | H Z H (fgh,é (yh Lp.h En " $n,3) ‘ )
n el L 0 - e IR R Y 0,4
j=1 2 j=1 Er hgﬂ’ﬁ n Byg

EeFL( D)

1
so by definition of the partition (2.15) and by scale and translation invariance of Bg:; we find
thanks to (2.10), that there is a constant C' independent of L such that

L
Tht
ZH nals <D 19804 <O
2q =1 2,q

The result is proved.
Construction of the remainder term. With the notation of Proposition 2.7, let us first define
the remainder terms

L
~(1),h def n — _
(2.36) (D def 5 En A o, VA 05rt — VA Oyt
=1 "
and
L
(237) g)a L d_ef ZA ,'yn,x[ Na,zv 0) + ZAgfL,'yfl,fo (07 Tﬁz) + ( Z’La wﬁ) :
/=1

Observe that by construction, thanks to (2.2) and (2.8) and to the fact that if r{ # 0,
then 5fl / yf; goes to zero as n goes to infinity, we have

ngngoim})hmsur)llpamll ch = 0,
(2.38) Be
and Lh_}rréool}gbhﬁsup ||panL||B_1+% 1= 0.

p,1

Then we notice that for each ¢ € N and each « €]0, 1[, we have by a direct computation

1
N
o (m)?

Bl,—% Eé

We deduce that if £, /4% — oo, then Ace e 50 ¢ (pn’,0) goes to zero in BY"3 as n goes to
infinity, hence so does the sum over ¢ € {1 ., L}. It follows that for each given « in ]0,1]
and L > 1 we may define

Th,t
a

The
Asfl,vfb,mfl (9o 0)‘

1
B2

1 def ~
P;,Z%L _e Pil)aL + Z A ,'yn7 n(¢g7évo)

n/vn—mo
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and we have

(2.39) Lh_I)lgo iu_g 117131_>8up ||pna LHBP%;_H =0.

1
P
Finally, as the space D(R?) is dense in BY, let us choose a family (ug « ) of functions in D(R?)
such that ||ug — up,a|lg0 < @ and let us define

def (1) (2)

(240) p”aL_panL+pnaL+u0_u00‘
Inequalities (2.38) and (2.39) give
(2.41) lim lim limsup |2 ®+;8y) = 0.

L—ooa—0 noeo

2.2.3. End of the proof of Proposition 1.12. Let us return to the decomposition given in
Proposition 2.7, and use definitions (2.36), (2.37) and (2.40) which imply that

L

¢
The Snwha-1 Y
o = ot D Aug g ag (T = ZEVIAL 000,06 ) + b
pa= Tn
g4 /vE—0

We recall that for all £ in N, we have lim,, o (75) 7'’ € {0,00} and in the case where the
ratio £/, /7% goes to infinity then ¢f, = 0. Next we separate the case when the horizontal scale
is one, from the others: with the notation (2.14) we write

~ 1 B
Uom = Uoa + Y Ait e <¢2/ - Vthhlawﬁ, ¢§>
n

ZEFL(I)

o
+ Z At 1t e (¢he ;}VhA}:l@gqba,qba) + Pral -
n
niél
/Ym0
With (2.22) this can be written

_ 0,loc,h 0 .0,loc,h 0,loc,3 0,00,h 0. .0,00,h 0,00,3
UQ,n = UO,« + [<v0 n,o, L + hn 0,n,o,L> wO,n,oz,L)] ho + [(UO n,a, L +h wO n,a,L? wO,n,a,L)] h

¢
- c B
+ Z Asfl%,%( ZZ - %VhAhla?)éf)gu (;52,) + Pna,L -
/=1 Tn
el #1
/7m0
Next we use the partition (2.15), so that with notation (2.13) and (2.14),

_ 0,loc,h 0 0,loc,h 0,loc,3 0,00,h 0 0,00,h 0,00,3
uozn_uo’a+[(v0naL+hwOnaL’wOnaL)]h0+[(UOnaL+hwOnaL7w0naL)]h

~ en
5 D A (A SV A0 60 ) + .

7=l eerL( 7
e £1
Then we finally use the identity (2.34) which gives

o 0,loc,h 0 0,oc,h 0,loc,3 0,00,h 0 0,00,h 0,00,3
Uo,n = U0,a + [(UO n,a, L + hn 0,n,a,L> wO,n,a,L)] hO + [(UO n,a, L +h wO n,o, L’ wO,n,a,L)] h

3
+ ZAAZL[ na, L + hj na L’ wgz,a,L)]hZL + Pna,L -
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The end of the proof follows from the estimates (2.25), (2.26), (2.31), (2.35), along with (2.41).
Proposition 1.12 is proved. O

3. PROPAGATION OF PROFILES: PROOF OF THEOREM 4

The goal of this section is the proof of Theorem 4. Let us consider (vg,w3) satisfying the

assumptions of that theorem. In order to prove that the initial data defined by
def — :

®o = [(vo — BV A Osw, wi)]

generates a global smooth solution for small enough 3, let us look for the solution under the

form

(3.1) By =0+ with &P L [(v 4 pu ud)]

where v solves the two-dimensional Navier-Stokes equations
Ow—+v-Vhv—Apw=—-VPp in RT x R?
(NS2D),, divpy =0
Vj—o = vo(-, T3),
while w? solves the transport-diffusion equation
(Ty) { ow? + v - Vw3 — Apwd — p202w® =0 in RT x R?

3 _ .3
Wiy_o = Wp
. . . . . . def _
and w" is determined by the divergence free condition on w which gives w? = —VhAh L9gw3.

In Section 3.1 (resp. 3.2), we prove a priori estimates on v (resp. w), and Section 3.3 is
devoted to the conclusion of the proof of Theorem 4, studying the perturbed Navier-Stokes
equation satisfied by .

Before starting the proof we recall the following definitions of space-time norms, first intro-
duced by J.-Y. Chemin and N. Lerner in [18], and which are very useful in the context of the
Navier-Stokes equations:

(3.2) 2R ARAY o e -

10z o,y 5
Notice that of course zr([O, TY; B,S,j;f/) = L"([0,T7]; B,S,j;f/), and by Minkowski’s inequality, we
have the embedding L"([0,7]; Bpg ) C L([0,T); Byg ) if r > q.

3.1. Two dimensional flows with parameter. Let us prove the following result on v, the
solution of (NS2D),_ . We shall use the notation introduced in Definitions 1.10 and 1.13.

Proposition 3.1. Let vy be a two-component divergence free vector field depending on the
vertical variable x3, and belonging to S,. Then the unique, global solution v to (NS2D) 5

belongs to A° and satisfies the following estimate:
(3.3) [o]la0 < Ta([lvollgo) -

Moreover, for all (s,s') in D,,, we have

(3.4) Vr € [1,00], ol g ety < Too(lolls,):

Proof. This proposition is a result about the regularity of the solution of (NS2D) when
the initial data depends on a real parameter x3, measured in terms of Besov spaces with
respect to the variable x3. Its proof is structured as follows. First, we deduce from the
classical energy estimate for the two dimensional Navier-Stokes system, a stability result

in the spaces LT(R+;HS+%(R2)) with 7 in [2,00] and s in | — 1,1[. This is the purpose of
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Lemma 3.2, the proof of which uses essentially energy estimates together with paraproduct
laws.

Then we have to translate the stability result of Lemma 3.2 in terms of Besov spaces with
respect to the third variable (seen before simply as a parameter), namely by propagat-
ing the vertical regularity. First of all, this requires to deduce from the stability in the
spaces L"(RT; H8+%(R2)) with 7 in [2,00], the fact that the vector field v, now seen as a
function of three variables, belongs to L"(R*; L (H S+%(R2)) again for r in [2,00]. This is
the purpose of Lemma 3.3, the proof of which relies on the equivalence of two definitions of
Besov spaces with regularity index in |0, 1[: the first one involving the dyadic decomposition

of the frequency space, and the other one consisting in estimating integrals in physical space.

Finally for s in | — %, %[ and s’ > 0 a Gronwall type lemma enables us to propagate the

1
regularities. When s’ > = product laws enable us to gain horizontal regularity up to | — 2, 1]

and to conclude the proof of Proposition 3.1.
Let us state and prove the first lemma in this proof.

Lemma 3.2. For any compact set I included in | — 1,1], a constant C' exists such that, for
any r in [2, 00] and any s in I, we have for any two solutions vy and vy of the two-dimensional
Navier-Stokes equations

(3.5) [[o1 — wal ) S 101(0) = v2(0) [ 7+ 2y E12(0)

L (R+;H*+7 (R2)
where we define
def
E12(0) = exp C(Jlv1(0)]|72 + [[v2(0)[132) -

Proof. In the proof of this lemma, all the functional spaces are over R? and we no longer men-
tion this fact in notations. Moreover, the constant which appears in the definition of Ej2(0)

can change along the proof. Defining v2(t) def v1(t) — vo(t), we get
(3.6) Oyv1a + va - Vi — Apviz = —v12 - Vv — Vip.

In order to establish (3.5), we shall resort to an energy estimate making use of product laws
and of the following estimate proved in [13, Lemma 1.1]:

(3.7) (v-Vala) g S IV gellall sV al] e,

available uniformly for any s in [—2 + pu, 1 — p].
Let us notice that thanks to the divergence free condition, taking the H® scalar product with
v12 in Equation (3.6) implies that

1d

5%”“12(?5)\@% + [V 012 ()1 Frs = = (02(t) - VPvi2(t)012(2)) 70 — (012(2) - VP01 () |v12(E)) 1y -

Whence, by time integration we get
" oh ! h
o1 (8)[1Fs + 2/ [V 012 () |[3sdt’ = |Jo12(0) || Fs — 2/ (v2(t) - V0oro(t)[o12(t')) o dt’
0 0

—2 /Ot (vi2(t') - VPor(t)|v12(t)) . dt’



ON THE STABILITY OF GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 29

Now using Estimate (3.7), we deduce that there is a positive constant C' such that for any s
in I, we have

2‘/ va(t Ava v1a(t )|U12(t/))H

t
(3.8) <C / lvr2 ()| a2 |V 02 (8) || 2] V012 (8] s dt’
0
1 ! h N2 / 02 ! N2 h AT /
=3/ IV 012 () [5s A8 + —- ; [or2 ()= [V 02 (8) |72 di”
Noticing that

t t
/ (vi2(t') - VPor () [v12(t)) ot < / IV 012 ()| s lvr2 () - VP01 (8) || g dt’
0 0

we deduce by Cauchy-Schwarz inequality and product laws in Sobolev spaces on R? that as
long as s is in ]0, 1],

2’/ v12(t VP vi(t /)|2}12(t/))H

t
(3.9) < C/ IV 12 (t) [ azs lor (8) |+ [V 01 ()] 2 d
0

1 [t c? rt
< 2/0 ||VhU12(t/)||%_Is dt/+QA H’Ulg(t/)H%{s||vhU1(t/)H%2 dt' .

