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MATHEMATICAL STUDY OF THE BETAPLANE
MODEL: EQUATORIAL WAVES AND CONVERGENCE
RESULTS

Isabelle Gallagher, Laure Saint-Raymond

Abstract. — We are interested in a model of rotating fluids, describing the motion
of the ocean in the equatorial zone. This model is known as the Saint-Venant, or
shallow-water type system, to which a rotation term is added whose amplitude is
linear with respect to the latitude; in particular it vanishes at the equator. After a
physical introduction to the model, we describe the various waves involved and study
in detail the resonances associated to those waves. We then exhibit the formal limit
system (as the rotation becomes large), obtained as usual by filtering out the waves,
and prove its wellposedness. Finally we prove three types of convergence results: a
weak convergence result towards a linear, geostrophic equation, a strong convergence
result of the filtered solutions towards the unique strong solution to the limit system,
and finally a “hybrid” strong convergence result of the filtered solutions towards a
weak solution to the limit system. In particular we obtain that there are no confined
equatorial waves in the mean motion as the rotation becomes large.

Résumé (Etude mathématique du modéle bétaplan : ondes équatoriales et résultats de
convergence)

On s’intéresse & un modéle de fluides en rotation rapide, décrivant le mouvement de
I’océan dans la zone équatoriale. Ce modéle est connu sous le nom de Saint-Venant, ou
systéme «shallow water », auquel on ajoute un terme de rotation dont ’amplitude est
linéaire en la latitude ; en particulier il s’annule & ’équateur. Aprés une introduction
physique au modéle, on décrit les différentes ondes en jeu et ’on étudie en détail les
résonances associées a ces ondes. On exhibe ensuite un systéme limite formel (dans
la limite d’une forte rotation), obtenu comme d’habitude en filtrant les ondes, et I'on
démontre qu’il est bien posé. Enfin on démontre trois types de résultats de conver-
gence : un théoréme de convergence faible vers un systéme géostrophique linéaire, un
théoréme de convergence forte des solutions filtrées vers la solution unique du systéme
limite, et enfin un résultat « hybride » de convergence forte des solutions filtrées vers
une solution faible du systéme limite. En particulier on démontre I’absence d’ondes
équatoriales confinées dans le mouvement moyen, quand la rotation augmente.
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CHAPTER 1

INTRODUCTION

The aim of this paper is to obtain a description of geophysical flows, especially
oceanic flows, in the equatorial zone. For the scales considered, i.e., on domains
extending over many thousands of kilometers, the forces with dominating influence are
the gravity and the Coriolis force. The question is therefore to understand how they
counterbalance eachother to impose the so-called geostrophic constraint on the mean
motion, and to describe the oscillations which are generated around this geostrophic
equilibrium.

At mid-latitudes, on “small” geographical zones, the variations of the Coriolis force
due to the curvature of the Earth are usually neglected, which leads to a singular per-
turbation problem with constant coefficients. The corresponding asymptotics, called
asymptotics of rotating fluids, have been studied by a number of authors. We refer
for instance to the pioneering work [22] and to the review by R. Temam and M. Ziane
[34], or to the work by J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier [4].

In order to a get a more realistic description, which allows for instance to exhibit
the specificity of the equatorial zone, one has to study more intricate models, taking
into account especially the interaction between the fluid and the atmosphere (free
surface), and the geometry of the Earth (variations of the local vertical component
of the Earth rotation). The mathematical modelling of these various phenomenon,
as well as their respective importance according to the scales considered, have been
studied in a rather systematic way by A. Majda [25], and R. Klein and A. Majda [19].
We refer also to [9] for a review of mathematical methods for the study of geophysical
fluids.

Here we will focus on quasigeostrophic, oceanic flows, meaning that we will consider
horizontal length scales of order 1000km and vertical length scales of order 5km, so
that the aspect ratio is very small and the shallow-water approximation is relevant (see
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for instance the works by D. Bresch, B. Desjardins and C.K. Lin [3] or by J.-F. Ger-
beau and B. Perthame [13]). In this framework, the asymptotics of homogeneous
rotating fluids have been studied by D. Bresch and B. Desjardins [2].

For the description of equatorial flows, one has to take further into account the
variations of the Coriolis force, and especially the fact that it cancels at equator. The
inhomogeneity of the Coriolis force has already been studied by B. Desjardins and
E. Grenier [6] and by the authors [10] for an incompressible fluid without pressure,
and [11] for an incompressible fluid with rigid lid upper boundary (see also [7] for
a study of the wellposedness and weak asymptotics of a non-viscous model). The
question here is then to understand the combination of the effects due to the free
surface, and of the effects due to the variations of the Coriolis force.

Note that, for the sake of simplicity, we will not discuss the effects of the interaction
with the boundaries, describing neither the vertical boundary layers, known as Ekman
layers (see for instance the paper by D. Gérard-Varet [12]), nor the lateral boundary
layers, known as Munk and Stommel layers (see for instance [6]). We will indeed
consider a purely horizontal model, assuming periodicity with respect to the longitude
(omitting the stopping conditions on the continents) and and infinite domain for the
latitude (using the exponential decay of the equatorial waves to neglect the boundary).

1.1. Physical phenomenon observed in the equatorial zone of the earth

The rotation of the earth has a dominating influence on the way the atmosphere
and the ocean respond to imposed changes. The dynamic effect is caused (see [14],
[16], [28]) by the Coriolis acceleration, which is equal to the product of the Coriolis
parameter f and the horizontal velocity.

An important feature of the response of a rotating fluid to gravity is that it does
not adjust to a state of rest, but rather to an equilibrium which contains more poten-
tial energy than does the rest state. The steady equilibrium solution is a geostrophic
balance, i.e., a balance between the Coriolis acceleration and the pressure gradient
divided by density. The equation determining this steady solution contains a length
scale a, called the Rossby radius of deformation, which is equal to ¢/|f| where ¢ is the
wave speed in the absence of rotation effects. If f tends to zero, then a tends to infin-
ity, indicating that for length scales small compared with a, rotation effects are small,
whereas for scales comparable to or larger than a, rotation effects are important.
Added to that mean, geostrophic motion, are time oscillations which correspond to
the so-called ageostrophic motion. The use of a constant- f approximation to describe
motion on the earth is adequate to handle the adjustment process at mid-latitudes:
Kelvin [35] stated that his wave solutions (also known as Poincaré waves) are appli-
cable “in any narrow lake or portion of the sea covering not more than a few degrees
of the earth’s surface, if for % f we take the component of the earth’s angular velocity
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round a vertical through the locality, that is to say
1
3 f = Qsin ¢,

where Q) denotes the earth’s angular velocity and ¢ the latitude.”

The adjustment processes are somewhat special when the Coriolis acceleration
vanishes: the equatorial zone is actually found to be a waveguide: as explained in [14],
there is an equatorial Kelvin wave, and there are equatorially trapped waves, which are
the equivalent of the Poincaré waves in a uniformly rotating system. There is also an
important new class of waves with much slower frequencies, called planetary or quasi-
geostrophic waves. These owe their existence to the variations in the undisturbed
potential vorticity and thus exist at all latitudes. However, the ray paths along which
they propagate bend, as do the paths of gravity waves, because of the variation of
Coriolis parameter with latitude, and it is this bending that tends to confine the waves
to the equatorial waveguide.

1.2. A mathematical model for the ocean in the equatorial zone

In order to explore the qualitative features of the equatorial flow, we restrict our
attention here to a very simplified model of oceanography. More precisely, we consider
the ocean as an incompressible viscous fluid with free surface submitted to gravitation,
and further make the following classical assumptions:

(H1) the density of the fluid is homogeneous,

(H2) the pressure law is given by the hydrostatic approximation,

the motion is essentially horizontal and
(H3) does not depend on the vertical coordinate,
leading to the so-called shallow water approximation.

We therefore consider a so-called viscous Saint-Venant model, which describes ver-
tically averaged flows in three dimensional shallow domains in terms of the horizontal
mean velocity field u and the depth variation h due to the free surface. Taking into
account the Coriolis force, a particular model reads as

Oth + V- (hu) =0
(1.2.1) 1
Or(hu) + V- (hu ® u) + f(hu)® + Fth — hVK(h) — A(h,u) =0
where f denotes the vertical component of the earth rotation, Fr the Froude number,
and K and A are the capillarity and viscosity operators. We have written u* for the
vector (ug, —u1)-

Note that, from a theoretical point of view, it is not clear that the use of the
shallow water approximation is relevant in this context since the Coriolis force is
known to generate vertical oscillations which are completely neglected in such an

SOCIETE MATHEMATIQUE DE FRANCE 2007



4 CHAPTER 1. INTRODUCTION

approach. Nevertheless, this very simplified model is commonly used by physicists
[14, 29] and we will see that its study already gives a description of the horizontal
motion corresponding to experimental observations.

Of course, in order that the curvature of the earth can be neglected, and that
latitude and longitude can be considered as cartesian coordinates, we should consider
only a thin strip around the equator. This means that we should study (1.2.1) on
a bounded domain, and supplement it with boundary conditions. Nevertheless, as
we expect the Coriolis force to confine equatorial waves, we will perform our study
on R x T where T is the one-dimensional torus R 5,7, and check a posteriori that
oscillating modes vanish far from the equator, so that it is reasonable to conjecture
that they should not be disturbed by boundary conditions.

1.3. Some orders of magnitude in the equatorial zone

For motions near the equator, the approximations
sing ~ ¢, cos¢p~1

may be used, giving what is called the equatorial betaplane approximation. Half of
the earth’s surface lies at latitudes of less than 30° and the maximum percentage
error in the above approximation in that range of latitudes is only 14%. In this
approximation, f is given by

[ = B,

where 7 is distance northward from the equator, taking values in the range
x1 € [-3000km , 3000 km],

and ( is a constant given by
2Q)
f="=23x10""Tm st
r
A formal analysis of the linearized versions of the equations shows then that ro-
tation effects do not allow the motion in each plane x; = const to be independent
because a geostrophic balance between the eastward velocity and the north-south
pressure gradient is required. Equatorial waves actually decay in a distance of order

ae, the so-called equatorial radius of deformation,

e\ /2
= (3)

where ¢ is the square root of gH, H being interpreted as the equivalent depth.
For baroclinic ocean waves, appropriate values of ¢ are typically in the range
0.5ms™! to 3ms ™!, so the order of the equatorial Rossby radius is

ae ~ 100 km,
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1.4. THE CAUCHY PROBLEM FOR THE BETAPLANE MODEL 5

which is effectively very small compared with the range of validity of the betaplane
approximation.

1.4. The Cauchy problem for the betaplane model

Before describing the equatorial waves and the asymptotic behaviour of the ocean
in the fast rotation limit, we need to give the mathematical framework for our study,
and therefore to specify the dissipative operators A and K occuring in (1.2.1).

From a physical point of view, it would be relevant to model the viscous effects by
the following operator

A(h,u) =vV - (hVu),
meaning in particular that the viscosity cancels when h vanishes. Then, in order for
the Cauchy problem to be globally well-posed, it is necessary to get some control on
the cavitation. Results by Bresch and Desjardins [2] show that capillary or friction
effects can prevent the formation of singularities in the Saint-Venant system (with-
out Coriolis force). On the other hand, in the absence of such dissipative effects,
Mellet and Vasseur [27] have proved the weak stability of this same system under
a suitable integrability assumption on the initial velocity field. All these results are
based on a new entropy inequality [2] which controls in particular the first derivative
of v/h. In particular, they cannot be easily extended to (1.2.1) since the betaplane
approximation of the Coriolis force prevents from deriving such an entropy inequality.

For the sake of simplicity, as we are interested in some asymptotic regime where
the depth A is just a fluctuation around a mean value H, we will thus consider the
following viscosity operator

A(h,u) = vAu,
and we will neglect the capillarity
K(h) =0,

so that the usual theory of the isentropic Navier-Stokes equations can be applied (see
for instance [23]).

THEOREM 1 (Existence of weak solutions). — Let (h°,u%) be some measurable non-
negative function and vector-field on R x T such that

0 _ H 2 0

Then there exists a global weak solution to (1.2.1) satisfying the initial condition
h|t:0 = hoa Ult=0 = uO’

and which furthermore satisfies for almost every t > 0 the energy estimate

(1.4.2) /(% + g|u|2) (t,2) dx+u/0t/|Vu|2(t’,a:) do dt! < £°.
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6 CHAPTER 1. INTRODUCTION

In this paper we are interested in describing the behaviour of the ocean in the
equatorial zone. We thus expect the Froude number Fr, which is the ratio of the fluid
speed to a measure of the internal wave speed, to be small. More precisely we will
consider depth variations

h=H(+en)

where ¢ stands for the order of magnitude of the Froude number.

As seen in the introduction, in order for gravity waves to be notably modified by
rotation effects, the Rossby radius of deformation has to be comparable to the typical
length scales. In order to derive the quasi-geostrophic equations with free-surface
term used in oceanography, we will assume that € is also the order of magnitude of
the Rossby number.

In non-dimensional variables, the viscous Saint-Venant system (1.2.1) can therefore
be rewritten (normalizing H to H = 1 for simplicity)

o + %V- ((1 + en)u) =0,

1
ﬁt((l + en)u) +V- ((1 +enu® u) + %(1 +en)ut + g(l +en)Vn —vAu = 0,
(1.4.3) Nt=0 = n’, Ujp=0 = u’.

In such a framework, the energy inequality (1.4.2) provides uniform bounds on any
family (9e, ue)e>o0 of weak solutions of (1.4.3).

In all the sequel we will denote respectively H* and H*® the homogeneous and
inhomogeneous Sobolev spaces of order s, defined by

H*R xT) = {feS’(RxT)/ffeL}OC(RxT)

nd | memy = X [ 168+ BIIFFE R dE < o0},

keZ

and

H*R x T)

- {f e S®RxT) [ Mlmem = X [ 1+6+RIIFSE P d < oo} ,

keZ

where F denotes the Fourier transform
Vke€Z,VEER Ff(Ek) = /e*isze*ifwlf(xl,xg) dxs dy.

We will also denote, for all subsets € of R x T and for all s > 0, by H§(2), the closure
of D(Q) for the H® norm, and by H () its dual space.
The following result is a consequence of Theorem 1.

MEMOIRES DE LA SMF



1.5. STRUCTURE OF THE PAPER 7

COROLLARY 1.4.1. — Let (n°,u°) € L2 (R x T) and (n°,u?) such that
1
3 [ U+ (- ey al) o < €,
(n°,u®) — (1°,u°) in L2(R x T).
Then, for all € > 0, System (1.4.3) has at least one weak solution (ne,us) with initial

(1.4.4)

data (n2,u?) satisfying the uniform bound

t
(1.4.5) %/(nf+(1+5n5)|u5|2)(t,x)d93+/ /V|Vus|2(s,a:)dxds§50.
0

Furthermore u. is uniformly bounded in L3 (RT; L*(R x T)).
In particular, there exist n € L°(R*; L?(R x T)) and u € L*(R*; L>(R x T)) N
L?>(R*; HY(R x T)) such that, up to extraction of a subsequence,

(e ue) — (,u) in w-L3, (RY x R x T).

Proof. — Replacing h by 1 + en in the energy inequality (1.4.2), we get (1.4.5) from
which we deduce that there exist n € L>°(R™; L2(RxT)) and v € L?(RT; HY(RxT))
such that, up to extraction of a subsequence,

(e, ue) — (n,u) in w-L7 (R x R x T).

Furthermore we have the following inequality:

1/2 1/2
/ |u5|2(t,x) dx < /(1+577€)|u5|2(t,x) dx+e </ 775 (t,z) dm) </ |u5| (t,z) dm)
Q Q

from which we deduce that
u € I3, (R L3(R x T)),

where we have used the interpolation inequality

/ el (t,2) dz < C / el (t, @) da / Ve 2(t, ) da
Q Q Q

By Fatou’s lemma we get that u belongs to L>(R*; L?(R x T)). That concludes the
proof. O

1.5. Structure of the paper

In this paper, we are interested in describing the asymptotic behavior, as € goes to
zero, of the family (7., u.) introduced above.

As the penalization is a skew-symmetric operator, we expect the family (7., uc)
to present fast time oscillations according to the eigenmodes of that operator. This
requires a careful spectral study, which is carried out in Chapter 2.

It turns out that the spectrum is discrete, so that filtering methods can be intro-
duced to derive a formal limit system. The study of the wellposedness of that system,
based on Harmonic Analysis, is the object of Chapter 3.

SOCIETE MATHEMATIQUE DE FRANCE 2007



8 CHAPTER 1. INTRODUCTION

Finally Chapter 4 is devoted to the characterization of the limit points (7, u)
of (ne,ue) as well as to the proof of the convergence towards the limit system.

MEMOIRES DE LA SMF



CHAPTER 2

EQUATORIAL WAVES

The aim of this chapter is to describe precisely the various waves induced by the
singular perturbation

(2.0.1) L:(nu) e L* (R X T) — (V- u, Boiu’ + Vn).

In the first paragraph we study the kernel of the operator, which describes the mean
flow as we will see in Chapter 4. In the second paragraph we describe all the other
waves, using the Hermite functions in z; and the Fourier transform in x2; this enables
us to recover results which are well-known from physicists (see for instance [14],
[28], [30], [31], [32], as well as [7] for a mathematical study). Finally in the last
paragraph we study the possible resonances between all those waves; that result will
be useful in Chapter 3 to prove regularity estimates for the limit system introduced
in Paragraph 2.3 below.

2.1. The geostrophic constraint

In this section we are going to study the kernel of the singular perturbation L
defined in (2.0.1).

PROPOSITION 2.1.1. — Define the linear operator L by (2.0.1). Then (n,u) €
L?(R x T) belongs to Ker L if and only if (n,u) belongs to L>(Ry,) and

(2.1.1) up =0, Priug+ oin=0.
Proof. — If (n,u) belongs to L?(R x T) N Ker L, then we have
V-ou=0, Bxiut+Vn=0,
in the sense of distributions. Computing the vorticity in the second identity leads to

VL. (Bziut 4+ V) = BV - u+uy) =0,
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from which we deduce, since V-u = 0, that u; = 0. Plugging this identity respectively
in the divergence-free condition and in the second component of the vectorial condition
gives

Oguz =0, Oon =0,

meaning that 7 and v depend only on the x; variable. The last condition can then
be rewritten

Brius + 8177 =0.

Conversely, it is easy to check that any (n,u) € L?(R) satisfying (2.1.1) belongs to
Ker L. (|

In the following we will denote by Il the orthogonal projection of L2(R. x T) onto
Ker L. It is given by the following formula.

