WELLPOSEDNESS AND STABILITY RESULTS FOR THE
NAVIER-STOKES EQUATIONS IN R?

JEAN-YVES CHEMIN AND ISABELLE GALLAGHER

ABSTRACT. In [8] a class of initial data to the three dimensional, periodic, incompressible
Navier-Stokes equations was presented, generating a global smooth solution although the
norm of the initial data may be chosen arbitrarily large. The aim of this article is twofold.
First, we adapt the construction of [8] to the case of the whole space: we prove that if a
certain nonlinear function of the initial data is small enough, in a Koch-Tataru [15] type
space, then there is a global solution to the Navier-Stokes equations. We provide an example
of initial data satisfying that nonlinear smallness condition, but whose norm is arbitrarily
large in C*. Then we prove a stability result on the nonlinear smallness assumption. More
precisely we show that the new smallness assumption also holds for linear superpositions of
translated and dilated iterates of the initial data, in the spirit of a construction in [2], thus
generating a large number of different examples.

1. INTRODUCTION

1.1. On the global wellposedness of the Navier-Stokes system. We consider the three
dimensional, incompressible Navier-Stokes system in R?,

ou —Au+u-Vu=-Vp
(NS) divu =0
U|t:0 = Uup.

Here w is a three-component vector field u = (u1, ug, u3) representing the velocity of the fluid, p
is a scalar denoting the pressure, and both are unknown functions of the space variable z € R3
and of the time variable t € RT. We have chosen the kinematic viscosity of the fluid equal to
one for simplicity — a comment on the dependence of our results on viscosity is given further
down in this introduction.

It is well-known that (/NV.S) has a global, smooth solution if the initial data is small enough in
the scale invariant space Hz, where we recall that H* is the set of tempered distributions f

with Fourier transform f in L} (R?) and such that

151 ([t Feoe de)

is finite. We recall that the scaling of (NS) is the following: for any positive A, the vector
field u is a solution associated with the data ug if uy is a solution associated with wug , where

up(t,z) = ANt ) and g (z) = Mug(Az).

Key words and phrases. Navier-Stokes equations, global wellposedness.
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The result in F2 is due to H. Fujita and T. Kato in [9] (see also [17] for a similar result, where

the smallness of ug is measured by ||ug||z2||Vuo||z2). Since then, a number of works have been

devoted to proving similar wellposedness results for larger classes of initial data; one should

mention the result of T. Kato [14] where the smallness is measured in L? (see also [13]) and

the result of M. Cannone, Y. Meyer and F. Planchon (see [4]) where the smallness is measured
3

: L1t .
in the Besov space By« ”. Let us recall that, for positive o,
def

t2[|S(t)ull s

HUHB;g LT(R+,%)
where S(t) = e® denotes the heat flow. The importance of this result can be illustrated by
the following example: if ¢ is a function in the Schwartz space S(R3), let us introduce the
family of divergence free vector fields

x
0=(x) = cos(“2) (D26, ~019,0).
Then, for small €, the size of H?bEHB;,‘Z is 7.

Let us also mention the result by H. Koch and D. Tataru in [15] where the smallness is
measured in the space BM O™, defined by
1
def _3 2
fullaros s, + sup RH([I8uto)? duet)
’ P(z,R)

z€R3
R>0

where P(x, R) = [0, R?] x B(x, R) and B(x, R) denotes the ball of radius R centered at zero.

As observed by H. Koch and D. Tataru, this norm seems to be the ultimate norm for the initial
data for which the classical Picard’s iterative scheme can work. Indeed the first iterate, S(¢)ug
must be in L? locally in R x R3. In particular, S(t)ug must be in L2([0,1] x B(0,1)). Then
considering the norm of the space must be invariant by translation as well as by the scaling

of the equation, we get the norm || - ||gaso-1. Moreover, let us notice that we have
1
_3 2
sup B[ [80ul)Pdy) " < IS(00ul 2.
zeR? P(z,R)
R>0

and thus [l < lullparos < ulss,

Moreover the space C~' = B;o{oo seems to be optimal independently of the method of res-
olution, due to the following argument (see [1] for instance). Let B be a Banach space
continuously included in the space S’ of tempered distributions on R3. Let us assume that,
for any (\,a) € RS x R3,
-1
IFAC—a)lls =A""lIf] 5.

Then we have that |(f,e"I*)| < C||f||z. By dilation and translation, we deduce that
1
Ifllg-r = suptz[[SE) fll= < Clif 5
>

We have proved that any Banach space included in &', translation invariant and which has
the right scaling is included in C 1.

Let us point out that none of the results mentioned so far are specific to the Navier-Stokes
equations, as they do not use the special structure of the nonlinear term in (NS5).
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Our aim in this paper is to go beyond the smallness condition on the initial data and to ex-
hibit arbitrarily large initial data in C~' which generate a unique, global solution. This was
performed in [8] in the periodic case, where we presented a new, nonlinear smallness assump-
tion on the initial data, which may hold despite the fact that the data is large. That result
uses the structure of the nonlinear term, as it is based on the fact that the two dimensional
Navier-Stokes equation is globally well posed.

The first theorem of this paper consists in a result of global existence under a non linear
smallness hypothesis (Theorem 1 below). The proof consists mainly in introducing an idea
of [6] in the proof of the Koch and Tataru Theorem. The non linear smallness hypothesis is,
roughly speaking, that the first iterate S(¢)ug - VS(¢)ug is exponentially small with respect
to lJuollt,

Then we exhibit an example of a family of initial data with very large C~' norm which
satisfies the non linear smallness hypothesis. This example fits the structure of the non linear
term u - Vu.

Then, we study the stability of this nonlinear smallness condition, but not in the usual sense
of a perturbation by a small vector field. This problem has been solved by I. Gallagher, D.
Iftimie and F. Planchon in [11] and by P. Auscher, S. Dubois and P. Tchamitchian in [1]. These

3

. 14
authors proved that, in any adapted scaling space (for instance H %, L3, Bpoo ¥ or BMO™!)
the set of initial data giving rise to global solution is open.

Our purpose is different. Once constructed an initial data generating a global solution, we
want to generate a large family of global solutions that may not be close to the one we start
with, in the C~! norm. This is done with a fractal type transform (see the forthcoming
Definition 1.3). Roughly speaking, this is the linear superposition of an arbitrarily large
number of dilated and translated iterates of the initial data, and we will see that the initial
data so-transformed still satisfies the nonlinear smallness assumption. That of course enables
one to construct a very large class of initial data satisfying that smallness assumption; the
transformation is based on a construction of [2].

1.2. Definitions. Before presenting more precisely the results of this paper, let us give some
definitions and notation. We shall be using Besov spaces, which are defined equivalently using
the Littlewood-Paley decomposition or the heat operator. As both definitions will be useful
in the following, we present them both in the next definition.