When s = 0 we simply write, by product laws and interpolation,

2’/ vi2(t') - VP01 () o2 (t))

t
(3.10) <C [ @)l lona(e) - Tur ()], -yt
1 ! h ATV / Cj ! AN h AV !
<5 [ IVl it + 5 [ o)V 0 )] e

Finally in the case when s belongs to | — 1,0[, we have

2 ‘ / U12 Vh’Ul( ,)’7}12 (t/))Hsdt,

(3.11) < 0 [ Iora@ e forat®) - 9en ) -
<5 [ IV @ i+ S [ o9 @l i
Combining (3.8) and (3.9)-(3.11), we infer that for s in | — 1,1],
fona@e + [ 19 2@t < a0

t
4 / lona ()12 (17201 ()2 + [ Fhen(t)]22) d

Gronwall’s lemma implies that there exists a positive constant C' such that

t t
llora () 117+ +/O IV 012 (t) 3o dt” S or2(0) 1 eXpC/O (W01 ()72 + IV o2 (t)|[72) dt!
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But for any 7 in {1,2}, we have by the classical L? energy estimate

t
1
(312) | IOt < S

Consequently for s in | — 1,1],

t
lora (81175 +/ IV 012 (t) |7t S |o12(0) 15 Er2(0)
0

which leads to the result by interpolation. Lemma 3.2 is proved. O

Using Lemma 3.2, we are going to establish the following result, which will be of great help
~ 2

to control all norms of v of the type L"(R™;B7) for r in [4,00] thanks to a Gronwall type

argument.

Lemma 3.3. For any compact set I included in ] — 1, 1[, a constant C' exists such that, for
any r in [2,00] and any s in I, we have for any solution v to (NS2D),_,
. def
o] 42 < llvolls=E(0) - with  E(0) = exp(Cllo(0)l|7q2)-

Lr(R+;Lge (H,

Proof. We shall use the characterization of Besov spaces via differences in physical space: as
is well-known (see for instance Theorem 2.36 of [2]), for any Banach space X of distributions
one has

u— T_Z'LL d
(3.13) H(22HA uHLz(X) Hp /” ”L2 (x) az

E

where the translation operator 7_, is defined by

def
(2 )t 2, w3) = f(t, 0,23+ 2) -
The above Lemma 3.2 implies in particular that, for any r in [2,00], any s in [ and any

couple (3, z) in R?, if v solves (NS2D),. then

s def

42
v —7—2vllys < llvo — 7—2v0llmp E(0)  with Y L"(RT; Hi ").

Taking the L? norm of the above inequality with respect to the x3 variable and then the L'
3
norm with respect to the measure |z|~2dz gives

V— T_,U sy d Vo — T—z00||1.2(H3) d
(3.14) | P 1||L3(YT)i < | ! HLV(Hh)izE(O).
R 2|2 2] ™ Jr 2|2 E

Returning to the characterization (3.13) with X =Y, we find that

HU 7'—zUHL2 s dz

LT(RﬂéQ(Z;Lﬁ))’ 2’

Similarly we have

/ lvo = 7—svoll L2 () dz

~ S 28| (@AY Ak 2 )z
jez

so by the embedding from ¢!(Z) to £%(Z), we get

lvo — m—2vo0llL2(m dz _
/ )’ ‘ = Z 222kSHAvAk’U0”L2(R3

(4,k)€Z?

Ek
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Therefore, we deduce from Estimate (3.14) that

>

JEZ

| @AY AR, -, 2))

il

L"'(RJr;fQ(Z;L%))‘ 12 rs ||UO||BS E(O) :

As r > 2, Minkowski’s inequality implies that

>l

JEZ

2 v
[[CASERNNOICAD) [

< s £(0).
b, S ol E£(0)

Bernstein’s inequality as stated in Lemma A.1 implies that
h I h
[AFARu(t, )l peo(r2) S 22 [1AFAv(E, )] L2

thus we infer that

1ol w) e | ey S ool EO).

L7 (R+

Permuting the #2 norm and the L% norm thanks to Minkowski’s inequality again, concludes
the proof of Lemma 3.3. U

Remark 3.4. Let us remark that thanks to the Sobolev embedding of H? (R?) into L4(R?),
we have, choosing s =0 andr =4 orr = 2,

[oll ar+nee (pay) + IVl 2@+ g rrpy) S llvollgo £(0).

Now our purpose is the proof of the following inequality: for any v solving (NS2D)_ , for

x3)
any r in [4,00] and any s in ]—%, 3 [ and any positive s,
> 4 2
315) ol gty S ool e [ CUOILiagy + 10O )

The case when r is in [2,4] will be dealt with later. We are going to use a Gronwall-type
argument. Let us introduce, for any nonnegative A, the following notation: for any function F
we define

t
def . def
A < P exp(—)\/o o(t)at') with  6(t) © o) pe) + 0O )

Notice that thanks to Remark 3.4, we know that

(3.16) AM&WSE@WM%HM%J

Then we write, using the Duhamel formula and the action of the heat flow described in
Lemma A.2, that

_ 02k
IAYARoA() 112 < Ce™ || AT Afw 2

(3.17) t t
+ o2 / exp((—eft — )2% ~ » / S )" )| A (o @ v () | el
0 t
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Notice that (v ®v)y = v ®vy. In order to study the term ||A}’A1,;(v @ v)A(t)| 12, we need an
anisotropic version of Bony’s paraproduct decomposition. Let us write that

ab = iT’f(a,b) with

T'(a,b) = Y SySpaAjARD,

(3.18) T%(a,b) = Y SyARaAYSE b,
T3(a,b) = Y AYSpaS AR,
T(a,b) = > AYARaSY, 57 b.

We shall only estimate 7" and T2, the other two terms being strictly analogous. By definition
of T, using the definition of horizontal and vertical truncations together with the fact that
the support of the Fourier transform of the product of two functions is included in the sum
of the two supports, and Bernstein’s and Hoélder’s inequalities, there is some fixed nonzero
integer Ng such that

LA\
A5 ART (0O oa@)l2 S 27 IATART (0(®) o), 3,

k h
S 20 ) IS5Spu(t)]l e A2 NG
J'>j—No
k'>k—Ny
k
S 22l pee(zay > IATAR A Le -
J'>j3—No
k/>k No

By definition of L*(R*; BSJF%’S/) we get

v —k'(s 1 _ilg! T
|ATART (w(e), ox(®) 2 S 22 0all g oo hor 0O llieegy Do 2709277 ()

J'>j=No
k' >k—No
where fjgk/ (t), defined by
e def K’ v
Firgw (®) = ol =) 2M(+2)2" | AT, ARor (8|2

Fame )
is on the sphere of ¢! (Z*; L*(R*)). This implies that
275 2R AYART (w(t), vr (1)) |2
sl gty [0 gy 30 270D ),

J'>j—No
k'>k—Ny

1
Since s > —5 and s’ > 0, it follows by Young’s inequality on series, that

272 | AYART (u(2), oa (D) |2 S oAl 7 g o 3oy IO Lo i S (F)
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where f;1(t) is on the sphere of ¢}(Z% L4(R*)). As 4(t) is greater than |v(t)[*

Ineezy> e
infer that

1 def Hkojs oks ! o2k ! NS
Thalt) < 252072k | exp<—c(t—t)2 N A )
tl

< | AYART! (u(t'), va(¢)) ] 2t
(3.19)

< || >\HL4 R+: Bs+2 s/ )

t t
ok <ol —c(t — )22k _ ) " dt" T\ f Nt
x /0 p(—clt 1) [ oyt ) o' (¢ 0t

Using Holder’s inequality, we deduce that

t 2k l
Tha®) S sl o gy ([ 2 sl )

t t 3
2k( ol —c(t — )22k — ) " i /il‘sd/> .
X /0 e p( c(t—t) y o(t")dt )gb(t) t

Then Holder’s inequality in the last term of the above inequality ensures that

t 1
—c(t—1")22F p4 1\ 141
| A ) 1ol e g

(3.20) Th() < ﬂ(

A1

Now let us study the term with 72. Using again that the support of the Fourier transform
of the product of two functions is included in the sum of the two supports, let us write that

IATART2 (o), ox)llze S D ISF ARl e ) 1A Sk 1 oa (O 2 (150 -
§'>j—No
k'>k—No

Combining Lemma A.1 with the definition of the function ¢, we get

—K kL
(3:21) 15 Ao Lm0y £ 27 Nl qag) < 27563 (1).
Now let us observe that using again the Bernstein inequality, we have

h h
AT S a2y < Z [ AT Ao ()] 2 (L)
K<k

S D 2 AL AR ALz
k”gk’

By definition of the L4(R*; B*2') norm, we have

. , I _1
2/ s 2k HA Sk’—‘rlv)\( HLZ(LOO S H )\HL4 R+: Bs+2 s/ ) Z 2(k K1) Q)ij’,k:”(t)
k<K'

where f , k,,( ), on the sphere of £1(Z?; L*(R")), is defined by

def

TOR Y
Since s < %, this ensures by Young’s inequality that

18388 10r @z S 27727 D rll, oy Fr ()
where E",k’ (t) is on the sphere of £1(Z%; L*(R*)). Together with Inequality (3.21), this gives

22K | AYART? (u(8), va(1)) 22 S $(1)2 ol @by Jik ()

1" 1
A h S,)zﬂ o (2| AY, ARy vy ()| 12 -
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where f; 1 (t) is on the sphere of ¢!(Z?; L*(R*)). We deduce that

2 def js' ks ! o2k ! 1\ 3401
T2 () & 2k exp(—c(t—t)Q [ e)dt )
0 t

< [|AYART?(u('), vA(t)) ] 2 dt!