PROPOSITION 2.1.2. — Define the linear operator L by (2.0.1). Denote by Iy the
orthogonal projection of L?>(R x T) onto Ker L. Then, for all (n,u) € L*>(R x T)
(2.1.2)

o (n,u) = (/(DDT + Id)"(n + Dus) dx2, 0, /DT(DDT +1d)"(n + Dus) d;v2> ,

where D is the differential operator defined by D- = 01 <5—>
Tl

Proof. — By Proposition 2.1.1, for all (n,u) € L>(RxT), (n*,u*) def ITo(n, u) belongs
to L?(R) and satisfies
ul =0, Brius+oin* =0.
Averaging with respect to the xo-variable, one is reduced to the case when (n,u) €
L*(R).
By definition (n — n*,u — u*) is orthogonal in L? to any element (p,v) of KerL:
that implies that

[ =0+ =gz o= [ (00190 - (- 500r7) =000 din =
Py Py
An integration by parts leads then to
O oy +1d ) =+ 02
Y22t TenTa By
Plugging this identity in the second constraint equation gives the expected formula
for uj.
That proves Proposition 2.1.2. O
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2.2. DESCRIPTION OF THE WAVES 11

2.2. Description of the waves

In this section we are going to describe precisely the various waves created by L.
In the first paragraph of this section (Paragraph 2.2.1) we compute the eigenvalues
of L and present its eigenvectors, which constitute a Hilbertian basis of L?(R x T)
(that is proved in Paragraph 2.2.2). That basis enables us in the last paragraph to
introduce the filtering operator and formally derive the limit filtered system, in the
spirit of S. Schochet [33] (see also [17]).

2.2.1. Precise description of the oscillations. — In this paragraph, we are
going to explain how to obtain the various eigenmodes of L. The crucial point is that
the description of these eigenmodes can be achieved using the Fourier transform with
respect to xo and the decomposition on the Hermite functions (¢, ),en with respect
to x1. Here the Hermite functions are conveniently rescaled so that

¢n (371 \/_xl

where P, is a polynomial of degree n, and (¢, )nen satisfy
—Uy + B2 aign = B2n + 1)t

We recall that (¢, )nen constitutes a Hermitian basis of L2(R).
Moreover we have the identities

¥ (21) + Bripn (21) = /280ty —_1(21),
Pr(21) = Br1vn(z1) = —/268(n + 1)thpy1 (@1).

We have used the convention that ¢, = 0 if n < 0.

In the following we will then denote by f(m k), for n € N and k € Z, the compo-
nents of any function f in the Hermite-Fourier basis (27) =24, (z1)e?**2. In other

(2.2.1)

words we have

V(n,k) e NXZ, f(n k)= !

or V(1) H22 f (21, 29) day das,
RXxT

along with the inversion formula

V(z1,22) ER X T, fla1,22) = \/_ > palz)e* 2 f(n, k).

nelN
keZ

In order to investigate the spectrum of L (which is an unbounded skew-symmetric
operator), we are interested in the non trivial solutions to

(2.2.2) L(n,u) =it(n,u).

If one looks for the L? solutions of (2.2.2) with u; non identically zero, one gets as a
necessary condition that the Fourier transform of u; with respect to x2 (denoted by
Fouq) satisfies

ﬁk

(Four)” + (72 — K+ = - > Four =0,

SOCIETE MATHEMATIQUE DE FRANCE 2007



12 CHAPTER 2. EQUATORIAL WAVES

from which we deduce that Fau; is proportional to some v, and that
(2.2.3) ™ — (K +B(2n+ 1)1 + Bk =0,

for some n € N.
The following lemma is proved by elementary algebraic computations.

LEMMA 2.2.1. — For any § > 0 and any (n, k) € N* x Z, the polynomial
P(r)=71%— (K> + B(2n + 1))7 + Bk
has three distinct roots in R, denoted in the following way:
(2.2.4) T(n,k,—1) < 1(n,k,0) < 7(n,k,1).
Moreover if T(n, k,j) = 7(n’, k,j") # 0 for some (n,n') € N2 with n # 0 and (j,5) €
{—1,0,1}2, then necessarily n =n' and j = j'.
Finally the following asymptotics hold if n or |k| goes to infinity:

Bk
k,£1) ~ ++/k? 2 1 d k,0) v~ —nx+——-
7(n,k, £1) +BCn+1), and (0, k0) ~ GroE T
Proof. — To prove that the polynomial has three distinct roots we simply analyze

the function P(7). Its derivative P’(7) vanishes at +a, where

[E2 4+ B(2n+ 1)
a= 3

It is then enough to prove that P(«) < 0 and P(—a) > 0. Let us write the argument
for P(a). We have

P(a) = —2a3 + Bk.
But for n # 0, one checks easily that 2a® > 3|k|. Indeed one has
6_ 4
27
as soon as n > 1. So the first result of the lemma is proved.
To prove the second result, we notice that if 7(n,k,j) = 7(n',k,j') = 7 # 0,
then 2(n — n’)7 = 0 from which we deduce that n = n’, and therefore that j = j

since the polynomial (2.2.3) admits three separate roots for n # 0.
Finally the asymptotics of the eigenvalues is an easy computation. The lemma is

4o (K> +B(2n +1))* > k*p?

proved. o
REMARK 2.2.2. — In the case when n =0, the three roots of P are
(2.2.5)

ko1 ko1
T(O7I€,—1):—§—§\/ k2+4ﬁ, T(071€,0):k, and T(O,k,l):—§+§ ]€2+4ﬁ

It follows that in the case when (3 = 2k?, the roots become k (double) and —2k.
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2.2. DESCRIPTION OF THE WAVES 13

Now let us study more precisely the waves generated by L.

o If k£ # 0 and n # 0, (2.2.3) admits three solutions according to Lemma 2.2.1, and
one can check (see Paragraph 2.2.2 below) that these solutions are eigenvalues of L
associated to the following unitary eigenvectors

iT(n,k,j ik
m%(xl) - mﬁxﬂbn(xl)
U, (21, 22) = Chye,je’* N (1) .
i , ~it(nk,j
k2 — T(n, k’,j)Q "/Jn(xl) k2 T(n, A ,]) ﬁxﬂbn(%)

which can be rewritten

(226) \I/n,k,j(xlva)

1B i ﬂ(n+1)
) Py k TR 1/)n 1(z1) g Ynt1(x1)

= Ch i, j€ 1)

13 7 6(n+1)
Py k TR 1/)n 1(z1) e g Ynt1(x1)

because of the identities (2.2.1). The factor Cn k,j ensures that W, ; ; is of norm 1
in L?(R x T), its precise value is given in (2.2.12) below.
The modes corresponding to 7(n, k, —1) and 7(n, k, 1) are called Poincaré modes,

and satisfy
T(n,k,£1) ~ £/k2+ B(2n + 1) as |k| orn — oo,
which are the frequencies of the gravity waves.
The modes corresponding to 7(n, k,0) are called Rossby modes, and satisfy

Ok
k2 +5(2n+1)

meaning that the oscillation frequency is very small: the planetary waves ¥, ;, o satisfy

T(n,k,0) ~ as |k| orn — oo,
indeed the quasi-geostrophic approximation.

o If k =0 and n # 0, the three distinct solutions to (2.2.3) are the two Poincaré
modes

7(n,0,£1) = £/6(2n + 1)

and the non-oscillating, or geostrophic, mode T(n,0,0) = 0. The corresponding eigen-
vectors of L are given by (2.2.6) if j # 0 and by

n+1
Yn—1(21) \/72/1n+1 (x1)
1
2 2n+1
\/ 1/)n 1 331 \/>"¢/)n+1 $1
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14 CHAPTER 2. EQUATORIAL WAVES

o If n =0, the three solutions to (2.2.3) are the two Poincaré and mized Poincaré-
Rossby modes

(2.2.8) (0, k, £1) = —g + % k2 + 453
with asymptotic behaviours given by
7(0,k, — sgn(k)) ~ —k as |k| — oo,
7(0, k, sgn(k)) ~ % as |k| — oo,

and the Kelvin mode 7(0,k,0) = k. The corresponding eigenvectors of L are given by
(2.2.6) if j # 0 and by

e Yo(x1)
(229) \I/() k Q(ﬁl,xg) = ——¢'""2 0
Y Vi
Yo(21)

Note that in the case when the fluid studied is the atmosphere rather than the ocean,
the mixed Poincaré-Rossby waves are known as Yanai waves.
We recall that the functions v, are defined by

z2
Yalar) = e~ 7 Pa(/Brn),
where P, is a polynomial of degree n. We therefore have an exponential decay far
from the equator.

As mentioned in the introduction, the adjustment processes are somewhat special in
the vicinity of the equator (when the Coriolis acceleration vanishes). A very important
property of the equatorial zone is that it acts as a waveguide, i.e., disturbances are
trapped in the vicinity of the equator. The waveguide effect is due entirely to the
variation of Coriolis parameter with latitude.

Note that another important effect of the waveguide is the separation into a discrete
set of modes n = 0,1,2,... as occurs in a channel.

The dispersion curves for equatorial waves are given in the following figure.

2.2.2. Diagonalization of the singular perturbation. — In this paragraph we
are going to show that the previous study does provide a Hilbertian basis of eigen-
vectors.

PROPOSITION 2.2.3. — For all (n,k,j) € NxZx {-1,0,1}, denote by 7(n, k, j) the
three roots of (2.2.3) and by U, 1 ; the unitary vector defined in Paragraph 2.2.1.

Then (Yo k,j)(nk,j)eNxzx{—1,0,1} 5 a Hilbertian basis of L?(R x T) constituted of
eigenvectors of L:

(2.2.10) V(n,k,j) e N X Zx{-1,0,1}, LYy, =im(n,k,j)Vn ;-

MEMOIRES DE LA SMF



2.2. DESCRIPTION OF THE WAVES 15

Poincaré modes

Mixed Poincaré—RossW

v

Rossby modes

FIGURE 1. Dispersion diagram for shallow water in the equatorial wave-
guide (from [14])

Furthermore we have the following estimates: for all s > 0, there exists a nonneg-
ative constant Cs such that, for all (n,k,j) € N x Z x {-1,0,1},

Wkl ey < Coy Wk jllwsee@mxm < Cs(1+ k> +n)¥/2,
O (U + k[ +n)"% < [ jll e () < Cs(1+ [K|* +n)*/2,

(2.2.11)

where W*°° denotes the usual Sobolev space. Moreover the eigenspace associated to
any nonzero eigenvalue is of finite dimension.

Proof. — In order to establish the diagonalization result, the three points to be
checked are the identity (2.2.10), the orthonormality of the family (¥, 1 ;), and the
fact that it generates the whole space L*(R x T).

o U, 1 ; is an eigenvector of L

We start by establishing the identity (2.2.10), where 7(n, k, j) is defined by (2.2.4)
and (2.2.5) and ¥, 1 ; is defined either by (2.2.6) (for the Poincaré and Rossby
modes) or by (2.2.7) (for the non-oscillating modes), or by (2.2.9) (for the Kelvin
modes).
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16 CHAPTER 2. EQUATORIAL WAVES

For the Poincaré, Rossby and mixed Poincaré-Rossby modes, we start from

formula (2.2.6)
5] i Bn+1)
T(n, k7] )+ k ?an 1) n k,j)—k 2 Yn1(21)

Uk = g™ 21)
(k. j) +/c\/7w” @) /cij) k B(n; Do)
We have LW, j,; = Cp ;™2 Vi 1 where V1 denotes
ole) + ity 2 (W” o)+ )
Vo (o Gt ae) ~ s o) + 7 L et (01) a1
sorta(en) +ikyf 2 (T e Sy

which can be rewritten using the identities (2.2.1)

T(n.k,j) [Bn rn,k,j)  [Bn+1)

m wn 1( ) (TL, k’,]) — k B ’l/JnJrl(iCl)

i
mﬁn¢n($l) mﬂ(n + 1)1/)n(g;1)
T(n,k,j)  [Bn r(n,k,j) [Bln+1)
_W Q/Jn 1( ) (n,k,j) K B ’l/JnJrl(iCl)
As 7(n, k, j) satisfies (2.2.3), we have

! ¢ (@2n+1)Br(n.k.j) + Bk _ ,
T(n7k,j)+k6n+ T(n,k,j) —kﬂ(n+1) T(n k, j)2 — k2 =ir(n,k,j)

from which we deduce that

LY, ; =ir(n,k,j)U,,; for all (n,k,j) € NxZ x {-1,1} UN" x Z* x {0}.

For the Kelvin modes we start from formula (2.2.9)

1 ‘k: z/JO
v = ——e'" 0
0,k,0 i
o
We have
1, ko ik o
LY = e'hre T1g + P | = —e**? 0 ,
0,k,0 T & 1?#0 (0N Nz

Zkﬂ/)o ¢0

or equivalently
L\I/07k70 = ik\I/07k70 for all k € Z.
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2.2. DESCRIPTION OF THE WAVES 17

For the non-oscillating modes we start from formula (2.2.7)

1 (n+1 wn 1 — \/72/]n+1

27 (2n + 1) | —
T"r/)n—l - \/;’lr/)n+l

An easy computation shows that

\Ijn,O,O =

0
1 +1 ’ ’
LV, 00= m (n 5 )(fl"/}nfl —Pp_1) — \/g(fvl"/]nJrl +Ypi1)
0

which is zero by (2.2.1). Thus,
LV, 00 =0 for all n € N*.

o (U, 1 ;) is an orthonormal family

By identity (2.2.10) and the fact that ((2m)~'/2e**2),cy and (¢, (21))nen are
respectively Hilbertian basis of L?(T) and L?(R) we are going to deduce that (¥, x ;)
is an orthonormal family.

In formula (2.2.6), we choose

gz (B fn+ 1) o
(2.2.12) Cn,k,j = (27") / ((T(n, kv]) 4 k)2 (T(n7 k,j) — /ﬂ)2 + 1)

so that
H‘I’n7k,j| %2(R><T) =1,
for all (n,k,j) € N xZ x {—1,1} UN* x Z* x {0}.
In the same way, it is immediate to check that

||‘I’n,0,0||2L2(RxT) =1,
for all n € N*, and that

1o, k0ll72mxm) = 1
for all k € Z.

In order to establish the orthogonality property we proceed in two steps.
If 7(n, k,j) # 7(n', k', j'), as L is a skew-symmetric operator, we have

i (1, K, ) (U [V e ) = = (LW | W e v )
= (Vg | L i 57)
=ir(n' k', 5") (Vi | Wr i )
from which we deduce that

(\Ijnxk)j|\:[jn,:k/:j/) = 0'
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18 CHAPTER 2. EQUATORIAL WAVES

If 7(n,k,j) = 7(n', k', j'), we first note that
for k £k, (W |V pj) =0
using the orthogonality of e?**2 and ¢®'*2 S0 we are left with the case when k = k'.
First, if 7(n,k,j) = 7(n',k,j7') = 7 # 0 and n # 0, then Lemma 2.2.1 implies
that n = n’ and 7 = j'. Then in the case when 7(0,%,j) = 7(0,k,5') = 7 # 0,
with j # j/, we just have to consider the explicit definition of ¥y ; and Wq ;- given
in Paragraph 2.2.1 to find that

(P01 Po,ry7) = 0.
Finally, if 7(n,k,j) = 7(n/,k’,5") = 0, we have k = k¥’ =0 and j = j/ = 0 and we
deduce from formula (2.2.7) that
forn#n',  (¥n00/¥n,00) =0
We thus conclude that
(WP i gr) = 0,
as soon as (n,k,j) # (n/, K, j").

o (U, ;) spans L2 (R x T)

It remains therefore to see that any vector ® of L2(R x T) can be decomposed on
the family (¥, & ;).

We first decompose each component on the Hermite-Fourier basis

1 ' q}o(kﬂn)@[]n(fl)
O(z1,22) = Von Z e’ Oy (K, n)¢n (1) |

n.k o (k,n)hn (1)

where the Fourier coefficients can be rewritten

L(@g(k,n+1) + So(k,n + D)nri(@1) + L(@g(k,n — 1) — Oa(k,n — 1))y_1(21)
R R @1(’6,71)1#7,,(?‘1) N
(®o(k,n +1) + ®a(k,n+1))nir (21) — 5(Po(k,n — 1) — Sa(k,n —1))¢hn—1(21)

(Do(k,0) + P2(k, 0))vbo (@) + 5(Ro(k, 1) + Da(k, 1)¢r (1)

) ) Dy (K, 0)¢o(21) R
(Do (K, 0) + Do (K, 0))tho(z1) + 5(Po(k, 1) + Pa(k, 1))t (1)

N D=

[ SR

We then introduce for all (n,k) € N x Z the matrix M, € M3(R) defined
by

(2.2.13)
—iCn7k7_1\/ﬂn/2 —Z'C7L)k70w/ﬁn/2 —Z'C7L)k71w/ﬁn/2
T(n, k,—1)+k T(n,k,0) + k T(n,k, 1)+ k
Mn,k = Cn,k,—l Cn,k,O Cn,k,l
iCpi,—1V/Bn+1)/2 iCy k0B +1)/2  iCpya/B(n+1)/2
T(n,k,—1) —k T(n,k,0) — k T(n,k,1) — k
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if n #0 and k # 0, by

(2.2.14)
—iC’no_“/ﬂn/Q _iC7LO 1V 6”/2
) _ ' 1 2 (]
(0,0, 1) Croovitnt ] 7(n,0,1)
Mn70 = On,(),—l 0 Cn,O,l
iCho—1 ﬂ(n+1)/2 iCho1 6(714—1)/2
et _ ' 2 (]
7(n,0,—1) 0.0V Bn/ 7(n,0,1)
if n # 0 and by
0 V1/4r 0
Co k.—1 0 CO k,1
2.2.15 My = o o
( ) Ok iCok,—1\/3/2 0 iCo,k,17/ /2
7(0,k,—1) — k 7(0,k,1) — k

As the eigenvectors U, 1 1, ¥y, 10 and V¥, ;1 are orthogonal in L2(R x T), these
matrices are necessarily invertible.

We conclude by checking that one can write
= uriVnkg
n,k,j
where ¢y, 1 ; is defined by

L@k n — 1) = &y(k,n — 1))

Pn,k,—1 1 92 R
prko | = =M | b1 (k, )
Pn,k,1 5(‘%0(16,714— 1) +(i)2(k7n+ 1))
for n # 0, and by
1 . N
©0,k,—1 1 5(‘1’0(16, 0) + ®5(%,0))
_1 ~
$0,k,0 =—M,; ®1(k,0)
A /2 )
$0,k,1 > 2 -

e The regularity estimates are obtained using the explicit formulas (2.2.6), (2.2.7)
and (2.2.9), as well as the following bounds on the elementary Fourier and Hermite
functions:

€72 | o (zy = KL Il€™ 2 [ L2(mys 1€ lyiresc0 oy = [KI*]1€™2[| oo ()

and

||¢7LHH9(R) ~ (1 + n)s/2 sup ||¢7L||L2(R)7 ”wn”WSvOO(R) < Cs(l _|_n)s/2 sup ||¢7LHL°°(R)
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20 CHAPTER 2. EQUATORIAL WAVES

coming from identities (2.2.1) by a simple recurrence. The crucial point is therefore
to have a uniform L°°-bound on the Hermite functions, which is stated for instance
in [20], [24]:

(2.2.16) Vn €N, [[tnllLem) < Coo with Cog ~ 1.086435.

Finally let us prove that the eigenspace associated to a nonzero eigenvalue
is of finite dimension. Suppose by contradiction that there is A # 0 and a se-
quence (nar, kar, javr)men in N x Z x {—1,0,1} such that

T(nar, kar, i) =X and gy + k| — o0, as M — oo.