Definition 1.1. Let ¢ € S(R?) be such that §(¢) = 1 for |¢| < 1 and §(¢) = 0 for |£] > 2.
Define, for j € Z, the function p;(x) def 239p(2/z), and the Littlewood—Paley operators

S; def pjx- and A, def Sj+1—Sj. Let f be in S'(R?). Then f belongs to the homogeneous

Besov space B;q (R3) if and only if

e The partial sum Y™ A;f converges towards f as a tempered distribution;

e The sequence def 275||Aj f|| e belongs to (9(Z).
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In that case

q

def i
15y, (S aa 1%,
JEZ
and if s < 0, the one has the equivalent norm

(1.1) #1155, ~ || 5 1Sl

Ldty
La(RT;4E)

Let us notice that the above equivalence comes from the inequality, proved for instance in [6],

(1.2) IS A allze < Ce=C 271 Ajal Lo
Note that the following Sobolev-type continuous embeddings hold:
i . d
Byla © Bpag assoonas s1— - =s— - with pr<py and ¢ <.

We shall denote by P the Leray projector onto divergence free vector fields

P =1d - VA div.
Before stating the first result of this paper, let us introduce the following space.
Definition 1.2. We shall denote by E the space of functions f in L'(R™; Bo_oll) such that

> 2714 ()|

JEZ

L2(R7T;tdt)

equipped with the norm
def

I£le = 1 e agy + D27 | 185 Ol

JEZ

L2(R*;tdt)

Let us remark that, for any homogeneous function ¢ of order 0 smooth outside 0, we have
Vp e [1,00], [lo(D)A;fllrr < ClA;f| -

Thus the Leray projection P onto divergence free vectors fields maps continuously E into E.
1.3. Statement of the results.

1.3.1. Global existence results. The first result we shall prove is a new global wellposedness
result, under a nonlinear smallness assumption on the initial data.

Theorem 1. There is a constant Cy such that the following result holds. Let ug € H %(R3)
be a divergence free vector field. Suppose that

(1.3) HP(S(t)uo VS (t)uo ) HE < gt exp(~Colluollts )
00,2
Then there is a unique, global solution to (N.S) associated with ug, satisfying

we CyRT; H2)NLART; H?).

Remark For the sake of simplicity, we state the theorem for initial data in H %, but it
obviously works for initial data in B;O%Q.
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The proof of Theorem 1 is given in Section 2 below; it consists in writing the solution u (which
exists for a short time at least), as u = S(¢)up + R and in proving global wellposedness result
for the perturbed Navier-Stokes equation satisfied by R, under assumption (1.3). While the
proof follows the lines of Koch and Tataru’s one (see [15]). a small modification of classical
Picard’s argument is needed to control the linear term, which is not small.

In fact, the main point of the paper is to exhibit examples of applications of this theorem
which go beyond the assumption of smallness of ||ugl| j=1,- The problem we have to solve is
the construction of large initial data ug such that a quadfatic functionnal, namely P(S(t)uy -
VS(t)up) is small. This demands a careful use of the structure of this quadratic functionnal.

The situation here is different from our previous work (see [8]), devoted to the periodic case,
where the structure of the equation was used through the fact that the bidimensionnel Navier-
Stokes equation is globally wellposed.

Now let us state the theorem that ensures that Theorem 1 is relevant.

Theorem 2. Let ¢ € S(R?) be a given function, and consider two real numbers ¢ and o

in |0, 1[. Define
1
~ (—loge)s x3 x2
pelo) = g cos () o(on o).

There is a constant C > 0 such that for € small enough, the smooth, divergence free vector

field
U()75(.CC) = (82906(37)7 _81906(‘73)’ 0)

satisfies ) )
C1(=loge)s < [uoellg=1 < C(—loge)s,

and

(1.4) IS(t)uo.c - VS(tuoc |l < O3 (—loge)?.

Thus for € small enough, the vector field ug . generates a unique, global solution to (NS).

The proof of Theorem 2 is the purpose of Section 3.

Remark One can also write this example in terms of the Reynolds number of the fluid:
let Re > 0 be the Reynolds number, and define the rescaled velocity field v(t,z) = vu(vt, z)
where v = 1/Re. Then v satisfies the Navier-Stokes equation

v +Pv-Vu)—vAv=0
and Theorem 2 states the following: the vector field

00, (@) = (~log)F cos (22) ((820) (w1, T2, w9), v (=010) (a1, 2 33)

satisfies
1
lvoull 1 ~ Cv(—logv)s

and generates a global solution to the Navier-Stokes equations if v is small enough. Compared
with the usual theory of global existence for the Navier-Stokes equations, we have gained a
(power of a) logarithm in the smallness assumption in terms of the viscosity, since classically
one expects the initial data to be small with respect to v.
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1.3.2. Stability results. The second aim of this paper is to give some stability properties of
3

global solutions. It is known since [11] that any initial data in Bp,i: P giving rise to a unique
global solution is stable: a small perturbation of that data also generates a global solution
(see [1] for the case of BMO™!). Here we present a stability result where the perturbation is as
large as the initial data but has a special form: it consists in the superposition of dilated and
translated duplicates of the initial data, in the spirit of profile decompositions of P. Gérard
(see [12]). This transform is a version of the fractal transform used in [2] in the study of
refined Sobolev and Hardy inequalities. Let us be more precise and define the transformation.
We shall only be considering compactly supported intial data for this study, and up to a
rescaling we shall suppose to simplify that the support of the initial data is restricted to the
unit cube Q of R? centered at 0.

Definition 1.3. Let X = (z1,...,7x) be a set of K distinct points in R3. For A € 2N, let
us define

S - &
. def
Tax o Toxf% Sy with T{f(2) € Af(A - 2))).
Je{l,...,.K}

It can be noted that this is a generalization of the fractal transformation T% studied in [2].

The next statement is quite easy to prove: it shows that this transformation on the initial
data preserves global wellposedness, as soon as the scaling parameter A is large enough (the
threshold A being unknown as a function of the initial data). The theorem following that
statement gives a quantitative approach to that stability: if the initial data ug satisfies the
smallness assumption (1.3) of Theorem 1, then so does T xug as soon as A is large enough
(the threshold being an explicit function of norms of wug).

More precisely we have the following results.

Proposition 1.1. Let ug be a divergence free vector field in H %(R?’) generating a unique,
global solution to the Navier-Stokes equations and X be a finite sequence of distinct points.
There is Ag > 0 such that, for any A > Ay, the vector field T xuo also generates a unique,
global solution.

Remarks

e Using the global stability of global solutions proved in [11], a global solution associated
to an initial data in H2 is always in L>®°(R™; H2) N L2(RT; H2).

e As the proof of that result in Section 4.1 will show (see Proposition 4.1), Proposi-
tion 1.1 can be generalized to the case where the vector field ug is replaced by any
finite sequence of vector fields in H > generating a global solution.

e As we shall see in the proof of Theorem 3 stated below, the functions T xuo and ug
have essentially the same norm in C~1.