(3.22) < Joal-

TaR+Bo+5)

t
x 25 / exp(—c(t —1)2% — )
0

Using Holder’s inequality twice, we get

t 1
¢(t”)dt”) ¢(t/)§fj7k(t/)dt,

t/

t (492K 4
’7;2,“\(15) S HUAIIZAL(RJF;BSJF%,S/)(/O oc(t—t)2 ;fk(t’)dt’>
e
X 22 (/ exp(—c(t — )22k — )
0

1 ¢ —e(t—t' 2k
B2 5 gl e ([ 0 o)

As T3 is estimated like T and T* is estimated like T2, this implies finally that
23¢9 AY Alloy (B2 S 225%™ AY Al

t 1
c(t—t')2% L
([ ) (S ) ol s

3
1

t¢<t">dt")¢<t’>§dt’)

T

W=

As we have

1
o) t 4 1
(/O (/0 =2 g, (') e dt) = ld 2

t 1
and Sllgi (/0 e_c(t_t/p%f%k(t/)dt’) Y =djp, withd;, € (4(Z%),
te

we infer that

.y k
27528 (| A ARl oo (m22) + 27 [ AT ARvA | Lot 2))
y 1 1

< 9js’ 9ks vAh . (7 7) B ,

~ 2772 ||A]AkUOHL2 + def )\i + )\% HU}‘||L4(R+;BS+%’S ) .
Taking the sum over j and k and choosing A large enough, we have proved (3.15).
Let us gain L?-integrability in ¢. Using (3.19) and (3.22) with A = 0, we find that
27 KD AYARu(8)|| 2 S 277 2K D2 AY Ao 2

t
_(t_4\02k _k
+ 2% ”UHL4 R+: B<+§ s )/ et ((gﬂ'wk(t,) +2 th,k(t/))dt,v

where g, (resp. hjy) are in £1(Z%; L?(RY)) (resp. El(ZQ;L%(R+))), with

1 1
S lgaleen S 1913 and 3 sl g, S 1611

(4,k)eZ? (j,k)€Z?

Laws of convolution in the time variable, summation over j and k and (3.15) imply that

o35 oty % el exo(C [ ote)ar).
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This implies by interpolation in view of (3.15) that for all r in [2,00], all s in | — 3, 3[ and all
positive s’

(3:24) 91, g -2, S ol exp(C [ ottyar)

which in view of (3.16) ensures Inequality (3.3) and achieves the proof of Estimate (3.4) in
the case when s belongs to | — 3, 3.
Now we are going to double the interval, namely prove that for any s in ] —1,1[, any s’ > 1/2
and any r in [2, co] we have

(3.25) 1lz s ges 2.y S N0l e + loll g lvoll g5 exp(Cllvollso Eo) -

Proposition A.4 implies that for any s in | — 1,1 and any s’ > 1/2, we have
[o(t) @ v(®)l| gs.e S 0O gogr [0 gogr o -
The smoothing effect of the horizontal heat flow described in Lemma A.2 implies therefore
that, for any s belonging to | — 1,1[, any s’ > 1/2 and any r in [2, o0},
S lvollgss + llv @ vl 72 g+ pos

||UHZT(R+;B.9+%,S’) ~
S lvollges + llvll-

LAR+BEY NI ||L4 RHBZEE)
Finally Inequality (3.15) ensures that for any s in | — 1,1[, any s’ > 1/2 and any r in [2, c0],

(3.26) 1ollz, g s oy S 00l gesr + [1voll 53 1voll 55, exD(Cllvoll o £(0)) -
This concludes the proof of Inequality (3.25).
Now let us conclude the proof of Estimate (3.4). Again Proposition A.4 implies that, for
any s in | — 2,0] and any s’ > 1/2, we have
[0(t) @ v(E)l| g1t S 0@l g5 41 l0(E) | 5410 -
This gives rise to
1o ® vll pa ety S N0M o g s+ 1Vl poer gy -
The smoothing effect of the heat flow gives, for any r in [1,00] and any s in | — 2, 0],
HU|’ZT(R+;BS+%’SI) S llvoll g + HUHL2(R+;B%+1)”UHL2(R+;B%+1'S')'
Inequality (3.26) implies that, for any r in [1,00] and any s in | —2,0] and s’ > 1/2 ,

(3.27) [l 7 ) S llvollge.r + lvoll}5 llvoll g5 exp(Cllvollso Eo) -

Lr(R+; B3
This proves the estimate (3.4) and thus Proposition 3.1. O

3.2. Propagation of regularity by a 2D flow with parameter. Now let us estimate the
norm of the function w? defined as the solution of (Tj3) defined page 27. This is described in
the following proposition.

Proposition 3.5. Let vg and v be as in Proposition 3.1. For any non negative real number (3,
let us consider w? the solution of

(Tp) w4+ v - Vhuw? — Ayw?® — 202w =0 and w\?;::o =wy.
Then w? satisfies the following estimates where all the constants are independent of 3:

(3.28) [w?| a0 < llwdllgo exp(Ti([|vollg0)) »
and for any s in [—2 + pu,0] and any s’ > 1/2, we have

(3.29) 1| e S (10l geer + llwgllso Too (llvolls, ) exp(Ti(llvollso)) -
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Proof. This is a question of propagating anisotropic regularity by a transport-diffusion equa-
tion. This propagation is described by the following lemma, which will easily lead to Propo-
sition 3.5.

Lemma 3.6. Let us consider (s,s’) a couple of real numbers, and Q a bilinear operator
which maps continuously B* x B5t1" into BS*'. A constant C exists such that for any two-
component vector field v in L>(RT; BY), any f in LY(RT;B>%), any ag in B>* and for any
non negative 3, if Ag def Ay, + 20? and a is the solution of

Oia — Aga+ Q(v,a) = f and  ay—o = ao,

then a satisfies
o0
r € [L.oc], flall sy < Cllaolses + 1 sy ex0(C [ Tuto)at).

Proof. This is a Gronwall type estimate. However the fact that the third index of the Besov
spaces is one, induces some technical difficulties which lead us to work first on subintervals I
of R* on which ||[v| 12(7,51) is small.

Let us first consider any subinterval I = [rg,71] of RT. The Duhamel formula and the
smoothing effect of the heat flow described in Lemma A.2 imply that

—C k — T \%
|ARATa(t)ll2 < e AR AT a(m) | 12

+C /t o2k (t=t)
70

ARAT(Qu(t),a(t)) + F(1)]] 2at".

After multiplication by 2ks+is' and using Young’s inequality in the time integral, we deduce
that

29 (| AR AT all poeri2y + 22 I ARATall prri2)) < O2F | AR AT a(mo) |2
t
+C/ die () (o) 51 la® ) gerrer + 1 E) s, )t
70

where for any ¢, dy ;(t) is an element of the sphere of £1(Z?). By summation over (k,j) and
using the Cauchy-Schwarz inequality, we infer that

oy N1y 1ol < Ol + Ol
‘ +CHUHLQ(I;Bl)||aHL2([;Bs+1,S’) .

Let us define the increasing sequence (T, )o<m<nr+1 by induction such that Ty = 0, Tps41 = 00

and
Tm+1 o
W¥m < M, lo(t)|Zudt = ¢y and / lo(®) Bt < co.,
T T

for some given ¢y which will be chosen later on. Obviously, we have

oo TM
(3:31) | 1@l = [ oolde = Meo.
0 0

Thus the number M of T},s such that T}, is finite is less than ¢ IHUH2L2(]R+;61)' Applying
Estimate (3.30) to the interval [T, Tyn41], we get

lall Lo (7, s aimosy T Ml a2 igimorzsry < M@l 2, 1y amet107y
+ C(Ha(Tm)HBs,s’ + CHfHLl([Tm,TmH];Bs,s’))
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if o is chosen such that C\/cy < 1. As

1
3 3
HaHLQ([Tm7Tm+1];BS+1;5') < HaH oo([Tm7Tm+1];Bs,s’) HaHLl([T7,L7Tm+1];BS+2vS') ’
we infer that
lall oo (3, By aimey + 0l L2, 1182
< 20 (Ja(T)lget + 1 s 1, 3 ) -

Now let us us prove by induction that

(3.32)

lall oo (o,1):85:5) < (20)™ ([laoll gs.sr + ||fHL1([o,Tm},3s,s’))-
Using (3.32) and the induction hypothesis we get
lall zoo( miiseery S 2CUalzoeqo ey + 1l (1 1atisee)
< (20)771-&-1(”&0“35,5/ + Hf||L1([O,Tm+1},BSvS’)) ,
provided that 2C > 1. This proves in view of (3.31) that

”aHLoo(R+;Bs,s’) < C(HQOHB&S’ + ||f||L1(R+;Bs,s’)) eXP(C/O ||U(t)||123’1dt) :

We deduce from (3.32) that

wamﬂwwwﬂgcw%@y+wm%mmwwdcﬁrwm@ﬁ)

+ O (i 857 -
Once noticed that ze®®” < eclx2, the result comes by summation over m and the fact that

the total number of m’s is less than or equal to cgl\|vH%2(R+,Bl). Lemma 3.6 is proved. [

We apply Lemma 3.6 with Q(v,a) = divy(av), f =0, a = w3, and (s, s’) = (0,1/2). Indeed
since B! is an algebra we have
19(v, a)llgo < Nlavligr S llalls [[o]sr-

So Lemma 3.6 gives

o0
Lo < ludllsoexp(C [ uto)r).
Thanks to Estimate (3.3) of Proposition 3.1 we deduce (3.28).

Now for s belonging to [~2 + j,0], we apply Lemma 3.6 with a = w?, Q(v,a) = div,(T)a),
and f = divy(7,)v), where with the notations of Definition 1.6

def

(3.33) T)a (iZEfZS;-’_lvA]V-a, RY(a,v) def Z A7 _,aAfv  and T¥o € TVo + R¥(a,v).

J J

—1<e<1

Lemma A.5 implies that for any s in [—2 + p,0] and any s’ > 1/2,
T3 w0 | et S M0llgr 10| gosa.sr

We infer from Lemma 3.6 that, for any r in [1, o],

(3.34) Hw?’llzr(RﬁBw%,s/) S (1wl o.or + 11 divi (T3 0) | 1 g ssonsty) exp(Ti([lvolls0)) -
But we have, using laws of anisotropic paraproduct given in Lemma A.5,
| divi(Tyav)l 1 gpssy S | Tas0ll 1 g pore)

SJ Hw3|’L2(R+;Bl)|’UHL2(R+;35+1,5/) .
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Applying (3.28) and (3.4) gives (3.29). Proposition 3.5 is proved. O

As w" is defined by wP = —VhA}Tl@ng, we deduce from Proposition 3.5, Lemma A.1 and
the scaling property (1.14), the following corollary.