By Lemma 2.2.1, as n or |k| goes to infinity, the eigenvalue 7(n,k,j) goes
to zero or to +oo, which contradicts the assumption that 7(nar,ka,jv) =
A

This concludes the proof of Proposition 2.2.3. O

As the behaviour of the eigenmodes are expected to depend strongly of their type,
i.e., of the class of the corresponding eigenvalue, we split L2(R. x T) into five supple-
mentary subsets, namely the Poincaré modes, the Rossby modes, the mixed Poincaré-
Rossby modes, the Kelvin modes and the non-oscillating modes.

DEFINITION 2.2.4. — With the above notation, let us define
P= Vect{\:[/ka /(n,k,j) € N* x Z x {~1,1}
U{0} x {(k, —sign(k))eez- } U {0} x {0} x {-1,1}},
R=Vect{V, o/ (n k) e N* x Z*},
M =Vect{Voy;/keZ", j=sign(k)},
K = Vect{\llo,k,o/k S Z*},
so that L>(RxT) = POROM S K@®KerL. Then we denote by Ilp (resp. Tlg, My, Mk
and Iy) the L? orthogonal projection on P (resp. on R, M, K and KerL).
Moreover we define & the set of all eigenvalues of L, as well as the following subsets
of N x Z x {—1,0,1}:
Gp = {T(n, k. 7) / (n,k,j) € N* x Z x {1, 1}}
U {7‘(0, k, —sign(k)) / ke Z*} U {£/3},
Sp = {T(n, k, 0) / (n, k, j) € N* x z*}, and S = Z*.

Finally it can be useful for the rest of the study to sum up the previous notation
in the following picture.
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wave n k j definition of W,  ; definition of 7(n, k, j)
Poincaré N* | Z {-1,1} (2.2.6) page 13 | 7(n,k, £1) ~ £4/k2 + B3(2n+ 1)
{0} | Z* | —sign(k) (2.2.6) page 14 7(0, k, —sign(k)) ~ —k
{0} | {0} | {-1,1} | (2.2.8) page 14 7(0,0,£1) = £/
Mixed {0} | Z* | sign(k) (2.2.6) page 14 7(0, k, sign(k)) ~ %
Kelvin {0} | Z* {0} (2.2.9) page 14 7(0,k,0) =k
Rossby N* | Z* {0} (2.2.6) page 13 7(n,k,0) ~ %
non-oscillating | N | {0} {0} (2.2.7) page 13 7(n,0,0) =0
TABLE 1. Description of the waves
2.2.3. Orthogonality properties of the eigenvectors. — In this section we are

going to give some additional properties on the V¥, ;. ; defined above, which will be

useful in the next chapters. We will write 1I,, . ; for the projection on the eigenmode
W, k,j of L, and II for the projection on the eigenspace associated to the eigenvalue A

of L. The main result is the following, which states an orthogonality property for the

ageostrophic modes (meaning the eigenvectors in (KerL)1).

analogue of that result for geostrophic modes.

Note that there is no

PROPOSITION 2.2.5. — Let s > 0 be a giwen real number. There is a constant C > 0
such that for any non zero eigenvalue i\ of L and for any three component vector
field @ in (Ker L)+, we have

071

by

7(n,k,5)=A

(2.2.17)

2
”HTL ku(I)HH s(RxT) < ||H>‘q)||H‘~°(R><T)

< Cs

2.

7(n,k,5)=

2
HanJ(I)HHs(RXT)
A

Proof. — Let @ in (Ker L)+ be given and let s be any integer (the result for all s > 0
will follow by interpolation). We have

107 (A7 > erry =

+

Of course,

(2.2.18)

>

HBS(Hka(I)) ||%2(R><T)

7(n,k,5)=A

>

T(n,k,j)=7(n* k¥ j*)=X,

(n,k,§)7#(n* k>, 5%)

(0° (M 1o, )[0° (Wi o= ) L2 (merry -

(07 1 510" Wne ke o) po(rory = O if b 7 K
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Moreover we know by Proposition 2.2.3, page 14 that if 7(n, k, j) = 7(n*, k, j*) = A #
0 and n # 0, then necessarily n = n* and j = j*. Therefore one has in fact
> (0° (I 1, ®)[0° (e k= 5+ @) p2 ()

T(n,k,j)=7(n*,k*,j*)=X,
(n,k,§)F#(n* k™, 5%)

= > (0° (Mo k., ©)0° (Mo g+ ®)) p2(mxcry -

7(0,k,j)=7(0,k,j*)=X,
J#i*

But according to Remark 2.2.2 page 12, such a situation occurs only if 2k? = 3, in
which case 7(0, k, j) is equal to k. So there is at most one possible value for k (k = )
which occurs only in the case when A = £+/3/2. In this last case, we have obviously

HH}\Q)”z s(RxT) ||H>\q)||2L2(R><T)
= Y Mkl @ma

7(n,k,5)=X
2
~ Z ||Hn7k7jq)||Hs(R><T)'
7(n,k,5)=X
The result follows. O
REMARK 2.2.6. — Note that the same argument allows actually to prove similar es-

timates for the components separately:

O Y ks ®) 1 ey < @) 2

T(n,k,j)=X
<C Y s ® g
T(n,k,j)=X
ct ( ;} AH(1'In,k,j‘1’)0Hfg,s(RxT) < 12l g ey
T(n,k,j)=

<Co Y Ik ol rocr
T(n,k,5)=X

denoting by ®¢ the first coordinate and by @' the two other coordinates of ®.

2.3. The filtering operator and the formal limit system

In the previous paragraph we have presented a Hilbertian basis of L?(R x T)
consisting in eigenvectors of the singular penalization L. We are then able to define,
in the spirit of S. Schochet [33], the “filtering operator” associated to the system.

Let £ be the semi-group generated by L: we write £(t) = exp (—tL). Then, for
any three component vector field ® € L2(R x T), we have

(2.3.1) LD =) e "I,
INES
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where II denotes the L? orthogonal projection on the eigenspace of L corresponding
to the eigenvalue i, and where & denotes the set of all the eigenvalues of L.

Now let us consider (7, ue) a weak solution to (1.4.3), which is formally equivalent
to

1
e + EV- ((1 + Ens)us) =0,

T 1 v
O¢te + ue - Vue + &ui 4+ -Vn. — ——Au, =0,
€ € 1+ene

_ 0 _,,0
77€|t:0 - T]ga U’E\tZO - u57

and let us define
t
(2.3.2) o, =L <—g) (Me, te).
Conjugating formally equation (2.3.2) by the semi-group leads to
t t t t\ .t
(233) 0,8, + L (_> Q (g () 3L () cps) Ny <_> AL (_> 3. =R,
€ € € € €
where A’ and @ are the linear and symmetric bilinear operator defined by

(2.3.4) A'® = (0,Ad’) and Q(®, D) = (V - (9o @), (&' - V)P')

and

4 ENe
. =L|——](0,— Au,).
R /3( 6) (0 V3 o Ue)

We therefore expect to get a bound on the time derivative of ®. in some space of
distributions. A formal passage to the limit in (2.3.3) as € goes to zero (based on
formula (2.3.1) and on a nonstationary phase argument) leads then to

(2.3.5) 0,®+ QL(D,®) — vAL® =0,

where A’} and @ denote the linear and symmetric bilinear operator defined by

(2.3.6) 1@ =Y IKATL®and QL(0,®) = Y  ILQIL® ;D).
INES rix,)\ii,iige

The study of (2.3.5) is the object of Chapter 3. The proof that (2.3.5) is indeed the
limit system to (2.3.3) is the object of Chapter 4.

In the next section we study the resonances associated to the operator L: more
precisely we describe in what cases the equality

7(n, k,j) +7(n*, k", 5°) = 7(m, k + k", {)

can hold. That will be very important in the rest of the study, to understand the
structure of the nonlinear terms in (2.3.5) (see for instance [15] for a systematic
treatment of such resonances, in the case of planetary waves).
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2.4. Interactions between equatorial waves

In this section we will study the nonlinear term in (2.3.5). We will first study the
resonances of L, and then prove that the projection of (2.3.5) onto the kernel of L is
a linear equation.

2.4.1. Study of the resonances. — Let us prove the following result.

PROPOSITION 2.4.1. — FEzcept for a countable number of 3 and with the notation of
Section 2.2.1, the following condition of non-resonance holds for all n,n*,m € N,
all k,k* € Z and all j,5*,0 € {—1,0,1}:

T(n,k,j) +7(n*, k%, j°) = 7(m, k + k%, )
implies
either 7(n, k,j) =0 or T(n*,k*,5*) =0 or 7(m, k + k*,¢) =0,
or T(n,k,j), 7(n* k¥, §%), 7(m, k + k*,¢) € Gk,

meaning that, among the ageostrophic modes, only three Kelvin waves may interact.

Proof. — Let us start by noticing that by definition of Kelvin waves, Kelvin reso-
nances necessarily take place simply because they correspond to convolution in Fourier
space.

Before starting with technical results, let us describe the main ideas of the proof.
The crucial argument is that the eigenvalues of the penalization operator L are defined
as the roots of a countable number of polynomials whose coefficients depend (linearly)
on the ratio 8. In particular, for fixed n,n*,m € N and k, k* € Z, the occurrence of
a resonant triad

T(n, k,j) +7(n*, k%, 5°) = 7(m, k + k*, {)

is controlled by the cancellation of some polynomial P, ;,+ m k. k= (). Therefore, either
this polynomial has a finite number of zeros, or it is identically zero. The difficulty
here is that we are not able to eliminate the second possibility using only the asymp-
totics f — oo. We therefore also study the asymptotics f — 0, and in the case
when n = 0 or n* = 0, we have to refine the previous argument introducing an
auxiliary polynomial.

Definition of the polynomial Py, n+ m i,k (0). — For fixed n,n*,m € N and k, k* € Z,
it is natural to consider the following quantity

P i (8) = 11 (7(n, k, §) + 7(n*, k", §*) — 7(m, k + k*,0)) .
j.g*,e{—1,0,1}

Considerations of symmetry show that this quantity can be rewritten as a polyno-
mial of the symmetric functions of (7(n,k,j))jc{-1,0,1}, the symmetric functions of
(t(n*,k*,j*))j*e{-1,0,13 and the symmetric functions of (7(m, k + k*,£))rci—1,0,1}-
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Therefore, as the eigenvalues (7(n,k, j))jc{—1,0,1} of the linear penalization L are
defined as the three roots of a polynomial (2.2.3) whose coefficients depend (linearly)
on 3

™ — (k* 4+ B(2n+ 1)) + Bk =0,

the symmetric functions of (7(n,k, j)),jc{—1,0,1} satisfy

> 7k, j) =0,

je{-1,0,1}

(2.4.7) o I k) = -(k2+ @20+ 1)3),
JE{-1,0,1} j'#j
[I k) =5k,
je{—1,0,1}

from which we deduce that Py, j,+ m k& () is a polynomial (of degree at most 27) with
respect to 3.

In particular, for fixed n,n*,m € N and k, k* € Z, either Py, y» m ik (5) is identi-
cally zero or it has a finite number of roots. In other words, that means that

(a) either, for all 8 € R*, there is a resonance of the type

r(n,k, 5) + (0", K, §%) = T(m, k + k¥, 0)

for some j,j*, ¢ € {—1,0,1},
(b) or, except for a finite number of 3, such resonances do not occur.

Asymptotic behaviour of P+ m k- (8) as 8 — oo. — In order to discard one
of these alternatives, we are interested in the asymptotic behaviour of the polyno-
mial Py px m i k* (0) as 8 — oo.

We start by describing the asymptotic behaviour of each root (7(n, k, 7)) je{-1,0,1}
as  — oo.

LEMMA 2.4.2. — With the notation of Paragraph 2.2.1, for all k € Z and olln € N,
the following expansions hold as 8 — oo:

k

T(n,k, 1) =/(2n+1)5 — m +0(1),
(248) k1) = =/ D =~ s+ ol1),

_k 4n(n + 1)k3 1

Proof. — We start with the most general case, namely the case when k # 0. We
proceed by successive approximations. As the product of the roots —gk tends to
infinity as 3 — oo, there is at least one root which tends to infinity. Therefore, we
get at leading order

™ —B@2n+ 1)1 =0,
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which implies that the Poincaré and mixed Poincaré-Rossby modes are approximately
given by

T(n,k, 1) ~ £4/(2n+ 1)5.

Plugging this Ansatz in the formula

2=(02n+1)8+k Bk (2n+1)8 (1 L K
T = - — = —
T @2n+ 1) B(2n+1)
provides the next order approximation of the Poincaré modes, namely
k
k,j) ~ j\v(2 1) — ——

Then, as the sum of the roots is zero (see (2.4.7)), we deduce that the third mode,
i.e., the Kelvin or Rossby mode, satisfies

7(k,n,0) =

1).
2n+1+0( )

Plugging this Ansatz in the formula

Bk 413
(2n+1)8+ k2

leads then to

k 1 &3 2 1
Tk, 0) = 57 (1+@(2n+1)3 - (2n+1)5) +O<B>'

The other case (when k = 0) is dealt with in a very simple way. The Poincaré

modes are exactly
T(n,0,£1) = £4/(2n + 1),

whereas the third mode is zero
7(n,0,0) =0,

and thus they satisfy the general identities (2.4.8).
The result is proved. O

Equipped with this technical lemma, we are now able to characterize the asymptotic
behaviour of most of the factors

r(n,k, ) + 7(n*, k*,§%) — T(m, k + k", 0)

in Pn7n*,m7k7k* (ﬂ) as /6 — O0.
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LEMMA 2.4.3. — With the notations of Paragraph 2.2.1, any triad of nonzero modes
(r(n,k, 3), (0" k5 7 (m, k + &, 0))

with k,k* € Z and n,n*,m € N, which is not constituted of three Kelvin or three
Rossby modes, is asymptotically non-resonant as § — oo.

More precisely the following expansions hold as § — oo:

(i) for three Poincaré or mized Poincaré-Rossby modes (j # 0 and j* # 0 and

(+40)
T(n,k,y ) +T(0* k%, 57) =T (m, k+E 0) ~ /B (V20 + 1+ V2 +1—V2m + 1) ;

(ii) for one Poincaré or mized Poincaré-Rossby mode and two Rossby or Kelvin or
zero modes

T(n,ky ) +T(0 k%, 5) =T (m, kS 0) ~ /B (V20 + 1+ 5" V2n* +1—V2m + 1) ;

(i) for two Poincaré or mixed Poincaré-Rossby modes and one Rossby or Kelvin
mode

3C = C(n,n*,m,k,k*) >0, |r(nk,j) +7(n* k*, j*) — 7(m, k + k*,0)| > C;

(iv) for two Kelvin modes and one Rossby mode

ac =C(n,n*,m,k, k") >0, |T(n,k,j) +7(n* k%, §%) — 7(m, k + k*,€)| > % ;
(v) for two Rossby modes and one Kelvin mode
acC =C(n,n*,m, k, k") >0, ‘T(TL, k,j)+7(n*, k%, 5%) — 7(m, k + k*,é)‘ > %

Proof. — The proof of these results is based on Lemma 2.4.2.
(i) In the case of three Poincaré or mixed Poincaré-Rossby modes, Lemma 2.4.2
provides

T(n,k, §) + 7(n*, K, 7*) — 7(m, k + k*,€)
=B (V2N + 1+ 5*V2n* +1—0V2m +1) + o(\/B),

and it is easy to check, using considerations of parity, that the constant

(V2n+1+5*V2n* +1—0v2m+1)

cannot be zero.

(ii) In the case of one Poincaré or mixed Poincaré-Rossby mode, we have one term
which is exactly of order /3 whereas the others are negligible compared with /3,
thus the sum is equivalent to the Poincaré mode, and the same formula holds

T(n,k, ) +7(n*, k%, 7°) — 7(m, k + k*, 0)
= VB (V2 + 1+ Vet +1—0V2m+ 1) + o(\/B).
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(iii) The third case is a bit more difficult to deal with, since the leading order terms
can cancel each other out. Without loss of generality, we can assume that £ = 0 and
J,7* # 0 (the other cases being obtained by exchanging j, j* and —¢).

If j=j5% orif j4j* =0 and n # n*, the same arguments as previously show that
the same formula holds

T(n, ky ) +7(n* k", )= T(m, k+k* 0) ~ /B (jV2n+ 1+ V20" +1 - /2m + 1),

since the factor of 1/ is not zero.
If j + 5% = 0 and n = n*, the factor of v/ cancels and we have to determine the
next term in the asymptotic expansion:

k+ k* k+k*
k,j kR G — kE+k*0)=— — 1).
T(n,k, j) + 7(n", k", §%) — T(m, k + k", £) SEn+1)  2mil +o(1)
Considerations of parity show therefore that the limit cannot be zero if k + k* # 0,

or equivalently if 7(m, k + k*,0) # 0.

(iv) In the case of one Rossby and two Kelvin modes, we are not able in general to
prove that the leading order term, i.e., the limit as 8 — oo of 7(n, k, j)+7(n*, k*, j*)—
T(m, k+k*, £) is not zero. But we can look directly at the second term of the expansion,
i.e., the factor of 3~

43n(n+1)  4(k*)>Pn*(n*+1)  4(k+Ek*)>m(m+1)
C @Cn+ DY (2nr41)4 (2m +1)4

Considering one Rossby and two Kelvin modes means that k, k* and k + k* are not

w1 =

zero, and that exactly two indices among n, n* and m are zero. Thus wy # 0 and

Jon]

‘T(na k,]) +T(n*7k*7j*) _T(m7k+ k*’é)‘ 2 25

for 3 large enough.

(v) The last situation is the most difficult to deal with, since the only thing we will
be able to prove is that the two first terms of the asymptotic expansion of 7(n, k, j) +
T(n*, k*, j*) — 7(m, k + k*,£) with respect to 8 cannot cancel together. By Lemma
2.4.2, we deduce that for one Kelvin and two Rossby modes

k) + (0K, = T b+ k) =0+ 5+ o (%)

with
ok N o k+k
T+l 2+l 2m+1

wo
and
43n(n+1)  4(k*)3n*(n*+1)  4(k+Ek*)>m(m+1)
C @n+ DY (2nr+1)4 (2m +1)4
Recall moreover that k, k* and k+ k* are not zero, and that exactly one index among
n, n* and m is zero. Without loss of generality, we can assume that m = 0 and

w1 =

n,n* # 0 (the other cases being obtained by exchanging n,n* and m).
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Then, if wg = w; =0,
kn k*n*
+ =
2n+1  2n*+1
EBnn+1)  (k*)3n*(n* +1)

0,

2n+ 1) G iE

from which we deduce that
(n+1) B (n*+1) ~0

n2(2n+1) (n*)2(2n*+1) '

Therefore, as the function
z+1
- 222z 4+ 1)

decreases strictly on R*, we get n = n* and thus k = —k*, which contradicts the fact

that k£ + k* # 0.
We conclude that either wg # 0 or wy # 0, so that

|
20
for 8 large enough. Lemma 2.4.3 is proved. O

|7(n, k, §) +7(n* k*, §*) — 7(m, k + k*,0)| >

Let us go back to the proof of Proposition 2.4.1, and first consider the case when
k#0, k" #0and k+ k* # 0. In view of Lemma 2.4.3, the asymptotic behaviour of
Py > m ke (B) as B — oo is completely determined by the behaviour of the factor

Un,n*,m7k7k* (6) = T(TL, kV 0) + T(n*7 k*v O) - T(mv k + k*a 0)

Indeed, Py n+ m.k k+ (3) is defined as a product, eight factors of which involve triads
of type (i), six of which involve triads of type (ii), twelve of which involve triads of
type (iii) and the last factor of which is o g* nn* m(5). By Lemma 2.4.3 we then
deduce that there exists a nonnegative constant C' (depending on k, k*, n,n*, m) such
that

|Pn7n*,m,k,k* (ﬁ)} > Cﬁ7|an7n*7m,k,k* (ﬁ)‘ .

