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Abstract. In this paper we continue to develop an alternative
viewpoint on recent studies of Navier-Stokes regularity in critical
spaces, a program which was started in the recent work [14] by C.
Kenig and the second author. Specifically, we prove that strong so-
lutions which remain bounded in the space L3(R3) do not become
singular in finite time, a known result established in [8] by Escau-
riaza, Seregin and Šverák in the context of suitable weak solutions.
Here, we use the method of “critical elements” which was recently
developed by Kenig and Merle to treat critical dispersive equations.
Our main tool is a “profile decomposition” for the Navier-Stokes
equations in critical Besov spaces which we develop here. As a
byproduct of this tool, assuming a singularity-producing initial da-
tum for Navier-Stokes exists in a critical Lebesgue or Besov space,
we show there is one with minimal norm, generalizing a result of
Rusin and Šverák [23].

Introduction

We consider the incompressible Navier-Stokes equations in Rd,

(0.1) (NS)


∂u

∂t
= ∆u−∇ · (u⊗ u)−∇π,

∇ · u = 0,
u|t=0 = u0

for (x, t) ∈ Rd × (0, T ), where u = u(x, t) is the velocity vector field
and π(x, t) is the associated pressure function. For d ≥ 3, global
weak solutions are known to exist, but their uniqueness (as well as
the smoothness of the solution for smooth data) has remained an open
problem since the pioneering work [21]. There exist several conditional
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results, of which Serrin’s criterion is perhaps the most well-known: if
a weak solution u is such that

(0.2) u ∈ Lp([0, T ];Lq(Rd)) with
2

p
+
d

q
= 1, q > d,

then u is smooth on (0, T ). On the other hand, there is a long line
of work on constructing local in time solutions, from [13] to [20]. In
this framework of local in time (strong, e.g. unique) solutions, Serrin’s
criterion may be understood as a non blow-up criterion at time T : e.g.
if u is a strong solution with u0 ∈ Ld(Rd), that is u ∈ C([0, T );Ld(R)),
and if (0.2) is satisfied, then one may (continuously and uniquely)
extend the solution u past time T .

In the recent important work [8], Escauriaza-Seregin-Šverák obtained
the endpoint version of Serrin’s criterion1: u ∈ L∞([0, T ];L3(R3)) im-
plies no blow-up; they work with the so-called suitable weak solutions
introduced in [4]. A similar, but much more precise result in the

(smaller) space L∞([0, T ]; Ḣ
1
2 (R3)) was obtained recently by Seregin

in [25]; the main point in that result is that it is proved that the Ḣ
1
2

norm of the solution u(t) blows up as t goes to blow-up time, and not
just for a subsequence as is known in the L3(R3) case (see [24] for a
partial result in that direction)2.

Our goal here is to obtain such a result by a somewhat different route,
following the concentration-compactness methods developed by Kenig-
Merle in the context of energy critical dispersive equations ([15, 16])
and then extended to subcritical problems ([18]) or supercritical prob-
lems ([17]). In our context, the Navier-Stokes equations are super-
critical with respect to their only known a priori bound, which is the
energy inequality (the L2(R3) norm of a solution is decreasing), while

a scale invariant norm for the data is Ḣ
1
2 (R3) or L3(R3). In [14],

C. Kenig and the second author carried out such a program for so-
lutions u ∈ L∞([0, T ]; Ḣ

1
2 (R3)). The first step in following the Kenig-

Merle roadmap is to prove the existence of a so-called “critical element”
(or minimal blow-up solution), which follows from suitable profile de-
compositions of the data, the linear solution (to the heat equation) and
the nonlinear solution (to the full Navier-Stokes system). Such decom-
positions were introduced by P. Gérard in [11] to study the defect of
compactness of the Sobolev embedding theorem, and then used by the
same author and H. Bahouri to study the critical defocusing wave equa-
tion [2]. In the context of Navier-Stokes, they were developed in [10]

1[8] treats the case d = 3; the case d > 3 was treated similarly later in [7].
2The result [24] was actually very recently improved by Seregin in [26], who

obtains the blow up of u(t) in the L3(R3) case.
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by the first author, and served as a crucial tool in implementing the
roadmap in [14]; this explains why the result in [14] applies to Ḣ

1
2 (R3)

rather than L3(R3), as [10] implements profile decompositions in the
Sobolev scale. Recently the second author extended profile decompo-

sitions ([19]) to study the embedding Ld(Rd) ↪→ Ḃ
d
p
−1

p,q (Rd), where the
latter are ((NS)-critical) homogeneous Besov spaces, with p > d, or
more generally within the Besov scale itself.

Our main goal is threefold:

• we develop profile decompositions for solutions to the Navier-

Stokes equations with data in Ld(Rd) or Ḃ
d
p
−1

p,q (Rd) with 1 ≤
p, q < 2d + 3, extending the results from [10]; the main dif-
ficulty here compared to [10] consists in handling multilinear
interactions between profiles and remainders, as well as a lack
of orthogonality in L3(R3) for the profile decomposition.
• we use this profile decomposition to implement the Kenig-Merle

roadmap for solutions u ∈ L∞([0, T ];L3(R3)). The Hilbert na-

ture of Ḣ
1
2 (R3) proved helpful in [14] to deal with weak conver-

gence issues, as well as again with multilinear interactions. We
need to face these issues here, however eventually we obtain a
streamlined argument which leads to weak convergence toward
zero at blow-up time for critical elements. Once this “compact-
ness” result is proved, Serrin’s endpoint criterion is obtained
as in [14], following closely the backward uniqueness argument
of [8];
• we use the profile decomposition in another direction, extend-

ing recent work of Rusin-Šverák [23]: we prove that there al-
ways exists a minimal blow-up initial datum in Ld(Rd) if any
such datum exists, and that moreover the set of such data is

compact in Ḃ
d
p
−1

p,q (Rd), with d < p ≤ q ≤ +∞, up to trans-
formational invariance of the equations. We moreover prove a
similar statement, involving two different Besov spaces in the
aforementioned scale, with p < 2d+ 3.

The next section introduces the function spaces we shall be using, and
collects a few well-known facts about the Navier-Stokes system and its
solutions in those function spaces. The next three sections are devoted
to the profile decomposition, the regularity criterion and the minimal
blow-up data, respectively.

Acknowledgement: The second author would like to express his
sincere thanks to Professor Carlos Kenig for suggesting to him the
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problem which we treat in Section 3 below.

After completion of this work, we learned of [12] where a result in
the same spirit as our last section is proved, namely the existence of
initial data with minimal L3(R3) norm for potential Navier-Stokes sin-
gularities; in [12] the compactness in L3(R3) up to translation-dilation
is also obtained.

1. Preliminaries

For the convenience of the reader, we start by recalling the usual
definition of Besov spaces. We usually write X as a shorthand for the
function space X(Rd), where d is the space dimension.

Definition 1.1. Let φ be a function in S such that φ̂ = 1 for |ξ| ≤
1 and φ̂ = 0 for |ξ| > 2, and define φj(x) := 2djφ(2jx). Then the
frequency localization operators are defined by

Sj := φj ∗ ·, ∆j := Sj+1 − Sj.
Let f be in S ′. We say f belongs to Ḃs

p,q if

• The partial sum
∑m
−m ∆jf converges to f as a tempered distri-

bution if s < d
p

and after taking the quotient with polynomials

if not.
• The sequence εj := 2js‖∆jf‖Lp belongs to `q, and its `q-norm

defines the Besov norm of f .

We shall also need a slight modification of those spaces, taking into
account the time variable.

Definition 1.2. Let u(x, t) ∈ S ′(Rd+1) and let ∆j be a frequency lo-
calization with respect to the x variable. We shall say that u belongs
to Lρ([a, b]; Ḃs

p,q) if u(t) ∈ Ḃs
p,q for all t ∈ [a, b] and

2js‖∆ju‖Lρ([a,b];Lpx) =: εj ∈ `q .
We define

‖u‖Lρ([a,b];Ḃsp,q)
:= ‖2js‖∆ju‖Lρ([a,b];Lpx)‖`q ,

and LρT (Ḃs
p,q) := Lρ([0, T ]; Ḃs

p,q).

Remark 1.3. In the case where ρ ≥ q one has of course the embed-
ding Lρ([a, b]; Ḃs

p,q) ↪→ Lρ([a, b]; Ḃs
p,q) due to Minkowski’s inequality.

Let us introduce some notation. For any p in [1,∞) we define

sp := −1 +
d

p
·
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For any initial datum u0 ∈ Ḃsp
p,q, with d < p ≤ q < +∞, we shall denote

by NS(u0) the local in time strong solution to the Navier-Stokes equa-
tion (0.1). For clarity, by “solution” to (0.1) in the strong (sometimes
called “mild”) sense, we mean a divergence-free solution u to

ut = ∆u− P∇ · (u⊗ u) , u|t=0 = u0

(equivalent to solving (0.1) for the “right” π) in the Duhamel sense,
where P is the projection operator onto divergence-free vector fields.
Such solutions were obtained in [5] for 3 < p ≤ 6 and for all p < +∞
in [22], and we refer to the appendix of [9] for a proof which is taylored

to our purposes. The specific case of Ld(↪→ Ḃ
−(1− d

p
)

p,q ) data is included
in such a result, as any additional “regularity” is propagated along the
flow (see again [9] for a proof of this well-known fact).

Let us make those results on the Cauchy problem more precise. We
define the function space

Ep,q(T ) := L∞([0, T ]; Ḃsp
p,q) ∩ L

2p
p+1 ([0, T ]; Ḃ

sp+1+ 1
p

p,q ) .