Corollary 3.7. For any s in [-2 + £1,0] and any s’ > 1/2,
| g1 S (Tl e + lwgllso Toe(llvolls,)) exp(Ti([[vollso)) -

3.3. Conclusion of the proof of Theorem 4. Using the definition of the approximate
solution ®*PP given in (3.1), we infer from Propositions 3.1 and 3.5 and Corollary 3.7 that

(3.35) 19%PP | L2+ 51y < Ti([l(vo, w§)lls0) + BToo(Il (vo, w5)ls,,) -

Moreover, the error term 1 satisfies the following modified Navier-Stokes equation, with zero
initial data:

4
8t¢+div(w®w+q>app®¢+¢®<I>app)—sz—vqurZEf; with
(=1
By <o [(v,omw( D3p]5)
(3.36) g2t g Kuﬁ + (VRAL divyds (vw ),0))}6,
3def [(wh Vi(v,w?) +v- V(" 0))}ﬂ and
4def [(w VR (W, 0) 4 wds (w" O)ﬂﬁ

If we prove that

(3.37)

5o ([ (vo, wi)s,) »

then according to the fact 1/J|t:0 = 0, Proposition 1.14 implies that v exists globally and
satisfies

(3.38) |WHL2(R+;61) N 57-00(”(7)07“}8)”5“) .

This in turn implies that ®; generates a global regular solution ®z in L?(R*; B') which
satisfies

(3.39) 1950 2+ s1) < Ta(ll(vo, wp)llso) + B Too (Il (vo, wi)lls,.) -

Once this bound in L?(RT; B') is obtained, the bound in A° follows by heat flow estimates,
and in A% by propagation of regularity for the Navier-Stokes equations as stated in Propo-
sition 1.15.

So all we need to do is to prove Inequality (3.37). Let us first estimate the term 93[(v, 0)]s.
This requires the use of some L?(R™; Bs’s/) norms. We get

2
[ I | I
Using the vertical scaling property (1.14) of the space BO’%, this gives
2
Ha3 [U]B||Z2(R+;BO’_%) S B ||v||Z2(R+;BO,%) N

Using Proposition 3.1, we get
(3.40) Hag[v]ﬁ||ZQ(R+;BO,7%) < B Too(llvolls,) -
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Now let us study the pressure term. By applying the horizontal divergence to the equation
satisfied by v we get, thanks to the fact that divyv =0,

2
Osp = =030, D 0O (V™) .

l,m=1
Using the fact that A, 1940 is a zero-order horizontal Fourier multiplier (since ¢ and m
belong to {1,2}), we infer that
H[a3p]ﬁHLl(R+;BO) = H83PHL1(R+;BO)
S v0sv]| L1 me+ g0y -
Laws of product in anisotropic Besov as described by Proposition A.4 imply that
[o()sv(t)]| o < Ilv(t)5:1050(t) |0

which gives rise to

1105p)| 1 g+-0 vl L2 ®+;51) 103 | L2 (®+;50)

S
(3.41) S Il syl e -
Combining (3.40) and (3.41), we get by Proposition 3.1 and Lemma A.3
(3.42) 1E5 ]l 70 < 8T (llvolls,) -

Now we estimate Eg) Applying again the laws of product in anisotropic Besov spaces (see
Proposition A.4) together with the action of vertical derivatives, we obtain

[w? ()03 (v, w?) (B)[lgo < [lw?(®)]l 51 185 (v, w?) (8)]| 5o
S !\w3(t)!\31H(v,w?’)(t)HBo,g-
Thus we infer that

(3.43) 200, 0%) s ey S e lgzassmn | (009 o o

For the other term of E%, using the fact that VhAg L divy, is an order 0 horizontal Fourier
multiplier and the Leibniz formula, we infer from Lemma A.1 that

IVEAL divy 35 (vw®) (t)llge S 1103(vw®) (1) 0

< (05w’ (@)l so + [lw? (#)sv(t) 50 -

In view of laws of product in anisotropic Besov spaces and the action of vertical derivatives,
this gives rise to

IVRALT dive 8 (vw®) (1) llgo < [l 1w (@)l] o3 + 0’ (@)llsa [0 (D)
Together with (3.43), this leads to

”BO‘% :

1y S B N s 0,00 g,
+ /6 ‘|w3HL2(R+’BO,%)||/UHL2(R+,81) 9

hence by Propositions 3.1 and 3.5 along with Lemma A.3

(3.44) 1EZ ]l 70 < B Too (Il (vo, wi)ls,) -

Let us estimate Eg Again by laws of product and the action of horizontal derivatives, we
obtain

Hwh~Vh(v,w3)HL1(R+;BO) N ”wh||L2(]R+;Bl)||vh(vvw3)||L2(R+;BO)
<

h
0™ 2wy 1 (0, W) || L2 g+ 1) -
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Corollary 3.7 and Propositions 3.1 and 3.5 imply that
(3.45) [ - Vi (0, w?) || L1 +m0) < Too ([ (w0, 5)]s,) -
Following the same lines we get
o - V™ (w", 0)| 1 e+m0) < Too (Il (v, wd)lls,) -
Together with (3.45), this gives thanks to Lemma A.3
(3.46) 1Bl 7o S 1B | esmoy < B Too ([l (vo, wd)ls,) -
Now let us estimate Eg. Laws of product and the action of derivations give
[ - VPl epey S 0|2 s V0" ()| L2 m0)
(3.47) S Hwh”%%w;zsl) :
In the same way, we get
[0 ()85 | L1 0y S Hw3||L2(R2;BO)”wh||L2(R+;Bl,%)'
Together with (3.47), this gives thanks to Corollary 3.7 and Propositions 3.5
IEGN b1 r+.50) < B Too (|I(vo, wi)l|s,,) -

Lemma A.3 implies that
1ES ]| 7o < % Too (Il (w0, wd) 1s,.) -
Together with Inequalities (3.42), (3.44) and (3.46), this gives
1Bl 0 < B Too (Il (vo, wi)ls,,) -
Thanks to Proposition 1.14 we obtain that the solution ®3 of (NS) with intial data

Py = [(vo — ﬁVhAﬁlagwg, wg’)]ﬁ

is global and belongs to L?(R™;B'). The whole Theorem 4 follows from the propagation
result Proposition 1.15 proved in Appendix A. O

4. INTERACTION BETWEEN PROFILES OF SCALE 1: PROOF OF THEOREM 5

The goal of this section is to prove Theorem 5. In the next paragraph we define an
approximate solution, using results proved in the previous section, and Paragraph 4.2 is
devoted to the proof of useful localization results on the different parts entering the definition
of the approximate solution. Paragraph 4.3 concludes the proof of the theorem, using those
localization results.

4.1. The approximate solution. Consider the divergence free vector field
0 def 0, 0. 0,00,h 0,00,3 0,1 0,,0,loc,h 0,loc,3
D)0, = U0+ [(Vgmar T PRWoima L wO,ZC,)a,L)]hg + [(Womar T PaWymars wO,;i,Lﬂh% ;
with the notation of Proposition 1.12. We want to prove that for h2 small enough, depending
0,00 0,00,3 0,loc 0,loc,3 . .

only on ug and on H(Uo,n,a,Lv wovn’%L)HS# as well as H(Uo,n,a,L’ wO,n,a,L)HSH7 there is a unique,
global smooth solution to (NS) with data ®J, ;.

Let us start by solving globally (NS) with the data ug . By using the global strong stability
of (NS) in B° (see [4], Theorems 4, 5 and Corollary 3) and the convergence result (1.16) we

deduce that for o small enough there is a unique, global solution to (NS) associated with ug 4,
which we shall denote by wu, and which lies in L2(R*; B).

Next let us define

0,00 def r/ 0,00 0,,0,00h 0,003
0,n,a,L — [(UO,n,a,L + hnwO,n,a,L’ wO,n,a,L)} h9 -~
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Thanks to Theorem 4, we know that for 2 smaller than e (H 118’20 oL wg’fboo’f’ I H 5, ) there is

a unique global smooth solution <IJ o0 al associated with <IJ L which belongs to Ag, and
using the notation and results of Sectlon 3, in particular (3 1) and (3.38), we can write

(I)Ooo defq)Oooapp_'_wnaL with

n,a,L n,o, L
Oooapp def 0 OOOh 070073
(4.1) (I)naL [ naL+hn n,a,L? n,a,L]hQL and

HwnozL”LQ(RJr Bl S N h TOO(H vOnaL’w(()):?i?(;%L)||SM) )

where vo a1 Solves (NS2D),. with data UO:Z?Q,L and wg’oaof’ solves the transport-diffusion

equation (Th%) defined page 27 with data wg’zo’?’ . Finally we recall that

0,00,h _ ha-1 0,00,3
Wy oL = -V A O3 wnaL

Similarly defining

0,Joc  def 0,loc 0 0,loc,h 0,loc,3
O,n,o,L [( OnaL+h wOna[ﬂwOnaL)]hO’

0 0,loc 0,106,3 .
then for h, smaller than El(H UOnano,n,a,L HSu) there is a unique global smooth solu-

tion ®V1°° associated with ®21°°  which belongs to Ag, and
n,a, L 0,n,a,L g

q)O loc def (I)O loc,app + wO JJoc ith

n,o, L n,o, L n,o, L w1
(12 gOlocaop el [yploc jo, Olockh plocs) o
ezl s S 00 Too (| Woma,r Wonar)lls,)
where vo or, Solves (NS2D) - with data Ug 1?; ; and w? IOCL?’ solves (Tjo ) with data ngjff)i.
Finally we recall that wg,lochh = -VhA 1oy 2}223.

Now we look for the solution under the form
def
q)nocL :e U +q)?zaL+(I)010CL+wnaL

In the next section we shall prove localization properties on ‘I>0 o al and ®% 10ch namely the

fact that @2? fpp escapes to infinity in the space variable, Whlle @2 I(ZCLapp remains localized

(approximately), and we shall also prove that lechapp remains small near z3 = 0. Let us
recall that as claimed by (1.20), (1.21) and (1.22), those properties are true for their respective
initial data. Those localization properties will enable us to prove, in Paragraph 4.3, that

the function uy + @2 ar T @0’10CL is itself an approximate solution to (NS) for the Cauchy

0,loc
data u0a+©0naL+(I)0naL

4.2. Localization properties of the approximate solution. One important step in the
proof of Theorem 5 consists in the following result.