If one or two among n, n* and m are zero, properties (iv) and (v) in Lemma 2.4.3
allow to conclude that for 3 large enough

}Pn,n*,m,k,k* (ﬂ)| Z 0667

and thus P, n* m i k= has a finite number of roots.

If n,n*, m are all equal to zero or n, n*, m are all nonzero, we cannot conclude as no
estimate on oy, pn« m. gk~ () at infinity is available. Therefore, either oy, px m i,k () is
identically zero for § large enough, or P, p+ m. i k- (3) has a finite number of roots.

Thus at this stage, in order to prove Proposition 2.4.1, it remains
(1)  to consider the case when k, k*, k + k* # 0 and oy 5% ik~ (5) is identically
zero for 3 large enough, with n,n*, m all zero or all nonzero;
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(2)  to study the case when k or k* or k + k* is zero (in order to establish that
only the triads involving a zero mode may be resonant).

Conclusion in the case of (1). — In the case when n,n*, m are all zero, then the
resonances corresponding to 0,00,k (8) = 0 are precisely Kelvin resonances, which
cannot be removed.

In the case when n,n*, m are all nonzero, then oy, p= m .k (03) is an analytic func-
tion of § (the roots of (2.2.3) — defined explicitely with Cardan’s formula — do not
cross each other according to Lemma 2.2.1, and thus depend analytically on 5): in
particular, if oy, p+ m kk+ (3) cancels for § large enough, then it is identically zero. Let
us describe the asymptotics of the roots as § goes to zero.

LEMMA 2.4.4. — With the notation of Paragraph 2.2.1, for allk € Z and alln € N*,
the following expansions hold as 3 — 0:

T(n,k,0) = % + o(1).
Proof. — Since the product of the roots goes to zero as 3 goes to zero, we infer that

at least one root goes to zero with 3. Let us consider that root. Since 3(2n + 1) is
negligible with respect to k2 and 73 is negligible with respect to k27, we find that

k*r — kB ~ 0,

so that one root is equivalent to % as 0 goes to zero. It is easy to see that the two

other roots are then equivalent to £k, so that we do have 7(n,k,0) ~ % (we recall

that for n # 0, the roots are numbered in increasing order). The lemma is proved. O

Now going back to the study of case (1), in view of Lemma 2.4.4 it is obvious
that oy, 5% m,k,k+ (8) cannot vanish indentically.

Conclusion in the case of (2). — In this situation, we need to refine the previous
analysis by introducing an auxiliary polynomial. We thus define

T = {(G.5°.0) € =101/ L # 0 i k4 b =0,
j;éOifk:Oandj*;éOifk*zo}

and

Qnoemii(B) = [[  (r(k,d) + (0" K 5%) = 7(m. k + k*,0)).
(5,9* L) ET ) o
That corresponds to the remaining possible resonances, where we have omitted the
trivial case when one wave is geostrophic (7 = 0).

As previously, considerations of symmetry show that this quantity can be rewritten
in terms of the symmetric functions of (7(n,k,7))jer—1,013 (or (7(n,k,5))je(-1.1}
if £ = 0), the symmetric functions of (7(n* k¥ j*))j«c{—1,0,13 (or (7(n* k% 5%))j=c{—1,1}
if k* = 0) and the symmetric functions of (7(m,k + Ek*,£))ici—113 (or
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(r(m,k + k*,€))ee{-1,01} if £+ k* = 0). Noticing that the symmetric func-
tions of (7(n,0,5))je{-1,1} are affine in 3, we conclude that Q n+m ki (3) is a
polynomial in S3.

The asymptotic analysis of the various factors as § — oo shows that

|Qn,n*7m,k,k* (ﬂ)| Z CﬁB

for 8 large enough. Therefore, Qp n+.m k. k() has a finite number of roots, meaning
that there exist a finite number of 8 such that resonant triads with £k =0 or k* =0
or k + k* = 0 (other than the triads involving a non-oscillating mode) can occur.

We have therefore proved that

(1)  in the case when k, k*, k+k* # 0 and oy, n» m ik (5) is identically zero, only
the triads involving three Kelvin modes are resonant for an infinite number of 3;

(2)  when k or k* or k+ k* is zero, only triads involving zero modes are resonant
for an infinite number of g.

Combining this result with the conclusion of the previous paragraph achieves the
proof of Proposition 2.4.1. O

2.4.2. The special case of Ker L. — In this short section we are going to write an
algebraic computation which in particular allows to derive the following proposition.

PROPOSITION 2.4.5. — Let ® and ®* be two smooth vector fields. Then for everyn €
N, we have

(Wn,0,0|QL(®, %)) 2 m 1) = O-

REMARK 2.4.6. — That proposition implies that the projection of the limit sys-
tem (2.3.5) onto Ker L can be formally written

8,51_[0(1) I3 VAILHO(I) = 0.

Proof. — We are going to prove a more general result, computing the quantity

(‘I’A|QL(‘I’W ‘I’ﬁ))

L2(RXT)
where @, ®, and ®; are three eigenmodes of L associated respectively with the
eigenvalues i\, ip and ¢fi where A = p + fi. The proposition corresponds of course to
the case when A = 0.

We have

(221Q(@. 22)) = (2@, 20))

L2(RXT) L2(RXT)
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hence denoting by ®» the complex conjugate of @y, we get

(‘PA\QL(Q’W ‘I’ﬁ))

L2(RXT)
[~ _
=3 / (Pr0V - (0] + Pjio®),) + D) - (P, - VI, + @ - VD)) do

1 - -
=3 / (=V®r0 - (Ppo®) + Pao®),) + B - (V(P), - D)) + V- & + LV @) do

1 _ = -
=5 [ (BrrB 4 TB10) - (B0 + 508 + (V- 35)0, - 2}) do

1 (-
+3 / D\ - (V- @) — By ®j) + BH(VE - @), — a1 @) da.
Using the identities
V- @\ =i\®, 0,

B O + YV, o = iAD,,
as well as their combination

By, = iNVE - D) — Bz1®y )

and similar formulas for ®, and ®;, we get

((I)”QL((I)’“ q)‘_‘)) L2(RXT)

L 000+ )+ 000, 8

- % / B 2(ip + i1) (V- B}, = fa1By,0) (V- @ — fr1 @j.0) da

_ % /Z')\(Vl S\ — Br1®y0)(Dpa (V- B — 1) + Ppa(VE - @), — B21D,,0)) do

from which we deduce

(2.4.9)
o ., 05
(BrlQ@u @)
i\ ~ p
= 2 [ (- (0@ + $0®)) + D20, - @) do
A [ =
— % (I')\’Q(VJ' . (I);L N 51’1‘I>u’0)(vl . @}L — ﬂl‘lq)ﬁ’o) dI
A _ -
— % (VL . CI)/A — ﬁl’lq)Avo)((I)#,Q(vl . q)il — ﬁ$1q)ﬁ70) + <I>ﬂ,2(VJ' . (I);l, — ﬂl‘lq)u,o)) dl’

In particular for A = 0 this quantity is always zero, which proves Proposition 2.4.5. O

MEMOIRES DE LA SMF



CHAPTER 3

THE ENVELOPE EQUATIONS

The aim of this chapter is to study the system (SWj) obtained formally page 23
as the limit of the filtered system (2.3.3) as € — 0. Let us recall the system:

P+ Qr(®,®) —vAL® =0

(I)|t:0 N (7707 ’U,O),

where A’ and @, denote the linear and symmetric bilinear operator defined by (2.3.6)
page 23.

(SWo)

Two different types of wellposedness results will be proved on (SWy): first we will
prove the existence of weak solutions in L? and of a unique, strong solution if the data
is smooth enough (on a short time interval, which becomes infinite for small data).
Then we will show that except for a countable number of 3, the strong solutions exists
globally in time as soon as the initial data is only in L2, of arbitrary norm.

The statements of both theorems can be found in Paragraph 3.2, and their proofs
are respectively the object of Paragraphs 3.4 and 3.5. In order to establish those
results we will need to define, in Paragraph 3.1, suitable function spaces, compatible
with the penalization operator L as well as the diffusion operator. Some technical
preliminaries devoted to those spaces are proved in Paragraph 3.3: in particular in
Paragraph 3.3.2 we prove the continuity of the bilinear operator @)1, in those function
spaces. Finally the last part of this chapter is devoted to an additional smoothing
property on the divergence.

3.1. Definition of suitable functional spaces

By construction the operators A}, and @ appearing in the limiting filtered system
(SWy) are defined in terms of the projections (II));xes on the eigenspaces of L. In
particular, they are not expected to satisfy “good” commutation properties with the
usual derivation V. Therefore in order to establish a priori estimates on the solutions
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to (SWy) we have to introduce some weighted Sobolev spaces associated to some
derivation-like operator which acts separately on each eigenmode of L.

Let us therefore introduce the following norms. We will write as previously I, j ;
for the projection on the eigenmode W¥,,  ; of L and II for the projection on the
eigenspace associated to the eigenvalue ¢\ of L. Finally we define

S=NxZx{-1,0,1}.

DEFINITION 3.1.1. — Let s > 0 be a given real number. We define the space Hi as
the subspace of (L*(R x T))? given by the following norm:

def s
elay = | D (T+n+ k) |k @l o)
(n,k,j)€S

Due to the definition of the eigenvectors of L seen in the previous chapter, one can
prove the following proposition.
PropPOSITION 3.1.2. — Let s > 0 be given. Then one has the following property:
Vo € Hi, [|®]my ~ [|(Id— A+ B°21)**P| 2 (roxm-
In particular, H3 is continuously embedded in H* (R xT), and for all compact subsets

Q of R x T, H5(Q) is continuously embedded in H} .
Moreover for all ® € Hi N (Ker L), we have

=

1@l ~ | > 1@ )
ireG\{0}

Finally if ® belongs to K U P, as defined in Definition 2.2.4 page 20, then

1

2

@l ~ [ D 4+ N II®| e myr)
ire&\{0}

Proof. — Let us first prove the first equivalence: let ® € Hj be given. Then we have

[0d =&+ #a)0lE = || 30 (d = A+ Fad) M 9|
(n,k,5)€S

2
2

By the identity
_7%{ + ﬂx%¢7l = ﬂ(2n + 1)%
the orthogonality of the family (¢,,)nen and the explicit formulas (2.2.6), (2.2.7) and
(2.2.9) for ¥, , j, we infer that, for all integers o,
1(1d = A+ B%23) Wy gy — (L0 + k) W g2 < C(L+n+ k)77,
which implies in particular that

(0 = A+ B3)7 W 110 = A+ B23) W) |<C+n+r)

L2(RXT)
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On the other hand,

(14 = 8+ 83) W14 = A B W) =0 £ on k£ K

so we find that
[(Id — A+ ﬂx%)gq’H%?(RxT)
= > (Ad = A+ Ba})7T,, 1 ®|(Id — A + B23) T 4 - D)

n,k,j J*

~ Y (4 k) Mk @l 72 (-
n,k,j

We then obtain the first equivalence for all s > 0 by interpolation.
Then, from the inequality
Vo € Hi, [|®]lmsmxr) < Cll(1d — A+ B2})*>®| L2(mox)
along with the fact that and for all ® € C*°(R x T) supported in [-R, R] x T,
[(d — A+ ﬂx%)s/zq’HLQ(RxT) <CO(1+ R2)8/2H(I)||H5(R><T)

we get the embeddings H5(Q) C Hf C HS(R x T) for all Q CC R x T.

The second result of the proposition is easy, using Proposition 2.2.5 page 21:

. 1
Vid € &\ {0}, ron Z L ki@ F (rxery < TR (mx)
s 7(n,k,j)=XA

<Co Y Mk i@l mxrs
T(n,k,j)=X

and recalling that by Proposition 2.2.3 page 14, we have
1
5(1 k) < Wl mery < Cs(1 40+ K2)*/2,

Finally the last result, concerning Kelvin and Poincaré modes is simply due to
Lemma 2.2.1 and Proposition 2.2.3.
The proposition is proved. O

REMARK 3.1.3. — The Hj estimates are both regularity and decay estimates. In
particular, the embedding H; C L*(R x T) is compact, and we have the following
equality
() Hi =SR xT).
s>0
Note that these spaces are also used by Dutrifoy and Majda [7] to study the uniform
wellposedness of a non-viscous version of (SWe).
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3.2. Statement of the wellposedness result

The main results of this chapter are the following two theorems. We have writ-
ten I1; ® for the projection of ® onto (KerL)*. In the next theorem, we state the
global existence of weak solutions and the local in time existence (and uniqueness) of
strong solutions.

THEOREM 2 (Wellposedness results for all 3). — There is a constant C such that the
following results hold. Let ®° € L?(R x T;R3) be given. Then

e there exists a global weak solution ® € L>®(RT;L*(R x T)) to (SWp), such
that 1L ® belongs to the space L*(R*; Hi), and which satisfies for every t > 0 the
enerqy estimate

1 t v [t
O / IV (0@Y () 3oy '+ o5 / IV (@) ()2 gy

1
< SIP°NZe oy

e if we further assume that IIp®° belongs to Hi for s > 0, then Io® (which is
unique) belongs to LS. (RT; Hf ).

o if TIH®Y belongs to L*(R x T) and 11, ®° belongs to Héﬂ, then there exists a
mazximal time interval [0, T*[, with T* = +oo under the smallness assumption

0@ z2rxry + LY 12 < O,

such that ® is the unique solution to (SWy), and I, @ belongs to L2.([0, T*], Hé/z) N
13,00, T ;).

o if 11, 9% belongs to Hi for some 1/2 < s < 1, then I, ® belongs to
Ly (10, T*[, Hy) N LT, (0,7 HE ™).

loc

The previous theorem is much improved if a countable set of values for (3 is removed.

THEOREM 3 (Wellposedness results for generic 3). — There is a constant C and a
countable subset N of RT such that for any 8 € RT\ N, the following result holds.
Let ®° € L?>(R x T; R?) be given. Then (SWy) is globally wellposed, in the sense that
there is a unique, global solution ® in L°°(RT; L2(R x T)) such that 11, ® belongs to
the space L*(R*; H}), and which satisfies the energy inequality of Theorem 2.

o if we further assume that 11, ®° belongs to Hf, for 0 < s <1, then I1, ® belongs
to LS (R, H )N L2 (RT, HH.

loc

REMARK 3.2.1. — These results are based on a precise study of the structure of
(SWh), and in particular of the ageostrophic part of that equation, meaning its projec-
tion onto (Ker L)*. One can prove in particular that the ageostrophic part of (SWp)
is in fact fully parabolic. That should be compared to the case of the incompress-
ible limit of the compressible Navier-Stokes equations, where again the limit system
is parabolic, contrary to the original compressible system (see [5], [8], [26]). Note

MEMOIRES DE LA SMF



3.3. PRELIMINARY RESULTS 37

however that (SWy) actually satisfies the same type of trilinear estimates as the three-
dimensional incompressible Navier-Stokes system, which accounts for the fact that in
Theorem 2 unique solutions are only obtained for a short life span (despite the fact
that the space variable Tuns in the two dimensional domain R x T). In the case of
Theorem 3, we use the study of resonances of the previous chapter which shows that
the limit system is linear, except for its projection onto Kelvin modes; but Kelvin
modes are essentially one-dimensional so energy estimates are much improved com-
pared to the case of Theorem 2, and that is why global wellposedness is true in L?, for
arbitrarily large initial data.

The rest of this chapter is devoted to the proof of those theorems. Some preliminary
results are proved in Section 3.3 below, namely the fact that the ageostrophic part of
the limit system is parabolic, along with trilinear estimates. In Section 3.4 we prove
Theorem 2, whereas the proof of Theorem 3 can be found in Section 3.5. The last
section will be devoted to an additional regularity result, giving an estimate of the
divergence of ®’ in both cases, which will be useful in the next chapter.

3.3. Preliminary results

Let us prove some results that will be used throughout this chapter: in Section 3.3.1
below, we prove that the limit system, projected onto (KerL)* is parabolic. In
Section 3.3.2 we prove crucial trilinear estimates.

3.3.1. Parabolicity of the ageostrophic limit equation. — In this section we
are going to prove that the projection of the limit system onto (Ker L)+ is parabolic.
To obtain that result, the important remark is that, for each eigenmode of L, the
first and third components of the eigenvectors (corresponding to 7 and uy) have very
similar behaviours, and thus controlling the regularity of the last two components
is sufficient to have an estimate on I, ® in H}. A result of quasi-orthogonality
in H*(R x T) of the nonzero eigenmodes of L leads indeed to the following result.

LEMMA 3.3.1. — Let s > 0 be given. There is a constant Cs such that for any ¢ €
(Ker L)+, we have

[8[21 < s8]~ AL®);,

meaning in particular that the projection of the system (SWy) onto (Ker L) is fully
parabolic.
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Proof. — The proof of that result consists in using the structure of the eigenmodes
to prove that the diffusion — acting a priori only on the velocity field — has also a
smoothing effect on the pressure, and more precisely that

(3.3.1) V(n,k,j) €S, Hnk;®lamxt) < C||(Hnk;®) | e (mxT)

where II, 5, ; denotes the projection on the eigenmode WU,  ; of L (with the nota-
tion of the previous chapter) and C’ is a nonnegative constant (independent of n, k
and j). By formulas (2.2.6), (2.2.7) and (2.2.9) we deduce that for any integer s, we
have

105 (Vo k.5)ollL2RxT) = 105 (Pnkj)2llL2RxT)
using the orthogonality of ¥,,—1 and ¥, 41, and that
1 S S S
5||31(‘I’n,k,j)2||L2(RxT) <07 (nkg)ollLzmxT) < CllOF (Wn i j)2ll L2 (RxT)-

This implies in particular (3.3.1).
By Remark 2.2.6, page 22 we then deduce that for all ® € (Ker L)+

(B = AL®) 2y =, (M@ — AL(L®)) 2Ry

iAeS\{0}
= 3 ) e
iAeS\{0}
1
£, Z H(Hn,k,jq’)/“?ﬁll(RxT)
(n,k,j)€S*
1 2
ZCC’/ Z HHn,k,j(I’HHl(RxT)
(n,k,j)€S*
1 2
ZWHQ)”Hi

recalling that

1 S
@(1 + 0+ k)2 < W]
We therefore obtain the first inequality using Proposition 3.1.2.
In a similar way, by Proposition 2.2.3, page 14, we have for all ® € (Ker L)+

HS(RXT) S C;(]. +n+ k2)s/2.