In particular, Ep,q ⊂ Lr(Ḃ
sp+ 2

r
p,q ) for 2p

p+1
≤ r ≤ ∞ by interpolation. We

recall (see e.g. [9]) that NS(u0) belongs to Ep,q(T ) for some time T ,
and one may define a maximal time T ∗ = T ∗(u0) such that this holds
for any T < T ∗ (actually the solution belongs to L∞([0, T ]; Ḃ

sp
p,q) ∩

L1([0, T ]; Ḃ
sp+2
p,q ) but that fact will not be used here). If the initial da-

tum is small enough then T ∗ =∞ (and under such a condition one may
include q = ∞, although one cannot in general obtain local solutions
for q = ∞). Moreover, u belongs to Ep,q(T

∗) if and only if T ∗ = ∞,
and in that case one has (see [9]) that lim

t→∞
‖NS(u0)(t)‖Ḃspp,q = 0 as

well. Finally recall that if NS(u0) belongs to Ep,q(T ) and if u0 belongs

to Ḃsa
a,b (resp. Ld(Rd)) with a ≤ p and b ≤ q, then NS(u0) belongs

to Ea,b(T ) (resp. C([0, T ];Ld(Rd)) with the same life span (see [9] for
instance, or [1]).

2. Profile Decompositions

2.1. Notation and statement of the result. In what follows, we
shall need the following notion, where the dimension d is always chosen
such that d ≥ 2.

Definition 2.1. For j ∈ N, let {(λj,n, xj,n)}∞n=1 ⊂ (0,∞) × Rd be a
sequence of “scales” λj,n and “cores” xj,n. We say that such a set of
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sequences is (pairwise) orthogonal if
(2.1)

j 6= j′ =⇒



either lim
n→+∞

λj,n
λj′,n

+
λj′,n
λj,n

= +∞

or

λj,n
λj′,n

≡ 1 and lim
n→+∞

|xj,n − xj′,n|
λj,n

= +∞ .

Let us define, for functions f ∈ Ld(Rd), norm-invariant transforma-
tions depending on translation and scaling parameters xj,n and λj,n
respectively by

(2.2) Λj,nf(x) :=
1

λj,n
f

(
x− xj,n
λj,n

)
.

Then the reason for the terminology in the previous definition becomes
clear by considering the following quantity:

(2.3)

∫
Rd
|Λj,nf(x)|d−1|Λj′,ng(x)| dx

=
λj,n
λj′,n

∫
Rd
|f(y)|d−1

∣∣∣∣g( λj,nλj′,n
y +

xj,n − xj′,n
λj′,n

)∣∣∣∣ dy .
One similarly has equality if on the right-hand side one interchanges j
and j′ and the arguments of the functions, and hence such a term tends
to zero as n → ∞ if (2.1) holds, since we may approximate f and g
in Ld(Rd) by C∞0 -functions. This implies that

‖Λj,nf + Λj′,ng‖dLd(Rd) = ‖Λj,nf‖dLd(Rd) + ‖Λj′,ng‖dLd(Rd) + ◦(1)

as n→∞ if the scales are orthogonal. Therefore Λj,nf and Λj′,ng are
“asymptotically orthogonal” in Ld(Rd) (and similar statements will be
shown to hold in other critical spaces as well).

We first recall two theorems which were proved3 in [19]. The first
one deals with the defect of compactness of the embedding Ld ↪→ Ḃ

sp
p,q

with d < p, q ≤ +∞.

Theorem 1 ([19]). Let p, q ∈ R satisfy d < p, q ≤ +∞. Let {ϕn}∞n=1

be a bounded sequence in Ld(Rd) and let φ0 be any weak limit point
of {ϕn}n. Then, after possibly replacing {ϕn}n by a subsequence which

3It is known that the wavelet-basis characterization of scalar function-spaces
used in [19] extend as well to vector-fields (and in fact one may use divergence-free
wavelets, see e.g. [3]). Moreover, the slightly more specific formulations we give
here are a simple consequence of the theorems in [19].
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we relabel {ϕn}n, there exists a sequence of profiles {φj}∞j=1 of Ld(Rd),

and for each j ∈ N sequences {(λj,n, xj,n)}∞n=1 in (0,∞)× Rd of scales
and cores which are orthogonal in the sense of Definition 2.1 such that,
for all n, J ∈ N, if we define ψJn by

(2.4) ϕn(x) = φ0(x) +
J∑
j=1

1

λj,n
φj

(
x− xj,n
λj,n

)
+ ψJn(x)

the following properties hold:

• the function ψJn is a remainder in the sense that

(2.5) lim
J→∞

(
lim sup
n→∞

‖ψJn‖Ḃspp,q

)
= 0 ;

• there is a norm4 ‖ · ‖̃Ld(Rd) which is equivalent to ‖ · ‖Ld(Rd) such
that

(2.6)
∞∑
j=1

‖φj ‖̃dLd(Rd) ≤ lim inf
n→∞

‖ϕn‖̃dLd(Rd)

and, for each integer J ,

(2.7) ‖ψJn ‖̃Ld(Rd) ≤ ‖ϕn‖̃Ld(Rd) + ◦(1) as n→∞ ;

• for any integer j, the following properties hold: either λj,n = 1
and lim

n→∞
|xj,n| = +∞, or lim

n→∞
λj,n ∈ {0,+∞}.

The second statement deals with the defect of compactness of the
embedding Ḃsa

a,b ↪→ Ḃ
sp
p,q with 1 ≤ a < p ≤ +∞ and 1 ≤ b ≤ (p/a)b ≤

q ≤ +∞.

Theorem 2 ([19]). Let a, b, p, q ∈ [1,∞] satisfy 1 ≤ a < p ≤ +∞
and 1 ≤ b ≤ (p/a)b ≤ q ≤ +∞. Let {ϕn}∞n=1 be a bounded sequence
in Ḃsa

a,b(Rd), and let φ0 be any weak limit point of {ϕn}. Then, after
possibly replacing {ϕn}n by a subsequence which we relabel {ϕn}n, there
exists a sequence of profiles {φj}∞j=1 in Ḃsa

a,b, and for each integer j ≥ 1
a sequence {(λj,n, xj,n)}∞n=1 of scales and cores which are orthogonal in
the sense of Definition 2.1 such that, for all n, J ∈ N, if we define ψJn
by

(2.8) ϕn(x) = φ0(x) +
J∑
j=1

1

λj,n
φj

(
x− xj,n
λj,n

)
+ ψJn(x)

the following properties hold:

4This norm is based on a wavelet basis expansion for functions in Besov and
Triebel-Lizorkin spaces.
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• the function ψJn is a remainder in the sense that

(2.9) lim
J→∞

(
lim sup
n→∞

‖ψJn‖Ḃspp,q

)
= 0 ;

• there is a norm ‖ · ‖̃Ḃsaa,b which is equivalent to ‖ · ‖Ḃsaa,b such that

for each integer n ∈ N, denoting τ := max{a, b}, one has

(2.10)

∥∥∥∥(‖φj ‖̃Ḃsaa,b)∞j=0

∥∥∥∥
`τ
≤ lim inf

n′→∞
‖ϕn′ ‖̃Ḃsaa,b

and, for each integer J ,

(2.11) ‖ψJn ‖̃Ḃsaa,b ≤ ‖ϕn‖̃Ḃsaa,b + ◦(1) as n→∞ ;

• for any integer j, the following properties hold: either λj,n = 1
and lim

n→∞
|xj,n| = +∞, or lim

n→∞
λj,n ∈ {0,+∞}.

It should be noted (see e.g. the proof of (3.2) below with s = 0) that
the φj’s are weak limit points of the sequence

λj,nϕn (λj,n ·+xj,n) .

Consequently if Theorem 1 or Theorem 2 is applied to a sequence of
divergence free vector fields, each profile produced by the theorem is
also a divergence free vector field.

We shall now apply these results to a sequence of bounded initial
data to (0.1). The following statement is the analogue of Theorem 2
of [10] in the context of critical Besov spaces. For the sake of simplicity,
we shall only consider the case p = q ; the restriction on p is technical
in nature but it allows to deal with L3(R3) data, and we plan to address
this issue in future work.

Theorem 3 (NSE Evolution of Profile Decompositions). Suppose d ≥
3 and fix a, b, p ∈ R satisfying d < a ≤ b < p < 2d+3. Let {ϕn}∞n=1 be a
bounded sequence of divergence-free vector fields in Ḃsa

a,b(Rd), and let φ0

be any weak limit point of {ϕn}. Then, after possibly relabeling the
sequence due to the extraction of a subsequence following an application
of Theorem 2 (of which we retain the same notation for the profile
decomposition), defining un := NS(ϕn) and Uj := NS(φj) ∈ Ea,b(Tj)
for every integer j ∈ N (where Tj is any real number smaller than the
life span T ∗j of φj, and Tj = ∞ if T ∗j = ∞), the following properties
hold:

• there is a finite (possibly empty) subset I of N such that5

∀j ∈ I, Tj <∞ and ∀j ∈ N \ I, Uj ∈ Ea,b(∞).

5This is equivalent to T ∗j <∞ ⇐⇒ j ∈ I by [9] and the small-data theory.
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Moreover setting τn := min
j∈I

λ2
j,nTj if I is nonempty and τn :=∞

otherwise, we have

sup
n
‖un‖Ea,b(τn) <∞.

• if there exists a time T ∈ R+ ∪ {+∞} such that {un} is uni-
formly bounded in Ea,b(T ), then if I is nonempty we must have

(2.12) ∀n ∈ N, T < min
j∈I

λ2
j,nT

∗
j ,

and therefore in such a case the scales of concentration for which
lim
n→∞

λj,n = 0 (small scales) generate global solutions of (NS)

(i.e., the corresponding T ∗j = +∞).
• finally there exists some large J0 ∈ N such that for each J > J0,

there exists N(J) ∈ N such that for all n > N(J), all t ≤ τn
and all x ∈ Rd, setting wJn := et∆(ψJn) and defining rJn by

(2.13)

un(x, t) = U0(x, t) +
J∑
j=1

1

λj,n
Uj

(
x− xj,n
λj,n

,
t

λ2
j,n

)
+ wJn(x, t) + rJn(x, t),

then wJn and rJn are small remainders in the sense that
(2.14)

lim
J→∞

(
lim sup
n→∞

‖wJn‖Ep,p(∞)

)
= lim

J→∞

(
lim sup
n→∞

‖rJn‖Ep,p(τn)

)
= 0 ;

Remark 2.2. As a consequence of the proof of Theorem 3, the de-
composition (2.13) actually holds for all indices J (once the theorem
is proved as stated, the remainder rJn for 1 ≤ J ≤ J0 may be defined
by (2.13) which now holds up to time τn) but it should be clear that
such a decomposition is of interest mostly when enough profiles have
been extracted, yielding a small remainder.

