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Abstract. The aim of this article is to present “precised” Hardy-type inequalities. Those inequalities
are generalisations of the usual Hardy inequalities, their additional feature being that they are invariant
under oscillations: when applied to highly oscillatory functions, both sides of the precised inequality
are of the same order of magnitude. The proof relies on paradifferential calculus and Besov spaces. It
is also adapted to the case of the Heisenberg group.

1. Introduction

The aim of this article is to prove a “precised” version of the Hardy inequalities [11], [12].
Those inequalities have some importance in Analysis (among other applications we can men-
tion blow-up methods or the study of pseudodifferential operators with singular coefficients).
Many works have been devoted to those inequalities, and our goal is first to provide an ele-
mentary proof of the standard Hardy inequality, and then to prove a precised inequality in
the spirit of the precised Sobolev inequality proved in [10]. The setting will be both the classi-
cal RN space, as well as the Heisenberg group Hd (for an application of the Hardy inequality
on the Heisenberg group we refer for instance to [1]).

1.1. Elementary Hardy inequality. The simple case of RN with N ≥ 3 with one derivative
gives the following inequality:

(1.1)
∫
RN

u2(x)
|x|2

dx ≤ C‖∇u‖2
L2 .

In order to prove this inequality, it is enough to observe that we have

1
|x|2

= −1
2
R

( 1
|x|2

)
with R = x · ∇.

An integration by parts joint with the fact that the divergence of R is equal to N gives the
result.

Let us now present the case of the Heisenberg group. The Heisenberg group Hd is the
space R2d+1 endowed with the following product group law:

w · w′ = (x + x′, y + y′, s + s′ + (y|x′)− (y′|x))

where w = (x, y, s) and w′ = (x′, y′, s′). Let us notice that Hd is a non commutative group and
that the inverse of w is w−1 = (−x,−y,−s). The Lebesgue measure on Hd seen as R2d+1 is
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invariant by translation with respect to this law. We define the convolution of two functions by

f ? g(w′) =
∫
Hd

f(w′w−1)g(w)dw.

Let us emphasize that this convolution product is, as Hd itself, not commutative. We say
that a vector field X is left invariant if X(f(a·)) = (Xf)(a·). The Lie algebra of left invariant
vector fields is spanned by the vector fields

Xj = ∂xj + yj∂s , Yj = ∂yj − xj∂s with j ∈ {1, . . . , d} and S = ∂s =
1
2
[Yj , Xj ].

In all that follows, we shall denote by Z the family defined by Zj = Xj and Zj+d = Yj . Let
us denote

(1.2) ∆H
def=

2d∑
j=1

Z2
j and for α ∈ {1, . . . , 2d}k, Zα def= Zα1 . . . Zαk

.

One can associate Sobolev spaces to the system Z through the following definition.

Definition 1. Let k be a non negative integer, we denote by Ḣk(Hd) the homogeneous
Sobolev space of order k which is the space of the functions u such that

(1.3) ‖u‖2
Ḣk(Hd)

def=
∑

α∈{1,...,2d}k

‖Zαu‖2
L2(Hd) < ∞.

Let us also introduce the distance to the origin

ρ(w) def=
(
(|x|2 + |y|2)2 + s2

) 1
4 with w = (x, y, s)

and the dilation δλ(w) def= (λx, λy, λ2s). Let us point out that the function ρ is homogenenous
of degree 1 in the sense that

ρ ◦ δλ = λρ

and the vector fields Zj change the homogeneity as

Zj(f ◦ δλ) = λ(Zjf) ◦ δλ.

Moreover, we have

(1.4) |Zjρ
σ| ≤ Cσρσ−1.

Let us also introduce the homogeneous dimension N = 2d + 2 noticing that the Jacobian of
the dilation δλ is λN . The Hardy inequality with one derivative in this context is∫

Hd

u2(w)
ρ2(w)

dw ≤ C‖∇Hu‖2
L2 where ∇Hu

def= (Z1u, . . . , Z2du).

The proof (as written for instance in [1]) of this inequality relies mainly on the fact that

1
ρ2

= −1
2
R

( 1
ρ2

)
with R

def=
d∑

j=1

(xjXj + yjYj) + 2s∂s.