(@] - AL®)g: = Z (L+n+ k) (e, ®| — AL®)r2(mxT)
(n,k,j)€S™
= Z (1 +n+k2)s Z (Hn,k,jq)‘ - A/(Hn*,k*,j*@))L2(RxT)
(n,k,j)€S* T(n*,k*,5*)=7(n,k,j)
= @ T ®) 1 ey + R
(n,k,j)€S™
T(n,k.j)#+/B/2
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where Rg is the contribution of the modes ++/3/2, defined by

Bs
Rg= > (1+§) Z. (Tlp 1 ;®| — ATl 1, ;- D)
k==4+/3/2 (4,5*)€(0,81gNk)?
2
B s /
= > 1+3) E:. (Io,k,;®)
k=++/8/2 (4,5*)€(0,818Nk)?2 Jee}

Using (3.3.1) and Proposition 2.2.5 page 21 leads then to the expected estimate.
O

REMARK 3.3.2. — Note that these inequalities indicate in particular that the notion
of homogeneous or inhomogeneous spaces does not make sense for these weighted
Sobolev spaces.

Moreover we recall that there is no analogue of Proposition 2.2.5 in the case of
geostrophic modes, so that the geostrophic equation does not have that ellipticity prop-
erty.

3.3.2. Derivation of the trilinear estimates. — An important step in the proof
of Theorems 2 and 3 consists in establishing some control on the nonlinear term
arising in (SWy) in terms of the Sobolev norms introduced in Section 3.1. Such
estimates are obtained using classical para-differential methods. Obviously a more
general statement could be written, at the price of more technicalities. In order to
keep the proof as simple as possible we choose to state only those estimates that will
be used in the following.

PROPOSITION 3.3.3. — Denote by Q, the limit nonlinear operator defined by (2.3.6),

and let a be any real number greater than 3/2. Then the following trilinear estimates
hold:

* 3/4 1/4 3/4 *13/4
|(@.1QL(®, @) pamucy| < CITL @[3 ML @ g oy L@ ML)

x11/4 1/4 1/4 x11/4
S (L e ) A S | ) A | A vy
+ C|T L. 2R xT) (HH0<I>||L2(RXT)||HL¢’*||H; + IIHo@*llm(RxT)||HL*I>HH;)

" 1/2 1/2 wnl/2 enl/2
(‘I)*‘QL(Q‘I) ))LZ(RXT)‘ < C”HL@HHi/?”HL(I)*”H/i||HL(I)*||L/2(R><T)HHL(I) ”H/iHHL(I) HL(z(RxT)
1/2
Hp
+ C|| @l 2rx) (HHO@IIL?(RxT)||HL‘I>*||H; + ”HO(I)*”L?(RXT)”HL(I)HHi)

|(®.1Q1(®, ")) 1o e

+ CalllLL s 2R xT) (HHoq’HH(RxT)||HL‘I’*||H; + Mo ®* || L2(mxT) HHL‘I’HH;) ;

1/2

+ CTLL @[y [TLL @7 [ITL 1 D] L2(RXT)

[T .|

< ColTL P L2y ITL P 1o [[TTL 8| 1o
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and for all s <1

|(@.1QL(®, @) 1, | < € (LD oo [T @1y + ITL® o2 [T D 3 ) (T 2
+C||HL¢>*||HS+1 (ITo®| L2 ®xm) [TLL @[ 71 + [To®* || 2Ry [ITLL P 177 )

< € (ITLL o [T 7 5, HL<I>||H3+1)

I, & ||Hs+1 + L@ o/ [ TLL @[3

< T |3
T O geer (ITo®] ey 1L 0" 11y + 1T | gy 1L @177 ) -

REMARK 3.3.4. — 1.The estimates presented in that proposition are exactly the ana-
logue of the usual trilinear estimate for the three-dimensional Navier-Stokes equations.
For instance in three space dimensions one has

‘((b*|div (®® DY) p2(gay| <

C10 1 oy (19103 g 192 Ly + 1971 g IVl 220
whereas in two space dimensions one would expect
}(é*ldiv (®® DY) p2gey| <

Cl. 13 gemy (12113 o IV 27 220m2) + 19713 i [9@ N 22m2))-

The reason for the loss of one half derivative compared to the usual two dimensional
case is linked to the fact that differentiation with respect to x1 corresponds to a mul-
tiplication by /n instead of n.

2. The restriction s < 1 is due do the particular structure of the nonlinear term,
in particular to the coupling between Rossby modes. For the Rossby mode associated
to the eigenvalue i\ the regularity is indeed measured by 1/X. Therefore the condition
of resonance A = p + fi (which is of course not equivalent to \™t = p~t + i71) does
not allow to distribute the deriwatives as in the usual paradifferential calculus. Note
nevertheless that the computation (2.4.9) page 32 allows actually to distribute one
derivative and to obtain a trilinear estimate of the form

(@1QL(®, )y, | < CITLL®] s [T 8] gy (ML + [Tl z2ricm) )
for all s < 2.
Proof. — The method used to establish these estimates is rather standard: we de-

compose each vector on the eigenmodes of L, then compute each elementary trilinear
term, and finally determine summability conditions. The fundamental result we will
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use to estimate the sums is the following (see [21])
Vo e (P(N x Z x {—1,0,1}), Vw € £2°(N x Z x {—1,0,1}),
(3.3.2)

1 1 1
vew €L (N xZx{-1,0,1}) with p,q,r € ]1,+o0[ and — = — + - — 1,
r P 4q

where the convolution is to be understood in k and n, coupled with the classical
result

(3.3.3) (A +n+k>Y) e 32N x Z x {~1,0,1}).
In the sequel we will use the following notation
S=NxZx{-1,0,1} and S*=NxZ x {-1,0,1} \ N x {0} x {0}.

We have by definition of the space H7,

(@@, @)y = > (b + kD) (T ks 0
(o ks, jx)ES

M. .. Qu(@,2Y)) .

We can then write

> > Gne+ ) (M. 2

(nx,ks,jx)ES i ES
AN =T (1 a5 )

Mo k. QUIND, Ty @)

e Let us start by estimating the purely ageostrophic part of Q, denoted Q, and
defined by

(3.3.4) QL(®,d*) = > ILQ(I,®,IL,. 0%).
iXip,ip* €S\ {0}
A=ptp*
We have

(<I>*|QL(‘I’7‘I’*))Hi =
Y (Ltne+kd)® (Hm,k*,j*q)*

E+E* =k,
7(n,k,g)+7 (kT 57) =T (e K )

Mo, ke e @U@, e g - ‘b*)) L2’

where the eigenvalues i7(n, k, j), i7 (N, k«, jx) and i7(n*, k*, 7*) run over & \ {0}.
Thus using the regularity estimates on the eigenvectors (¥, ;) of L stated
in Proposition 2.2.3, page 14, we get (writing to simplify 7 for 7(n,k,j), and
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similarly 7, = 7(n«, ks, j«) and 7% = 7(n*, k*, j%))

S e+ k) (k. @,

Hn*,k*,j* Q(Hn,k,jév Hn*,k*,j* (I)*))

2
=TT
ke =k k*
iT,iTw,iT* €S\ {0}
2\s * 2\ 1 * *\2)\ =
<C (L4 na + B 1(@e)n, o g 1O ki | Oe ke = [((0 + E7)2 + (0" + (K7)7) %),
=TT
Ky =k+k*

iT,iTx,iT* €S\ {0}
where ¢y, 1 ; is defined as in the proof of Proposition 2.2.3 by

Pnk,j = (\Iln7k7j|q))L2(R><T)'

For the sake of clearness, we will simplify (abusively) the notations as follows:
we will denote respectively by ¢, ¢, and ¢* the coefficients vp k. j, (¢¥«)n. k. 5. and
P e i+ and by > the sum over (n, &, j) (1., ks, i) (™, k%, %) € (S*)3 satisfying the
following constraints

T(Nay ks, Ju) = T(Ny ky §) + 7(n*, k%, 5%) and ke = k + k™.

It is fundamental for the following estimates to notice that those constraints in fact
imply that when k and k* as well as 7, j* and j, are fixed, then the condition 7(n., k+
k*. j«) = 7(n,k,j) + 7(n*, k*, j*) implies that a given n and n* constrain the value
of n,. Indeed we recall that according to Lemma 2.2.1, page 12, there is only one
value of n, associated to one value of 7(ny, ks, j«) # 0. Note however that contrary
to the usual case when there is an actual convolution (as is the case for the Fourier
variable k here), we have no ovbious estimate on n., as a function of n and n*. So the
usual methods of distribution of derivatives cannot be fully used here, as derivatives
in the z; direction, acting on ®, cannot be traded for derivatives on ® or ®*.

(i) If s = 0, by the Cauchy-Schwarz inequality, we obtain
D leellelle®|(n + k)12
< (Z(” FEDY210(1 + s + k2340, P21+ 0" + (k*)z)‘g/“|s0*|1/2)1
X (D + B M2l(1 i+ k2 Ao, (1 4t + (k*)2)3/4|90*|3/2)1/2 .
By (3.3.2) and (3.3.3), we therefore get
> lellelle™|(n + k)2

3/2 « 2 w2 \Y?
< (Il + £ lagsn) | (L4 me + )20 20 | (40" + B4 m (s 0" I )

/2

= 1/2 * * *113/2 1/2
x (1100 + B2y (L + 1+ K24 sy lipul 25y 14 07+ (6720 [242)

and a similar estimate for the symmetric term.
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By definition,
(3.3.5) (147 + k) 20ll2(5+) < ClITLL®| g3 -

Plugging this estimate in the previous inequality leads to

4 4
(3.3.6) < OfITL 3 T |t ey [T @, T 5

1/4 1/4 1/4 1/4
x (T T @ty + L@ T @ ot ey )

7(1)*))L2(R xT)

(ii) If s = 0, another way to estimate the L? scalar product is as follows

D lelleller|(n + k*)Y?

< (Z ((1 +n+ k2)3/4|§0|>3/2 ((1 +n, + kf)1/4|¢*|)3/2 (1+n* + (k*>2)—3/4> e
(X (e ko) (e m + ) 1+ k3>‘3/4>1/3

2\—3/4 2\1/4 3/2 2\1/4 3/2 13
(el (@ k) (e ) )

and

* * *2\ 1
D leallelle®|(n” +k*2)2

< (Z(n* 2] (k) el) (02 )

o
[ME

(1+n, + k)~ 5)

ol

x (Z(n + k)| (L n+ k) |¢\)%((1+n*+k3)%\g@*|) (1+n+k2)" >

By (3.3.2) and (3.3.3), we therefore get

@+ 1+ B2 ol 2 (509

Z losllelle*|(n + BV < @+ n+ k)30l e2(s
 l(1+n" + (k7)) *||fz2 soll@ 41+ k)34 oo 50y

and

> leallellet|(n + ()22 < (0" + (5*)*) 20" [l | (1 + 0+ B2) 20l 250
X[|(L+ ma + K240l (1 + 1+ k%) 74 p2ioo (549,
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So we find
[(@1QL(®, %)) g
1/2 1/2
(337) < CILL®| oo L@ 7 1T @ g oy T @ [ 1T @7y

1/2 1/2
+ O Py T @™ gy 1T I ey

(iii) If s =0 and we have additional regularity on ® and ®*, then again one can
write a different estimate. We can write indeed

Z lpslllle™[(n + (k*)?)H2
(3:38) < lwulleaesll (L + 1"+ (%)) 20* |25l (1 + ™+ (k%)) 272 poo (50
XL+ 1+ &) 20| 254 | (1+ n + 52 72|25y,

which, coupled with the similar estimate for the symmetric term, gives the expected
result.

(iv) If s <1, we have by Holder’s inequality

S+ 0+ k2 |pullelle*|(n + k)

1
z 2
6

< (Zu e+ k2l (1 n+ k?)%m)% (@ + 82 e ) " (1 n+ k-?)*%)

1
2

olu

X (Z(1+n*+kf)3|¢*| ((1+n+k2)%\¢|)% ((1+n + k*2)2|p* |> (1+n*+(k*)2)’1>

from which we deduce
D (s + k) | lolle”| (n + k)2
< Ol + nw + k2 0ulleags (1 + 1+ k%) 20l 250
X I(L+n* + (k")) 20 25 | (1 + 1+ K2 734 p2.00 50y

and a similar estimate for the symmetric term.
Therefore, we get

}((I)*K}L((I)a (I)*))H
< O - (

L@ /e [T @[ g+ TLL 7| o2 [[TLL @l 12 )

and we conclude by interpolation
(3.3.9)

‘ (‘P*@L(‘I’a ‘b*))

s

< O (L@ /o T @ 5 ITLL @25 + 1ML |2 L @] L @11} )

X L@ " T @ [
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e Proposition 2.4.5 shows that
QL(®,0*) = Qr(IH®, 11, &%) + Qr (1L D, [THd*) + Q1 (D, D™).

In order to end the proof of the proposition, it remains therefore to estimate the
terms coupling the geostrophic and ageostrophic parts. We start by noticing that the
constraint 7(n, k,j) = 7(n’, k, j/) implies by Proposition 2.2.1 page 12 that necessar-
ily n = n' and j = j’, except if n = 0. But according to Remark 2.2.2 that case
corresponds to two different values of j for the same eigenvalue only if 2k? = £3, in
which case the multiple root is k = :I:\/ﬁ—/2. That means that one can write

[(@.]QL(To®@, T &%) . | < o (U n+ k) (k@] Qo®, Tk, ;%)) o ey
(n.k,j)€esS*

+ 3 (14 9y (H o,|Q(I®, IT <I>*))
. 2 0.5y/B/2,0" * 0% 0,0/8/2,5 L2(RXT)
i=

+ 3 (14 5y (H 0,|Q(Iy®, IT @7))
e 2 0,4y/B/2,5 * 0% H0,4/8/2,0 L2®Rxm)|
=

Integrating by parts when the derivative acts on Il ®, we get

‘(Hn,k,jq’*|Q(HO¢’a Hn,k,j*q’*))Lz(RxT)‘
< CULIn ks )nke (0 + k)2 [T 2(rx)-
By the Cauchy-Schwarz inequality, we then get
| (@,1QLTe®, TTL87)) . |
< Co® | L2mxmll(1+ ne +E2)**0ull254)

(L4 0+ () D20 sy

Remark that the derivatives can be distributed either on ®, or on ®*.
We finally deduce that

(3.3.10)

}(@:k'QL(HOq)a(I)*))Hz + (‘I)*@L((I)’HO(I)*))H

L

< O @4y (1o 2 rocny T @ [ yzer + [Tho®* | resemy 1T ] s )

Note that this term is not zero as in the case of the usual Sobolev spaces, because the
spectrum of L is not symmetric with respect to 0.

One should also remark that in (3.3.10), no derivative acts on any vector field
in Ker L. This can seem somewhat surprising, but is due to the very strong con-
straint induced by the resonance: instead of a summation over three types of indexes
(namely (n, k), (n*,k*) and (n., k.)), one only sums over n.
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Combining (3.3.6), (3.3.7) and (3.3.8) with (3.3.10) (with s = 0) provides the first
estimate of the proposition, while (3.3.9) and (3.3.10) (with s < 1) give the second
one.

The proposition is proved. O

3.4. Proof of Theorem 2

The proof of Theorem 2 is divided into four steps. In Paragraph 3.4.1 is proved
the existence of weak solutions, and the propagation of regularity of the geostrophic
part is proved in Paragraph 3.4.2. The construction of strong solutions is performed
in Paragraph 3.4.3, while the propagation of regularity of the ageostrophic part is
proved in Paragraph 3.4.4.

3.4.1. Weak solutions. — In this section we are going to prove the existence of
weak solutions to the limit filtered system (SWp). We follow the lines of the classical
proof of the Leray theorem, stating the existence of weak solutions to the Navier-
Stokes equations.

Definition of the approximation scheme. — Denote by Ky the truncation operator
defined by
(3.4.1) Kxn= Y Ty,
(n,k,5)€s
(n+k*)2<N

Clearly the operator KnQr(Kn®, Ky®) —vKnA} Kn® is continuous on L?>(RxT)

(with a norm depending on N). Therefore, we deduce from the Cauchy-Lipschitz

theorem that there exists a unique maximal solution ®(yy € C([0,Tn[, L*(R x T)) to
X®(ny + KNQL(EN®(n), Kn®(n)) — vENALKN® () =0,

(3.4.2) 0
@(N)(t =0)=Kyd".

Note that the uniqueness implies in particular that ®(n) = Kn® (-

Now let us write an energy estimate on (3.4.2). The quadratic form being skew-
symmetric in L? (this can easily be seen by its definition as the limit of the filtered
quadratic form in (2.3.3) page 23) we find that

1d
§E||‘1>(N)(t)||2L2(RxT) — V(AL®(w)|P(w)) L2 xT) = 0.
Applying Lemma 3.3.1 implies that

—(ALILL @)L @(n)) 2 mxm) 2 Cp L@y 70 (mxcr)
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so we infer by Gronwall’s lemma that

(3.4.3)
t v t
12y (D72 (mxr) + 2V ; V(@ n)) ()12 (mxcry 4t ‘*‘250/0 ITLL @ () (8) 11 oy A

<NEN® |2y < 190172 Ry

so that the approximate solution is defined globally, i.e., Ty = +00. Moreover the
proof of Lemma 3.3.1 also implies that

IT, @y is bounded in L*(R™; H ).

Existence of a weak solution. — We will only sketch the proof of the existence of a
weak solution, as it is very similar to the case of the 3D incompressible Navier-Stokes
equations. By (3.4.3) we deduce that

((®(n)o) is uniformly bounded in L>°(R", L>(R x T))
(®{y) is uniformly bounded in L=(R*, L*(R x T)) N Lj,.(R*, H'(R x T))

loc

and I1; ®(y) is uniformly bounded in L>*(R*, L*(R x T)) N L*(R", H}).
For any h > 0, denote by 0, ®(n)(t,z) = ®(n)(t + h,z) — Py (t, 2). Then

H(Shq’(N)(t)H%?([O,T] xRxT)

T t+h
= / <5hq)(N)(t)‘ / 8,5@(]\])(8) ds) dt
0 t

L2(RxT)

T pt+h
—— [ ] (01200 (D1Qu® (5. B (D) e,y 5

T t+h
+ V/O / (5h(I)(N) (t)|A/L(I)(N)(S))L2(R><T) dsdt
t
By Proposition 3.3.3 and the positivity of —A’, we deduce that
165.@ () (D)1 22 j0. 77 x RxT)
optth 3/4 1/4 7/4
<o [ [ I OIS0 O] i M0 (7
1/4
X T ® vy (5) | ooy 5
T t+h
€ [ [ IOy 0] 2 T oy () ey T @ (3] sl
0 t

T t+h
1/2 1/2
v [ @ )AL 00 (5) e (5120 DIAL8P) (1) o e s
t

Therefore, using the uniform L>°(R*, L?(R x T)) bounds on ®(ny and 0,P(y, and
the uniform L*(R*, H}) bounds on I, @y and 11, 0,P vy coming from the energy
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estimate, we get by Holder’s inequality

161® () (D172 0,77 x RxT)

3/4 7/4
< CT5/8”HJ—5hq)(N)HL/Q([O,TLHi)HHJ-q)(N)HL/Q([QT],Hi)hl/g

+ CT”HJ_(Shq)(N)|‘L2([O,T]7Hi)h1/2

+CVT1/2 ((I)(N)|A/L(I>(N)) hl/z,

2
L2(RxRXT)
and thus

16n () (D172 0,7y xR xT) < Crh'/®.