Remark 2.3. Although the first step in proving Theorem 3 is to apply
Theorem 2, if moreover {ϕn}∞n=1 is a bounded sequence of divergence-
free vector fields in Ld(Rd), one may instead first apply Theorem 1 and
standard embeddings to see that the sequence enjoys all the properties
in the conclusion of Theorem 1 as well as those in the conclusion of
Theorem 3.

Remark 2.4. The bound p < 2d + 3 is directly related to Lemma 2.5
below; we did not seek the optimal values (w.r.t. the original a, b), and
for a = b = d, the regularity sp + 2/p which appears in this Lemma
may be taken positive by choosing p < d+ 2. This in turn would avoid
the direct use of paraproduct estimates in the proof of Lemma 2.7, but
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we feel worth pointing out that negative regularity can be allowed in
Lemma 2.5. At any rate, paraproduct techniques are at the heart of
the estimates in [9] or any of the product estimates, both of which we
heavily rely on.

2.2. Proof of Theorem 3. The first step consists of course in appying
Theorem 2 (or Theorem 1, if applicable) to the sequence of initial data.
We briefly comment on the choice of indices: our main goal being to
deal with a sequence of data in L3(R3), a natural choice (in spatial
dimension d) is a = b = d, for which in the profile decomposition of the
data we may pick any p = q close to d (hence even less than d+ 2, see
Remark 2.4). For general a, b, we may relabel a = b = sup(a, b) (using
Sobolev’s embedding), and then use Theorem 2 for p = q strictly larger
than a. Thus we can always use p = q = sup(a, b) + ε as our indices
for the remainder space. Now let us continue with the proof.

With the notation of Theorem 2 we define

un := NS(ϕn), Uj := NS(φj) ∈ Ea,b(Tj) and wJn := et∆(ψJn).

Then due to (2.9) and standard linear heat estimates we have

(2.15) lim
J→∞

(
lim sup
n→∞

‖wJn‖Ep,p(∞)

)
= 0 .

Moreover due to the orthogonality property (2.10), the sequence {φj}
goes to zero in the space Ḃsa

a,b as j goes to infinity. This implies that
there is j0 such that for all j > j0, there is a global unique solution
associated with φj, as ‖φj‖Ḃsaa,b < ε0 (the smallness constant of small

data theory). Hence, I will be a subset of {0, . . . , j0} which proves the
first part of the first statement in Theorem 3.

All other statements will follow from obtaining careful bounds on
both profiles and rJn , by taking advantage of the local Cauchy theory
and its perturbed variants (as set up e.g. in [9]; see the appendix for a
slightly more general statement).

By the local Cauchy theory we can solve the Navier-Stokes equa-
tion (0.1) with data ϕn for each integer n, and produce a unique solu-
tion un ∈ Ea,b(Tun) for some time Tun < T ∗(ϕn). Now let us define, for
any J ≥ 0

rJn(x, t) := un(x, t)−

(
J∑
j=0

Λj,nUj(x, t) + wJn(x, t)

)
,
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where Λ0,nU0(x, t) := U0(x, t), and we abuse our earlier notation for
dilations/translations to define

Λj,nUj(x, t) :=
1

λj,n
Uj

(
x− xj,n
λj,n

,
t

λ2
j,n

)
.

To be consistent, from now on we define λ0,n := 1 and x0,n := 0, and
remark that the lifetime of the re-scaled Uj has become at least λ2

j,nTj.

Therefore, the function rJn(x, ·) is defined a priori for t ∈ [0, tn], where

tn = min

(
Tun ; min

j∈I
λ2
j,nTj;∞

)
= min(τn;Tun)

with the notation of Theorem 3. Our main goal consists in proving
that rJn is actually defined on [0, τn] (at least if J is large enough),
which will be a consequence of the perturbation theory for the Navier-
Stokes equation. In the process, we shall obtain the desired uniform
limiting property

lim
J→∞

(
lim sup
n→∞

‖rJn‖Ep,p(τn)

)
= 0 .

Let us write the equation satisfied by rJn . It turns out to be easier to
write that equation after a re-scaling in space-time. For convenience,
let us re-order the functions Λj,nUj, for 0 ≤ j ≤ j0, in such a way that,
for some n0 = n0(j0) sufficiently large, we have

(2.16) ∀n ≥ n0, j ≤ j′ ≤ j0 =⇒ λ2
j,nT

∗
j ≤ λ2

j′,nT
∗
j′

(some of these terms may equal infinity), where T ∗j is the maximal life
span of φj (such a reordering is possible on a fixed and finite number
of profiles due to the orthogonality of scales). In particular, with this
ordering we have τn = λ2

0,nT0, and we note that λ2
j,nT

∗
j is the life span

of Λj,nUj.
The inverse of our dilation/translation operator Λj,n is

(2.17) Λ−1
j,nf(s, y) := λj,nf(λj,ny + xj,n, λ

2
j,ns).

We then define, for every integer J ,

∀j ≤ J, U j,0
n := Λ−1

0,nΛj,nUj, RJ,0
n := Λ−1

0,nr
J
n ,

W J,0
n := Λ−1

0,nw
J
n and U0

n := Λ−1
0,nun.

Clearly we have

RJ,0
n (s, y) := U0

n(s, y)−

(
J∑
j=0

U j,0
n (s, y) +W J,0

n (s, y)

)
,



12 ISABELLE GALLAGHER, GABRIEL S. KOCH, AND FABRICE PLANCHON

and RJ,0
n (which for the time being is defined for times s in [0, t0n)

where t0n := min{T0, λ
−2
0,nTun}) solves the following system:

(2.18)

{
∂sR

J,0
n + P(RJ,0

n · ∇RJ,0
n )−∆RJ,0

n +Q(RJ,0
n , F J,0

n ) = GJ,0
n

RJ,0
n

∣∣
s=0

= 0,

where we recall that P := Id−∇∆−1(∇·) is the projection onto diver-
gence free vector fields,

Q(a, b) := P(a · ∇b+ b · ∇a)

for two vector fields a, b, and, finally, where

(2.19) F J,0
n :=

∑
j≤J

U j,0
n +W J,0

n ,

and

(2.20) GJ,0
n := −1

2

∑
( j 6=j′
(j,j′)∈{0,..,J}2)

Q(U j,0
n , U j′,0

n )

−
∑
j≤J

Q(U j,0
n ,W J,0

n )− 1

2
Q(W J,0

n ,W J,0
n ).

Notice here that in re-ordering the profiles, we may have lost the fact
that λ0,n = 1; however we have a (simpler notation for a) uniform lower
bound on the lifetime of all possibly blowing-up profiles: for any real
number T0 smaller than T ∗0 , (2.16) gives

∀j ∈ N, {U j,0
n }n≥n0 is bounded in Ea,b(T0) .

However, we have no uniform control over the sum F J,0
n which enters the

drift term in the perturbed equation (2.18). In order to use perturbative
bounds on this system, as stated in Proposition A.1 in the appendix,
we need such a good control on the drift term (which will come from
orthogonality arguments), and smallness of the forcing term GJ,0

n .
We start with the drift term. Notice that we do not claim uniform

boundedness in Ep,p but rather in a weaker space, which will be enough
for our purposes (the reader might notice that we could replace p in
the following statement by b (< p) but this will not be necessary and
would make notations even more cumbersome).

Lemma 2.5. The sequence (F J,0
n ) is bounded in Lp([0, T0]; Ḃ

sp+ 2
p

p,p ), uni-
formly in J .
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Let us prove this lemma. Notice that

F J,0
n =

∑
j≤j0

U j,0
n +

J∑
j0+1

U j,0
n +W J,0

n

and by the small data theory, U j,0
n (for j > j0) and W J,0

n are bounded
in Ep,p(R+) by their respective initial data in Ḃ

sp
p,p; in particular, for

all 1 ≤ r ≤ +∞,

(2.21) ∀j > j0, ‖U j,0
n ‖Lr(R+;Ḃ

sp+
2
r

p,p )
= ‖Uj‖

Lr(R+;Ḃ
sp+

2
r

p,p )
. ‖φj‖Ḃspp,p .

Therefore, (2.10) yields

J∑
j=j0+1

‖U j,0
n ‖

p

Lpt Ḃ
sp+

2
p

p,p

≤
J∑

j=j0+1

‖U j,0
n ‖

p
Ep,p(+∞) < +∞,

where the bound is uniform in J .
We then need to use the orthogonality of cores/scales in the form of

the following lemma:

Lemma 2.6. Fix any r ∈ [p,∞). There exists some ε(J, n) : N× N→ R+

satisfying, for each fixed J ,

lim
n→∞

ε(J, n) = 0

and such that, for any J ′ < J ,∥∥∥∥∥
J∑

j=J ′

U j,0
n

∥∥∥∥∥
p

Lrt Ḃ
sp+

2
r

p,p

≤
J∑

j=J ′

‖U j,0
n ‖

p

Lrt Ḃ
sp+

2
r

p,p

+ ε(J, n).

Postponing the proof of this for a moment, let us use it to complete
the proof of Lemma 2.5. Lemma 2.6, along with the small data theory
for Navier-Stokes, implies that
(2.22)

2−p
∥∥∥ J∑
j=j0+1

U j,0
n +W J,0

n

∥∥∥p
Lpt Ḃ

sp+
2
p

p,p

.
∞∑

j=j0+1

‖φj‖pBspp,p + ε(J, n) + ‖ψJn‖
p

B
sp
p,p
.