An integration by parts and the fact that div R = N essentially gives the result.
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1.2. More general Hardy inequalities. Now we want to state Hardy inequalities with any
number of derivatives less than N/2.

Theorem 1. Let s ∈]0, N/2[. There exists a constant C such that∫
RN

|u|2(x)
|x|2s

dx ≤ C‖u‖2
Ḣs(RN )

and

∫
Hd

|u|2(w)
ρ2s(w)

dw ≤ C‖u‖2
Ḣs(Hd)

where the spaces Ḣs are defined by complex interpolation.

Classically, the way of proving this consists in proving that the operators
1
|x|s

(−∆)−
s
2 or

1
ρs

(−∆H)−
s
2

are bounded on L2(RN ) or L2(Hd). The purpose of this paper is first to give a more direct
proof of these inequalities, which will be the same for RN or Hd. Moreover, in the case
of RN , let us apply the above Hardy inequality with s = 1 to the family (fε)ε>0 of functions
defined by

fε(x) = ei
x1
ε θ(x)

where θ is a given function in the Schwartz class S(RN ). The left-hand side of the inequality
is obviously independent of ε and the right-hand side is of order ε−1. The second purpose
of this paper is to improve Hardy inequalities into inequalities which in particular will be
invariant under the multiplication by oscillating functions like ei

(x|ω)
ε .

This requires the introduction of Besov spaces of negative index and thus Littlewood Paley
theory. In the case of RN , this is quite classical. In the case of the Heisenberg group, it was
constructed by H. Bahouri, P. Gérard and C.-J. Xu in [2] (see also [3]). We can summarize
this theory in the following properties, which hold regardless of the space which can be RN

or Hd; one of the features of this paper is to write unified statements and proofs, which hold
independently of the space. It is therefore natural to introduce unified notation. In the same
way as on the Heisenberg group we have defined a family Z of vector fields, we will denote
on RN

for α ∈ {1, . . . , N}k, Zα def= Xα1 . . . Xαk
, where Xαj

def= ∂xαj
.

We will also use the following notation:

∀w ∈ RN , w−1 = −w, ρ(w) def=

 N∑
j=1

|wj |2
 1

2

, and ∀a ∈ R, δaw = aw.

Using that notation, the elements of Littlewood-Paley theory we will need are the following.

Both in the case of RN and Hd, there exists a family (Sj)j∈Z of operators such that for any p
belonging to [1,∞[,

(1.5) ∀u ∈ Lp , lim
j→−∞

‖Sju‖Lp = 0 and lim
j→∞

‖Sju− u‖Lp = 0.

Moreover, for any multi-index α, there exists a constant C such that, for any (p, q) ∈ [1,∞]2

satisfying p ≤ q, we have

(1.6) ‖ZαSju‖Lq ≤ C2jN
“

1
p
− 1

q

”
+|α|j‖Sju‖Lp .
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Moreover, if ∆j
def= Sj+1 − Sj , two integers N0 and N1 exist such that

(1.7) |j − j′| ≥ N0 =⇒
(
∆j∆j′ = 0 and ∆j

(
Sj′−N0u∆j′v

)
= 0

)
,

(1.8)
(
|k − k′| ≤ N0 and j ≥ k + N1

)
=⇒ ∆j (∆ku∆k′v) = 0.

For any positive integer k, there exists a constant C such that, for any p ∈ [1,∞],

(1.9) ‖∆ju‖Lp ≤ C2−2jk‖(−∆)k∆ju‖Lp .

The operators ∆j are of the form

(1.10) ∆ju = u ? hj with hj(w) = 2jNh(δ2jw) and h ∈ S.

We remark that as ∆j is a function of the Laplacian (resp. sublaplacian) on RN (resp. Hd),
it commutes with the latter operator.

Definition 2. Let s ∈ R be given, as well as p and r, two real numbers in the interval [1,∞].
Then we define the space Ḃs

p,r of tempered distributions u such that

lim
j→−∞

Sju = 0 and ‖u‖Ḃs
p,r

def=
∥∥(2js‖∆ju‖Lp)

∥∥
`r(Z)

< ∞.