By interpolation, see [1] for instance, one gets therefore that (up to extraction)

Mo®(ny — Mo weakly in L*(RT, L7 (R x T))

loc

Oy — @ strongly in L}, (RT, L7, (R x T))

loc loc

I, &) — I.® strongly in L, (R, L*(R x T)).

loc

Note that, because of Remark 3.1.3, the last convergence is actually global in space.
We are then able, as in the usual case of the 3D Navier-Stokes equations, to take limits
in the weak formulation of (3.4.2), which proves that ® is a weak solution to (SWjy).

Strong-weak uniqueness. — In general such a weak solution is not unique and the
Cauchy problem is not well-posed in L?(R x T). Nevertheless we have the following
strong-weak uniqueness principle.

PROPOSITION 3.4.1. — There is a nondecreasing, positive function C(t) such that
the following holds. Let ® and ®. be two weak solutions to (SWy) with respective
initial data ®° and ®°, satisfying the energy estimate. Assume that there exists some
T > 0 such that TI,® belongs to L>([0,T), H}/*) n L2([0,T), HY'?). Then for all
t €[0,T], the function 6® = &, — & satisfies

¢
100(®)72 < [69(0)[7 exp(CE + @2 (1 rre) /O L) 2 dt).
In particular, ®, = ® on [0,T] x R x T if ®? = @,

Proof. — In order to establish the stability inequality we start by writing (formally)
the equation on 6® = &, — &

(3.4.4) 016® 4+ QL (6®,6P) + 2QL(6®,®) — VAL 6P = 0.
Proposition 3.3.3 implies that
| (591QL(0®, D)) 12 | < CIITLLP| /2 [TLL0® ]|y TP 12
+ O] 3 |[TLL OB, T 6D
+ C|ITLL0® || 2 (|[To®|| 2 | TLL 6P|y + TLo0@]| 2 [T @ 11y )-
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We then deduce (using the same argument as in the construction of a weak solution
page 46 for the A’ term), that

i t
15O mcm) — 100y + 20 [ M08 ()l e + 2 [ TSR] d
. 0 0
<Cy [ (ML) 120 + L0, ) 00 () -
Ot
+Co [ (Mo () 31T 60 3 + T8y, [ToB0] 32 )
using the embedding H} C L?. Gronwall’s lemma yields

t
00(8)]32 < 190°]3: exp(C, / (LT ® () rsemy +HITLL (D g +ITLL (D)2 02)dr),

and the conclusion comes from the fact that I, ® belongs to L*([0, T], H}) by interpo-
lation between L*°([0,T7, H£/2) and L2([0, 7], Hz/2), along with the energy estimate
on ®. The proposition is proved. O

3.4.2. Propagation of the geostrophic regularity. — The following regularity
result for the geostrophic equation is inspired by the Weyl-Hérmander symbolic cal-
culus, see [18], even if that theory does not seem to be appliable directly due to the
possible singularity at z; = 0.

Using the formula giving I1y in Proposition 2.1.2, we first see that the geostrophic
equation

8,5@ - VH()A/H()(I) =0

can be brought back (at least formally) to the scalar equation

dwug — vD(DDT + 1d) ' DT Auy = 0,

where we recall that D is the differential operator defined by D- = 04 (ﬂ—) Then
1
by a simple change of variables this scalar equation becomes

Orp —VvAp =0,

where A is some self-adjoint scalar pseudo-differential operator (possibly singular at
x1 = 0), the principal symbol of which is given by

a(a:l, fl) — L

Bt + &
neglecting the possible singularity at 1 = 0. Then, in order to propagate Sobolev
regularity on ¢, we should have to control some commutator of the type [4, V?], which
is not so easy because A cannot be written simply in terms of the usual derivatives V.
In order to find a convenient way to measure the regularity, we therefore use for-
mally the results of symbolic calculus. Note that the Weyl-Hérmander theory is used
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here just to guide intuition, the result of propagation being actually proved by ex-
plicit computations. In order to determine the class of operators A should belong to,
we have first to characterize the metric. Computing the partial derivatives of a with

respect to z1 and &
8$16L 2ﬂ2x1 6§1a 4 251

2.2 1 20 (z1,86) = - - Z7 =

53314'51 & Praf + &

shows that the Hormander metric to be considered is the one associated to the har-

(r1,61) =

monic oscillator 42 de?
x
d , d _ 2 1 _ 61
g(dry,dg) =5 1+a22  1+&
Then it is natural to measure the regularity by powers of the harmonic oscillator, and
therefore to study the propagation equation

8t( zlzl 62 ) - VA( rlzl 62 ) [( xlzl ﬂ2 ) ) ]

The fundamental result of the Weyl-Hormander theory states the following: if A is
a pseudo-differential operator (meaning in particular that there is no singularity at
xz1 = 0), the commutator occuring in the right-hand side of the previous equation
is a pseudo- differential operator of lower order (for the metric g) meaning that we
expect (=051, + 0%, Alglamy to be conroled by (=05, + 8%l
and — (=32, & (a) ol A 02 o, + F2a2)°0).

Nevertheless, as we are not able to prove in a simple way that there is no singularity
at 1 = 0, we shall not use the general theory of pseudo-differential operators and will
proceed instead using explicit computations. We have seen in the previous chapter
that the family (U, 0,0)nen defined by

(n+1) m
_\/%wn-l(xl) - \/%djrwrl(fl)
0

(n+1) m
\/%wn—l(xl) - \/%1%14—1(%1)

constitutes an Hermitian basis of Ker L, and that, due to the properties of the Hermite
functions,

U, 00(x) =

Vn € ]N'7 H( $1m1 + 62x1) nO,OHLz(R) ~ (]- + n)s ||\Ijn,070HL2(R)

Therefore it is natural to study the propagation of the Hj norm of IIy®, recalling
that

2 _ s 2
o), = 37 (1+n)lp I
neN
where we have defined

fn = (\I/n,070|H0(I>).
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In the following we will denote by N, the operator defined by
VneN, N,JIy® = 2(1 +n)*e Vo0,

so that
[N @l 2y = [[Ho®|| gr2:-
We have
0N IIo® — VIToA' N, ITg® = v[N,, T A'|®
o We start by computing IIoA’¥,, ¢ ¢. From (2.2.1) page 11 we deduce that

0

B(n+1)(n—1) Bn(n+1) Bn(n+ 2)
A2n+ 1) EEPTE T DI LGVl Vi s et S 120+ 1) Teng ) e

Oz, ‘I’:L,o,o(l'l) =

and

g
2V22n+1) | /tn+ 1)(n— 1)(n — 2)¢n_3(z1) — (3n — )V + 1ehp_1(z1)

(3 + )t (1) — /0 F 20 F Bbsa(er)

with the usual convention that v, = 0 for n < 0. Therefore, using the orthogonality
of the Hermite functions in L?(R), we get

2
azlxl ;LOO(‘LI) =

A’ ‘I/noo—oé( Y, 400+04( Dy, 200+Oé( )‘I’noo-f-oé( )‘I’n+200+04( )‘I’n+4oo

with
a9 — _E\/(n Y- -Dn+1)
! 4 (2n+1)(2n —7)
2 _ B (n—2)(n+1)
041(1 2) _ Z(471—2)\/m,
B6n2+6n-1
(3.4.5) a® = e
04(2 —é n M
= +6)\/(2n+1)(2n+5)’

@ _g\/n(m 2)(n +3)(n +5)
o 4 2n+1)(2n+9)
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e From the previous computation we deduce that

[N, TIo AWy 00 = ((n—3)" — (n+1)%)al VW, _s00+ ((n—1)° = (n+1)%)al P T, _s00

H(n+2)* — (04 1)*)al Wi 00 + (0 +5)° — (n+ 1))l Upya00

Thus, using the definition (3.4.5) of the coefficients «, we get
lan] < C(n+1)

and
I[Ns, HOA/]\IJn,O,OHLz(R) < Cs(n+1)° <C|INeWn00llL2(R)-

Because of the quasi-orthogonality of ([Ns,IgA'|¥, 0.0)neN, we have actually the
more general commutator estimate

[N, oA o2
=S|+ = =3, + (1) = (=1 Fe,,
n 2
+((n+ 1) = (n+3))allop, ,+((+1) = (n+5)")allye,

= CS Z(n + 1)28 (|£n+4|2 + |('0n+2|2 + |£n—2|2 + |£n—4|2)

<Oy (n+1)%|enl?

which can be rewritten
(3.4.6) [I[Ns, HOA']H0<I>||L2(R) < CS||NSH0<I>||L2(R).

Note that, due to the particular choice of the operator Ng, there is some additional
cancellation, meaning that the commutator [N, IIpA’] which is expected to be a
pseudodifferential operator of order (2s + 1) is actually of order 2s.

e It is now very easy to propagate regularity using Gronwall’s lemma. We recall
that

8,5N5H0q) - I/H()A/NSHQCI) = V[NS, HQAI]H()(I),
from which we deduce that
t
| NSl ®(8)][ 2 ) + v / IV (N, THo®) (1) |2 g 7
t
< [N, 1@ |2, ) + C / INTo®(7)2 7

and finally
(3.4.7)

t
NI (0) sy + v | [V () et < [NT08° o) exp(C)

This concludes the proof.
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3.4.3. Local strong solutions. — In this section we are going to prove the ex-
istence of unique, strong solutions for smooth enough initial data. As in the case
of weak solutions discussed in Section 3.4.1 above, we will not write the full proof,
but detail the estimates enabling one to use the usual Fujita-Kato theory of strong
solutions to the 3D Navier-Stokes equations (see [4] for instance).

Global existence of strong solutions for small data. — We prove here that under a
suitable smallness assumption there exists a (unique) global strong solution to (SWj)
such that IT; ® belongs to L>® (R, Hé/2) NLAR*, H2/2).

As previously we start from the solutions @y of the approximation scheme (3.4.2).
We have of course

d
1Mo @) O Z2@xr) + 20 V(Ho®y) (Ol Z2@xr) <0
and, by Proposition 3.3.3,

d
—||HL<D(N)(t)“2 1/2 —2v (HJ_‘D(N”A/LHJ_(I)(N))Hi/Q (t)
< -2 (HL(I)(N)‘HLQL(@(N) Dn))) 172 (t)

< C (I 12 [T @) |22 + ||Ho<1>(m||L2<RxT>|\nm>(N>uHi/z\|HL<1>(N>||H£/2(RxT))<t>.

By Lemma 3.3.1 and the obvious embedding H} 3/2 é/ 2, that inequality can be
written

d

%HHJ_(I)(N)@)H 172 + 25— IIHLCI’ |7 H22
(3.4.8)

< O 2> (T By 2+ ||Ho<1><N>|\Lz<RxT>)<t>.

As usual we notice that this inequality is useful only if [T ®n)(t)[,2/2 and

2
[To® (|| L2(rxT) are small, which is a typical phenomenon of global results under a
smallness condition.

Define

2
v
DN={teR+/w'<t, I3 (€)1 my + FL 0 O < () }

where C'is the constant appearing in (3.4.8), and let us impose the following smallness
assumption on the initial data:

2
4001/2) '

Then clearly Dy is not empty. By construction, IIy® ) belongs to C(R*, L?(RxT))
and II; @y belongs to C(R™, Hé/z) thus Dy is a closed set.

HHO‘I’?N)H%%RxT) + ||HJ_CI’?N)||§Q/2 < (
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Denote by Ty = max Dy. If Ty < 400, then

v

2
2 2
0 (23 ey + IR0 )y < (576

and we deduce from (3.4.8) that

d
= (I00® () [ rsemy + ML) 12,172 gy ) (T) < 0,

which is in contradiction with the definition of Ty = max Dy . Therefore Ty = +o0.
Then we deduce immediately that for all t € R

t
v
ML) (t)”?{i/z + @/@ TP () (t/)HiIi/a dt’ < ||HL¢?N)H%/2~
Up to the extraction of a subsequence that converges to a Leray solution ® of (SWy),
the previous estimate implies that
I, ® € L®(R*, H)/*) N L*(R*, HY?).

The strong-weak stability principle established in the previous section provides then
the uniqueness of such a solution.

Local existence of strong solutions. — Let us now consider the case of large data.
The idea (see for instance [4]) is to split @y in two parts as follows

Qv = (I)(<N) + (I)(>N)
where <I>(<N) is the unique solution to
8t<1>(<N) - VA'L<I>(<N) =0

(3.4.9) Dy (0) = Z I g TTL @y 4+ To® (),
(n,k,j)€S
(n+k*)1/2<A

and A > 0 is a truncation parameter to be determined (independent of N). Using
Proposition 3.3.1, it is easy to check that

||HL(I>(<N)||L°°(R+,L2(R><T)) < O||<I)O||L2(R><T)a
ML DGy [l Loe rt 13y < CA®[[ @0 L2y
By (3.4.2) and (3.4.9) we deduce the equation satisfied by <I>(>N):
8tq>(>N) = I/A/L‘I)(>N) + JNQL(<I>(>N), (I)(>N)) + ZJNQL((I)?N), (I’(<N))
= —JNQL(‘I’(<N)a ‘be))
(3.4.10)

20wy (0) = ) ~ D Mg Ty + TPy,
(n,k,5)€S
(n+]k))'/?<A
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We are going to show that <I>(>N) remains small in H é/ % on a time interval which does
not depend on N.
Let us write an energy inequality in Hi/z on (3.4.10): we have

1d 1%
5120 <>||21/2+—||<I><>N)<t>||;3/2= ~(INQL( @), )[BT oz ()

(JNQL( N)a )|(I) ) 11‘/2( ) (JNQL( (N)> (<N))|(I)(>N))H11‘/2(t)a
and Proposition 3.3.3 yields

d
—120m @17 12 25— Hq’ YOI, 32 < Cll @7y (t )\|H1/2|\<I>(>N)(t)\|i13/2

+ Cl9 5 Ol (||¢<N><t>\|HmHH@(N)( iy + 187 (03 T B (1) 5/2)
+ O, ()23 (12730 (Ol 1 To 0 (1) 2rsemy + ITLLD ) (6] [T D) (6] 72)
+ Ol ()] 2 ITTo v (1) | 2Ry T B ()]

Now consider the set

- o " v
Dy = {t eRT/V <1, [ @7y, (t )HHi/Z = CCy }7

(where C'is the constant appearing in the right-hand side of the previous inequality)
and Ty = sup Dy. We are going to prove that there exists T > 0 such that

YN e N*, Ty >T.

We notice that if A is chosen large enough (independently of N), then Dy is not
empty: we can indeed choose A so that

v
(3.4.11) ||<I>(N)( )”Hiﬁ < 40701/27 VN € N.
As long as t < T, we can write the previous inequality in the following way:
d v
212 Ol + mllq’&)(ﬂlléim < ||<1><N)( /2 1T @ ()12

+ —||<I>> O (LG O 1+ ITLo® ) (832 ey

2/3 4/3 4/3
1973 1275 L8 (1510 (O

+0||<1><N)< Mg Mo 0y B ey L B3 (6

1/3

So we get

d v
EH@(})@)HQM + m”@?m(t)”ifiﬂ <1+ ||‘I>(>N)(t)||i1i/z)F(A7‘1>O, v),

where )
P40 =0 (14 5 ) (1 AYL+ [0y
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Gronwall’s lemma enables us to infer that for all t < Ty,

1970 (D122 < (14 @73 (O)]2,1/2) exp (LF(A, 8%, 1)) — 1
L L

Since A is chosen so that (3.4.11) is satisfied, it suffices now to choose T in such a
way that

i oy 1<t Y
exp (TF(A,(I) ,V)) S 2, exp (TF(Aa(I) ,V)) 1 S 2 <CCl/2)

so that for any ¢t < T,

2
> (D21 < [ ———
126w Ollys/2 < <001/2)

hence necessarily

VN e N*, Tn>T.

e Gathering those results, we infer that any limiting point of <I>(<N) + <I>(>N) (in
particular any Leray solution to (SWjy)) satisfies

Iy® € LR, L2 R x T)), (@) € LART, H'(R x T))
@ e L([0, 7], H;'*) 0 L2([0, 7], H}'?).

The weak-strong stability principle gives then the uniqueness of such a solution on
[0,T].

3.4.4. Propagation of the ageostrophic regularity. — In order to construct a
strong approximation of the filtered solution to the Saint-Venant system in the next
chapter, we will actually need further regularity on the solution of the limit filtered
system, which is obtained in a very standard way from the trilinear estimates stated
in Proposition 3.3.3. So suppose that II, ®° belongs to Hi, with 1/2 < s < 1, and
consider as previously the sequence (® ) of approximate solutions to (SWjy) defined
by (3.4.2). From Lemma 3.3.1 and the last estimate in Proposition 3.3.3, we deduce
that for all s <1,

d 9 2u 9
E”HJ_(I)(N)(t)HHZ + E”HJ_(D(N)(t)”HZJrI
< CIMLL @ vy (8] [T () ()| g1 (”HJ_(I)(N)(t)HHi/Q + ||H0‘I’(N)(t)\|L2(RxT)>

v C 2
< EHHL‘I’(N)(t)quzH + ;HHL(I)(N)(t)H%IZ’ (”I—[J_‘D(N)(t)”HiN + ”HO(I)(N)(t)HLQ(RxT)) ,
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and thus by Gronwall’s lemma
t
2 v N2 !
L@ O + g | MLy ()
s JO L

c [t 2
< T 13 exp (; (M) ()72 + [Ty () 2w dt/) .
0

Taking limits as N — oo in the previous inequality shows that
I, ® € L5, ([0, T*[, Hy) N L, ([0, T*[, H; ™),

loc loc

and that

t
v
LSOl + & [ Il 0 b

c [t 2
< L83, exp (; / (I () e + [T () 2 dt’) ,
0

which proves the propagation of regularity result, and completes the proof of Theo-
rem 2. O

3.5. Proof of Theorem 3

In this section we shall prove Theorem 3: Paragraph 3.5.1 is devoted to the global
wellposedness result in L2, while the propagation of regularity results are given in
Paragraphs 3.5.2 and 3.6.

3.5.1. Global wellposedness. — In this section we shall prove the first part of
Theorem 3, namely the fact that except for a countable number of 3, the limit system
is globally wellposed in L2?. This turns out to be an easy matter in view of the
resonance results obtained in Section 2.4 in the previous chapter.