The first j0 + 1 terms are then dealt with because the scaling we chose
is such that the norm of U j,0

n in Ep,p([0, T0]) is bounded uniformly in n,
by a constant depending on T0, and that concludes the proof of the
bound on (F J,0

n ): Lemma 2.5 is proved. �

Now let us prove Lemma 2.6. Recall that for any σ ∈ R, we have
the following equivalence of norms, where we replace the 2j scale by a
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continuous parameter τ ∼ 2−2j (which is easier to handle with rescal-
ing) and the frequency localization ∆j by the derivative of heat ker-
nel K(τ) := τ∂τe

τ∆:

(2.23) ‖f‖Ḃσp,q ∼
∥∥‖τ−σ/2K(τ)f‖Lp

∥∥
Lq(R+, dτ

τ
)
.

There is no difficulty in adding the time norm, and hence, setting

γ := −1− psp/2− p/r

with 1 ≤ r ≤ +∞, we have

(2.24) ‖f‖p
Lrt (Ḃ

sp+
2
r

p,p )
∼
∫ ∞

0

τ γ‖K(τ)f‖p
LrtL

p
x
dτ .

We proceed now with the lemma. Writing∥∥∥∥∥K(τ)
∑
`

f`

∥∥∥∥∥
p

LrtL
p
x

=

∥∥∥∥∥ ∣∣∑
`

K(τ)f`
∣∣p ∥∥∥∥∥

L
r
p
t L

1
x

,

and applying the elementary inequality

(2.25)

∣∣∣∣∣∣∣∣
L∑
`=1

A`

∣∣∣p − L∑
`=1

|A`|p
∣∣∣∣∣ ≤ C(L)

∑
`6=`′
|A`||A`′ |p−1 ,

to the sum inside the norm on the right which we take to be
J∑

j=j0+1

K(τ)U j,0
n

and applying the triangle inequality in L
r
p

t L
1
x (this is where we need the

restriction r ≥ p) we get C(J) cross-terms like∫ ∞
0

τ γ
∥∥∥∥K(τ)

[
1

λ1,n

U1

(
· − x1,n

λ1,n

, t

)]
(x)

×
(
K(τ)

[
1

λ2,n

U2

(
· − x2,n

λ2,n

, t

)]
(x)

)p−1
∥∥∥∥∥
L
r
p
t L

1
x

dτ =

∫ ∞
0

τ γ
∥∥∥∥ 1

λ1,n

[
K(λ−2

1,nτ)[U1(t)]
](x− x1,n

λ1,n

)
×
(

1

λ2,n

[
K(λ−2

2,nτ)[U2(t)]
](x− x2,n

λ2,n

))p−1
∥∥∥∥∥
L
r
p
t L

1
x

dτ.
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Using the change of variables y =
x− x1,n

λ1,n

, s = λ−2
1,nτ , we see that this

term equals(
λ1,n

λ2,n

) 2+d
p′
∫ ∞

0

∥∥∥∥∥∥V1(y, s)

(
V2

(
λ1,n

λ2,n

y +
x1,n − x2,n

λ2,n

,

(
λ1,n

λ2,n

)2

s

))p−1
∥∥∥∥∥∥
L
r
p
t L

1
y

ds,

where 1
p

+ 1
p′

= 1 and Vi(y, s) = s
γ
p [K(s)[Ui(t)]] (y) for i ∈ {1, 2}.

Since Ui(t) ∈ Ep,p, we can approximate V1 and V2 in LpsL
r
tL

p
x by smooth

functions of (s, t, y) with compact support in (0,+∞)2 × Rd. It is
therefore clear (by dislocation of the inner L1

y) that the above term

tends to zero as n → ∞ if λ1,n
λ2,n
→ 0 as n → ∞, or if λ1,n ≡ λ2,n

and
∣∣∣x1,n−x2,nλ2,n

∣∣∣ → ∞ as n → ∞. Similarly, if we appropriately chose

the new variables in terms of λ2,n and x2,n instead, we can easily show

that the term also tends to zero if λ2,n
λ1,n
→ 0, and the result follows in

view of (2.1). Lemma 2.6 is proved. �

We now turn to the source term and prove another lemma.

Lemma 2.7. Let GJ,0
n be the source term defined by (2.20) and

Fp,p(T0) := L
2p
p+1 ([0, T0]; Ḃ

sp−1+ 1
p

p,p ) + Lp′([0, T0]; Ḃ
sp− 2

p
p,p ),

where 1/p+ 1/p′ = 1. Then

lim
J→∞

lim sup
n→∞

‖GJ,0
n ‖Fp,p(T0) = 0.

First by standard product laws in Besov spaces (joint with a Hölder
estimate in time) we gather that

‖Q(W J,0
n ,W J,0

n )‖
Lp′ ([0,T0];Ḃ

sp− 2
p

p,p )
≤ ‖W J,0

n ⊗W J,0
n ‖

Lp′ ([0,T0];Ḃ
sp+1− 2

p
p,p )

. ‖W J,0
n ‖2

L2p′ ([0,T0];Ḃ
sp+

1
p′

p,p )

.

Note that the condition 0 < sp + 1/p′ = (d − 1)/p < d/p allows to
justify the product law.

Then by definition of W J,0
n and due to the scaling invariance of the

space L2p′([0, T0]; Ḃ
sp+ 1

p′
p,p ) we obviously have

(2.26) lim
J→∞

lim sup
n→∞

‖Q(W J,0
n ,W J,0

n )‖Lp′ ([0,T0];Ḃ
sp−2/p
p,p )

= 0.

Define fg = Tfg+ Tgf + Π(f, g) the paraproduct decomposition of the
product fg, and ζ(f, g) := fg−Tfg. We notice that (abusing notations
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as the Q entries are vectors)

‖Q(f, g)‖
Lp′ ([0,T0];Ḃ

−2+sp+
2
p′

p,p )

. ‖fg‖
Lp′ ([0,T0];Ḃ

−1+sp+
2
p′

p,p )

,

and we have

‖ζ(
∑
j<J

U j,0
n ,W J,0

n )‖
Lp′ ([0,T0];Ḃ

−1+sp+
2
p′

p,p )

. ‖W J,0
n ‖Lr([0,T0];Ḃ

sp+
2
r

p,p )

×
∥∥∥∑
j<J

U j,0
n

∥∥∥
Lp([0,T0];Ḃ

sp+
2
p

p,p )

where 1/p′ = 1/r+1/p. The product law is allowed because the sum of
the two respective regularities is again 2sp + 2/r+ 2/p = 2(d− 1)/p >
0. Notice that the regularity of W J,0

n is σ = d/p + (p − 4)/p > d/p
for large p, which explains why we subtracted the paraproduct term
carrying the corresponding low frequencies of f . This specific term is
handled differently, as

‖T(
∑
j<J U

j,0
n )W

J,0
n ‖

L
2p
p+1 ([0,T0];Ḃ

sp−1+
p+1
p

p,p )
. ‖W J,0

n ‖
L

2p
p−1 ([0,T0];Ḃ

sp+
p−1
p

p,p )

×
∥∥∥∑
j<J

U j,0
n

∥∥∥
Lp([0,T0];Ḃ

sp+
2
p

p,p )

where we do not care whether the sum of regularities −1 + (2d+ 1)/p
is negative, thanks to the frequency distribution in the paraproduct.

The profiles U j,0
n in Lp([0, T0]; Ḃ

sp+ 2
p

p,p ) are obviously under control
for j > j0, as seen in the proof of Lemma 2.5 (see (2.21)), and so is
their sum due to Lemma 2.6. It follows that

(2.27) lim
J→∞

lim sup
n→∞

∥∥Q(
∑
j<J

U j,0
n ,W J,0

n )
∥∥
Fp,p(T0)

= 0.

Now we are left with the terms Q(U j,0
n , U j′,0

n ) for j 6= j′. Again, we
resort to the orthogonality of the profiles to conclude: here we use the
fact that, at fixed j < J , U j,0

n belongs to Ep,p(T0), but with no uniform
bound with respect to J ; by scaling we have (with r to be specified
later)∥∥Q(U j,0

n , U j′,0
n )

∥∥
LrT0 (Ḃ

−2+sp+
2
r

p,p )
=
∥∥Q(Λj,nUj,Λj′,nUj′)

∥∥
Lr
(λ0n)2T0

(Ḃ
−2+sp+

2
r

p,p )

and we recall that

Λj,nUj(x, t) :=
1

λj,n
Uj

(
x− xj,n
λj,n

,
t

λ2
j,n

)
is defined at least on [0, λ2

0,nT0] by construction.
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Suppose to simplify that Tj ≤ Tj′ (if not exchange j and j′). By
density (for r < ∞) for any ε > 0 one can find smooth compactly
supported functions F j and F j′ such that

‖F j − Uj‖
L2r([0,Tj ];Ḃ

sp+
1
r

p,p )
+ ‖F j′ − U j′‖

L2r([0,Tj ];Ḃ
sp+

1
r

p,p )
≤ ε.

Then we decompose

Q(U j,0
n , U j′,0

n ) = Q(ρjn, ρ
j′

n ) +Q(f jn, ρ
j′

n ) +Q(ρjn, f
j′

n ) +Q(f jn, f
j′

n )

where

f jn :=
1

λj,n
F j

(
x− xj,n
λj,n

,
t

λ2
j,n

)
and U j,0

n = f jn + ρjn. The same argument as above enables us to write
that for all j, j′,

(2.28) sup
n
‖Q(ρjn, ρ

j′

n )‖
Lr([0,T0];Ḃ

−2+sp+
2
r

p,p )
≤ Cε2

and

(2.29) sup
n
‖Q(f jn, ρ

j′

n ) +Q(ρjn, f
j′

n )‖
Lr([0,T0];Ḃ

−2+sp+
2
r

p,p )
≤ Cε,

where C only depends on T0 (neither on j nor on j′). So finally we
are left with Q(f jn, f

j′
n ), or more accurately with the product f jnf

j′
n .

But that product is dealt with exactly as the cross terms in the proof
of Lemma 2.6, as smoothness lets us estimate the product in the

space Lr([0, T0]; Ḃ
sr+

2
r
−1

r,r ) or as in Proposition 2.1 of [10], up to a suit-
able modification of the time exponents to reach 1 < r.