Proposition 4.1. Under the assumptions of Proposition 3.1, the control of the value of v at
the point x3 = 0 is given by

(43) Vr e [17 OO] ) H’U(.’O)HZT(R‘*’;Bfl(RQ)) S H’U()(',O)HBSJ(H@) + H’U(,O)H%2(R2) .

Moreover we have for all n in ]0,1[ and  in {0,1},

(4.4) 107 = ) )vo [ go €xp Ti(l[vollso) + 1750 (llvolls,.) ,
with 6y, is the truncation function defined by (1.15).
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Proof. In this proof we omit for simplicity the dependence of the function spaces on the
space R?. Let us remark that the proof of Lemma 1.1 of [13] claims that for all z3 in R,
(A};(v(t, K x3) : vhv(t7 g x3)) ’A}];’U(t, *y $3))L2

(4.5)
S di(t,23) |V 0 (t, -, w3) ||72]| AR, -, 23)]| 2

where (dy(t,23))rez is a generic element of the sphere of £1(Z). A L? energy estimate in R?
gives therefore, taking z3 = 0,
1d
2dt
where (d(t))gez belongs to the sphere of ¢1(Z). After division by ||Alu(t,-,0)|/z2 and time
integration, we get

1ARv(t, -, 0)[IF2 + 2 (|ARu(t, -, 0) |72 S de()IV o (t, -, 0) |72 | Afw(t, -, 0) ]| 2

1AR0 (-, 0)| oo (rets2) + 2°F [ ARV (-, 0) | L1 22

(4.6) % ) )

< [[Agvo(,0)l[r2 +C [ di(t)[[V70(t, -, 0)[|72dt .
0

By summation over k£ and in view of (3.12), we obtain Inequality (4.3) of Proposition 4.1.

In order to prove Inequality (4.4), let us define v, def (7 = On,y)v and write that

3
vy — Anvyy + divy (v @ vyy) = Ey(v) = Z Eﬁl(v) with
=1
def
E}(v) = =2n(V"0)ny V0 — 0 (And)n v,

def nv - (Vhﬁ)hmv and

C = )V S 90 (o™

1<,m<2

E;(v)
Ep(v)

Let us prove that

(4.8) 1En(0) ]| 1 r80) S 1 Too(l[volls,) -

Using Inequality (3.27) applied with r = 1 and s = —1 (resp. » = 2 and s = —1/2) this will
follow from

(4.9) 10 ()| 1 e+ s50) S nllloll 1) + HvHiQ(RﬁB%)) :

Proposition A.6 and the scaling properties of homogeneous Besov spaces give

IV, Vo)l < (V")

B}, (R?) IV 0 (t) 50

< 190y, o lo(0) 11
Following the same lines, we get
[(AnO)n o)l S [(And)nnllsg w2 llv()]lsr
1
SN P 0T

hence

(4.10) 1E) ()|l 1 @550 S nllvll g1 -
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Let us study the term Efl (v). Proposition A.6 implies
lo(8) - (V*Omgu®lse S (V' )nyllsy , (e2) Sup [0 (£)0™ (8) ] g0

< 1900y, ey IO,

Thus we get

(4.11) IE7 ()| 2@+ ym0) S mllv H2 2@t BY)

Let us study the term E,?; (v) which is related to the pressure. For that purpose, we shall
make use of the horizontal paraproduct decomposition:

av =Tla+ T+ R*a,b) with T00 '3 SE Al and R"a,0) Y Alaalp.
k
This allows us to write

3
= Z Es”é(v) with

B3 (v )d:ef Th, fhy with Vip=ViA[! Z 0Oy (v'0™),

n
E32(0) & S T, VPASN90,] 0" and
1<0,m<2
def — -~
EXw) S Y VAL 00m T O
1<0,m<2

Laws of (para)product, as given in (A.10), and scaling properties of Besov spaces give

19 ()51 1852 e

S
y4
< o sw [0 00" (0 s 1ol sz ey

<tm<2

[V e

2
< 0o, 18lleg, oy -
Along the same lines we get
thA 13@8 Te(t)vm(t)eh,nHBO S || L) (t) 9h77”81
S I @™ @)llsoll0nnll 53, 2)
S

D02, 10153,z -

This gives
3,1 3,3
(4.13) 125 (v) + £ (V)| gm0y S nllv H 2j+8})
Now let us estimate Ey(v). By definition, we have
(T3, VAL 0] Zg,m with

def [

Ern(0) Z [SE_ne (Y = Onn), ARVE AL 940, | AR (v50™)

where Ah def o(27%¢) Wlth @ is a smooth compactly supported (in R?\ {0}) function which
has Value 1 near B(0,27™0) + C, where C is an adequate annulus. Then by commutator
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estimates (see for instance Lemma 2.97 in [2])
[FANT RGN PRI ARAT (@ (0™ () 2 -

As [[VOy,||e = n[|VO| L=, by characterization of anisotropic Besov spaces and laws of
product, we get

3,2
120 ey S ol g,

Together with estimates (4.10)—(4.13), this gives (4.9), hence (4.8).

Applying Lemma 3.6 with s = 0, s = 1/2, a = vy, Q(v,a) = divy(v ® a), f = E,(v)
and 8 = 0 allows to conclude the proof of Proposition 4.1. O
A similar result holds for the solution w? of

(Tp) Qw4+ v - Viuw? — Ayw?® — 203w =0 and w\?;;:o = wy,
where (8 is any non negative real number. In the following statement, all the constants are

independent of 3.

Proposition 4.2. Let v and ws be as in Proposition 3.5. The control of the value of w® at
the point x3 = 0 is given by the following inequality. For any r in [2 oo]

@)y WOl < Tl ud)ls) (led 0 ) + ).

Ir(R*;B], (R?))

Moreover, with the notations of Theorem 4, we have for all n in |0, 1] and v in {0, 1},
(4.15) 107 = Onm)w? a0 < [[ (¥ = Ony)wi|l o exp Ti(lleollgo) + 1ol (vo, wg)lls,.) -

Proof. The proof is very similar to the proof of Proposition 4.1. The main difference lies in the
proof of (4.14) due to the presence of the extra term $202w3, so let us detail that estimate:

~ 1,2
we shall first prove an estimate for w3(t,x;,0) in LT(RJ“;BQQIT(HV)), and then we shall

~ 1,2
interpolate that estimate with the known a priori estimate (3.29) of w® in L"(R™; 32712+r (R?))
to find the result. Ly
Let us be more precise, and first obtain a bound for w3 (¢, zj,,0) in L"(R™; B;f; (R?)). Defin-
ing

Bt an) L bt 2,00, @) € wd(@n,0) and Tt zn) ot 2,0),
we have
(4.16) O’ +0- V' — Apw® = 2(05w)(-,0) and  w@ii_y = @, -
Similarly to (4.5) we write (dropping for simplicity the dependence of the spaces on R?)

(
(M@ V"a*)|ARE®) o < di(6) 272 [V 2 VGO AR 2
2 1
where (d(t))rez belongs to the sphere of ¢1(Z). Taking the L? scalar product of Al of
Equation (4.16) with Alw? implies that

E
22

A @3z + 2% AR 3. < di(0)]|VB( P2\ N P 2

~
21

E ~
+ 5722 | AR5 w?) (-, 0) | 2 | AR@? | 2

I\D‘H
Q“Q‘

so as in (4.6) we find
E ~ 5k ~ E ~
22 ”A}clw?)HLOO(]R*';L?) +c22 ||A2w3”L1(R+;L2) <22 ||Akwg”L2

+C / A OIVIO) 2 [VHF @)y de+ OB / 25| AR(3w®) (2, -, 0)| dt
0 2,1 0
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After summation we find that
°- 1 @ 3
Lo (R Bg, 1) Ll(R+?BQ,1)

< @ + || N 22y + B2(1(83w?) (-, 0
S OHBEIJ | ”LQ(R+;B§1)H ||L2(]R+7L2) B (05w?)( )HL1

lw

This is exactly an inequality of the type (3.30), up to a harmless localization in time, so by
the same arguments we obtain the same conclusion as in Lemma 3.6, namely the fact that
for all r € [1, 00],

~3 2 2,3 2
1807, ity S (3 + NGO, s ) el Ol

Since we have
2,3 . < 3 .
||(83’w )( 70)||L1(R+;Bél(R2)) ~ Hw HLl(RJF;B%‘%)
we infer from the a priori bounds (3.34) obtained on w? in the previous section that

1(5w?) (- 0)] 1 < Too(ll(vo, wg)ls,,) »

LY(R+;B7 1 (R?))
so we obtain that for any r in [1, 0o],

(4.17) [w?¢, 0l < (Il 0y + %) Toa(ll(vo, wg)lls,) -

" (R+; BTr " (R2)) BZ, (R?)
Recalling that wo belongs to the space S, introduced in Definition 1.10, we find that

wy(~0)e () B3R,
s€[—24p,1—p)

1
Since 0 < p < > we get by interpolation and Sobolev embeddings that
5 5 1-2u 1
2(1— 2(1—
0l o IO 5T

which implies that (4.17) can be written under the form

(-, 0)] < (I 013 ey +8°) Toellvo,wls, )

- 1,2
L7(R*;B3 | " (R?))
Now interpolating with the a priori bound obtained in Proposition 3.5, we find

lw? (-, 0)]l < llw?ll;

"(R+;B,, 2+ " (R2)) L™ (R+;B~ 5+7 )

< Too ([l (vo, wi) s,

so we obtain finally
3 3 3 e
4(1—p
IO gy < T 0 s, (1 O ) +3).
This ends the proof of (4.14).