Now let us state the quantitative stability theorem, in particular in the case of an initial
data satisfying the assumptions of Theorem 1. In order to avoid excessive heaviness, we shall
assume from now on that the initial data is compactly supported, and after scaling, supported
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in the unit cube Q =] — %, %[d. We shall consider sequences X such that

(1.5) inf {d(:cJ,xJ/);d(mJ,cQ)} >6>0.
(J,Jel{l,...,K}?
J#£J'

We shall prove the following theorem.

Theorem 3. Let uy be a smooth H > divergence free vector field, compactly supported in the
cube Q). Suppose that ug satisfies (1.3) in the following slightly looser sense: there is n €]0,1]
such that

(1.6) IP(S(t)uo - V(o) < Cg exp (~Co(luoll pr, +1)") = .

Then there is a positive Ao (depending only on n, K, , ||uol| -1 and [luol[3-s ) such that for

any A > Ao, the vector field T) xug satisfies (1.3) and in particular generates a global solution
to (N.S). Moreover, for all r in [1, o],

luoll g1 —n < I Taxuoll o1, < lluoll g1+

Remarks

e The factor n appearing in (1.6) means that ug must not saturate the nonlinear small-
ness assumption (1.3) of Theorem 1.

e The proof of this theorem is based on the fact that the Besov norm of index —1 as well
as ||P(S(t)uo - VS(t)uo)| g are invariant under the action of Ty x, up to some small
error terms.

As a conclusion of this introduction, let us state the following result, which describes the
action of T\ x on the family g, introduced in Theorem 2.

Theorem 4. Let up. be the family introduced in Theorem 2. For any K and §, a constant Ag
exists, which is independent of €, such that the following result holds. For any family X and
any A > Ay, there is a global solution smooth solution of (N.S) with initial data Th xuo..

Remark Let us point out that as opposed to Proposition 1.1, Theorem 3 (or rather Lem-
mas 4.1 and 4.2 which are the key to its proof) provides precise bounds on Ag so that the
constant Ay appearing in Theorem 4 may be chosen independently of ¢.

2. PROOF OF THEOREM 1

2.1. Main steps of the proof. Let us start by remarking that in the case when ug is small
then there is nothing to be proved, so in the following we shall suppose that ||u]| j=1, is not

small, say H’U,OHBO—OI,Q > 1.

We follow the method introduced by H. Koch and D. Tataru in [15] in order to look for the

solution u under the form ur + R, where up(t) def S(t)ug. Let us denote by Q the bilinear
operator defined by

9Q(a,b)(t) def 1 /t S(t— P (a(t') - Vb(t') + b(t') - Va(t')) dt’
2 Jo
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Then R is the solution of
(MNS) R=Q(up,up) +29(up, R) + Q(R, R).
To prove the global existence of u, we are reduced to proving the global wellposedness

of (M NS); that relies on the following easy lemma, the proof of which is omitted.

Lemma 2.1. Let X be a Banach space, let L be a continuous linear map from X to X, and
let B be a bilinear map from X x X to X. Let us define
def def
ILlcx) = sup [[Laf| and ||Blsx) = sup  [|B(z,y)].
l[=]|=1 lzll=llyll=1

If||L||z(x) < 1, then for any xq in X such that

(L= lLllgx))?
rllx < ———————
il 4(| Bl 5(x)

the equation
x=x9+ Lz + B(z,x)
L= Llleex)

has a unique solution in the ball of center 0 and radius
2||Bs(x)

Let us introduce the functional space for which we shall apply the above lemma. We define

the quantity

def
Ut) = llur(®)ze + tlup@)llze,

which satisfies
o
[ uwi < Cluli, + Cluli
0 00,2 00,4
(2.1) < Clluoll-
00,2
recalling that we have supposed that |lug|| po1, = 1 to simplify the notation.

For all A > 0, let us denote by X the set of functions on R* x R3 such that

1
def L -3 :
(22) HrUH)\ =< sup(t2”?})\<t)HLoo 4+ sup R 2</ ‘U)\(t; y)‘2dy>2) < 00,
t>0 zER3 P(z,R)
R>0
where

ua(t, x) def v(t,x) exp (—)\ /Ot U(t’)dt’)

while P(z, R) = [0, R?] x B(x, R) and B(x, R) denotes the ball of R? of center z and radius R.
Let us point out that, in the case when A = 0, this is exactly the space introduced by H. Koch
and D. Tataru in [15], and that for any A > 0 we have due to (2.1),

(2.3) [vllx < ollo < Cllullxexp (CAlluollf-1 ).
From Lemmas 3.1 and 3.2 of [15] together with the above equivalence of norms, we infer that
(2.4) 1Q(v, w)l[x < Cllvllxlwl[x exp (CMIUOH%;Q)-

Theorem 1 follows from the following two lemmas.
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Lemma 2.2. There is a constant C' > 0 such that the following holds. For any non negative A,
for any t > 0 and any f € E, we have

H/ S(t — ) f

Lemma 2.3. Let ug € B!, be given, and define up(t) = S(t)ug. There is a constant C > 0
such that the following ho]ds For any A\ > 1, for any t > 0 and any v € X, we have

, S Cllflle.

C
1Q(ur, v)(B)[[x < EHUHA-

End of the proof of Theorem 1 Let us apply Lemma 2.1 to Equation (M NS) satisfied
by R, in a space X). We choose X so that according to Lemma 2.3,

1
1QCur, )O)lleexy = 3

Then according to Lemma 2.1, there is a unique solution R to (MNJS) in X, as soon
as Q(ur,ur) satisfies
1

Qur,ur)|x, < i

But (2.4) guarantees that
|Qlscx) < Cexp(CAuallf ).
so it is enough to check that for some constant C,
|Q(ur, ur)llx, < €~ exp(~CAlluollr ).

By Lemma 2.2, this is precisely condition (1.3) of Theorem 1, so under assumption (1.3),
there is a unique, global solution R to (M NS), in the space X. This implies immediately
that there is a unique, global solution u to the Navier-Stokes system in X,. The fact that u

belongs to Cy(R*; H 3 )NLA(RT; H %) is then simply an argument of propagation of regularity
(see for instance [16]).

2.2. Proof of Lemma 2.2. Thanks to (2.3), it is enough to prove Lemma 2.2 for A = 0.

t
Let us start by proving that / S(t — ') f(t')dt’ belongs to L*(R"; L*>°); that will give in

0
particular the boundedness of the second norm entering in the definition of X).