Chosing r = p′, by Sobolev’s embedding this implies in particular
that

(2.30) lim
n→∞

‖Q(f jn, f
j′

n )‖
Lp′ ([0,T0];Ḃ

sp− 2
p

p,p )
= 0.

Putting together estimates (2.26) to (2.30) ends the proof of Lemma 2.7.
�

Using Lemma 2.5, we have that the drift term F J,0
n is uniformly

bounded in Lp([0, T0]; Ḃ
sp+ 2

p
p,p ) by a constant C0 (depending on the pro-

files, on j0 and on T0), provided that at fixed J , n is chosen larger than
some N(J). Then if one picks J large enough, the forcing term is small
enough (with respect to the smallness condition in the perturbation re-
sult recalled in Proposition A.1), and we obtain the desired bound on
RJ,0
n in Ep,p(T0) for J > J0 and n > N(J0) thanks to Proposition A.1.

This bound immediately implies that un is bounded in Ep,p(T0), and
by persistence of regularity (see e.g. [9]), we get un ∈ Ea,b(T0).
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All other statements in Theorem 3 follow easily, as in [10], which
ends the proof. �

3. Serrin’s endpoint regularity criterion

3.1. Preliminaries and statement of the main result. Let X =
X(Rd) be a critical space with respect to the Navier-Stokes scaling,
that is

‖λf(λ·)‖X = ‖f‖X
for any f ∈ X, and such that local in time strong solutions can be
constructed. Let T ∗(u0) be the maximal time of existence of the so-
lution u = NS(u0) in X for any u0 ∈ X. The type of statement we
would like to address is the following:

Statement 3.1. For any u0 ∈ X,

sup
t∈[0,T ∗(u0))

‖NS(u0)(t)‖X <∞ =⇒ T ∗(u0) = +∞ .

Such a statement was proved in [8] for X = L3(R3) (in the context of
Leray-Hopf weak solutions). An alternative proof of that theorem was

given in [14] for X = Ḣ
1
2 (R3) using the profile decompositions in [10].

(Of course that result is implied as well by [8].) Our goal now is to
give a proof similar to the one in [14] using the profile decompositions
in this article for the case X = L3(R3). This will give a different proof
of the following, which was proved in [8] and also extended to d > 3
in [7]:

Theorem 4 (Endpoint regularity criterion). For any u0 ∈ L3(R3),

sup
t∈[0,T ∗(u0))

‖NS(u0)(t)‖L3(R3) <∞ =⇒ T ∗(u0) = +∞ .

Note that due to the time-continuity in L3(R3) of strong solutions,
the left-hand side is equivalent to NS(u0) ∈ L∞((0, T ∗(u0));L3(R3)),
or in the notation of [8], NS(u0) ∈ L3,∞(0, T ∗(u0)).

3.2. Proof of Theorem 4. Theorem 4 follows from Theorems 5 to 7
below, which will be proved in the subsequent sections. In the following,
we define Ac > 0 by

Ac := sup

{
A > 0 ; sup

t∈[0,T ∗(u0))

‖NS(u0)(t)‖L3(R3) ≤ A⇒ T ∗(u0) =∞

}
.
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Note that Ac is well-defined by small-data results. Moreover, if Ac is
finite, then we have

Ac = inf

{
sup

t∈[0,T ∗(u0))

‖NS(u0)(t)‖L3(R3) ; T ∗(u0) <∞

}
.

Theorem 5 (Existence of a critical element). Suppose Ac < +∞, and
let u0,n be any bounded sequence in L3 such that T ∗(u0,n) < +∞ and
such that Ac ≤ An, where

An := sup
t∈[0,T ∗(u0,n))

‖NS(u0,n)(t)‖L3 <∞ ,

and satisfying An → Ac as n → ∞. Let Uj = NS(φj) be the Navier-
Stokes profiles associated to {u0,n}. Then there exists an integer j0 ∈ N
such that

T ∗(φj0) < +∞ and sup
t∈[0,T ∗(φj0 ))

‖Uj0(t)‖L3 = Ac.

We shall call any solution with the properties of Uj0 above a “critical
element” — that is, those solutions whose supremum in L3 is Ac and
who blow up in finite time. For the next two statements we fix u0 in L3.
The first gives a kind of compactness property for critical elements:

Theorem 6 (Compactness of critical elements). Suppose that Ac is
finite and that T ∗(u0) < +∞ and assume

sup
t∈[0,T ∗(u0))

‖u(t)‖L3 = Ac

where u = NS(u0). Then u(t)→ 0 in S ′ as t↗ T ∗(u0).

Finally, we state the following, which corresponds to the “rigidity
theorem” in [14]:

Theorem 7 (Global existence of critical elements). Assume that the
solution u := NS(u0) satisfies

sup
t∈[0,T ∗(u0))

‖u(t)‖L3 < +∞

and moreover u(t)→ 0 in S ′ as t↗ T ∗(u0). Then T ∗(u0) = +∞.

Theorems 5 to 7 immediately imply that Ac = +∞, and Theorem 4
is proved. Indeed, if Ac < +∞ then Theorem 5 guarantees us some j0

such that u0 = φj0 satisfies the conditions of Theorem 6, but then
Theorem 7 contradicts the fact that T ∗(u0) < +∞. �

In order to prove Theorems 5 to 7, we shall need the following result,
which was proved in [9]:
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Theorem 8 ([9]). Let u0 be some divergence-free vector field in X such
that T ∗(u0) = +∞, where X is either L3(R3) or Ḃ

sp
p,p(R3). Then

lim
t→+∞

‖NS(u0)(t)‖X = 0 .

We shall also need the following lemma in the spirit of Lemma 2.6
whose proof we outline below (see the proof of (3.18) in [14] for more
details):

Lemma 3.2. Suppose sup
n
‖u0,n‖L3(R3) < ∞ and let {Uj} be the asso-

ciated Navier-Stokes profiles given by Theorem 3. Let {tn} ⊂ R+ be
any sequence such that tn ≤ τn for all n. There exists a subsequence
in n such that the following is true: for any ε > 0 and J ∈ N, there
exists N0 = N0(J, ε) ∈ N such that, for any J ′ < J ,∣∣∣∣∣∥∥

J∑
j=J ′

Λj,nUj(tn)
∥∥3

L3 −
J∑

j=J ′

‖Λj,nUj(tn)‖3
L3

∣∣∣∣∣ < ε

for all n ≥ N0.

To prove this lemma, using again the elementary inequality (2.25),
we must estimate a finite number (depending on J) of terms of the
form ∫

|Λj1,nUj1(tn)| |Λj2,nUj2(tn)|2

where j1, j2 ∈ {J ′, . . . , J} and j1 6= j2. Such a term tends to zero
uniformly (for each fixed J) as n → ∞ after passing to the following
subsequence: if tnλ

−2
ji,n
→∞ for i = 1 or i = 2, then necessarily the ith

profile is global and using Hölder once more this term tends to zero by
Theorem 8. If neither tends to infinity, we may pass to a subsequence
so that the re-scaled times in both terms approach a constant time.
Since we stay strictly away from the blow-up times of any profile, we
may use the time continuity of solutions to replace the re-scaled time
value by this fixed time in each profile, after which the orthogonality of
the scales/cores implies that the term tends to zero due to (2.3). One
may take a diagonal subsequence so that this is true in all instances
when the times are bounded which proves Lemma 3.2. �

3.3. Proof of Theorem 5. Consider the bounded sequence described
in Theorem 5 and its profile decomposition after passing to a subse-
quence. For notational convenience, set λ0,n ≡ 1 and x0,n ≡ 0, so that
the “0’th” profile is the weak limit (without any transformations).

Note first that since T ∗(u0,n) < +∞ for all n in the sequence which
we consider, there must be at least one j ≥ 0 such that T ∗(φj) < ∞.
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If not, one could take τn ≡ ∞ in Theorem 3 and hence un is global for
large n, contrary to assumption.

Property (2.6) and small data results in L3(R3) now imply that there
exists some J0 ∈ N such that after re-ordering the profiles one has

T ∗j <∞ ⇐⇒ 0 ≤ j ≤ J0.

The orthogonality properties of the scales λj,n then allow us to re-
arrange the first J0 profiles in such a way that for all sufficiently large n,
one has λ2

0,nT
∗
0 ≤ λ2

1,nT
∗
1 ≤ · · · ≤ λ2

J0,n
T ∗J0 . Fix now such an ordering of

the φj (so it is now possible that λ0,n 6= 1, x0,n 6= 0).
Note now that for any s ∈ [0, T ∗0 ), we have

(3.1) Λ−1
0,nun(s) = U0(s) +

J∑
j=1

Λ−1
0,nΛj,nUj(s) + Λ−1

0,nw
J
n(s) + Λ−1

0,nr
J
n(s) .

We now claim that the left-hand side converges (after possibly passing
to a subsequence) weakly in L3(R3) to U0(s), in which case by proper-
ties of weak limits and the invariance of the spatial norm we have

‖U0(s)‖L3(R3) ≤ lim inf
n→∞

‖un(λ2
0,ns)‖L3(R3) ≤ Ac

hence

sup
s∈[0,T ∗0 )

‖U0(s)‖L3(R3) ≤ Ac .

On the other hand, since T ∗0 < ∞, by definition of Ac we must also
have sups∈[0,T ∗0 ) ‖U0(s)‖L3(R3) ≥ Ac and hence U0 is a critical element.

We shall now prove this weak convergence using the smallness of the
remainders, the time-continuity of the evolution of the profiles and the
decay of the global ones as well as the orthogonality of the scales/cores.
To simplify notation, in the following we shall denote ‖f‖p := ‖f‖Lpx .