Let us notice that Inequality (1.6) implies immediately that, when q ≥ p and r′ ≥ r, we have

(1.11) ‖u‖
Ḃ

s−N( 1
p−

1
q )

q,r′

≤ C‖u‖Ḃs
p,r

.

The result we will prove is the following. It is stated and proved indifferently in RN and Hd.

Theorem 2. Let s be a real number in the interval ]0, N/2[ and let p and q be two real
numbers in [1,∞] such that

2 ≤ q <
2N

N − 2s
< p ≤ ∞.

There is a constant C such that, for any function u ∈ Ḃ
s−N( 1

2
− 1

q
)

q,2 , the following inequality
holds:(∫

|u(w)|2

ρ2s(w)
dw

) 1
2

≤ C‖u‖α

Ḃ
s−N( 1

2−
1
p)

p,2

‖u‖1−α

Ḃ
s−N( 1

2−
1
q )

q,2

with α =
pq

p− q

(1
q
− 1

2
+

s

N

)
·

Let us remark that, when p = ∞ and q = 2, the above theorem implies that

(1.12)
(∫

|u(w)|2

ρ2s(w)
dw

) 1
2

≤ C‖u‖
2s
N

Ḃ
s−N

2
∞,2

‖u‖1− 2s
N

Ḣs
.

This inequality should be compared to the following similar result derived by P. Gérard, Y.
Meyer and F. Oru in [10], in the case of the Sobolev inequalities on RN (see [3] for the
Heisenberg case), namely

(1.13) ‖u‖Lr ≤ C‖u‖
2s
N

Ḃ
s−N

2∞,∞

‖u‖1− 2s
N

Ḣs
with

1
r

=
1
2
− s

N
·

The following result indicates the invariance of (1.12) and (1.13) under oscillations.
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Proposition 1. Let θ be a function in S, p in [1,∞], σ in ]−N(1−1/p),+∞[ and ε0 a positive

real number. There exists a constant C such that the oscillatory function fε(w) def= θ(w)eiw1/ε

satisfies

(1.14) ∀ε ≤ ε0 , ‖fε‖Ḃσ
p,1
≤ Cε−σ.

This proposition implies immediately the following corollary.

Corollary 1. There exists a family (fε)ε>0 of smooth functions such that, for any s in ]0, N/2[
and any β > 2s/N , we have

lim
ε→0

‖fε‖
L

2N
N−2s

‖fε‖β

Ḃ
s−N

2∞,∞

‖fε‖1−β

Ḣs

= +∞ and lim
ε→0

1

‖fε‖β

Ḃ
s−N

2∞,∞

‖fε‖1−β

Ḣs

∫
f2

ε

ρ2s
dw = +∞.

1.3. Structure of the paper and idea of the proof. The idea of the proof of Theorems 1
and 2 is to see them from a non linear point of view. More precisely, we write∫

u2(w)
ρ2s(w)

dw = 〈ρ−2s, u2〉.

Then it is enough to prove that ρ−2s and u2 belongs to a pair of spaces in duality.

In the second section, we shall prove that ρ−2s belongs to the space ḂN−2s
1,∞ . Then using

product law, we shall conclude the proof of Theorem 1.

In the third section, we shall use paradifferential calculus to prove Theorem 2.

In the fourth section, we shall prove Proposition 1. We shall also investigate if it is possible
to extend Corollary 1 for a family of non negative functions.

2. The behavior of negative powers of ρ

It is described by the following proposition.

Proposition 2. Let s be a real number in the interval ]0, N/2[. Then the function ρ−2s

belongs to the Besov space ḂN−2s
1,∞ .

Proof of Proposition 2 Let us introduce a smooth compactly supported function χ which
is identically equal to 1 near the unit ball and let us write

ρ−2s = ρ0 + ρ1 with ρ0
def= χρ−2s and ρ1

def= (1− χ)ρ−2s.