Using (1.2), we get

H/ASt—t £t

Young’s inequality then gives

| A 1 7(1)

t . ,
< C/ 6—071221(7&—15 )HAjf(t/)HLOOdt/.
0

OO

L2(R*;L) < 274G fll o s ree)
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thus the series / S(t—t)f(t)dt ) g, COTVerges in L2(R*; L>), and

S(t —t) f(t')at’ <C
H /0 ¢~ )W)ty < CU
This implies in particular that
2
3

(2.5) sup R_2</ )/ (t — ) F(E) ()t ) < Clfllp-

zeR3 (z,R)

R>0
The second part of the norm defining || - || x, in (2.2) is therefore controlled by the norm of f

in F.

To estimate the first part of that norm, let us write that for any ¢ > 0 and any j € Z,

t1A; / S(t—t)f = ¢V + 6P ) with
aM %/St—tAf() and
A %/ S(t — ") A F(¢)dt’
Using again (1.2) we have, since t < 2(t — t'),
IO~ < © / a2l e CT B 0T A £ (V) | ot

IN

277118 fll pr m+ e
In order to estimate HG;Q) (t)|| L=, let us write, since ¢t < 2¢/,
t
2 A= 162j 441\ 41
||G§ ()| < C/O e~ CT YA F ()| poedt.
Using the Cauchy-Schwarz inequality, we get

itk
16l < C2NEAF WOl s e

Then using (2.5) and summing over j € Z concludes the proof of Lemma 2.2. O

2.3. Proof of Lemma 2.3. We have (see for instance [15] or [7]) that

Qv,w)(t,z) = / /R3 kit =t 9)ot', 2 — y)w(t',z — y)dydt’
C

= kx(vw)(t,z) with |k<77C)|§W'

The proof relies now mainly on the following proposition.
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Proposition 2.1. Let uy € B;ol,z be given, and define up(t) = S(t)ug. There is a constant C'

such that the following holds. Consider, for any positive R and for (1,() € R" x R3, the
following functions:

K (r,¢

Then for any A > 1 and any R > 0,

def df
) 61\<|>R,q4 and K r,0) <

1'C'<R<f+ e

(2.6) H AU g (uFU)H

< .
L>=([0,R2]xR3) ~ )\%RHUH)‘
Moreover, for any A > 1 and any R > 0,
t ’ ’
(2.7) e o VO D) s () o]

Lo ([R22R2]xR3) —

Proof of Proposition 2.1 Let us write that

def

viV(t,z) e Mo VWA W o (upv)(t, )]

t
1 1 1
/ / 46—)\ftt/ U(t")dt HuF(t/7 ')”LOO”U)\(t,,x - y)|dt’dy.
0 JeB(o,R) |Vl

By the Cauchy-Schwarz inequality and by definition of U, we infer that

1

t
W) < ([ [ e ety )
0 JeB(0,R) |y
on(t',x — dtdy)
(/ /B(OR ]y|4’ A u)l
2.8 < // v —y dtdy>
28) <)\R> ( ¢B(0,R) !y|4‘ At )

Now let us decompose the integral on the right on rings; this gives

t 1 1
—t x —y)Pdt'dy = / / loA(t', z — y)[Pdt'dy
/o lB(O,R) |y|4‘ ( ) Z B(0,2PT1R)\B(0,2PR) |y|4
22 p+3 p-‘rlR)

t
<[/ fox(t, @ — ) Pdtdy.
0 JB(0,27*1R)
As t < R? and p is non negative, we have

t 1 o0
/ / st a -y Paray < S 2rrtip) / lor (¢, 2)|2dtd
0 JeB(0,R) |yl R =0 P(z,2P+1R)

IA

o0 /3
< ¢ 22*” sup L lua(t, 2)|2dtdz.
R p=0 R'>0 P(z,R')
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By definition of || - ||, we infer that

[ e - pPatay < Sholg

— |l , T —Y Y= =1V
0 JeB(0,R) ly|* R A
Then, using (2.8), we conclude the proof of (2.6).

In order to prove the second inequality, let us observe that

e MoV (D (upv) 1, 2)| < KV (1) + KV (k) with

2 1 t 7 7
K (tz) % / g MU (1) oo or (2 2 — )y,
f o,r) (Vt —t' +[y[)4 I |
t ]. t // "
K& t,x def / / e~ Mo Ut")dt up(t', )| Lo,z — y)|dt'dy.

Using the Cauchy-Schwarz inequality, as t € [R, R?] and t < 2(t — '), we infer that

t 1
2 1 t 7 " 2
2D ta) < </2/ e 2N [ U, # ZOOdt’dy>
R ( ) = 0 BO.R) (m+|y|)8 ” F( )HL
+ 1
([T - pPatay)
B(0,R)
v ([ )
< — v,\t T — dt'dy
)\é(B(OR (R+|y\ ) 0R| 2
R2 1
< ¢ R—3< I |vx<t’,xy>r2dt'dy)2,
2 o JB(O,R)
so that
C
(2.9) EZV(t ) < — vl
; (tA)2

(22)

In order to estimate K™, let us write that

Kt a) < e M U o (1) [ oo on () | ot dy

- /; /RS (\/t—itir ly])*

/. o
oA fpunae [ur @ )z o0

t
Cllo]ls / LN :
i Vit —t t'2

By definition of U and using the fact that ¢ < 2¢/, Holder’s inequality implies that

IN

1

t t " " 1
KR () < ﬁuvm( / eI (1) [’ )
2 0

C
< crzlvi
1

Together with (2.9), this concludes the proof of the proposition.
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From this proposition, we infer immediately the following corollary. This corollary proves
directly one half of Lemma 2.3, as it gives a control of Q(up,v) in the first norm out of the
two entering in the definition of Xj.

Corollary 2.1. Under the assumptions of Proposition 2.1, we have

tre A B UEOW | Qup, ) (1, )z < o]l
A1

Proof of Corollary 2.1. Let us write that
kx (upv) (@) = kx (urlep, 050) (6,2) + kx (uplp, o 50) (£, 2).

From Proposition 2.1, we infer that

e Mo VO s (uplep, pumo) (L) < e Mo U K x (Jurl g, ) (6 )
C
< T llvll-
(tA)2

Moreover, thanks to Proposition 2.1, we have also

AT ey gy ) ()] < efxfgcf(t/)dngf}z*(\uFuB(x,Q volvD) (t,z)
c

< ——lvlx

472
This proves the corollary. O
In order to conclude the proof of Lemma 2.3, let us estimate ||k x (upv)|r2(p(z,r)), for an
arbitrary @ € R®. Let us write that

kx (upv) = k* (uFch(xng)’U) + k% (uplB(x’QR)v).

Observing that, for any y € B(z, R), we have

1

[lx (upLepeary) (t:9)] < CKR * (lup | Lepgoom o)) (t.),

and using Inequality (2.6) of Proposition 2.1, we get

e—)\fot U(t’)dt’Hk* (

C
UFch(x,zR)UHLOO(P(x,R)) < )\%RHUHX
As the volume of P(x, R) is proportional to R®, we infer that

C _s
(2.10) 1k * (urva) 2 (p(a,r)) < ERQ [[v]lx-

The following inequality is easy and classical, so its proof is omitted.