Fix ε > 0. We need to show that there exists a subsequence in n
such that for any ϕ ∈ C∞0 (R3),

(3.2) | < λ0,nun(λ0,n ·+x0,n, λ
2
0,ns)− U0(s), ϕ > | < ε

for n sufficiently large, where < ·, · > denotes the pairing between L3

and (L3)′ = L
3
2 , i.e. integration over R3 of the product. This will be

accomplished by estimating the left-hand side of (3.2) by

(3.3)

J1∑
j=1

∣∣ < Λj,nΛ−1
0,nUj(s), ϕ >

∣∣+

∥∥∥∥∥
J∑

j=J1+1

Λj,nΛ−1
0,nUj(s)

∥∥∥∥∥
3

‖ϕ‖ 3
2

+ < Λ−1
0,nw

J
n(s) + Λ−1

0,nr
J
n(s), ϕ >
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where J1 will be some fixed appropriately large integer. According
to (2.6), J1 can be chosen so large that for any j > J1, one has

‖Uj(0)‖3 = ‖φj‖3 ≤ ε0

and Uj = NS(φj) can be produced by a fixed-point argument on (0,∞)
(see, e.g., [9]). Moreover,

(3.4) sup
t≥0
‖NS(φj)(t)‖3 . ‖φj‖3

as a by-product of the small data theory. Hence, for such a J1 we have

(3.5)
J∑

j=J1+1

∥∥Λj,nΛ−1
0,nUj(s)

∥∥3

3
≤ C0

J∑
j=J1+1

‖φj‖3
3

for some universal C0 > 0. Moreover, by up to a harmless rescaling
by Λ−1

0,n in its statement (as it does not change the orthogonality of
scales/cores), we may use Lemma 3.2 and pass to a subsequence in n so
that for each J and any J ′ < J , there exists n0(J) (in fact, independent
of J ′) such that for n ≥ n0(J) one has

(3.6)

∥∥∥∥∥
J∑

j=J ′

Λj,nΛ−1
0,nUj(s)

∥∥∥∥∥
3

3

≤ 2
J∑

j=J ′

∥∥Λj,nΛ−1
0,nUj(s)

∥∥3

3
.

Now, due to (2.6), by taking J1 large enough (depending on ϕ), set-
ting J ′ = J1 + 1 in (3.6) and using the previous estimate we can
make the middle term of (3.3) less than ε/3 whenever n ≥ n0(J) for
J > J1. Now, by property (2.14) and the scaling of the norm, there
exists n(J) ≥ n0(J), increasing in J , such that

‖Λ−1
0,n(J)w

J
n(J)(s)‖Ḃspp,p , ‖Λ

−1
0,n(J)r

J
n(J)(s)‖Ḃspp,p → 0

as J → ∞. In particular, these limits hold weakly. By heat esti-
mates, (2.7) and the transformational invariance of the norm, Λ−1

0,nw
J
n(s)

is bounded in L3. We therefore also have Λ−1
0,nr

J
n(s) bounded in L3

by (3.1), our assumption that un(t) is uniformly bounded in L3 for all
times and (3.6) with J ′ = 0 in conjunction with (2.6) to bound the
other terms. Therefore the error terms tend weakly to zero in L3 as
well, and hence, setting n = n(J), the third term in (3.3) can be made
less than ε/3 for sufficiently large J .

Finally, since n(J)→∞ with J , the orthogonality of the scales/cores
shows that each term in the sum on the left in (3.3) tends to zero after a
subsequence, by arguments similar to those in the proof of Lemma 3.2.
Since there are only a finite number J1 of these, the first term in (3.3)
can be made less than ε/3 for sufficiently large J which proves (3.2) for
some subsequence of n’s as desired. �
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3.4. Proof of Theorem 6. Suppose now u = NS(u0) is a criti-
cal element, and consider the bounded sequence u0,n := u(sn) for
some sn ↗ T ∗(u0). Pass to a subsequence so that one may write u0,n

and un := NS(u0,n) in terms of profiles with the notations of Theo-
rems 1 and 3.

As in the proof of Theorem 5 above, there is some J0 ≥ 0 such
that T ∗j < ∞ ⇐⇒ 0 ≤ j ≤ J0 and we may re-arrange the first J0

profiles in such a way that λ2
0,nT

∗
0 ≤ λ2

1,nT
∗
1 ≤ · · · ≤ λ2

J0,n
T ∗J0 for all

sufficiently large n. Fix now such an ordering of the φj, and suppose
that 0 has been moved now to some j0 ∈ N, that is, now λj0,n ≡ 1
and xj0,n ≡ 0 and φj0 is the weak limit of u0,n. The theorem will
therefore be proved if we show that φj0 = 0.

By the definition of τn, etc., in Theorem 3, it is clear that with this
ordering we must have

(3.7) λ2
0,nT

∗
0 ≤ T ∗(u0,n) = T ∗(u0)− sn

for large n, and hence λ0,n → 0 as n → ∞. In particular, we see
that j0 6= 0, that is, 1 (the scale of the weak limit profile) cannot be
smaller than all other scales.

We shall need the following crucial claim (which actually applies to
the more general sequence {u0,n} considered in the proof of Theorem 5),
whose proof we postpone momentarily:

Claim 3.3. Fix any s ∈ (0, T ∗0 ). Setting tn := λ2
0,ns, after possibly

passing to a subsequence in n one has

‖un(tn)‖3
L3 ≥ ‖Λ0,nU0(tn)‖3

L3 + ‖un(tn)− Λ0,nU0(tn)‖3
L3 + ◦(1)

as n→∞.

Let us proceed to prove Theorem 6. Exactly as in the proof of
Theorem 5, we see again that U0 is a critical element since we have

An := sup
t∈[0,T ∗(u0,n))

‖NS(u0,n)(t)‖L3 = sup
t∈[sn,T ∗(u0))

‖u(t)‖L3 ≡ Ac

for all n, due to the definition of Ac and the fact that T ∗(u0) < ∞.
We shall now show that this implies by Claim 3.3 that φj0 = 0, i.e.
that u0,n tends weakly to zero which was our goal. Fix any ε > 0. By
the time-continuity of solutions we may take s ∈ (0, T ∗0 ) such that

A3
c − ‖U0(s)‖3

3 < (ε/2)3C−3
0

where C0 > 0 is the universal constant in the continuous embed-
ding L3 ↪→ Ḃ

sp
p,p. Set tn := λ2

0,ns. Then due to Claim 3.3, after passing
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to a further subsequence in n, we have

A3
c ≥ ‖un(tn)‖3

3 ≥ ‖U0(s)‖3
3

+ C−3
0 ‖

J∑
j=1

Λj,nUj(tn) + wJn(tn) + rJn(tn)‖3
Ḃ
sp
p,p

+ C−3
0 ε(n, s)

for any J where ε(n, s) → 0 as n → ∞. According to (2.14), we may
fix J ≥ j0 so large that

‖wJn(tn) + rJn(tn)‖Ḃspp,p ≤ ε/2

for sufficiently large n. The previous two inequalities give

(
(ε/2)3 − ε(n, s)

) 1
3 + ε/2 ≥ ‖

J∑
j=1

Λj,nUj(tn)‖Ḃspp,p

=:

(
J∑
j=1

‖Λj,nUj(tn)‖p
Ḃ
sp
p,p
− εJ(n)

) 1
p

,

and we claim (as in Lemma 3.2) that εJ(n)→ 0 as n→∞ for fixed J ,
after passing to a subsequence in n. Postponing this fact for a moment,
we have now shown that

‖Uj0(tn/λ2
j0,n

)‖p
Ḃ
sp
p,p
≤
((

(ε/2)3 − ε(n, s)
) 1

3 + ε/2
)p

+ εJ(n) .

Recall that λj0,n ≡ 1 because ϕj0 is the weak limit of u0,n, and note
that tn = λ2

0,ns→ 0 as n→∞ due to (3.7). Therefore letting n→∞
and using the continuity of Uj0 in Ḃ

sp
p,p at t = 0 we have

‖Uj0(0)‖Ḃspp,p = ‖ϕj0‖Ḃspp,p ≤ ε.

Since ε was arbitrary and φj0 ∈ L3, this implies that φj0 = 0, which
proves the theorem.

All that remains now is to show that εJ(n) → 0, which we now
explain. It is again a simple consequence of the orthogonality of the
scales/cores, and is proved in the same way as Lemmas 3.2 and 2.6.
In fact, up to undoing a harmless Λ−1

0,n transform, we follow closely
the proof of Lemma 2.6, without the inner Lrt norm and with different
times in the profiles Ui: using the elementary inequality (2.25), in the
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expansion of the Besov norm of the sum
J∑

j=j0+1

U j,0
n , we get O(J) cross-

terms like∫ ∞
0

τ γ
∫ ∣∣∣∣K(τ)

[
1

λ1,n

U1

(
· − x1,n

λ1,n

, s1

)]
(x)

∣∣∣∣
×
∣∣∣∣K(τ)

[
1

λ2,n

U2

(
· − x2,n

λ2,n

, s2

)]
(x)

∣∣∣∣p−1

dx dτ =∫ ∞
0

τ γ
∫ ∣∣∣∣ 1

λ1,n

[
K(λ−2

1,nτ)[U1(s1)]
](x− x1,n

λ1,n

)∣∣∣∣
×
∣∣∣∣ 1

λ2,n

[
K(λ−2

2,nτ)[U2(s2)]
](x− x2,n

λ2,n

)∣∣∣∣p−1

dx dτ

for some s1, s2 > 0 in the life-spans of U1 and U2 respectively (here
we have passed to a subsequence and used the time continuity of the
profiles and Theorem 8 as in the proof of Lemma 3.2). Using the change

of variables y =
x− x1,n

λ1,n

, s = λ−2
1,nτ , we see that this term equals

(
λ1,n

λ2,n

) 2+d
p′
∫ ∞

0

∫
|V1(y, s)|

∣∣∣∣∣V2

(
λ1,n

λ2,n

y +
x1,n − x2,n

λ2,n

,

(
λ1,n

λ2,n

)2

s

)∣∣∣∣∣
p−1

dy ds,

where 1
p

+ 1
p′

= 1 and Vi(y, s) = s
γ
p [K(s)[Ui(si)]] (y) for i ∈ {1, 2}.