We shall not detail the proof of (4.15) as it is very similar to the proof of (4.4). Proposition 4.2
is therefore proved. O

Propositions 4.1 and 4.2 imply easily the following result, using the special form of <I>n al
and CI)?LI;’CL recalled in (4.1) and (4.2), and thanks to (1.20), (1.21) and (1.22).
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Corollary 4.3. The vector fields @2’122 and CID%ZO ;, satisfy the following: @2’122 vanishes
at x3 = 0, in the sense that for all r in [2,c0],

lim lim lim sup Hég’ﬁi(‘a 0)[. =

2
L—=00a—0  1msec L (R+;B], (R2)) ’

and there is a constant C(c«, L) such that for all n in ]0, 1],

timsup ([[(1 = )00, a0 + 10, @050 Lo ) < Clev L.

n,o, L
n—00

4.3. Conclusion of the proof of Theorem 5. Recall that we look for the solution of (NS)
under the form

0 0,00 0,loc
q)n,a,L = Uq + (I)n LT P + wn,Oé,L >

Oy nvavL

<I>O,loc

with the notation introduced in Paragraph 4.1. In particular the two vector fields @,

and @g’z ;. satisfy Corollary 4.3, and furthermore thanks to the Lebesgue theorem,
(418) 71]11)1%)“(1 —9n)ua||Lz(R+;B1) =0.

Given a small number £ > 0, to be chosen later, we choose L, « and n = n(a, L, ug) so that
thanks to Corollary 4.3 and (4.18), for all  in [2, 00|, and for n large enough,

0,1
1@, o, (50l

n,a, L

01
(4.19) Lr®+BE @) 11 = On) @y, op Lo + (1 = Op)uall L2+ )
4.19 72,1

07
HOwn @yl a0 <€
In the following we denote for simplicity

def def
(@20, @210C 4y ) F (@D, BV hnor) and PP Z a4 L0 4 POl

n,o, L’ “n,a, L0

so the vector field 1. satisfies the following equation, with zero initial data:

8twe - Aws + div(ws & we + (I)gpp & % + w:—: 1Y (I)?pp) = _qu + Es 5
with FE.=E! +E? and

(4.20) EE1 dlef div ((I)g,oo ® ((I,g,loc +ug) + (@8,10(: Fua) @ <I>g’°°
+ @%@ (1 — 0, ug + (1 — Op)uq ® (I)O,loc> 7
E? def iy (D21 & 0,110 + Byuq © D) .
If we prove that
(4.21) lim || 0 =0,
then Proposition 1.14 implies that . belongs to LQ(R+; Bl), with
;i_rg% [9ellL2@+;B1) =0,

and we conclude the proof of Theorem 5 exactly as in the proof of Theorem 4, by resorting
to Proposition 1.15.
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So let us prove (4.21). The term E! is the easiest, thanks to the separation of the spatial
supports. Let us first write B! = Ealh + E€173 with

def ..
Ly 2 di, (02104 a) © 0070+ 60 (@205 40

+ (1 . en)ua ® (I)O,loc,h + (I)O,loc ® (1 . Gn)ug) and

def
Ly 0 (020 4 )00 4 @0 (20 4 )

«

+ (1 o Qn)uaq)o,loc,?; + (1)0,100(1 o an)uii) .
Next let us write, for any two functions a and b,
ab = (6hna)b + a((1 — Ony)b) .

Denoting

ul® def (1—6,)ua

and using by now as usual the action of derivatives and the fact that B! is an algebra, we
infer that

1 1 0, 0,1
||Ea,hHL1(R+;BO) + ”EE’3||L1(R+;B;’;%) < Hehﬂ?(l)s OOHLQ(R+;81)H(I>5 ¢ + uOéHLz(R"’;Bl)

+ (1 = Oh,) (B + wa) | r2r80) 192 N L2(r+ 81
+ 1921 2 et 1) U | L2 v+ 1) -

Thanks to (4.19) and to the a priori bounds on <I>8’°°, <I>2’1°C and uq, we get directly in view
of the examples page 11 that

lim || B}z = 0.

e—0

Next let us turn to E2. We shall follow the method of [17], and in particular the following
lemma will be very useful.

Lemma 4.4. There is a constant C such that for all functions a and b, we have

labllgr < Cllallg [[6(-,0)lI 5y | (m2) + Clizzall ]| 930]| 51 -
2,1

We postpone the proof of that lemma. Let us apply it to estimate E2. We write, as in the

. def
case of E} and defining ulo® = nUas

g
1B 70 S el g0 1927 (-, O) | 2 v, (o)
+Hwsul | 2 g+ 51) |03 P L2 rtB1) -
Thanks to (4.19) as well as Inequality (1.26) of Theorem 4, we obtain
. 2 o
;1_% HEE ”.7"0 =0.

This proves (4.21), hence Theorem 5. O

Proof of Lemma 4.4. This is essentially Lemma 3.3 of [17], we recall the proof for the conve-
nience of the reader. Let us decompose b in the following way:

3
(4.22) b(mh, .’Eg) = b(xh, 0) + / 83b(ach, y3)dy3 .
0
Laws of product give directly on the one hand

la(bies=0)llst < llallst 1bj2;=0ll By | (m2) -



48 H. BAHOURI, J.-Y. CHEMIN, AND I. GALLAGHER

On the other hand, observe that

3
a(, 563)/ 03b(-, y3)dys
0

3
< JaC23)lm / Db y3) g1 oyl
ey S ozl o [ 1000 )l

IN

Clas|lla(- 23)l | m2) 030l oo (81, (m2)) -
The result follows. O

APPENDIX A. SOME RESULTS IN ANISOTROPIC BESOV SPACES

A.1. Anisotropic Besov spaces. In this section we first recall some basic facts about
(anisotropic) Littlewood-Paley theory and then we prove some basic properties of anisotropic
Besov spaces introduced in Definition 1.6, in particular laws of product which have used all
along this text.

First let us recall the following estimates which are the generalization of the classical Bern-
stein’s inequalities in the context of anisotropic Littlewood-Paley theory (see Lemma 6.10
of [2]) describing the action of horizontal and vertical derivatives on frequency localized dis-
tributions:

Lemma A.1. Let (p1, p2,7) be in [1,00]? such that p; is less than or equal to ps. Let m be a
real number and oy, (resp. o) a smooth homogeneous function of degree m on R? (resp. R).
Then we have

2 _ 2
lon(DWALS | pay S 2w | A f |y, and

i(m+-L— L
loweDa)A fll e S 2w A F g

Now let us recall the action of the heat flow on frequency localized distributions in an
anisotropic context.
Lemma A.2. For any p in [1, o], we have
7 2k | 925
"> ARAY f e T ARAY £l o
402k
"2 ARAY £l v e 7| ARAY fllLr  and
2 102j
€5 ARAT £l v e PV ARAY fl e -

The proof of this lemma consists in a straightforward (omitted) modification of the proof of
Lemma 2.3 of [2].

The following result was mentioned in the introduction of this article (see page 11). We refer
to (3.2) and to Definition 1.13 for notations.

AN AN N

Lemma A.3. Let p > 2 be given. The spaces EQ(]RJF;B;_LS,), EQ(RJF;B;’S/_l) are F5
spaces, as well as the spaces L'(R*; BS*) and LY(R+; B35 ~1).
Proof. Let f be a function in L2(R*; B3~ "), and let us show that
||L0fHA;75/ S ||f||ZE(R+;BZ*LS/)'
Applying Lemma A.2 gives
t .
AT Loflun 5 [ €t ALAT £
0
so there is a sequence d; (#') in the sphere of ¢*(Z x Z; L*(RT)) such that

t .
, 9~k(s=D)g=is’ / e~ VRN (1 at'

h
HA]@A},LOfHLP S ||f||Z2(R+;B;*LS ) 0
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Young’s inequality in time therefore gives

27k(371)7js’d,

h
”AkA}']LOfHL%R*;LP) 5 HfHE2(R+;B;*1»S') Jok

where d; 1, is a generic sequence in the sphere of (Y(Z x 7), which proves the result in the case
when f belongs to L2(R™; Bf?_l’sl). The argument is similar in the other cases. O
Now let us study laws of product.

Proposition A.4. Let us consider p € (2,4, and let (0,0',5,5') be in |1 —4/p, —1 + 4/p]*
such that

oto =5+ La>0.
If ¢ isin]1/2 —2/p,—1/2 + 2/p], we have
(A.1) labllgr-1.s S llallsg 10l gor.or -
If §' is greater than 1/2, then we have
(A.2) labll go—1,+ < llallse ([l gor,s + lall gar,o 161l 55 -

Proof. Let us use Bony’s decomposition in the vertical variable introduced in (3.33), namely
ab=T]b+Tya+ R'(a,b).

The first two terms are almost the same (up to the interchanging of a and b). Thus we only
estimate 77Yb. This is done through the following lemma.

Lemma A.5. Let us consider p € [2,4], (0,0') in |1 — 4/p,—1 + 4/p|? such that o + o' is
positive, and (s, s') in R%. If s < —1/2 + 2/p, then we have

(A3) T8 vt govis3 S ol bl

If s + s’ is positive, then we have

(A.4) 1R(@ O sorir-giororsy-2 S llallspl1bl 5o

P
2

Proof. Let us use Bony’s decomposition of Tb with respect to the horizontal variable.

b = TVTPb+TVTPa+TYRY(a,b) with
TRy N SY Sk anyAb,
Jsk
TTpa 3787 AlaAYSE b and
gk
T'RMa,b) S S AR aAYAR.
~
—1]§e§1

Following the same lines as in the proof of Proposition 3.1 (see the lines following decompos-
tion (3.18)) we have for some large enough integer Ny

AYARTYTIb = Y AYAR(Sy_ Sk 1aAl ARD).