Indeed Proposition 2.4.1, page 24 indicates that except for a countable set of values
for 3, the limit system reduces to the following:

O Ily® — vIlg AL ® =0,
G r® +2Q L (I1g®, IzP) — vIIRAL® = 0,
Ol ® + 2Q L (I ®, [T, P) — v AL ® =0,
Hp® + 2Q 1 (IIp®, [1pP) — vVIIpA} @ = 0,
Ol ® +2QL(Ig @, T ®) + QLI @, g P) — vIIg AL ® = 0.
So the limit system is a linear equation on all modes but Kelvin modes; Kelvin modes

being essentially one-dimensional, it will be easy to prove the wellposedness of the
system. In fact the only point to be proved is the uniqueness of the solution, since
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existence was proved in the previous section. Uniqueness will be immediate in the
case of all non-Kelvin modes so let us concentrate on the equation on ITx®. Let ®
and ®, be two solutions, and define 6 = ®, — &. Then
Ol 6P + 2QL(I1g0P, [Tk dP) + 2Q L (T1g P, [T dP) + 2Q 1, (11pd P, [T D)

+ QL(HK(SCI), HK(S@) + QQL(HK(I), HK(S@) — VHKA/L(SCI) =0.
Now let us write an energy estimate in L2, in the spirit of the computations of Sec-

tion 3.4.1 above. We note that in the case of IIx, the decomposition on eigenmodes
of L simply corresponds to the Fourier decomposition, so that

(M 6P|QL (MK D, Tk d®)) 1 ypy = (M 0P| Q(Ik P, Tk 6)) 12 gy -

Moreover in that case, the usual Sobolev spaces H® coincide with the H} spaces,
since n = 0. Using the fact that IIy projects onto xo-independent functions and that
the dependence in ;1 of IIxd®P is that of the Gaussian g, it is easy to see that

|(Tc021Q (To®, T 0®)) 12 gcrry | < 1T 0P s resemy [ o @ 2 [ Tk 0@ o cn -
and that

‘(HK5‘I>|Q(HK(I’5 HK5<1>))L2(RxT)‘

< | Hg 0P| 1 mxm) [k Pl oo (Rx) HK 0P| L2(RXT)

v C
< 2—Cl||HK5q>H%11(R><T) + ;||HK(I’||%°C(R><T)HHK(S(I)H%Q(RXT)'
We recall indeed that

Po(x1)
1 .
Ik - = Z (ok,0| - )r2mxT)Yo,k,0 Where o o(21,22) = etk 0
kez* v
Po(x1)

One sees easily that ||l ®||zerxT) < C||IIk®| g1 (rxT), 50 finally an energy esti-
mate (coupled with a Gronwall lemma) gives

t
1%
T 5D (8|72 () + 5/0 T 59 (t)]| 1 mxcry At
O t
< 02O ey o0 (5 [ Il ar').

Since IIxd0®(0) = 0, uniqueness follows from the energy bound on IIx®. Note that
we have recovered here the usual, two-dimensional Navier-Stokes type estimates since
in the case of purely Kelvin modes, the quadratic form and the spaces involved are
the same as in the Navier-Stokes case. In fact Kelvin modes are even one-dimensional
(up to a multiplication by 1o (z1)) so it is possible to improve those estimates (that
will be done in the last section of this chapter).
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3.5.2. Propagation of regularity. — Let us now prove that if the initial
data IT; ®Y is in H; with s € [0,1], then that regularity is propagated to II, ®.
Recalling the special form of the limit system for almost all 3, the only equation we
need to study is the one on IIx®. Indeed denoting

U =Tz +1p +1Iy)®,

we have
815\:[/ + 2QL(H0(I), \If) - VA/L\IJ = 0,
and Proposition 3.3.3 gives directly

v [t C
N, + 5 [ W < 19O exp (;|Ho<1>||%2<[o,ﬂ;m) -

Now let us turn to the Kelvin modes. In that case we simply use again the fact
that H° and Hj spaces coincide in the case of IIx. We have, using Proposition 3.3.3
again,

t
1%
ITLic®t) By gy + / ML ® () 2 e emy

t
< || (LB QL. i) . gy (€
0

t
+ C/ Mo @ (") || 2T () | a2+ (R r) T @ (¢) | o1 (R ) It
0

Two-dimensional product rules give

Ik @|Q(k?, HKq)))HS(RxT)‘ < k@] genr @xm) [T ® @ T ®| s (RxT)
< g @llae+ wxn) Tx @l yer g g oo KRl 3 g oy
2 1
< ”HK¢||1%]a+1(R><T) HHK(I)HIZJ-*(RXT) HHK(I’HH%(RX,F)

4
1
H?Z (RXT)

v C
s M s rmy + o ML By gy ML
so that finally
14
M) e + g7 [, IR s e
C ! ! 2 / 2 !
< 7/ [To®@ ()72 D) 7rs (rx) A

C ¢ AN 14 /
45 I oy IR g

and the result follows from Gronwall’s lemma and the energy estimate on IIx®.
That concludes the proof of Theorem 3. (]
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3.6. A regularity result for the divergence

In this section we are going to prove an additional regularity result for the system
(SWo), which will be useful to study the strong asymptotics of the rotating shallow-
water system in the next chapter.

PROPOSITION 3.6.1. — Let ®° belong to L*(R x T).

For all 3 € R}, if 11, ®° belongs to H£/2 and (ILp + Ik )®° belongs to HY for a >
3/2, then the solution ® of (SWy) with initial data ®° defined on [0, T*[ satisfies for
all t € [0, 77

t
J IV 8Ol emy i < +x,
0

where we recall that ®' denotes the last two components of ®.

Furthermore the reqularity assumption on the initial data can be relaxed for all but
a countable number of 3. Indeed, for all 3 € RY \ N where N is the countable subset
of R defined in Theorem 3, if (Ilp + Il )®° belongs to HE for oo > 1/2, then the
solution ® of (SWy) with initial data ®° satisfies for all t € R+

t
/ [V - @' (t")]| Lo mxT) dE’ < +00.
0

Proof. — Such a result is established by decoupling the equations on the various
parts of @, and proving that the regularity is propagated for the Poincaré and Kelvin
modes, while a smoothing property on the divergence holds for the nonoscillating,
Rossby and mixed Rossby-Poincaré modes.

Let us decompose ® on the supplementary subsets Ker L, R, M, P and K

S =T11gP+ TP+ 1), ®+1Ipd + TP,
and estimate each projection separately.

e For nonoscillating, Rossby and mixed modes the smoothness of the divergence is
not due to a propagation result but to a stationnary property of the eigenvectors.
Clearly, by definition of Ker L, V - (II®)’ = 0.

Let us consider the Rossby and mixed Rossby-Poincaré modes. By definition of
the Rossby modes we deduce the following relation

VOER, V- = Y V@ = Y iAo

INEGR INEGR
with the notation ®, = II,®. It follows that
2
V@3 = || X i@,
INEGR
< C Z HA((I)A)OHiW(RXT) ;
INEGR
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by Proposition 3.1.2. But, as Rossby waves correspond to 7 = 0, we have
M@ )oll7r2(mxr) < CIA Z (T k,0®)o || Fr2 (R )
7(n,k,0)=\
using Remark 2.2.6. Recalling the explicit form of (¥, 1 j)o, we see that
H(H",k,O(I’)OH%I?(RxT) < (1 +n+ kQ)”(Hn,k,O(I’)O”%{l(RXT)'
But for Rossby modes, the following asymptotics hold as |k| or n goes to infinity:

_ Bk
A= T(TL, k,O) ~ m

So we infer that as |k| or n goes to infinity,
|/\|2H(Hn,k,o(b)OH%{?(RxT) < OH(Hn,k,Oq))O“%Il(RXT)'

Finally we infer that
2
V-7 < C D M@ ollhz@x

INESR

< C Z (L k0@ )ol| 77 (rxr)
(n,k,0)EGR

< Clel.

By the embedding of H?(R x T) into L>(R x T) we conclude that V- (IIz®)’ belongs
to the space L2([0,T]; L°(T x R)). The same result can easily be extended to the
mixed Poincaré-Rossby modes (it is in fact easier since n = 0 in that case) and we
obtain

ITar®|| L2 0,1,01) < Oy NV - (TWar®)' (| 220,77, L (RxT)) < O -
Finally we deduce that
[V - (Mo + TTg + Tar)®)'[| £2([0,77, L (RxT)) < O -

e In order to establish a similar estimate for the Poincaré and Kelvin modes, we
prove that the equation governing these modes propagates the H} regularity without
restriction on s. Indeed we have seen in Remark 3.3.4 that the restriction to s <1
for the propagation of regularity stated in Theorem 2 is due to the coupling between
Rossby modes.

The idea here is to study the propagation of the following norm on (Ker L)+

|2 = Z(l + )‘2)S||H>\(I)||%2(R><T)ﬂ
A€S
which controls the H} regularity of the Poincaré and Kelvin modes only, due to the
following easy estimate (see Proposition 3.1.2):

(3.6.1) C7 (g +1p)®||gs < TL®|ls < C(|(Mg +11p)®| s + [TL Pl 2R xT))-
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This norm is convenient to deal with the condition of resonance occuring in the non-
linear term of (SWy).

Similar arguments as in Proposition 3.3.3 allow to write the following trilinear
estimate:
(3.6.2)
[(B[QL(®, @))a] < Cull L@ ([T B g+ [T @ 1y (1T B] 2+ [T 2.

With the same notation as in the proof of Proposition 3.3.3, we have indeed

df .
(@.]Qp (@, 0)), % S ) (M@,
I
QT ATy, iT* €S\ {0}

<G (47724 (14 D7) pulleller|((n + 62 + (7 + ())2),

Hn*,k*,j*Q(Hn,k,jlbv H'/L*,k*,j*q)*)) L2

from which we deduce that
(@]QL(®, ®))s < Cu L@ s (L ]arr + [T 51y ) [TLL Dl /2.
In the same way, for the geostrophic part, we have
(PIQL(Mo®, 11 ®))s < CuTL@||s(TLL @41 + [T P 2 ) TTo® | £2(mx) -

Note that the H! norm appearing above is used to control the gradient of the Rossby
and mixed modes.

Using (3.6.2) and Gronwall’s lemma, we get the following propagation result

el + & [ (Mo + o), @)

< e e (S / (I8l + 02 omc) )
(see Paragraph 3.4.4 for the detailed proof), and therefore by (3.6.1) we get
(T + TTp) (1) |3, + / (I -+ TLR)@(E) 21
< (II(dIx +HP)‘I>OHHZ + H(DOH%Q(RXT))
<o (S [ (L0l + 00O )

By Sobolev embeddings we then deduce the expected control on the divergence

IV - (Mg +11p)®@) (| L2(j0, 1), L (RxT)) < Cr

for all T' < T™* where T* is the lifespan of the strong solution ®.
That concludes the proof of the proposition in the case of general (.
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e By Proposition 2.4.1 page 24, we recall that, for all 3 € R*\ N, the only possible
resonances are Kelvin resonances.

Let us now consider the equation governing the Poincaré modes which can be seen
as a linear parabolic equation whose coefficients depend on IIg®. Therefore it is very
easy to propagate regularity once one has noticed that the multiplication by |A| for
the Poincaré mode II)® is “equivalent” to a derivation.

Introduce as previously the notation

¢ = E Ok, Unk,g

(n,k,j)eS
so that
Op® = > ouri¥nr
(n.k,j)eSp
where

Sp=N*"xZx{-1,1}U{0} xZ x {1} U{0} x Z; x {-1}U0x0x {-1,1}.

We can use Proposition 2.2.3 page 14 to deduce that for each (n,k,j) in Sp the
equation governing ¢y, ; can be decoupled (recall that IIo® only depends on x1):

Ot ki =Pk (P k| A Vo k) L2RxT) = =20,k (Un ke |Q (k5 o ®)) L2 (R xT)
which can be rewritten
A (wn kg exp (—vt (W | A"V k) L2 RxT) )
= =200k (Y e | QWi g o ®)) L2(Rxm) XD (—VH( Wik j 1A Wk j) L2(RT)) -
By Gronwall’s lemma and the estimates
(W k| Q (Wb 5, o ®)) L2 mxmy| < Cu(n+ K2)'2,
—(U k| AWk ) 2Ry = Ca(n + k),

we then deduce that there exists a nonnegative constant C,, (depending only on v)
such that,

(3.6.3) W,k ) € Spy [@nis (O] < [ns (0)] exp(—Cl(n + k2)0).
We have
IV - @p®) Ol pemery < DL [nki OV - (Tnkg) Oll oo ey
(n,k,j)ESP
<C Y ek Oln+E)?
(n,k,5)ESP

since (¥, x,;) is uniformly bounded in L>°(R x T). Thus, by (3.6.3),

IV - (Mp®) (Ol o gy SC D onks(0) exp(=Cu(n + k*)t)(n+ k)",
(n,k,j)ESP
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Integrating with respect to time leads then to
IV - (TLp®) || 11 0,77 Lo (RxTY)
<C Y ek (O)(n+ k)2

(n,k,j)ESP
1/2 1/2
< Y leariOP(n+ k) DGR o) Rl I
(n,k,j)ESP (n,k,j)ESP

from which we deduce that for a > 1/2,
V- (HP(I’)/||L1([O,T]7L°°(R><T)) < C'HHP‘I’O”H;*
where C' depends only on v and «.

It remains then to establish the propagation of regularity for the Kelvin part of
the equation, which is nonlinear and has no smoothing effect for the divergence as the
Rossby part.

The crucial point here is to recall as above that this equation is actually one-
dimensional (modulo a smooth function with respect to z1). The propagation of
regularity result proved in Paragraph 3.5.2 implies that as soon as the initial data is
in H¢ with 0 < o < 1, then the solution lies in L2(R*; H3*!). In particular V-(I1x ®)’
lies in L2(R*; HY). So if a > 1/2, using the fact that H*(T) is embedded in L>(T),
the result follows directly.

Proposition 3.6.1 is proved. O
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CHAPTER 4

CONVERGENCE RESULTS

The aim of this chapter is to study the asymptotics of the rotating shallow-water
system (1.4.3) presented page 6. In particular we will see that the system (2.3.5)
obtained formally in Section 2.3, page 23, is indeed the limit system, after application
of the filtering operator exp(—t¢L/e). In order to simplify the presentation let us
recall here the two main systems we will be considering in this chapter, namely the
shallow-water system

1
on+ =V- ((1 +5n)u> =0,
€
B

(SWe) 8t((1 + 5n)u) +V- ((1 +enu® u) + T(l +en)ut + é(l +en)Vn —vAu =0,

— 0 _,,0
Mt=0 =15 Ujg=0 = U,

and the limit system
0P+ Qr(®,0) —vALD =0
D=0 = (noauo),
where A’ and @, denote the linear and symmetric bilinear operator defined by (2.3.6)

page 23.
We also recall the formal equivalent form of (SW,),

(SWo)

1
315(7% U) + EL(TL u) =+ Q ((777 ’LL), (777 U)) - VA/(T]7 u) =R
(T]7 u)|t:0 = (7707 U’O)v
where @@ and A’ are defined by (2.3.4) page 23 and
en
= (0, — Au).
R = (0, Sy - u)

The study of the asymptotics of (SW.) will be achieved through three different
methods, which provide three different types of results. In Section 4.1 we describe the
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weak limit of the weak solutions to (SW.) as € goes to zero, which is proved to satisfy
the geostrophic equation studied in the previous chapter, i.e., the projection of (SWj)
onto Ker L. The statement is given in Theorem 4 below. Then for smooth enough
initial data, we prove in Section 4.2 the strong convergence of the filtered sequence of
solutions towards the unique solution of (SWy). The precise statement depends on
the setting, as in Chapter 3: for all § > 0 we are only able to prove results locally
in time (globally for small data) whereas if a countable set of values of 3 is removed,
then the convergence is strong for all times, and the smoothness assumptions on the
initial data are less restrictive (see Theorems 5 and 6). Finally in Section 4.3 we
propose an intermediate study between those two asymptotic results, by considering
the asymptotic behaviour of the filtered sequence e *%/%(n.,u.), where (1.,u.) is
a weak solution to (SW.). We prove a strong convergence result towards a weak
solution to (2.3.5), where unfortunately due to the lack of compactness of 7. in space,
a defect measure remains (see Theorem 7). In order to circumvent that difficulty we
propose an alternate system to the Saint-Venant equations (SW,), where capillarity
effects are included. Technically the effect of capillarity is to have a uniform control
on €1, in strong enough norms so as to obtain an evolution equation for u.. A strong
convergence result for e “t£/¢()., u.) is established in that new setting, see Theorem 9.

In this chapter, many results and notation of the previous chapters will be used.
However precise references will be made each time, so that this chapter can be read
independently of the others (assuming the results of course).

4.1. Weak convergence of weak solutions
The first aim of the chapter is to describe the weak limit (1, u) of (7, u.) as € goes

to zero.

THEOREM 4 (Weak convergence). — Let (n°,u’) € L>(R x T) and (n2,u?) be such
that

1
3 [ R+ @+ el do < e,

(n,u?) — (n°,u°) in L*(R x T).

(4.1.1)

For all ¢ > 0, denote by (ne,u.) a solution of (SW.) with initial data (n?,u?), as
constructed in Corollary 1.4.1 page 6. Then ()., u.) converges weakly in L7 (RT xR x
T) to the solution (n,u) € L>®(R*, L2(R)), with u also belonging to L*(R*, H'(R)),
of the following linear equation (given in weak formulation)

(4.1.2) up =0, Priug+ dn =0,
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and for all (n*,u*) € L? x H*(R) satisfying (4.1.2)
(4.1.3)

t
/(7777* + ugul)(t,x) dx + I// /Vuz -Vus(t', x) de dt’ = /(77077* +uhud)(z) de.
0

REMARK 4.1.1. — e Theorem j shows that the system satisfied by the weak limits
of ne and ue is linear. There is therefore no convective term in the mean flow: sys-
tem (4.1.2, 4.1.3) actually corresponds to the projection of (SWy) onto Ker L: as seen
in Section 2.4.2, that projection can indeed be formally written

0t (n,0,u2) — vIIH(0,0, Aug) = 0,
(n,u)(t) = Mo (n,u)(t) ¥t > 0,
(n, ) =0 = Mo (n°, u®).

e Note that (n°,u") do not necessarily satisfy the constraints (4.1.2), so in gen-
eral (1,u) 1o is not equal to (n°,u°).

o The study of the waves induced by L, in Chapter 3, revealed the presence of
trapped equatorial waves, which however do not appear in the mean flow described by
Equation (4.1.8): no constructive interferences take place in the limiting process, in
other words the fast oscillating modes decouple from the mean flow, without creating
any additional term in the limit system (that feature was already observed in [11]
in the case of inhomogeneous rotating fluid equations, modelling the ocean or the
atmosphere at midlatitudes). This will be obtained by a compensated compactness
argument in Section 4.1.4.

4.1.1. Constraints on the weak limit. — We recall (see Chapter 1) that the
uniform energy bound on (7., u.) implies the existence of a weak limit (1, u). In this
paragraph we are going to prove that the weak limit belongs to Ker L.

PROPOSITION 4.1.2. — Let (n°,u®) € L*(R x T). Denote by (ne,uc)es0 a fam-
ily of solutions of (SW.), and by (n,u) any of its limit points. Then, (n,u) €
L (R™T, L%(R)) belongs to Ker L, and in particular satisfies the constraints

(414) uy =0, QSrius+ 8177 =0.

Proof. — Let x,9 € D(RT x R x T) be any test functions. Multiplying the con-
servation of mass in (SW.) by ex and integrating with respect to all variables leads
to

// (emeOex + (L +ene)ue - Vx) dedt = 0.