Since Ui(si) ∈ Ḃsp
p,p, by (2.23) we can approximate V1 and V2 in Lp(Rd×

(0,+∞)) by smooth functions of (y, s) with compact support in Rd ×
(0,+∞). It is therefore clear that the above term tends to zero as n→

∞ if λ1,n
λ2,n
→ 0 as n → ∞, or if λ1,n ≡ λ2,n and

∣∣∣∣x1,n − x2,n

λ2,n

∣∣∣∣ → ∞ as

n→∞. Similarly, if we appropriately chose the new variables in terms
of λ2,n and x2,n instead, we can easily show that the term also tends to

zero if λ2,n
λ1,n
→ 0, and the result follows in view of (2.1). �

Remark 3.4. A similar argument can be used to show that only one
profile can be a critical element since all others are small at some time,
implying that they exist globally by the small data theory. Although this
fact was used to prove the theorems in [14], we shall not use it here.

Remark 3.5. One could also prove a similar compactness result as
Theorem 3.2 in [14], namely that if NS(u0) satisfies

sup
t∈[0,T ∗(u0))

‖NS(u0)(t)‖L3 = Ac
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then for any sequence {tn} converging to T ∗(u0), there exists a sequence
{sn} with tn ≤ sn ↗ T ∗(u0) such that sequence NS(u0)(sn) is compact
in Ḃ

sp
p,p up to norm-invariant transformations in space.

Remark 3.6. Claim 3.3 also immediately proves Theorem 5, but we
feel that the proof given above is more self-contained and perhaps more
natural at that point.

Proof of Claim 3.3. Note first that we may assume without loss
of generality that un is scalar-valued by setting

‖(fk)3
k=1‖L3 :=

∥∥(‖fk‖L3)3
k=1

∥∥
`3

and treating each component separately.
We first remark that, after passing to an appropriate subsequence,

(3.8)

C1 := sup
J≥0

n≥N0(J)

‖
J∑
j=0

Λj,nUj(tn)‖3 < ∞ and

C2 := sup
J≥0

n≥N0(J)

‖RJ
n(tn)‖3 < ∞ ,

where RJ
n = wJn + rJn and N0(J) is as in Lemma 3.2 with ε = ε(J)

chosen appropriately. Indeed, C2 is bounded by C1 and supnAn (where
we recall that An = sup

0≤t<T ∗(u0,n)

‖un(t)‖3 and An → Ac <∞). To show

C1 <∞, for J large and J1 < J we can write

‖
J∑
j=0

Λj,nUj(tn)‖3 ≤
J1∑
j=0

‖Λj,nUj(tn)‖3 + ‖
J∑

j=J1+1

Λj,nUj(tn)‖3 .

For J1 sufficiently large, (2.6), Lemma 3.2 and (3.4) give a uniform
bound of the second term. Since we stay strictly away from the poten-
tial blow-up times of all profiles, for fixed J1 the first term is bounded
due to Theorem 8 and the time-continuity in L3 of each Uj.

Set vn := un − Λ0,nU0. Due to (2.25), we have∣∣‖un(tn)‖3
3 − ‖Λ0,nU0(tn)‖3

3 − ‖vn(tn)‖3
3

∣∣ . ∫ |Λ0,nU0(tn)|2|vn(tn)|

+

∫
|Λ0,nU0(tn)||vn(tn)|2 .

Unlike in [14] where there is only a cross-term similar to the first one
(hence one may leave the absolute value outside the integral and use
weak convergence), both terms require the use of specific information
about the components of vn. We deal with the second term first and
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then briefly indicate how the first one can be dealt with in a similar
way.

We would therefore like to show that∫
|Λ0,nU0(tn)||vn(tn)|2 → 0

as n → ∞ along some subsequence. Fix some L0 ∈ N large, to be
chosen precisely later. Then for J > L0 we write

vn(tn) =

L0∑
j=1

Λj,nUj(tn) +
J∑

j=L0+1

Λj,nUj(tn) +RJ
n(tn) =: A1 + A2 + A3

so that

(vn(tn))2 = (A1)2 + (A2)2 + (A3)2 + 2(A1A2 + A2A3 + A1A3) .

For the first term, note that using the arguments in the proof of

Lemma 3.2 we can make

∫
|Λ0,nU0(tn)||A1|2 arbitrarily small for suffi-

ciently large n (depending on L0, which we shall fix in a moment) by
orthogonality of the scales/cores. For the second term, using Hölder’s
inequality and Lemma 3.2, for an appropriate subsequence of n de-
pending on J , we have∫

|Λ0,nU0(tn)||A2|2 ≤ ‖U0‖3

(
2

J∑
j=L0+1

‖Λj,nUj(tn)‖3
3

) 2
3

which can be made arbitrarily small by choosing L0 sufficiently large
due to (2.6) and arguments similar to the proof of (3.5). Using ar-
guments similar to those above and noting that ‖A1‖3 and ‖A3‖3 are
uniformly bounded by (3.8), we can treat all remaining terms except
for those of the form∫

|Λ0,nU0(tn)||wJn(tn)|2 or

∫
|Λ0,nU0(tn)||rJn(tn)|2 .

Since U0(s) ∈ L3, using Hölder’s inequality, (2.7) and heat estimates
we can control the term involving wJn by a uniform constant times the
quantity

‖Λ0,nU0(tn)wJn(tn)‖ 3
2
.

Then recalling that tn = λ2
0,ns and sp = −1 + 3

p
, approximating U0(s)

in L3 by a smooth compactly supported function and noting that one
may replace K(τ) by eτ∆ in (2.23) to obtain yet another equivalent
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Besov norm, we can control this term by

‖Λ0,nU0(tn)‖p′‖wJn(tn)‖p = ‖U0(s)‖p′λ−sp0,n ‖etn∆ψJn‖p
. s−

sp
2 ‖U0(s)‖p′‖ψJn‖Ḃspp,∞

where 2
3

= 1
p′

+ 1
p
. As s is fixed, this term can therefore be made small for

large J and then n due to (2.9) and the continuous embedding Ḃ
sp
p,p ↪→

B
sp
p,∞.

We now just need to show that

∫
|Λ0,nU0(tn)||rJn |2 can be made

arbitrarily small for large J and n. By a change of variables, we have∫
|Λ0,nU0(x, tn)||rJn(x, tn)|2 dx =

∫
|U0 (y, s)|

∣∣Λ−1
0,nr

J
n(y, s)

∣∣2 dy .

Set r̃Jn := Λ−1
0,nr

J
n(s). Note that supn,J

∥∥ |r̃Jn |2∥∥L 3
2
< ∞ by (3.8),(2.7)

and linear heat estimates, and we may assume that U0 ∈ C∞0 by ap-
proximation in L3. It therefore suffices to show that |r̃Jn(J)(y)|2 tends

strongly to zero (for some increasing n(J)) as J →∞ in some Banach

space B ↪→ S ′ and hence tends weakly to zero in L
3
2 , making this term

small for large J and n = n(J).
In order to do this, we claim that, since rJn satisfies an equation of

the form (2.18), there exists N(J) ∈ N defined for all J ≥ 0 such that

(3.9) sup
J ≥ 0

n ≥ N(J)

‖r̃Jn‖Ḃ1
3/2,∞

<∞ .

Let us postpone the proof of (3.9) for a moment, and use it to complete
the proof of Claim 3.3.

Recalling standard product estimates in Besov spaces, we have

‖fg‖Ḃσ
3/2,∞

. ‖f‖Ḃspp,∞‖g‖Ḃσ+1
3/2,∞

for any σ > 0. Note that this is a valid application of the product laws
since sp + (σ + 1) = 3

p
+ σ > 0 and sp <

3
p
. Therefore we have

‖(r̃Jn)2‖Ḃ0
3/2,∞

. ‖r̃Jn‖Ḃspp,∞‖r̃
J
n‖Ḃ1

3/2,∞
. ‖r̃Jn‖Ḃspp,p‖r̃

J
n‖Ḃ1

3/2,∞
.

Hence (2.14) along with (3.9) imply that∥∥|r̃Jn(J)|2
∥∥
Ḃ0

3/2,∞
→ 0 as J →∞

for some n(J) increasing in J , which concludes the proof.
We now briefly return to the proof of (3.9), which is nothing but a

simple consequence of estimates on the Duhamel term in [6]. Indeed,
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the proof of Proposition 1 in [6] gives the estimate

(3.10) ‖B(f, g)(t)‖Ḃ1
3/2,∞

. sup
0<τ<t

‖fg(τ)‖L3/2

where B(f, g) = (∂t−∆)−1P∇· (f ⊗g) with B(f, g)(0) = 0. According
to (2.18) we can write rJn as a sum of a finite number (independent of
J) of terms (each of which do depend on J) of the form B(f, g) which
can all be controlled, after applying (3.10) and then Hölder in x, by
(3.8), (2.7) and standard heat estimates, plus a sum of the form∑

0≤j 6=j′≤J

B (Λj,nUj,Λj′,nUj′) .

After applying (3.10), we can bound this term by a constant inde-
pendent of J by the orthogonality of the scales/cores (as in the proof
of Lemma 3.2) for n ≥ N(J) sufficiently large for any J . Apply-
ing Λ−1

0,n (under which all norms concerned are invariant) everywhere
establishes (3.9) and we are done with the quadratic term |vn|2.

We now go back to proving∫
|Λ0,nU0(tn)|2|vn(tn)| → 0 ,

using the same decomposition of vn as a sum of three terms. Applying
the triangle inequality, terms with A1 and A2 go to zero by the same
arguments of orthogonality of scales/cores. Similarly, the term in A3

involving wJn goes to zero using the heat decay estimates. Hence all we
are left with is ∫

|U0 (y, s)|2
∣∣Λ−1

0,nr
J
n(y, s)

∣∣ dy .
We just proved that rJn ∈ Ḃ1

3/2,∞, while we know that rJn goes to zero

in, say, Ḃ
−1/4
4,4 , where we take p = 4 for concreteness (general p is

treated similarly). By interpolation, we get that rJn ∈ Ḃ
1/2
2,20/3 and goes

to zero in this later norm. We conclude using composition rules in
Besov spaces Ḃs

p,q, with 0 < s < 1, as ‖ |f | ‖Ḃsp,q . ‖f‖Ḃsp,q for such s (a

fact which readily follows from the characterization of Besov spaces in
terms of finite differences in that range, and the elementary inequality

||a|−|b|| ≤ |a−b|). As |U0|2 is smooth, hence in the dual space Ḃ
−1/2
2,20/17,

this last remaining integral goes to zero, and Claim 3.3 is proved. �

3.5. Proof of Theorem 7. Theorem 7 is a consequence of the fol-
lowing lemma which is proved in the last section of [14], following the
argument in [8]:
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Lemma 3.7. Suppose u0 ∈ L3 and NS(u0) belongs to L∞([0, T ];L3)
for some finite T > 0. Then there exists some R0 >> 1 such that u
belongs to C∞((R3\BR0(0)× [0, T ]), with global bounds on derivatives.