4" =4 <No
|k’ —k|<No

By definition of the Bg’sl norms, this gives, denoting
1 1 1

p D 2
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; 1yl 2 ry1-—4
7;3;}1 d:ef 2j(s+s+2 2)tk(o+o'+1 P)HA}’AETVT&?”LQ
DY 9= (' =) (s+s'+5-3) = (K =k)(o+o'+1-7)

7' —3|<No
k! —k|<No

. 1 2 ’ 4 L .
o« 9f' (st —7)+k (a+1—;)||5‘,1 LSh_ a|| 520 K ||A}’/Ah/b||Lp
] 4
< bllgore > 270TIEE +5—2)—(K —k)(o+o'+1-2)

l7"—=31<No
|k —k|<No

X dj 2l T3P (=) 1Sy 1Sk _yal s

where, as in all that follows, (djk)(;s)ez2 lies on the sphere of ¢1(Z*). Using anisotropic
Bernstein inequalities given by Lemma A.1 and the definition of the B;"® norm, we get

-/ 1_2 / _4 f_ 1 1_2 !t _4
Y (s+3 p)+k(a+1 p)HS;]’—l‘SII;I’—IGHLE 5 Z 2(] 3 (s+5 p)+(k k") (o+1 p)

]N< /_2
k//<k/
s/, _ 2 k” 1_7
x 21" (TR0 A AL a5
) 1_2 / "
< Y QU J(o+1-4)
j”ﬁj,*Q
k" <k'—2
-1/ "
x 27 stk U”A}‘/NA}];//(]/HLP
j/*j” S+172+klik// U+17é
< flallgge 3 20 INHTDHENERD
j”ﬁjl*2
k"<k'—2

As s < —-1/2+42/p and 0 < —1+4/p, we get

+777 K +1,,
o/ (T2 =) v Sh alle < llallgge -

Young’s inequality on series leads to

(AE)) HTVThbH J+J +1— 4

2

coisyoz S lalisge bl oo

Following exactly the same lines, we can prove

oz S lallige bl g

(A'6> HTVTb a” a+a +1— 4

2

The estimate of TVR"(a,b) is a little bit different. Let us write that

AYARTYRMa,b) = ) AJAR(ST AR _,aA}ARD) .
—1§]Z§1

Arguing as in the proof of Proposition 3.1 we have for some large enough integer Ny
AYARTYRMa,b) = > Y AVAR(Sy_ AR aAlARD).

|j’*j|§N0 —1<¢<1
k' >k—No
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Anisotropic Bernstein inequalities given by Lemma A.1 imply that

|AYAR(SY_ AL _aAyAlD) 222 9y Al _aAy Al

HL2 ~ ’Lg(LQ)

2k 2_1 A4 v
S 22672 sy AL all pon AT ARD

o -
Thus we infer that

ok(o+a'+1=1)+i(s+s'+3-2) |AYARTY R (a,b)]| 2

Z Z 27 (K'—k)(o+0")—(j—3" )(s+3/+%7%)

§' 3| <No—1<(<1
k' >k—No

. 1_2 '
y 2]/(8+§_;)+k/o.HS;,_IA}];/_ZGHLIP;(Lg)Qk’/U"‘r]/S/HA;{AE![)HLP .

Using again anisotropic Bernstein inequalities and by definition of the 57 norm, we get

. 12 s 12y .
PR S AL allppge, S D 2T S AT AL a1

jll<jl 2
s+—77
S llallgge Y 29T d .
//<j/_2
As s is less than or equal to —= —i— £ we get

-/ +,_2 +K h
9J (s+3 p) UHS‘;,/,lA /7@(1”[{([]5) S ||a||l3;’s'

By definition of the BU,’SI norm, this gives

k(U+U +1_é)+](s+s +*—* HAvAthRh(CL b)HL2 < ||a||B"§||b||Ba v

XZ Z 9~ (k'—k)(o+0")—(5’ ])(s+s+l—*)d/kl‘

|7/ —71<Np —1<4<1
k' >k—No

As o + o’ is positive, we get that

2W““"Wm”"wwﬁwmmwm<@mwwwgw

Together with (A.5) and (A.6) this concludes the proof of Inequality (A.3).

In order to prove Inequality (A.4), let us use again the horizontal Bony decomposition.

Defining

1
AV Nhy def v
AY (resp. A}) = E AT, (resp. Al )

(=—1
let us write that
Rb = RYI™ + R'T}'a+ R'R"a,b) with
v def AV v
RTPy = > AYSE jaAJARD and

ak

R'R"a,b) = Y AVAR ,aAYARD.

51
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We have for a large enough integer N,
AYARR'TIb = > AVAR(AYSE jaALARD).
J'>j—No
k' —k|<No
Using anisotropic Bernstein inequalities, this gives by definition of the BZ’S/ norm,
- /41 2 / 4
RTMa,b) € /H T bt ) Ay AL YT
: / / 4
S PR AT AL RV T |

p
P(Ld)

N

T g U ) o)

J4'2j—No
k' —k|<No

. _4y o~ j
x 27O Rs 5 a2 1A Albl o

,S HbHBU o Z 2_(j/_j)(8+s’)_(k/_k)(a+o_/+1_%)

J'>5—No
W <N

J's+k' (0+1=2) | A v oh ]
X djr g2 PN A S —rall ey -

Using anisotropic Bernstein inequalities and the definition of the B?® norm, we get

sk (0+1=2) | AV ch i (' =3")s+(K —k") (o +1~3)
2 P ||Aj'Sk’—1aHL£(L5) IS § 2 P
=157 <41
ET<k/—2
7" s+k" U+177
X 2 HA ”Ak”aHLp L:U)

-/ / " 4
< } : (' =3")s+(K'=k") (o +1~7)
§=1<5"<j'+1
K<k -2
/! 1"
x 20T AY, Alal| L
(5 =3")s+(K' —k") (o +1-7)
< llalsge > 2 D
J=1<5" <5 +1
K<k —2

As o is less than or equal to —1 4+ 4/p, we get
/s+k (0+1-2) Av oh
PR OTIAYSE alle S llallsge

Since s + s’ is positive, Young’s inequality on series leads to

h
(A7) IR s e 3 5 Nl o
By symmetry, we get

h
(A'S) HRva a”Bd+a/+l—%,s+s’+%—% S HaHBZ’SHbHBg’,s’ .

2

The estimate of RV R"(a, b) is a little bit different. Arguing as in the proof of Proposition 3.1,
we obtain
AYARR'RM(a,b) = > AVAR(ALAR _aA}ARD).

J'>j—No
k'>k— Ny
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Anisotropic Bernstein inequalities given by Lemma A.1 imply that

|AYAR(AY AL aAy ALY ||, S 2G| AY ALY Al

s

N2 1 ~ ~
< 2BFGT) | AY Al a1 | AY AL

~

Thus we infer that
2k(a+a’+1f%)+j(s+s’+%f%)HA;AngRh(a, bl < Z 9~ (K =k)(o+0")=(j"=5)(s+5")

J'>j—No
k' >k—No

P NN P e AT TN AN S

By definition of the BG/’SI norm, this gives

k(cf-i-a +1—§)+J(S+S +*—* HAVAhRVRh(a b)HL2 < ||a||308||b||30 v
% Z k)(o+o')— (5’ —J)(S+S’)d i
J'>j—No
k'>k—Ny

As 0 + 0’ and s + s’ are positive, we get that

k(o+o'+1-24 s+s'+—=2 v v
QRIS | AYARR R 0, ) |12 S sy Bl .

Together with (A.7) and (A.8) this concludes the proof of Inequality (A.3). O
In order to conclude the proof of Proposition A.4, it is enough to apply Lemma A.5 with (¢, ")
to Tyb and with (¢’,0) to Ty a. O

Now let us prove laws of product in the case when one of the functions does not depend on
the vertical variable x3. We have the following proposition.

Proposition A.6. Let a be in B§71(R2) and b in B**" with (s,0) in]—1,1]2 such that s+ o
is positive and s’ greater than or equal to 1/2. We have
(A.9) labllgsto-1. S llall g, m2) 1181l .5 -
Proof. Using Bony’s decomposition in the horizontal variable gives
ab = T + T{a + R"(a, b).
As a does not depend on the vertical variable, we have
h h vrh h v ph h v
ATT)o =T ATb, AiT)'a = TA},ba and AYR"(a,b) = R"(a, Ab).
Then, the result follows from the classical proofs of mappings of paraproduct and remainder

operators (see for instance Theorem 2.47 and Theorem 2.52 of [2]). We give a short sketch
of the proof for the reader’s convenience in the case of T". Let us write

HEro =D IAYARTID 2 S D 2 ISh a2 | AT AR D 2
|k’ —k|<No
k_/
S Wllges > 2YVSE allrpdi -
|k’ —k|<No
Bernstein inequalities imply that
—k(1— h kK —k)(1— K h
2D jallie S 3D 2 RI-9F e ALl
K <k—1

lallog,my 32 290y
K <k—1

N
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This gives, with no restriction on the parameter s and with o less than or equal to 1 and s’
greater than or equal to 1/2,

h
(A.10) 20l get01.0 S g, a2y 0l 5
For the other (horizontal) paraproduct term, let us write
M UINAYAL el S ) 22X Sh L ATB e 12027 7 1 AR all 12
|k —k|<No

(A11) S lallsg w2 > 2T S  ATD e 2y di -
|k ~k[<No

Using Lemma A.1, we get
I SE A peryy £ 3 2RO O AR AT 1
k' <k—1

S D 2RO AL AT 2
k' <k—1

By definition of the B%% norm and using the fact that s < 1, we infer that
2Js _k(l_S)HSI}cl—lA}]b”LﬁO(L%) < deb”Bs,s/ .
Together with (A.11), this gives
(A.12) 1T allgeso—1.0r S llall g, g2y [Bl] e
Now let us study the (horizontal) remainder term. Using Lemma A.1, let us write that
P ATALRY @, )2 S 2 ATALRN @ ) a o)

— (k' —k Ko Ah K s+is’ h
S ) 27 ERta AR al 227 T AT AR D] 2 -
K'>k—No

By definition of the B, (R?) and B**" norms, we get

2k(s+a—1)+js’HA}/A}];Rh(a’ )|z < ||a||Bg’1(R2)HbHBs’s'dj Z 2—(k’_k)(s+a)dk/,
k' >k—No

Together with (A.10) and (A.12), this gives the result thanks to the fact that s+ o is positive.
Proposition A.6 is proved. Il

A.2. Proof of Proposition 1.14. The proof of Proposition 1.14 is reminiscent of that of
Lemma 3.6, and we shall be using arguments of that proof here.