It is obvious that ρ−2s ∈ L1 + Lq with q > N/2s which implies that lim
j→−∞

Sjρ
−2s = 0

in L1 + Lq. Then, the homogeneity of the function ρ gives

∆jρ
−2s = 2jNρ−2s ? h(δ2j ·)

= 2j(N+2s)ρ−2s(δ2j ·) ? h(δ2j ·)
= 22js(∆0ρ

−2s)(δ2j ·).
Therefore ‖∆jρ

−2s‖L1 = 2j(2s−N)‖∆0ρ
−2s‖L1 which reduces the problem to proving that the

function ∆0ρ
−2s is in L1. As ρ0 is in L1, ∆0ρ0 is also in L1 thanks to the continuity of the
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operator ∆0 on Lebesgue spaces. In order to estimate ρ1 in L1, we shall use Inequality (1.9)
to write that

‖∆0ρ1‖L1 ≤ Ck‖(−∆)k∆0ρ1‖L1 ≤ Ck‖(−∆)kρ1‖L1 .

By the Leibniz formula, (−∆)kρ1− (1−χ)(−∆)kρ is a smooth compactly supported function.
Then, we achieve the proof by using (1.4) and choosing k such that 2k > N − 2s.

As an application, we shall prove Theorem 1. When u belongs to Ḣs, then

u2 ∈ Ḃ
2s−N

2
2,1 and ‖u2‖

Ḃ
2s−N

2
2,1

≤ C‖u‖2
Ḣs .

That result is classical in RN and was proved in Hd by two of the authors in [3]. Now writing
that

〈ρ−2s, u2〉 =
∑

|j−j′|≤N0

〈∆jρ
−2s,∆j′u

2〉,

we infer, thanks to Proposition 2 and embeddings (1.11), that

〈ρ−2s, u2〉 ≤ ‖u‖2
Hs

∑
|j−j′|≤N0

2−j(N
2
−2s)dj′2−j′(2s−N

2 ) with (dj)j∈Z ∈ `1(Z).

This proves Theorem 1.

Remark Let us point out that, in Theorem 1, the function ρ−2s can be any function in Ḃ
N
2
−2s

2,∞ .

3. Paradifferential calculus and precised inequalities

In order to prove Theorem 2, let us recall the paraproduct algorithm introduced by J.-M.
Bony in [4] in the case of RN and by two of the authors in the case of Hd in [3]. In both
cases, this allows to write that

u2 = 2Tuu + R(u, u), with Tuu
def=

∑
j

Sj−N0u∆ju and R(u, u) def=
∑

|j−j′|≤N0

∆ju∆j′u.

Using (1.7) and (1.6), we get

‖∆jTuu‖L∞ =
∥∥∥ ∑
|j−j′|≤N0

∆j(Sj′−N0u∆j′u)
∥∥∥

L∞

≤
∑

|j−j′|≤N0

‖Sj′−N0u‖L∞‖∆j′u‖L∞ .

Now let us write that

2−j(N
2
−s)‖Sju‖L∞ ≤

∑
k≤j−1

2(j−k)(s−N
2 )2k(s−N

2 )‖∆ku‖L∞ .

Young’s inequality on series implies that

‖Sju‖L∞ ≤ Ccj2j(N
2
−s)‖u‖

Ḃ
s−N

2
∞,2

with
∑

j

c2
j = 1.
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This gives

‖∆j(Tuu)‖L∞ ≤ C‖u‖
Ḃ

s−N
2

∞,2

j+N0∑
j′=j−N0

2j′(N−2s)cj′2−j′(N
2
−s)‖∆j′u‖L∞

≤ C‖u‖2

Ḃ
s−N

2
∞,2

2j(N−2s)
j+N0∑

j′=j−N0

dj′ with
∑
j′

dj′ = 1.

Thanks to (1.11), and Proposition 2, we have,

(3.1) 〈ρ−2s, Tuu〉 ≤ C‖u‖2α

Ḃ
s−N( 1

2−
1
q )

q,2

‖u‖2−2α

Ḃ
s−N( 1

2−
1
p)

p,2

for any 0 ≤ α ≤ 1 and p, q ≥ 1.

The estimate of 〈ρ−2s, R(u, u)〉 relies on the following elementary interpolation lemma.

Proposition 3. Let s be a real number in the interval ]0, N/2[ and let p and q be two real
numbers in [1,∞] such that

2 ≤ q <
2N

N − 2s
< p ≤ ∞.