C
< )\7||UAHL2([0,T]xR3)'

L2([0,T]xR3) 2

(2.11) e Mo U Q(y v) (1)
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We deduce that

, t / ’
e Mo U ks (upl iy o)) < e Mo VI ks (upl iy amyv)
L*(P(x,R)) L2([0,R?)xR?)
C
< g||1B(z,2R)U>\HL2([O,R2}><R3)
C
< —lloullepe2r))-
A2
This concludes the proof of Lemma 2.3. =

3. PROOF OF THEOREM 2

In this paragraph we shall check that the vector field ug . introduced in Theorem 2 satisfies
the nonlinear smallness assumption of Theorem 1, and we shall also show that its B;ol,oo norm

is equivalent to (—log 5)é Let us start by proving the following lemma.

1

Lemma 3.1. Let f € S(R?) be given and o € ]0,3(1 — 7) { There is a constant C' > 0
p

such that for any € €)0, 1], the function

def ;23 Z2
f&‘(x) :e elsf(gj17€—a7gj3)
satisfies, for all p > 1,

||f€||Bp_(1;§Cg+5 and | follpoe, > C7'e"

Proof. Let us recall that
Ifell =g = D 277701 fel -

JEZ
We shall start by estimating the high frequencies, defining a threshold jo > 0 to be determined
later on. We have

S 27 Ai el < C2797 fel o
J=Jjo
(3.1) < 02| f.
On the other hand, we have

Aifela) = 2 [ =)o) dy
23j /1;3 h(2j(m - y))el%f(yh g%a ZJB) dya

so noticing that e’ = (—isag)N(eiy?S) we get for any N € N,

Ajfe(x) = (ie N23JZC’£ /e E af h(2j(x—y)))@év_zf(yl,g—i,yg) dy.
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Young’s inequality enables us to infer that

N
27| A fell e < CeN2IB0 mln(ZQﬂé Nev 227(2_7 )
(=0
So, choosing N large enough and since o < 3(1 %), we get
DA el < D) 27 A el + D 27| A fe o
J<Jjo J<0 Jj=0
< 022—j(a+3(1—%))61v+a +C Z 9J(N=o) N+$
Jj<0 0<j<Jjo
(3.2) < CeNte g oio(N=0) Nty

Finally choosing 2770 = ¢ in (3.1) and (3.2) ends the proof of the bound on ||f5||B_(1;.

In order to go from below || f-|| B let us first observe that, as the space of smooth compactly

supported functions is dense in S and the Fourier transform is continuous on &S, for any
positive 7, a function g exists, the Fourier transform of which is smooth and compactly

.z T
supported such that, denoting as before g.(z) = e’?gg(:vl, g—j, x3),

(3.3) I = gell oo <me” and |f —glle <.

As the support of the Fourier transform of g is included in the ball B(0, R) for some positive R,
that of g(x1, e~ %ze, x3) is included in the ball B(0, Re~%). Then the support of Fg. is included
in the ball B(¢71(0,0,1),e~*R). This ball is included in ¢ ~*C for some ring C. Thanks to (1.1)
we shall use the heat flow. Let us write that

19ell go,  ~ suptz[|S(t)gellz~
: >0
> Ce|IS(e%)gell e
For any function h such that the support of 1 is included in e~1C , we have
|7 (e R e < Ollh|=.
Applied with h = S(£?)g., this inequality gives
gz < ClIS(e)gellree  and thus el g0 > C71elgellroe = O e gl

Now let us write that

v

Velpe, > lgellgar, —ne°
O (| fll o — 20).

This ends the proof of the lemma. O

v

This enables us to infer immediately the following corollary.
Corollary 3.1. A constant C exists such that, for any p > 1, we have

luoellg-1 < Cev(—loge)s and [uoe| s > C7'(—loge)s.
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The last verification to be made is the nonlinear assumption (1.4). It is based on the following
lemma.

Lemma 3.2. There is a constant C' such that the following result holds. Let f and g be
in BO_O%2 N H~'. Then we have

IPE® 8Os < C(Iflla, gl )" (1l ligllz )’

Proof. As the Leray projection P is continuous on FE, it is enough to prove the lemma with-
out P. Using Bernstein’s estimate, we get that

185 (S(®) fS(H)g)ll L < C2%7(|S(8) fS()g| L1
Then, using the Cauchy-Schwarz inequality, we infer that

By I8 FS(19) mt izoe) + 182 A5 (SO FS0)9) | 2ms o)

< C2¥ (”S(t)fHL2(R+;L2) + Htés(t)fHLoo(R*;L?)) 1S9l L2+, L2)-
So using (1.1), we deduce that
(3-4) Ej < O27|fll g-1llgll g1
Let us observe that we also have
Ej < C(Hs(t)fHL2(R+;Loo) + Htés(t)fHLoo(RﬂLoo))||S(t)9||L2(R+;L°<>)
< Clflgm, lgllpo,

Using this estimate for high frequencies and (3.4) for low frequencies, we get, for any jy in Z,

IS fStglle = > 279k
j

< O(Uflmalollan 30 2+ 17l s, 3 27)
i<jo ’ " >jo
< C(Ifllg-llgl 22 + 1l llgll o 277
Choosing jg such that
o M0z lglla,
Hrenre
gives the result. O

Finally we are ready to prove estimate (1.4). Note that the proof relies heavily on the special
structure of the nonlinear term in the system. We indeed start by remarking that there
is no derivative in the third direction since ug. does not have a third component. Then
denoting up(t) = S(t)upe, we have by an easy computation and with the notation as in
Lemma 3.1,

1
u};ﬁlu}; + u%agu}; = ?(— log 6)%S(t)f58(t>ge and

1 ~
updiuf + updyuf = 627_04(— log £)3S(¢) f=S(1)3.
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where f, f, g and g are smooth functions. The result follows immediately using Lemmas 3.2
and Corollary 3.1 together with the fact that the Leray projection onto divergence free vector
fields maps continuously F into E. O

4. STABILITY RESULTS

In this section we shall prove Proposition 1.1, as well as Theorems 3 and 4 stated in the intro-
duction. The proof of Proposition 1.1 is rather easy and is given for the sake of completeness
in the next section. The proof of Theorem 3 is the object of Section 4.2 below. Finally The-
orem 4 is an easy consequence of the methods developped in the proof of Theorem 3 and is
postponed to the end of Section 4.2.

4.1. Proof of Proposition 1.1. Proposition 1.1 is an immediate consequence of the following
more general result.

Proposition 4.1. Let X = (z1,...,2k) be a family of K distinct points, and (ug 1, . .., U0,k )

a family of divergence free vector fields in H %, each generating a unique, global solution to
the Navier-Stokes equations. Then there is Ag > 0 such that for any A > Ag, the vector field

def
upp = Z T{ (uo,s)
Je{l,...,.K}

also generates a unique, global solution to the Navier-Stokes equations.