Indeed, assuming T ∗(u0) < +∞ and applying Lemma 3.7 with T =
T ∗(u0), u(t) ⇀ 0 as t ↗ T ∗(u0) implies that Dαu(x, T ∗) ≡ 0 for
|x| > R0 for any multi-index α. Then known backwards uniqueness
and unique continuation results for the parabolic inequality satisfied
by ω := ∇ × u show that ω ≡ 0 on R3 × [0, T ∗], see the last section
of [14] for more details (see also [8]). This implies u ≡ 0 as well due to
the divergence-free condition, and hence T ∗(u0) = +∞ by uniqueness
of mild solutions, contrary to assumption, which proves Theorem 7. �

4. Minimal Blow-up Initial Data

In this section we consider the question of “minimal blow-up initial
data” in various settings, of the type addressed in [23].

Suppose X = X(Rd) is a Banach space of initial data on which
there is a norm which is invariant under the transformations leaving
the Navier-Stokes equations invariant, with the property that there
exists some small ε0 = ε0(X) > 0 such that T ∗(u0) = +∞ whenever
‖u0‖X < ε0, where T ∗(u0) is the maximal time of existence of NS(u0)
in the space X.

Then the question to be considered is the following:

Statement 4.1. Suppose there exists v0 ∈ X such that T ∗(v0) < ∞,
and define ρ = ρX := inf{‖v0‖X | T ∗(v0) < +∞} ≥ ε0 > 0. Then there
exists u0 ∈ X such that T ∗(u0) <∞, and ‖u0‖X = ρ. Moreover, up to
transformations under which the Navier-Stokes equations are invariant,
the set of such u0 is compact in Y , for a similar space Y such that
X ⊆ Y .

Such a statement was proved in the case X = Ḣ
1
2 (R3) in [23] (in fact

in the setting of weak solutions), and moreover with Y = X. In the
following we show that the result is a simple consequence of the profile
decompositions, Theorem 2 in [10] for X = Ḣ

1
2 (and in fact this can

easily be extended to X = Ḣ
d
2
−1(Rd) for any d), Theorems 1 and 2

stated above (proved in [19]) and Theorem 3 stated and proved above
in the settings X = Ld(Rd) and X = Ḃsa

a,b(Rd). To be precise, what we
prove is the following:

Theorem 9. Statement 4.1 is true for X = Y = Ḣ
d
2
−1(Rd) for

any d ≥ 2, and there exists a norm on X, equivalent to the standard
norm, such that Statement 4.1 is true for (X, Y ) = (Ld(Rd), Ḃ

sp
p,q(Rd))



PROFILE DECOMPOSITION AND REGULARITY FOR N-S 31

whenever 3 ≤ d < p ≤ q ≤ ∞, and for (X, Y ) = (Ḃsa
a,b(Rd), Ḃ

sp
p,q(Rd))

for any d ≥ 3 and a, b ∈ [1, 2d + 3) satisfying max{a, b} < p ≤ ∞
and 1 ≤ b < (p/a)b ≤ q ≤ ∞, where sr := −1 + d

r
for r ∈ R.

Note that it is important that b < ∞ so that local solutions are
in fact known to exist (and hence a maximal time of existence makes
sense), as opposed to only having global solutions for small data. (We
shall see below that this is necessary for a different technical reason
as well.) Note also that in applying Theorem 3 in the proof below,
one may have to use a set of smaller indices first in the space Y (to
satisfy the assumptions of that theorem), and then the more general
statement follows from the standard embeddings.

Proof of Theorem 9. For simplicity, we first prove the theorem

for X = Ḃsa
a,b, and define ‖ · ‖X := ‖ · ‖̃Ḃsaa,b (this norm is defined via

wavelet bases, see [19]). Assume there is some Ḃsa
a,b datum with a finite

maximal time of existence, so that ρ = ρḂsaa,b
is well-defined. By known

small data regularity results there exists ε0 such that ρ ≥ ε0 > 0. By the
definition of ρ, there exists a sequence u0,n ∈ Ḃsa

a,b with T ∗(u0,n) < ∞
(hence necessarily ‖u0,n‖̃Ḃsaa,b ≥ ρ) and ‖u0,n‖̃Ḃsaa,b ↘ ρ as n→∞.

Since u0,n is therefore a bounded sequence in Ḃsa
a,b, we can apply the

profile decomposition Theorem 2 to this sequence, so that, after passing
to a subsequence, we may write u0,n as

u0,n(x) =
J∑
j=0

1

λj,n
φj

(
x− xj,n
λj,n

)
+ ψJn(x) ,

and (2.10) gives

(4.1)
∞∑
j=0

‖φj ‖̃τḂsaa,b ≤ lim inf
n′→∞

‖u0,n′ ‖̃τḂsaa,b = ρτ .

Moreover, applying Theorem 3, we see that there is at least one j0 ∈ N
such that T ∗(φj0) < +∞. Indeed, otherwise one could take τn ≡ +∞
in that theorem and see that NS(u0,n) lives past its finite maximal
time of existence which is impossible. By definition of ρ, we know

that ‖φj0 ‖̃Ḃsaa,b ≥ ρ, else we would have T ∗(φj0) = +∞. However, (4.1)

gives ‖φj0 ‖̃Ḃsaa,b ≤ ρ, so that ‖φj0 ‖̃Ḃsaa,b = ρ and we may take u0 = φj0 in

the statement of the Theorem. This proves the existence statement.

Remark 4.2. We remark similarly to Remark 3.4 in the previous sec-
tion that (4.1) implies that only one profile appears in the decomposition
of u0,n.
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To prove the compactness statement, suppose now moreover that

‖u0,n‖̃Ḃsaa,b ≡ ρ

(having established the existence of at least one such element) and
passing to a subsequence write u0,n in a profile decomposition as be-
fore. The same results hold as above, and note that as pointed out in
Remark 4.2, (4.1) implies that φj = 0 for all j 6= j0, since necessar-

ily ‖φj0 ‖̃Ḃsaa,b = ρ implies that
∑

j 6=j0 ‖φj ‖̃
τ
Ḃsaa,b
≤ 0. Note that here we

have used the fact that b <∞ so that τ <∞. Therefore we can write

u0,n(x) =
1

λn
φ

(
x− xn
λn

)
+ ψn(x) =: Λnφ(x) + ψn(x) ,

where φ = φj0 , etc., and ψn → 0 in Ḃ
sp
p,q as n → ∞ by (2.9). The

invariances of the Ḃ
sp
p,q norm imply as well that Λ−1

n ψn → 0 in Ḃ
sp
p,q,

hence clearly Λ−1
n u0,n → φ in Ḃ

sp
p,q, and the theorem is proved.

To prove the theorem for X = Ld(Rd), we consider a minimizing
sequence in Ld(Rd) and proceed as above applying Theorem 3. We
similarly conclude that there exists some profile φj0 with finite maxi-

mal time of existence in Ḃsa
a,b. Otherwise, NS(u0,n) would be globally

defined in Ḃsa
a,b, and standard “persistency” results for Navier-Stokes

(see, e.g., [9]) would then imply that NS(u0,n) is global in Ld(Rd) as
well, contrary to assumption. The remainder of the proof follows as
above due to Remark 2.3 and the theorem is proved in this case as well.

For X = Ḣ
d
2
−1(Rd), the proof is identical using the theorems in [10]

(with the usual norm on X) and we would initially take Y = Ld(Rd)
to see that Λ−1

n u0,n → φ in Y . Moreover, since X ↪→ Y , φ ∈ X and
‖Λ−1

n u0,n‖X = ‖u0,n‖X ≡ ‖φ‖X = ρ, we see that Λ−1
n u0,n ⇀ φ in X,

and since X is a Hilbert space the above properties imply that actually
we have strong convergence in X as desired. �

Appendix A. A perturbation result

Let us state (without proof) a perturbation result for the d-dimensional
Navier-Stokes system.

Proposition A.1. Let sp = −1+
d

p
, r ∈ [1, 2p

p+1
] and define s := sp+

2

r
.

Assume finally that p < 2d + 3. There are constants ε0 and C such
that the following holds. Let w0 ∈ Ḃ

sp
p,p, f ∈ F := Lr([0, T ]; Ḃs−2

p,p ) +

L
2p
p+1 ([0, T ]; Ḃ

sp−1+ 1
p

p,q ) and v ∈ D := Lp([0, T ]; Ḃ
sp+ 2

p
p,p ) be given, with

‖w0‖Ḃspp,p + ‖f‖F ≤ ε0 exp (−C‖v‖D) .
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Suppose moreover that div v = 0, and let w be a solution of

∂tw −∆w + w · ∇w + v · ∇w + w · ∇v = −∇π + f

with div w = 0. Then w belongs to Ep,p(T ) and the following estimate
holds:

‖w‖Ep,p(T ) . (‖w0‖Ḃspp,q + ‖f‖F ) expC‖v‖D.

The proof of that proposition follows the estimates of [9] (see in
particular Propositions 4.1 and Theorem 3.1 of [9]). The two main
differences are

• the absence of an exterior force in [9], but that force is added
with no difficulty to the estimates ;
• the rather weak estimate on the drift term v, which accounts for

the restricted numerology on time exponents in the definition
of Ep,p. The reader should note that closing estimates on w
in our setting amounts to doing again the same estimates that
were done in the proof of Lemma 2.7.
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