There is a constant C such that for any functions f and g which belongs to Lp ∩Lq, we have

〈ρ−2s, fg〉 ≤ C‖f‖α
Lp‖g‖α

Lp‖f‖1−α
Lq ‖g‖1−α

Lq with α =
pq

p− q

(1
q
− 1

2
+

s

N

)
·

Proof of Proposition 3 Let us write that, for any positive R,

〈ρ−2s, fg〉 = I1(R) + I2(R) with I1(R) def=
∫

(ρ≤R)

fg

ρ2s
dw and I2(R) def=

∫
(ρ≥R)

fg

ρ2s
dw.

The condition on p and q implies that ρ−2s is locally L
p

p−2 and is L
q

q−2 outside any compact
neighbourhood of 0. By Hölder’s inequality, we infer that

I1(R) ≤ ‖1(ρ≤R)ρ
−2s‖

L
p

p−2
‖f‖Lp‖g‖Lp and I2(R) ≤ ‖1(ρ≥R)ρ

−2s‖
L

q
q−2

‖f‖Lq‖g‖Lq .

As the function ρ is homogeneous of order 1, we get, by the change of variable w′ = δR−1w,

‖1(ρ≤R)ρ
−2s‖

L
p

p−2
= R

N−2s− 2N
p ‖1(ρ≤1)ρ

−2s‖
L

p
p−2

and

‖1(ρ≥R)ρ
−2s‖

L
q

q−2
= R

N−2s− 2N
q ‖1(ρ≥1)ρ

−2s‖
L

q
q−2

.

Thus we have, for any positive R,

〈ρ−2s, fg〉 ≤ CRN−2s
(
R
− 2N

p ‖f‖Lp‖g‖Lp + R
− 2N

q ‖f‖Lq‖g‖Lq

)
.

Choosing the optimal

R =
(
‖f‖Lq‖g‖Lq

‖f‖Lp‖g‖Lp

) pq
2N(p−q)

concludes the proof of the proposition.
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Let us go back to the proof of Theorem 2. By definition of R(u, u), we have

〈ρ−2s, R(u, u)〉 =
∑
|`|≤N0

∑
j∈Z

〈ρ−2s,∆ju∆j−`u〉.

Proposition 3 implies that

〈ρ−2s, R(u, u)〉 ≤
∑
|`|≤N0

∑
j∈Z

(
22j(s−N( 1

2
− 1

p
))‖∆ju‖Lp‖∆j−`u‖Lp

)α

×
(
22j(s−N( 1

2
− 1

q
))‖∆ju‖Lq‖∆j−`u‖Lq

)1−α
.

By definition of the Besov norms, this implies that two series (cj)j∈Z and (c′j)j∈Z exist in the
unit sphere of `2(Z) such that

〈ρ−2s, R(u, u)〉 ≤ C‖u‖2α

B
s−N( 1

2−
1
p)

p,2

‖u‖2(1−α)

B
s−N( 1

2−
1
q )

q,2

∑
|`|≤N0

∑
j∈Z

(cjcj−`)α(c′jc
′
j−`)

1−α.

From Hölder inequalities, it follows

〈ρ−2s, R(u, u)〉 ≤ C‖u‖2α

B
s−N( 1

2−
1
p)

p,2

‖u‖2(1−α)

B
s−N( 1

2−
1
q )

q,2

.

Together with (3.1), this gives Theorem 2.

4. Oscillations and fractal transforms in precised inequalities

The purpose of this section is to provide examples which show that the precised estimates are
sharp. The first one deals with oscillating functions.

4.1. Oscillations. Here we want to prove Proposition 1, namely, by definition of Besov
spaces, that for any function θ in S, we have

(4.1)
∑

j

2jσ‖∆jfε‖Lp ≤ Cε−σ with fε(w) def= ei
w1
ε θ(w).

We shall treat differently the high frequencies (indices j such that 2jε is greater than 1) and
low frequencies (indices j such that 2jε is less than 1).

Let us first estimate the low frequencies. Denoting the vector Z̃1 = ∂x1 in the case of RN

and Z̃1 = ∂x1 − y1∂s in the case of Hd, we have

iεZ̃1e
i

w1
ε = −ei

w1
ε .