Proof. The proof of that result is similar to methods of [3] concerning profile decompositions
(see [10] for the case of the Navier-Stokes equations). Let us denote by u s the solution of (N 5)
associated with ug y, and define

uA,J(t) l’) = Auy (A2t’ A(ﬂl‘ - ‘TJ)))
which solves (N S) with data ug a ; = T¥ (ug.s). Then we define the solution us of (N.S) with
data up A, which a priori exists only for a short time. We can decompose
up = Z up,g + Ry = US\I) + Ry,

Je{l,...,.K}

and Rj solves the following perturbed Navier-Stokes equation
O;Ry — ARy + P(Ry - VRy) + P(u) - VRy) + P(Ry - Vi) = Fy

with initial data zero, and where

FA =-P Z UA,J - V'U/A’J/.

J£J!

It is not difficult to prove (see for instance [10], Proposition A.2) that Ry is globally defined
and unique in L>®(R™; H%) NL(RT; H%) under the condition that

_ 1

(4.1) VEAN o s -ty < Caexp (=Collud I3 s in))
1

so let us compute HFA”B(R#H*%) and ||u§\)||L4(R+;H1)'
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As mentioned in the introduction, any global solution belongs to L4(R+;H D). Thus, by
(1)

definition of u, ’, we have

1
HUEX)HL‘l(R*;Hl) < Z HU/\J||L4(R+;H1)'

Using a scaling argument, we infer

1
ey < O lusllpagem
(4.2) < K sup C; with
Je{l, K}
def
In order to estimate ||F, AHL2 R+ -3y let us start by noticing that Fj is bounded uniformly

in A in the space L3 (R™; L?), by a constant depending on K and on the initial data. Indeed
Holder’s inequality and Sobolev embeddings give

lun,g - NVuarll g grpey < luagllisges IVuaslia@eps)
< Clunllpsgeriny IV g
so that by scale invariance
H A||L3(R+ L2) S C“UJ”L4(R+§H1)HVUJIHLQ(R+;H%)

< COK? sup(C;C ).
J,J!

So by interpolation it is enough to prove that
(43) /\1520 ”FA||L4(R+,H_1) = 0

Let J # J' be two integers in {1,..., K}, and let ¢ > 0 be given. There exists a positive R
and two vector fields 1. and ¢, in D(R xB(0, R)) such that

||¢a - uJ||L4(R+;H1) + H‘P& - uJ'HL“(R‘*‘;Hl) <e.

The support of T st (vesp. Ta yre) is included in the ball B(x;, RA™!) (resp. B(zy, RA™Y)).
Thus we have

(4.4) A > 46 'R = Ty jtbe Ta yrpe = 0.
Then Sobolev embeddings as above give the estimate

g @ (e = wg)ll pagerr2) + (Ve — wr) @ el pam+ 2y

<C (“UJ"LOO(R+ HY) e — UJ’HL4 R+ T H(P6||Lo<, R*HY) 1 (e — UJ|’L4(R+;H1)> )
so that, using the scaling,
(45) Ilury @ (Ta 9 — 1) | agmessio) + | (Tathe —10) ©Ta el g gy < C(Ca+Con)e.
Using (4.4), it follows that for A large enough,

HFA"L‘l(RJF;Hfl)SCKzg sup Cy,
Je{l, - K}
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and (4.3) is proved. Plugging together that estimate with (4.2) gives (4.1) for A large enough,
and Proposition 4.1 is proved. O

4.2. Proof of Theorems 3 and 4. Before starting the proofs, let us make a few comments
on the transformation Ty x and state its main properties. In all that follows, we shall consider
only the action of T\ x on functions compactly supported in ). First, one can notice that if
the family X of points satisfies (1.5), then if A > 4571,

supp T{f ¢ Qf def {x/d(m,mJ) §A_1} - Q(;‘] def {x/d(x,:vj) < i&}

This implies immediately that
1-3 .1

(4.6) ITaxfllee = A2 K7 || f]|zo-

Then let us state the following two lemmas, which are crucial for the proof of Theorem 3 and
will be proved in Section 4.2.2.

Lemma 4.1. Let K > 1 be an integer and 6 > 0 a real number. There is a constant Ck s such
that the following results hold. Let r be in [1, oo] and consider a family X as in Definition 1.3.
Then for any real number A in 2N greater than 40~ and for any f € D(Q), we have

1l = CoesA2 ll s < ITaxFllpms. < Ifll 5, + Crcsh =1l ps.

Moreover the following estimate holds, where the constant C' is universal:

(4.7) ITax fllg—r < CVEATZ| £ .

Remark Let us point out that L! is continuously included in Bgo?oo.

Lemma 4.2. Let K > 1 be an integer and 6 > 0 a real number. There is a constant C'k s such
that the following results hold. Consider a family X as in Definition 1.3. Then for any real
number A in 2N greater than 46~ and for all divergence free vector fields f and g in D(Q),
we have

IPSOTaxf - VSO Tax9)le < IPSE)f - VSH)9) e+ CrsA> | fll -1 91l -

4.2.1. End of the proof of Theorem 3. Let us consider a vector field ug € D(Q) satisfying (1.6)
for some 7 €]0,1[. We know from Lemma 4.1 that for any r € [1,00] and any n €]0, 1], for
any A greater than some Ay (depending on K and ¢ only), we have

(4.8) luoll g1, —n < [[Taxuoll g1, < lluoll gz, + -

Next let us consider the smallness condition (1.3). By Lemma 4.2 we know that as soon as Ag
is large enough, then for any A > Ag,

IP(S(t)Ta,xuo - VS(t)Tx,xuo)lle < [[P(S(t)uo - VS(t)uo)|le + n-
So we infer that
IP(SMThxuw0- VSUTh xuo)le < Cgtexp (~Collluoll -, +m)")

IN

Cytexp <—COHTA,XU0H%—12>

due to (4.8). So Theorem 3 is proved, up to the proof of Lemmas 4.1 and 4.2 which is the
object of the coming section. O
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4.2.2. The properties of T x. In this section, we are going to prove the properties of the
transformation T x required in the proof of Theorem 3, namely Lemmas 4.1 and 4.2. Before
starting the proofs, let us give some more notation and prove preliminary results which will
be used many times in the rest of this section.

We define
(4.9) &= | Q. whee Qf ‘Ef{x/d<x,Qg)g;25},
Je{l,...,.K}

and we notice that this is a disjoint reunion.

The proof of Lemmas 4.1 and 4.2 relies on the fact that the Littlewood-Paley theory is almost
local. More precisely, let us recall Lemma 9.2.2 of [5].