Let us recall that we want to prove that if U is in LQ(R"’;B;), if ug is in Bg and f in ]:19,
such that

(A.13) Jeallsg + 171l < 2o exp(~Co [~ 10O ar).

then the problem

(VSy) {atu+div(u®u+u®U+U®u)—Au:—Vp+f

divu =0 and Ujg=p = Uo
has a unique global solution in L?(R*; B})) which satisfies

lull L2@+81) < lluollsy + 11l 2o -
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Let us first prove that the system (N.Sy) has a unique solution in L?([0,T; B}) for some
small enough 7T'. Let us introduce some bilinear operators which distinguish the horizontal
derivatives from the vertical one, namely for ¢ belonging to {1, 2,3},

(A.14) Qh(u, w)* def divy(w'u") and  Qy(u,w)* dof s (whud).
Then we define By, ; = L On and By - def L9, where L, is defined in Definition 1.13. It is
obvious that Solvmg (N Sy) is equivalent to solving

u = e"®ug + Lo f + Buo(u,u) + By o(u,u) + By o(U,u) + By o(U,u) + Bo(u, U) + By o(u,U) .
Following an idea introduced by G. Gui, J. Huang and P. Zhang in [29], let us define
Lo d:ef emuo + Lof

and look for the solution u under the form w = Ly + p. As the horizontal and the vertical
derivative are not treated exactly in the same way, let us decompose p into p = py, + py, with

v ¥ Bro(p, p) + Buo(Lo+ U, p) + Buolp, Lo+ U) + F |
(A.15) v & By o(p,p) + Beo(Lo+ U, p) + Buolp, Lo+ U) + Py with
' def
F, < B, 0(Lo, L) + Bno(Lo, U) + Buo(U, Ly) and
def

Fy, = By (Lo, Lo) + By,o(Lo, U) + Byo(U, Lo) -
The main lemma is the following.
Lemma A.7. For any subinterval I = [a,b] of RT, we have

Bl )iy + 1 Bnals sy

HlBealwwll - 2ois +[Bealv, )]

. 29,
Le=(LBYy ' P) LY(I;B2NBY,

Sl

)
S lullzzrsy lwl 2y -
Proof. As le) is an algebra and using Lemma A.1, we get

5 . 2k . 1
T2 AT AL O (u w)lles + 27 T AT AL (s w) (8o

S i@ llu@® sy llw®)ls

where as usual we have denoted by d; (t) a sequence in the unit sphere of ¢1(Z?) for each t.
Lemma A.2 implies that, for any ¢ in [a, b], we have with the notation of Definition 1.13

Qjir(u, w)(t)

def —14+2),L v
el o129 £, AY ALy (1, ) (1) 10

2k | - 1
+ 27+](_1+5)HL¢1A}/A}]§QV(U7 w)(t)HLp

t
—e2(2k+25)
< / A ()e O ()| o (1) |y
a

Convolution inequalities imply that

Ea,j,k(uv w) (t)

L0 (, w)ll oo (10 + 222 Lo gk (u, )| L1 1,0) S /1 dj e (0) () | gyl ()| syt -

This concludes the proof of Lemma A.7. 0
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As we have by interpolation,

1 1 1 1
(A.16) lallsy < llallgollallzz  and lallsy < llall*; _, allall*z .4
p,1 p,1

we infer that the bilinear maps By, and By, map LZ(I;B})) x L2(I; B;) into L2(I; B})). A
classical fixed point theorem implies the local wellposedness in the space L?(I; 15’11,) for initial
2 -1+

. 0 b
data in the space B, + By,

Now let us extend this (unique) solution to the whole interval R*. Given € > 0, to be chosen
small enough later on, let us define T . as

def
(A.17) T. = sup{T < T*, |Ipll>orym1) <€} -

As in the proof of Lemma 3.6, let us consider the increasing sequence (7),)o<m<ns such
that Ty = 0, Thy = oo and for some given ¢y which will be chosen later on

Tm+1 [e.e]
(A.18) Vm < M—1, / U @) |2edt = co and / 1U@)|2dt < co.
Tm P Tar—1 P

Let us recall that from (3.31), we have

1 o
(A.19) M < / 1T ()2 dt

Co 0 P
Let us define

def

(A.20) No = ||E0||%2(R+;B;]) + 1ol L2+ | Ul L2 v+ 83) -

Let us consider any m such that T;,, < T;. Lemma A.7 implies that for any time T less
than min{7},+1; 7.}, we have

def
= lpenllzoe (e m:80) + lonll L1 (1, 77:82)

Cllon(Tn)llsy + CNG

R (T)

IN

+ C(llpnll 2z 183 + 10 + Ul L2, 11:88)) | owll L2 (123,782
Cllon(Tm)llsy + CNo

IN

+C(e + Lol 2z, 1188 + o) llonll L2z, 1718 -

Choosing Cj large enough in (A.13), ¢p small enough in (A.18), and € small enough in (A.17)
implies that

1
(A.21) R (T) < Cllon(To) sy + CNo + 2 lenll 2z, i)
Exactly along the same lines, we get
def
Ry (T) = v 1+l
m(T) 1M e sty TP

1
< CHPv(Tm)HBl,f% + CNo + Sleellz s, mymy) -

We deduce that }

lonll 2z 1183y < C(lon(Tm)llsg +No)  and  |lpvllz2,, 181 < C(HPV(Tm)HB;,,% + M)
This gives, for any m such that T, < T, and for all T" in [T},; min{ T}, 41, T-}],

(A.22) Ron(T) + Ry (T) < Cl(llpv(Tm)HB;,_% + [lon(Tn) sy + No) -
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Let us observe that p;—g = 0. Thus exactly as in the proof of Lemma 3.6, an iteration process
gives, for any m such that T, < T; and any T in [Ty, min{Ty,+1, - }],

def

R(T) onllzoeqo,rysp) + llonllzrqorysg) + llovll g Fllenll 2141

(078, F) LYo 1:By,  P)
< (Cl)m+1N0-
By definition of A given in (A.20), we have in view of Definition 1.13
No < (luollsg + I f1l7e) (NU | L2 ersmy) + lluollsy + [ fllzg) -

As claimed in (A.19) the total number of intervals is less than |]UH%2(R+_81). We infer that,
>~p
for any T' < T,

R(T) < Calluollsy + 1 70) (1U Nl z2qe+3) + lluollsy + 1 20) exp(CallUN 72 ) -

Using the interpolation inequality (A.16) we infer that, for any T < T,

T
/O ez dt < Ca(lluollsg + 11 llzg) (1Tl 2+ 1) + lluollsy +[1F 1| =) exp(CallU 72 gs ) -

Choosing
2
€
Co(lluollsp + 1f1l79) (U1l 2 i) + lluollsg + [1f1l7) exp(CallU N2 mvsy) < 5
T
ensures that / ()12 5L dt remains less than €2, and thus there is no blow up for the solution
of (NSyy). This concludes the proof of Proposition 1.14. O

A.3. Proof of Proposition 1.15. Thanks to Proposition A.4, we observe that if u belongs
to L2(R™; B;), then u ® u belongs to L'(RT; B'). Lemma A.1 implies that the operators Qy,
and Q, defined in (A.14) satisfy

190 (s )l ey + 19t ), g3 S Nl ey -
Using the Duhamel formula and the action of the heat flow described in Lemma A.2, we
deduce that

Vr e [1,00], ||ull + ||| < [[uollgo + ”“”2L2(]R+;B;,) J

L7 (R+; Br L1(R+; Bl

which proves (1.37). Let us prove the second 1nequality of the proposition which is a prop-
agation type inequality. Once an appropriate (para)linearization of the terms Qy and Q is
done, the proof is quite similar to the proof of Proposition 1.14. Following the method of [14],
let us observe that

div(u @ u)’ = divy(u‘u®) + 63( u®)
= (divy uM)uf + ul - Vyut + 05 (TJ{;UZ + T;’éu?’ + RY(u?, ug)) .
Now let us define the bilinear operator 7 by
(Taw)* def (divy w™)u’ + o - Vyw® + 95 ( Vowt TV w® + RY (u, we)) .

Let us observe that T,u = div(u ® u). The laws of product of Proposition A.4 imply that,
for any sin [1 —4/p+ p, —1+4/p — p,

(A.23) | (divy, w™)ul 4+ u® - Viw®||gs < ||w]|gss+1 ||ul| g -
Lemmas A.1 and A.5 imply that, for any s in [1 —4/p+ p,—1+4/p — uj,
(A21) @6 (Tw + Tw® + B (a0, S ol s
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Let us notice that for any non negative a, u is solution of the linear equation

(A.25) w = e V%(a) + Ly Tyw.

The smoothing effect of the heat flow, as described in Lemma A.2, implies that for any non
negative a, and any t greater than or equal to a,

25| AYARL, Tow(t)]| 2

(A.26) - t I —c2RH23) (i) / ! !
< | dit)e (@)1 (lw(t)llgs+1 + fw(¥)]] 5. 3)dt".

This gives, for any b in ]a, 0o],

| LaTuw| poo (1;85) + || La Tuw]| N HUHLQ(I;Bl)HwHLg(

LU(IBs+2nB53) ~ LB+10B"3)

with I = [a, b]. Now let us consider the increasing sequence (1}, )o<m<n Which satisfies (A.18).
If ¢p is choosen small enough, we have that the linear map Lz, T, maps the space

L2([Ty, Toia]; B 0 B 0 B53)
into itself with a norm less than 1. Thus u is the unique solution of (A.25) and it satisfies,

for any m

3
[Tm,Tm+1];BS+1ﬂBS’§

Arguing as in the proofs of Lemma 3.6 and Proposition 1.14, we conclude that u belongs
to A® and that

lullas S lluollss exp(CllullZs @+ 1) -
Inequality (1.38) is proved.

In order to prove Inequality (1.39), let us observe that using Bony’s decomposition in the
vertical variable, we get

w

diviu @ u)t = Z O (ufu™)
m=1
3
= Om (T;’gum + Tmu’ + RY (u, um)) .
m=1

Now let us define
3
(Tuw)* def Z 3m( Y™ + Timw’ + RY (uf, wm)> .
m=1

Proposition A.4 implies that, if m equals 1 or 2 then for any s’ greater than or equal to 1/2
Ham(Tngm+Tmee+RV(UZ’wm))HLI(RﬁBO’S,) S ||u||L2(R+;Bl)||wHL2(R+;Bl,S’) and
HBS(TJMU?’ +T1113we+Rv(usz3)HLl(R+;BO*S,) S HUHL2(R+;31)”wHLQ(RﬂL;BO,S“rl) .

Thus we get, for any a in R™, any b in I = [a,o0] and any r in [1, o],

— . 2
HLaT“wHLT(I;BUJ/'FS') S ||u||L2(I;Bl)(HwHLQ([;Bl,s’) + ||w||L2(I;BO7S/+1)) with o +0' = ;

Then the lines after Inequality (A.26) can be repeated word for word. Proposition 1.15 is
proved. O
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