By integration by parts, we get

∆jfε(w′) = (−iε)N2jN

∫
(−Z̃1)N (ei

w′1−w1
ε )θ(w′w−1)h(δ2j (w))dw

= (−iε)N2jN

∫
ei

w′1−w1
ε (Z̃1)N (θ(w′w−1)h(δ2j (w))dw

= (−iε)N2jN
N∑

`=0

C`
N

∫
ei

w′1−w1
ε Z̃N−`

1 (θ(w′w−1))Z̃`
1(h(δ2j (w))dw
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where the vector field Z̃1 acts on the variable w. As

Z̃1(h(δ2j (w)) = 2j(Z̃1h)(δ2j (w)) and − Z̃1(θ(w′w−1)) = (Z1θ)(w′w−1),

we infer that

|∆jfε(w′)| = εN2jN
∣∣∣ N∑
`=0

C`
N2j`(−1)N−`

∫
ei

w′1−w1
ε (ZN−`

1 θ)(w′w−1)(Z̃`
1h)(δ2j (w))dw

∣∣∣
≤ εN2jN

N∑
`=0

C`
N2j`

(
|ZN−`

1 θ| ? |(Z̃`
1h)(δ2j ·)|

)
(w′).

Young inequalities imply that∥∥∥|ZN−`
1 θ| ? |(Z̃`

1h)(δ2j ·)|
∥∥∥

Lp
≤ min

{
2−j N

p ‖ZN−`
1 θ‖L1‖Z̃`

1h‖Lp , 2−jN‖ZN−`
1 θ‖Lp‖Z̃`

1h‖L1

}
.

Therefore, as σ > −N
(
1− 1

p

)
,

∑
2j≤ 1

ε

2jσ‖∆jfε‖Lp ≤ CεN

(∑
2j≤1

2j
“
σ+N

“
1− 1

p

””
+

∑
1≤2j≤ 1

ε

2j(σ+N)

)
≤ Cε−σ.

In order to estimate high frequencies, let us use (1.9). We get, for any non negative integer M ,

‖∆jfε‖Lp ≤ C2j(N−2M)‖((−∆)Mfε) ? h(δ2j ·)‖Lp

≤ C2−2jM‖(−∆)Mfε‖Lp .

The Leibniz formula implies that, for any ε ∈]0, ε0], ‖(−∆)Mfε‖Lp ≤ Cε−2M‖θ‖Lp . Thus we
infer, thanks to (1.6), that∑

2j≥ 1
ε

2jσ‖∆jfε‖Lp ≤ Cε−2M
∑
2j≥ 1

ε

2j(σ−2M).

Choosing M such that σ − 2M is negative gives

(4.2)
∑
2j≥ 1

ε

2jσ‖∆jfε‖Lp ≤ Cε−σ.

This ends the proof of Proposition 1.

4.2. Fractal transform and Besov norms. In this subsection we will show that oscillations
are not the sole responsible for the smallness of a Besov norm. Below we present another
situation, of a sequence of non negative functions for which the Lp norms and the Besov
norms are balanced as the family (fε) of Proposition 1. Again, we shall present statements
and proofs common to the case of RN and Hd. In order to do so, let us define the distance d
as

∀(w,w′) ∈ RN ×RN , d(w,w′) def= max
1≤j≤N

|wj − w′
j |

and, for any (w,w′) ∈ Hd ×Hd,

d(w,w′) def= max
{

max
1≤j≤d

|xj − x′j | , max
1≤j≤N

|yj − y′j | , |s− s′ + (y′|x)− (y|x′)|
1
2

}
,



10 H. BAHOURI, J.-Y. CHEMIN, AND I. GALLAGHER

where in the case of Hd we have noted w = (x, y, s) and w′ = (x′, y′, s′). Let us denote by Q
the ball for d centered at zero and of radius 1/2. Now let us define the following quantities.
Let D and L such that D = L = N in the case of RN and D = N − 1 and L = N + 1 in the
case of Hd. For J in {−1, 1}L, we define the point wJ of Q and the cube QJ by

wJ
def= δ 3

8
J and QJ

def= wJ · δ 1
4
Q =

{
w / d(w,wJ) ≤ 1

8

}
.

Omitted elementary computations show that

(4.3) QJ ⊂ Q and
(
J 6= J ′ =⇒ d(QJ , QJ ′) ≥

√
3

4

)
.

Now let us define the transform T which duplicates (after dilation and translation) functions
defined on Q.