Lemma 4.3. For any positive integer N and any real number r, a constant C exists such
that the following result holds. Let I be a closed subset of R® and u a distribution in B

supported in F; then for any couple (j,h) in Z x R" such that 2/ and 27h are greater than 1,
we have

1A jull e my < On277(20) N full 5,

where Fj, = {x € RS /d(:v,F) < h}.

JFrom this lemma, we deduce the following corollary.

Corollary 4.1. Let K, § and X be as in Definition 1.3 and let M € N be given. There is

a constant Cy; (depending only on M) such that the following holds. For any A > 46~!, for
53

any distribution f in B, compactly supported in Q and for any J € {1,..., K}, one has
the following estimates:

(1.10) Vi€ 2, IATE fl gy < Ond AN f

Moreover there is a universal constant C such that for any positive R,

(4.11) Il g, < ({27708 liee@n ) ||, +CRZIflpzs s
, gier ’

where Qr = {x eR3 /d(m,Q) < R}.

Proof. The first inequality is obvious when j is negative or when 27§ < 1. Indeed we have the
scaling property

(4.12) Ay (FAC—21))) (@) = (Astog, AP Al — ),
so that for any s € R,
VFAC =2y = A0
Thus let us assume that 2/ and 276 are greater than 1. Using Lemma 4.3, we get
AT ey < Car2 (@8 ™ T fl s
CMZ_j(M_3)5_MA_2||f||B;O5foo'

IN

N
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In order to prove the second inequality, let us note that, thanks to the triangle inequality and
to the fact that || - || < || - ||¢1, we have for any integer jo,

175z, < || (27185 limem) [, + Z 27|85 ey + D 2718 e

Jj=jo

Lemma 4.3 claims in particular that, if 27R > 1,
12l (equy < CR7fllpzs
Thus, if jo is such that 270 R > 1, we have, by definition of the norm of B

1lgm, < H(zfHAjfuLw@R))jHN(szR3>Z2 J)HfHB3
< J=2J0

< (@712 e @m) |, + @0+ 2 PR s,

Choosing 270 ~ R~! gives the result. O

4.2.3. Proof of Lemma 4.1. We shall start by proving the second inequality, namely that
(4.13) ITax Fll gz, < Fllpsr, + CrsA72 0 fllpzs,
Let us start with low frequencies. We can write that

ZTjHAjTA,XfIILoo < 22 JZHA T | e

71<0 7<0
<> (> 2%) 17X f s
J j<0
Using the scaling equality (4.12) we get that
(114) S 2 AT x flie < KAl s
7<0
Now let us concentrate on the high frequencies. Recalling the definition given in (4.9), let us

start by considering the case when = ¢ Q5. Using Inequality (4.10) of Corollary 4.1, we can
write (choosing M = 0)

HA]‘TA,XJCHLoo(CQ'&) < Z ‘|AjT/L\]fHLOO(c@5)
J

< CKSA7|f| s
Then we infer that

(4.15) > 2 NAT X ey < CHO AN s,
J=0

Now let us consider the case when x € @5. We can write

1A TA X fll oo G5y < SUPHA Tax fll g3y
and let us fix some J € {1,..., K}. We recall that
Taxf=T{f+ > T{'f.

J'#£T



22 J.-Y. CHEMIN AND I. GALLAGHER

and let us start with the estimate of Th x f — T]\] f. We have

18T xf = Ty < S0 IATY Fll ey
J£J

Using Inequality (4.10) of Corollary 4.1, we get that
185 (T f =T )l e ey < CKTPAT fll s -
Thus we infer

(4.16) > 279 A(Tax f - T[x]f)HLoo@g) < CK5_3A_2HfHB;?OO'
Jj=0

Now let us examine the term HT/{fHLOO(@J). From (4.12) we get
1

| (L2021 T A1 e )

IN

AH <1j202_j||Aj—log2Af”LOO(RS))
15,

Once noticed that ||-||¢ < ||+ ]|,1, we plug together that estimate with (4.14), (4.15) and (4.16)
to conclude the proof of (4.13).

gier gier

IN

Let us bound from below HTA,XfHBO—Ol,T. As HgHLm(@é) = sgp HgHLw(@g), we have

v

(g—j ||AjTA,Xf”L°O(C§5))

_] . ~
> (2 SI}P ||AJTA7Xf||L°°(Q;{5))

ITax fll g1,

gier

gier

2 (2 ||AJTA’XfHL°°(Q6]O))J
for some Jp in {1,..., K}. Using the fact that || - || < || - ||, we can write that
. =\ ALT0 _
”TA,XfHBgO%T > H(2 HA]TA f”LOO(QgO)>‘7 o

N
j<0 d §>0

o

L(Q30)
Using (4.14) and (4.16), we infer that
(417) ITaxfll i, = || (27 1AL o)) |, — O s
By scaling and translation, we have

|18 eigmy) |, = | (2708 Flimi0r).
where Qs is the cube of size 2A¢6. Using (4.11) with R = 20A and (4.17), we infer that

ITax fllgzs, 2 Ifll gz, — CrsA™2lfll s -

This concludes the proof of the first part of the lemma.

£
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Now let us prove the second part of the lemma, namely Estimate (4.7) on the H~! norm.
Let f € D(Q) be given. Stating f,, def —fﬁl(i§m|£\*2f), we can write

3 3
F= 0mfm with [[flg~ > [lfmllze.

m=1 m=1

Let us recall that

ITaxfllgs = sup / Ty x f(2)g(x) da.
geD(Q) JR3
llgll ;1 <1

Let x € D(Q) be equal to one on the support of g. We have

| xf@atede - A fo 8 — 2))o(o) ds
= 222/ Om frn(x)g(A ™ + 7) da,

so after an integration by parts and a change of variables again, we infer that

/R3TA7Xf(J:)g(x)dm = —A" 322/ Jm (@) (Omg) (A~ x—i—aw)d

In particular we get that

|Taxfllg < CA_leTmX(Xfm)HB
< CAYS |l fmll A2 VE
< CAVE|fll 1,

and the result is proved. U

4.2.4. Proof of Lemma 4.2. First, we observe that
3

(4.18) SA)Taxf-VS(t)Taxg = Z@( ) Tax fOS(t )TA,X!])a
=1

so using Bernstein’s inequalities, we can write

g HA( HTaxf - VS(t )TA,Xg)‘

LY (R*;L>)

+ t%Aj (S(t)TA,Xf'VS(t)TA’Xg)‘

L2(RT;L>)

< 0241(\S(t)TA,Xf||Lz(R+;L2>us<t>TA,xg||Lz(R+;L2>
1
IS0 T e IO Tl |
< O Tax fl s | Thx gl
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Using Lemma 4.1, we get
€ < C29KA?||fll - llgll -
We therefore infer a bound on the low frequencies:
(4.19) > 2778 <CEA | fllgrallgll -
Jj<0

The high frequencies are more delicate to estimate. Let us write that

SA)Taxf-VS({t)Taxg = Ha X( )+ K x(t) with
Hy x(t def Z Z@g( TAfe (t )T/‘\]/g) and
J;éJ’E 1
K x(t dof Zzae( ()T fS(t ()Ti\]9>
J (=1

We observe that
7 d f /
B{X(f.9) € ae(su)TA’ffsu)Ti g)
—yP +Jz — 27
4¢

VT FW)TH 9(2)dyd=

Ze

= 2xf—w—ze 2=y 1o = 2\ g
a (47Tt) / 2t Xp( At )TAf(y)TA g(z)dydz.