Definition 3. Let us denote by T the following transform

T


D(Q) → D(Q)

f 7→ Tf
def= 2D

∑
J∈{−1,1}L

fJ with fJ(w) def= f(δ4(w−1
J w)).

For a subset A of Q , we denote by TA the set defined by

TA
def=

⋃
J∈{−1,1}L

wJδ 1
4
A.

Let us notice that TA ⊂ Q and that Supp (Tf) = T (Supp f). Let us also observe that,
using (4.3), we have

‖Tf‖p
Lp = 2Dp

∑
J∈{−1,1}L

‖fJ‖p
Lp

= 2Dp
( ∑

J∈{−1,1}L

2−2N
)
‖f‖p

Lp

= 2Dp+L−2N‖f‖p
Lp

= 2D(p−1)‖f‖p
Lp .

Thus, we have

(4.4) ‖Tf‖Lp = 2D
“
1− 1

p

”
‖f‖Lp .

The way T acts on Besov spaces is described by the following proposition.

Proposition 4. For any (p, r) ∈ [1,+∞]2 and any σ in
]
−N

(
1 − 1

p

)
, +∞

[
, there exists a

constant C such that

‖Tf‖Ḃσ
p,r
≤ 2D

“
1− 1

p

”
+2σ‖f‖Ḃσ

p,r
+ C‖f‖L1 .

Proof of Proposition 4 For the sake of simplicity, we only prove this proposition in the
case when r = 1. By definition of the Besov norm, we have

‖Tf‖Ḃσ
p,1

= T1f + T2f with T1f
def=

∑
j≤0

2jσ‖∆jTf‖Lp and T2f
def=

∑
j≥1

2jσ‖∆jTf‖Lp .
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On the one hand, using Bernstein’s inequality (1.6), the fact that N
(
1− 1

p

)
+σ > 0 and (4.4)

with p = 1, we get

T1f ≤ C
∑
j≤0

2jσ+jN
“
1− 1

p

”
‖∆jTf‖L1

≤ C‖Tf‖L1

≤ C‖f‖L1 .(4.5)

The estimate on T2f uses the special structure of TQ. Let us define the set

Q̃
def=

{
w / d(w, TQ) ≤ 1

32

}
=

⋃
J∈{−1,1}L

Q̃J with Q̃J
def=

{
w / d(w,QJ) ≤ 1

32

}
·

Now let us write that T2f = T21f + T22f with

T21f
def=

∑
j≥1

2jσ‖∆jTf‖
Lp(c eQ)

and T22f
def=

∑
j≥1

2jσ‖∆jTf‖
Lp( eQ)

.

Let us recall that

(∆jTf)(w′) = 2jN

∫
Tf(w)h

(
δ2j (w−1w′)

)
dw.

As h belongs to S, we have, for any positive integer M , that |h(w)| ≤ CM (1 + ρ(w))−M .
Thus, by homogeneity and by definition of ρ and d, we get, for all (w,w′) ∈ TQ× Q̃c,∣∣h(δ2j (w−1w′))

∣∣ ≤ CM

(
1 + ρ(δ2j (w−1w′))

)−N−1
ρ−M (δ2j (w−1w′))

≤ CM

(
1 + ρ(δ2j (w−1w′))

)−N−1 2−jMρ−M (w−1w′)

≤ CM2−jM
(
1 + ρ(δ2j (w−1w′))

)−N−1
.

Using (4.4), we infer that, for any integer M ,

‖∆jTf‖
Lp(c eQ)

≤ CM2j
“
N

“
1− 1

p

”
−M

”
‖Tf‖L1

≤ CM2j
“
N

“
1− 1

p

”
−M

”
‖f‖L1 .

Then, choosing M large enough, we infer

(4.6) T21f ≤ C‖f‖L1 .

Finally let us estimate T22f . As Q̃ is the disjoint union of the Q̃J , we get

(4.7) ‖∆jTf‖
Lp( eQ)

≤ 2
L
p sup

J∈{−1,1}L

‖∆jTf‖
Lp( eQJ )

.

Let us first estimate ‖∆jfJ ′‖Lp( eQJ )
for J ′ 6= J . We have, for all w′ ∈ Q̃J ,

(∆jfJ ′)(w′) = 2jN

∫
fJ ′(w)h(δ2j (w−1w′)) dw ,

and in the integral, the distance d(w,w′) is greater than 1/32. Then, reasoning as above we
find that, for any positive integers M , there exists a constant CM such that

(4.8) J 6= J ′ =⇒ ‖∆jfJ ′‖Lp( eQJ )
≤ CM2j

“
N

“
1− 1

p

”
−M

”
‖fJ ′‖L1 .
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Then, let us observe that ‖∆jfJ‖Lp( eQJ )
≤ ‖∆jfJ‖Lp . Writing that

w−1w′ = δ 1
4

((
δ4(w−1

J w)
)−1

δ4(w−1
J w′)

)
and changing variable v = δ4(w−1

J w) gives

(∆jfJ)(w′) = (∆j−2f)
(
δ4(w−1

J w′)
)
.

Thus ‖∆jfJ‖Lp = 2−
2N
p ‖∆j−2f‖Lp . Then using (4.7) and (4.8), we get by definition of T ,

that for all positive integers M ,

‖∆jf‖Lp( eQ)
≤ 2D+L−2N

p ‖∆j−2f‖Lp + CM2j
“
N

“
1− 1

p

”
−M

”
‖f‖L1 .

Thus by definition of T22f , we get by choosing M large enough,

T22f ≤ 2D
“
1− 1

p

” ∑
j≥1

2jσ‖∆j−2f‖Lp + CM‖f‖L1

∑
j≥1

2j
“
σ+N

“
1− 1

p

”
−M

”

≤ 2D
“
1− 1

p

”
+2σ‖f‖Ḃσ

p,1
+ C‖f‖L1 .

Together with (4.5) and (4.6), this concludes the proof of the proposition.

Let us state the following corollary of Proposition 4.

Corollary 2. For (N − D)/2 < s < N/2, there exists a sequence (fn)n∈N of non negative
smooth and compactly supported functions such that, for any β > 2s/N ,

lim
n→∞

‖fn‖
L

2N
N−2s

‖fn‖β

Ḃ
s−N

2∞,∞

‖fn‖1−β

Ḣs

= +∞.

Proof of Corollary 2 Let us consider a smooth compactly supported non negative func-
tion f0 and let us define the sequence (fn)n∈N by fn = Tnf0. By iteration of the inequality
of Proposition 4, we have

‖fn‖Bσ
p,q
≤ 2n

“
D

“
1− 1

p

”
+2σ

”
‖f0‖Bσ

p,q
+ C

(n−1∑
m=0

2m
“
D

“
1− 1

p

”
+2σ

”)
‖f0‖L1 .

If σ > −D

2

(
1− 1

p

)
, we deduce that

‖fn‖Bσ
p,q
≤ Cf02

n
“
D

“
1− 1

p

”
+2σ

”
Applying this first with σ = s−N/2 and p = q = ∞ and then with σ = s and p = q = 2 gives

‖fn‖
Ḃ

s−N
2∞,∞
≤ Cf02

n(D−N+2s) and ‖fn‖Ḣs ≤ Cf02
n(D

2
+2s).

Assertion (4.4) claims that

‖fn‖
L

2N
N−2s

= 2nD(( 1
2
+ s

N ))‖f0‖
L

2N
N−2s

.

This concludes the proof of the corollary.



PRECISED HARDY INEQUALITIES 13

Remark Unfortunately, we cannot claim the same result for the precised Hardy inequal-
ity. Let us notice that the precised Hardy inequality has an obvious translation invariant
generalization which is

sup
a

∫
u2(w)

ρ2s(a−1w)
dw ≤ C‖u‖

2s
N

Ḃ
s−N

2
∞,2

‖u‖1− 2s
N

Ḣs
.

For the sequences used in the proof of Corollary 2, omitted computations show that, if s is

greater than
1
2

(
N − D

2

)
,

sup
a

∫
f2

n(w)
ρ2s(a−1w)

dw ≤ C2n(D−N+2s).

This is exactly the same behavior as ‖fn‖
Ḃ

s−N
2

∞,2

. We do not know if the exponent can be

improved in (1.12) when we restrict to the cone of non negative functions.
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