Due to the distance between x; and xj/, one gets that a smooth bounded function (as well
as all its derivatives) y on R exists such that x vanishes identically near 0 and such that

/ 1 / .
Bix(hote) = s /R Ot 2.y, )T f ()T} g(2)dyd=  with

def 1 20 — Yo — 2¢ z—yP?+|z—2?
Ostta.1.2) L o (Colla — yf? + [ — of?)) ZU T oy (L p A e 2,
t2 2t 42
As we have
(4.20) la @ bll s ey < Nl s oy bl - ey

we infer, using the scaling, that

J,J’!
By X (fs )t )|[ee <

sup (105t )L ooy | T8 L ey T8 9 s ey

<

(47t)3 SGUII{)S 195(t, 2, )l pra(mes) _3HfHH71(R3)||9||H—1(R3)'

It is obvious that

C _ ]2 2
|V205(t, x,y, 2)| < 76_%exp(—|x Y| ;|x 2| )
t2

and thus that
C

J,J! 3 5
HBA,X(f,g)( Mz < tf3A S CtHfHHfl(RS)HQHHfl(R?r)-
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We immediately infer, since [|A; P al|z~ < C||Ajal e, that

iy 1 _
(421) ) 2 J(HAJ'PHA,XHLl(Loo) + ||t2AjPHA,X||L2(Loo)) < CsA72| fll -1 lgll gr-1-
>0

Now let us consider the term K x. To start with, let us write

IAPEAx(E ) poomey < I1APEAxE ) ooy + 1APEAXE ) o ey
< SUPHA PKAx(t, )HLooQJ)JrHA PEAX ) o cay):

By definition of K x, and denoting ﬁj =A; P, we get
[APEN x ()l oo rey < Sup 1A PSHTH VST 9) 1 (r3)

+sup[ &5 37 (ST 1T o) |

JI#T L@

+D|aa(soni ssorio)] .,

< Sl}pHAjP( (OTH VST )| oo (o)
+sup J,;HA 2 (SOTL 150 x0) |, 0

+ZHA o(syTi st )T/‘x]fxg>HLw(c@5)
< sup |AP(SOT FUSOTH0) e

S Ao

By translation and scaling we infer that
JAP R x (8| ey < Aty AP(SE) FIS()9) | e e
+ZHA o (SO 1'SOTxa) ||, o

By definition of S(t), we have, for some h € S(R?),

def

Bl;(f.9)t.2) = R (SOTL FSOT xg) (¢, 2)
2y T od , |2’ — y|? + |a’ — z|?
= (47rt)3/Rgh(23(a:—:c))8x2 exp(_ . )

< T{ f(y)TY g(2)da’ dydz.

Now if z is in CQV;;]I and y in Qvgl, one gets that a smooth bounded function (as well as all its
derivatives) x on R exists such that x vanishes identically near 0 and has value 1 outside a
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ball centered at the origin, and such that

B{,(f.9) = B{}(f.9)+Bl2(f.g) with
I def 2% 7 (97 / 12
By (f9)tz) = O R9h<2 (x — 2"))x(Cd|x — 2'|7)

2" — y* + |2' — 2
4t

X Oy exp (— )TA]/f(y)T/\],g(z)d:U’dydz and

' € % T (9] / /
B{2(f,0)(t2) = «jrt):))/figh(y(x—x))x(C(ﬂx — 9y

I .02 I L2 , ,
X Oy, exp(—‘m yl L’x ?l )Tj\] F)TL g(2)dx' dydz.

By integration by parts, we get that

B (f.9)(t,x) = 29 /R Doy (A (@ = 2x(CBlz = ') ST ) ) SOT ) (')

By the Leibnitz formula we have,
290, (A(2'(z — #)X(Colx — /%)) = 29 (D) (2 (& — 2))X(Clar — ')
+ 2% R(2 (z — 2))2C8(zg — 2,)X' (C8|x — &'|?)

Using the properties of the function yx, we infer
290, (R(2 (@ — 2 )x(Cole — ') ) | < Csh(@ (@ — )
for some bounded function k. Thus, by integration, we infer that
J'1 ’ /
1By (F:9)(t, Mz < CsISOTR fll2lISE)TH gl -

By definition of Besov spaces, we deduce that

J' 1 171 ' '

1By (s )Ly + 1182 By (f )l c2qzoey < CsITE Fll g ITX gl
By scaling, we infer that
J' 1 1J -

(4.22) 1B (Fs )l i ey + 182 B3 (Fs 2wy < CsA2 | Fll g1 llgll g1

In order to estimate B;\Vf( f,9), let us write

U 1 / / .
BRoe) = s [ @sta T ST (dyds with

def 237 j / / 2
@6,]'(75733;%2) = 1 h(2 ($—ZE))X(C5|ZU _y’ )
t2 JR?
20! — _ I 02 I 2
« 2t ye Zeexp(_|$ ylI” + o — 2| )dx’.
23 4t

Using (4.20), the definition of the Besov norm and the scaling property, we deduce that

J' 2 J’ J’
”BAJ‘ (f7 g)(t7 ')HLC’O < Sup3 |’v§,z@5,j(t7$7 K )HLQ(RG)HTA fHH*l HTA gHHfl
z€ER
< sup [V .05t 2, )l 2wy Al - gl -
zeR?
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A straightforward computation shows that

Cs s
sup HV;Z@(SJ(t,x-’ ')||L2(R6) < e ot
z€R3 t2

Thus, we get that

J2 100 _
1By (D) lroey + 182 By 7 (F, ) 2 (o) < CsA™2 1 1l g llgll 7

Using (4.19), (4.21) and (4.22) we infer that
PEOTAxVSHTaxglE < Z27jA(HAJ'*IngAPS(t)fVS(t)QHL1(L°°)

J
1
183 8105, P FIS ()9 | 121%) )
+ CrcoA 7 -1 gl -+
< PGSV e + Crsh 1Ll -

That ends the proof of Lemma 4.2. O

4.2.5. Proof of Theorem 4. The proof is straightforward: in order to apply Theorem 3, we
define n > 0 and we need to find Ag uniform in ¢ so that, according to Lemmas 4.1 and 4.2,
the following two conditions are satisfied:

Ay *Coilluoelfys =n and  Ag2Csilluoellps = .

Due to Corollary 3.1 this is trivially possible as soon as « > 0. ([
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