Because of the bounds coming from the energy estimate (1.4.5), we can take limits in
the previous identity as € goes to 0 to get

//u-dexdtzo.
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Similarly, multiplying the conservation of momentum by e and integrating with
respect to all variables leads to

[ (0 enuedn & s+ enue - (we 90+ a1+ enju vt

F(1+ gng)ngv ¥+ v, - Aw) dadt = 0.
Once again the bounds coming from the energy estimate (1.4.5) enable us to take
the limit as € goes to 0, and find that

//(W-w+ﬁx1u.¢l)dmdtzo.

It follows that (n(t),u(t)) belongs to KerL for almost all ¢t € R*, and we con-
clude by Proposition 2.1.1 page 9 that (1, u) does not depend on x5 and satisfies the
constraints (4.1.4). O

To go further in the description of the weak limit (7, u), we have to isolate the fast
oscillations generated by the singular perturbation L, which produce “big” terms in
(SW¢), but converge weakly to 0.

Therefore, a natural idea consists in introducing the following decomposition

(7767u€) = HO(naa Ua) + HJ_(nE7u€)7

where Iy is the L? orthogonal projection onto KerL and II, the L? orthogonal
projection onto (Ker L)*.

The idea to get the mean motion is then to apply IIp to (SW): since L is a skew-
symmetric operator, we have IIpL = 0 and we expect O:Ily(7.,u:) to be uniformly
bounded in some distribution space. The difficulty comes from the fact that one has
no uniform spatial regularity on 7n.. That is why we will actually consider the weak
form of the evolution equations; the point is then to take limits in the nonlinear terms.

4.1.2. Rough description of the oscillations. — The analysis of the nonlin-
ear terms lies essentially on the structure of the oscillations. A rough description of
those fast oscillations will be enough to prove that they do not produce any construc-
tive interference, and therefore do not appear in the equation governing the mean
(geostrophic) motion. The much more precise description given in Chapter 2 will
not be used in this section, but will be necessary to discuss the strong asymptotic
behaviour of the solutions in the next sections.

In the following statement we have considered a regularization kernel defined as fol-
lows: let k be a function of C2°(R? R™) such that k(z) = 0if |z| > 1 and [ kdz = 1.
Then for any § > 0 we define k5 by

ks(x) = 6 2K(07 ).
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PROPOSITION 4.1.3. — Let (n°,u°) € L*(R x T) and (n2,u?) satisfy assump-
tions (4.1.1), and denote by ((Ne,ue))e>0 a family of solutions of (SW.) with
respective initial data (n°,u?).
Then 1m0 = ks xn. and m? = ks * (1 + en)ue) = ud + e(n.u)® satisfy, for all
T > 0, the uniform convergences for all Q CC R x T
(4.1.5)
Ine — n§||Lm(R+7Hs(Q)) — 0 as § — 0 uniformly in e > 0, for all s <0,
lue — ug||L2([07T];HS(Q)) — 0 as 6 — 0 uniformly in ¢ >0, for all s <1,
Ineue — (n€u€)6||L2([07T];HS(Q)) — 0 as 6 — 0 uniformly in € > 0, for all s <0,
as well as the approrimate wave equations
e’ +V-md =0,

(4.1.6)
edyml + By (md)t + Vil = es + 60,

denoting by s° and o9 some quantities satisfying, for all T > 0,

supsup [|o2 || L2 (0,711 (RxT)) < +00,
>0 >0

(4.1.7) S
v >0, Sup 2l (o, 1) 5 (RxT)) < 00
€

In particular the approzimate vorticity wg =Vvt. mg satisfies
(4.1.8) 58t(wg - 5951772) + ﬂmg)l = qu + 5pg,

with, for all T > 0,
(4.1.9)
sup P21 L2 (0,772 (RxT)) < +00 and V5 > 0, Sup a2l 22 0,7y L2(Rx ) < +00.
6>0
Proof. — We proceed in two steps, first stating the wave equations for (1., m.), then
introducing the regularization (72, m?).
e The first step consists in establishing some bounds for

5816("75; ms) + L(nsv ms)'

We have
edine + V-me =0,
and
£0ym. + BrimE + V. = ere,
with

re = =V - (Mme @ u:) — neVne + vAue.

Let us now find a bound for r.. It is made of three contributions. The easiest to
handle is Au.. Indeed u. is bounded in L2(R*, H'(R x T)), so Au. is bounded in
L*(RY,H Y(R x T)).
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Next let us consider the nonlinear terms
1
=V (me ®uc) =n-Vn. = =V - (m: @ ue) — §V773'

By the energy bound (1.4.5) we infer that they are bounded in L>®(R*, W~—11(R x
T)).
Therefore in particular

(4.1.10) Irell 2o, r-572(RxT)) < O

e Now let us proceed to the regularization. We recall that the energy inequality
(1.4.5) provides the following uniform bounds

V1 + enetie|| oo+ 22 (Rx)) < C
el e (m+ 22 RxT)) < C,
Hu€||L2(R+,H1(R><T)) <C.

In particular we have

uell7zmxry < IV +encue| e + Cellnell 2 g l[uell L2 oy e | g1 (mcry
thus by the Cauchy-Schwarz inequality
Slelarem < IVTF el 3aqgunr + 80 eIy I Vel B ey
and finally
(4.1.11) [well L2 (0,17, 5 > 1)) < O
We also deduce from the usual product laws that
(4.1.12) [metie || 2 (jo,7); s (RxT)) < Cs for all s < 0.
The convergences (4.1.5) are then obtained by the Rellich Kondrachov theorem.
e By convolution we get (with obvious notation)
e’ + V- ul =0,
and
edyme + By (m2) " + Vg = er? + Baa(me)™ — (Bzam?) ™.

Notice that

rymd(z) — (zrme)’(z) = / ks (yyme (e — y)(er — (21— y1)) dy

— [ mrstwmete — ) d.
That implies that
(4.1.13) z1md () — (a1me)’ (z) = 665 (y) * me,
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gl)(y) =62kW(67z) and kMW (x) = z1k(z). We therefore infer that

B (m?)t (z) — Blarmd ) (z) = S0l () + Bk * (noue),
where for all T > 0,

where K

sup sup || | 2 (o, 73; 11 (Rx ) < +00.
§>0¢e>0

It remains then to control
sg = rg + 65%5((51) * (Neue) -
By (4.1.10) and (4.1.12) we get

v >0, Sup 1520l 22 (fo,7): 11 (R Ty < 00
€

e Taking the vorticity in the second equation of (4.1.6) leads then to
Ol + VL (Bry(md)t + V) =eVE 82 46V o0,
from which we deduce that
w4 B1V - mS + ﬁmg)l =eVi. 50 4 6VE .ol
Combining this last equation with the first one in (4.1.6) gives finally
A (w? — Bin) + ﬁmgl =eVi .52 4oVt o?,

from which we deduce the estimate (4.1.9) on the remainder. The proposition is
proved. O

4.1.3. Proof of Theorem 4. — We consider an initial data (n°,u%) € L*(R x T)
and a family (n2,u?) such that

1

3 [ (2P @ en®lP) do < e,

(772,“2) g (anuo) in LQ(R X T)
We consider a family ((ne,ue))e>0 of solutions of (SW.) with respective initial
data (n?,u?) (given by Corollary 1.4.1 page 6), and (n,u) any of its limit points.
Finally we consider (n*,u*) in (L? x H')(R) such that (n*,u*) belongs to the kernel
of L. In particular by Proposition 2.1.1 we know that
uy =0 and Pziui+din* =0.

Our aim is to prove that
(4.1.14)

t
/(7777* + ugul)(t, x) dx + V//Vuz Vus(t', x) doe dt’ = /(7707]* +uhud)(z) de.
0

e In order to establish such an identity, the idea is to take limits in the weak form
of System (SW,), which will require some further regularity on (n*,u*), and then to
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extend the limiting equality to all vector fields (n*,u*) € L? x H'(R) N KerL by a
density argument.

Note that the classical regularization method cannot be applied here, since the ker-
nel of L is not stable by convolution. In view of the explicit formula (2.1.2) page 10
giving the projector Iy (which is written in terms of the singular pseudo-differential
operator 9y ((Bz1)~1+)), it is actually natural to consider the Hermite functions intro-
duced in the previous chapter, and we recall (see (2.2.7) page 13) that any element of
Ker L is a linear combination of the following

e ese) = )

1

- - for n > 1,
2r(2n+1)

(M, un) =

0
2 sen) = B )

Po(x1)
and (1o, ug) = 0

Yo(z1)
We will therefore restrict our attention to these particular vector fields which are
smooth and integrable against any polynomial in 1 (recall that

snton) = exp (-222) (e vB)

where P, is the n-th Hermite polynomial), and then conclude by a density argument.

o Using the conservations of mass and momentum (SW,) it is easy to see that

¢
/(ngnn + meoup2) (t,2) do + V//Vu&g Vupo(t', z) do dt’
0

=/%%+mb%ﬂﬂM+A?W@WeWwNﬂ@Mﬁ“

Now we need to take limits as € goes to zero in all four e-dependent integrals appearing
in that expression.
Clearly the first three terms converge to their expected limits, as

/ (e, + Ue 2Un 2) (t,2) do — /(nnn + Uty 2) (t,z) dx

[ G+ 2nz) ) e — [ 6+ 82 0) o

and

¢ ¢
V//Vu572 N o (', x) de dt' — V//Vug NV o(t', x) do dt’
0 0

for all £ > 0, as € goes to zero.
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So the only term we need to worry about is the coupling term

¢
//m5,2u5,131un,2(t’,a:) dx dt'.
0

We will prove in the following lemma that it actually converges to 0:
t
lir%//ma)gua)lalumg(t’,x) dxdt' =0,
E—> 0

which is due to the special structure of the oscillations pointed out in Proposition 4.1.3.
This result clearly ends the proof of Theorem 4, and is proved in the next paragraph.

4.1.4. The compensated compactness argument. — Let us prove the following
lemma.
LEMMA 4.1.4. — With the previous notation, we have locally uniformly in t
t

lir%//m€,2u€,181u7172(t’,x) dzx dt’ = 0.

E—> 0
Proof. — Let us introduce the same regularization as in Proposition 4.1.3, defining

ng =N % Ks, ug = U, x ks and mg = Mg * Kg.

Then
(4.1.15)

" ¢
//m572ua7lalun,2(t/ax) dr dt’ = //mg,2mg,1alun72(t/ax) dz dt’
0 0
¢
+//mg)2(u’;1 —mg,l)alun,g(t’,x) dz dt’
0
¢
+//mg72(u571 —ul)Ovun (', x) dudt
0

t
+//(ms,2 —mg,g)us,ﬁlun,g(t’,x) dz dt’.
0

e By the energy estimates and the bounds on the Hermite functions given in Propo-
sition 2.2.3 page 14, we can prove that the last two integrals converge towards zero as
& goes to zero uniformly in €. Indeed for all & > 0 there exists some bounded subset
Qs X T of R x T such that (recalling that n is fixed)

[O01un2llwre®ri0.) < .

Then, for 0 < s < 1 and for any s’ > 0,

¢
//(ms,z — mg,g)usylalun,g(t’,x) dz dt’
0

§
< lIme2 = m ol 20,175+ (20 xTy) el L2 (0,77 10 (RxT)) | O1Un 2]l w0 (R)
+ 2O‘||m6,2||L2([0,T];H—5—5/(R><T))||u€,1||L2([0,T];H1(R><T))

which goes to zero as a then § go to zero, uniformly in € by (1.4.5), (4.1.11) and (4.1.5).
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Similarly, we get, for 0 < s < 1,

¢
/ /mgg(u&l —ugl)@lun,g(t’,x) dx dt’
0

< lm ol 2oy -+ ey lten = ud 1| 20,1315 (20 xT)) [ O1tm 2]l w100 (R xT)

+ 2alme 2 || L2 (jo, 77 5= (Rx ) 1te 1] L2 (0,1 51 (R X TY)

which goes to zero as a then ¢ go to zero, uniformly in € by (1.4.5), (4.1.11) and
(4.1.5).

Next we prove that for all § > 0, the second integral in the right-hand side
of (4.1.15) goes to zero as ¢ goes to 0. We have seen in (4.1.12) that n.u. and
consequently m. are uniformly bounded in the space L*([0,7]; H*(R x T)) for s < 0.
Therefore, for fixed § > 0, (n.u.)® and m? are uniformly bounded in L?([0, T]x R x T).
Then,

¢
/0 /mg)z(ug)l —mgjl)ﬁlunyg(t’,x) dx dt/

< ellml 5l 2o, rxrxm) (et 220,71 xR xT) |01 2| oo (R )

which goes to zero as € — 0 for all fixed § > 0.

e So finally we need to consider the first term in the right-hand side of (4.1.15).
We are going to prove that the limit of that term is zero using Proposition 4.1.4.
Integrating by parts, we have, recalling that wg = Vng,

t
/ /mg,zmg,lalun,z(t'w) dx dt’
0
t
= 7/ / ((almg,z)mg,l + mg,z(almg,ﬂ) un,z(tl,x) dz dt’
0
t
- _/ / ((_Wg + 82mg,1)mg,1 + mgg(v ml — 32mg72)) upo(t', x) dzdt/
0
t
= 7/ / ((~w + ﬂxlﬁg)ng +ﬁ§(—ﬁx1mg,1 + 0am?) + mgz(v cm2)) tn o (t, 7) da dt’
0
1 t
B 5/0 /82 ((mg,l)2 . (mﬁ,z)z -3 (772)2) un 2(t, x) dz dt’

and the last term is zero because Oauy 2 = 0.
Proposition 4.1.4 now implies that

edy(w? — Brind) + Bm? | = eq? + op?,
58tm‘;2 - Bmlmg)l + 8277? = asg)z + 502,2,
e’ +V-md =0,

where ¢ and s are bounded respectively in L([0,7]; L*(R x T)) and L*([0,T];
H'(RxT)) for any T > 0 uniformly in € (by a constant depending on §), and where p?
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and o are uniformly bounded in € and §, respectively in the spaces L2([0,T]; L*(R x
T)) and L?([0,T); HY(R x T)) for any 7' > 0. It follows that

t
/ /mg,ng,lalun,Q(tl,x) dx dt’
0
¢
€ ) c 5
= —/ / (—az(ﬂxlﬁg - wg)Z + —(ﬂxlng —wg)qg + _(ggjmg _ wS)pﬁ) u",z(t’,z) de dt’
t
B / / (—53t(ngmg72) + 577352,2 + 577?0;572) Un2(t', ) dx dt/
0

Now we notice that

t
/ /(ﬁxmﬁ —wg)pgun,g(tﬁx) dx dt’
0

<C (T1/2||77§||L°C(R+;L2(R><T)) + H(’JSHLQ([O,T];LQ(RXT)))

x |1+ 23 ?up 2|l oo mxm) P2 L2 (0,7 L2 (RxT)) »

and similarly

t
/ /ngag,zun,z(t/,l‘) dx dt’
0

So writing

< CTY2 02| oo (r L2 ®xm)) [t 2l Lo (R 102 | 20,7 L2 (R xT)) -

||wg||L2([O7T];L2(R><T)) < ||VL ’ USHLQ([QT];L?(RXT)) + 5||VL ’ (ngug)||L2([07T];L2(R><T));

we infer that
.. )
k) (5

t
lim (5 ‘/ /ngag g 2(t',z) dxdt’
6—0 0 ’

On the other hand,

t
/ /(ﬁxmi —wg)pgun,g(t',x) dx dt’
0

) =0, and

) =0, uniformly ine.

t
/ /(ﬂzlng —wg)qgumg(t/,m) dx dt’
0

< C (Il et r2mxmy) + |wlll Lo R+ L2 (R T)) )

X ||(1+ x%)l/2un,2”L°°(R><T) ||QSHL1([0,T];L2(RxT))

s 1
<C <\|77§||Loo(R+;L2(RxT)) + g\|ue\|Lw(R+;L2(RxT>) +e||VE- (Tlgug)\|Lw(R+;L2(RxT))>
X [|(1 4 23 )un 2

¢
/ /ngsgjgun,g(t',x) dx dt’
0

< Ol o ret ;2 mxry) [t 2l Lo () |2 2 (0,73522 (R

5
L>~(RXT) HQE ||L1([0,T];L2(R><T))a

and
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t
/ /(5551772 —w)qluno(t', x) dvdt
0

¢
lim <5 / /ngsg JUn 2 (t' ) dxdt’
e—0 0 ?

So we simply need to let € go to zero, then &, and the result follows. O

SO .
lim (— > =0, foralld >0,
e—0 ﬂ

> =0, foralld>0.

4.2. Strong convergence of filtered weak solutions towards a strong solu-
tion

In this paragraph we will prove the following strong convergence theorems. We
recall that IT; denotes the projection onto (Ker L)*, and that the spaces H 7 were
defined and studied in Chapter 3 and defined again in this chapter, page 92.

The first result we will state concerns the case of smooth enough initial data, and
requires no restriction on .

THEOREM 5 (strong convergence for all 3). — Let ®° = (n°,u") belong to L*(R x
T), and consider a family ((n2,u?))e>o such that

1
5 [ (P @ enlP) do < and

1
3 / (|ng P4+ (1 + sng)|u2 — u0|2) dr — 0 as e — 0.

For all ¢ > 0 denote by (n-,ue) a solution of (SW.) with initial data (n°,u?). Finally

suppose that 11, ®° belongs to Hé/z and that IIp®° and I ®° belong to Hf for
some « > 3/2. Then the sequence of filtered solutions (®.) to (SWe) defined by

(1.2.1) 0= £ (1) ()

converges strongly towards ® in L3, ([0, T*[; L*(RxT)), where ® is the unique solution

loc

on [0, T*[ of (SWy) constructed in Theorem 2, page 36 .

The next theorem requires less assumptions on the initial data; on the other hand
one must first remove a countable set of values for g.
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THEOREM 6 (strong convergence for generic 3). — There is a countable subset N
of Rt such that for any 8 € RT \ N, the following result holds. Let ®° € L?*(R x
T;R3) be given, and consider a family ((nY,u?))eso such that
1
5 [ P+ (e enlP) do < and
(4.2.2) |
5 / (|ng 02+ (1 +end)|ul - u0|2) dr — 0 as e — 0.
For all ¢ > 0 denote by (ne,ue) a solution of (SW.) with initial data (n°,u?). Finally
suppose that I p®° and T x®° belong to HE for some > 1/2. Then the sequence of
filtered solutions (®.) to (SWe) defined by (4.2.1)

D=L <—£) (Ne, ue)

converges strongly towards ® in L3 (RT; L*(R x T)), where ® is the unique solution

of (SWy) constructed in Theorem 3, page 36 .

REMARKS 4.2.1
e Note that definition (4.2.1) of ®. does make sense since as stated in Corol-
lary 1.4.1, one has an L? bound on u..

2 (RT,L3(R x T)) cannot be obtained di-
rectly using some a priori estimates. Indeed we have a priori no uniform reqularity
on n. with respect to the space variable x (besides we expect the limiting system to be
a mized hyperbolic-parabolic system,).

e The strong compactness of (®.) in L?

e The proof of both convergence results is based on a weak-strong stability property
of (SW,). It s therefore crucial to be able to construct a smooth approzimate solution
Dypp to O, writing an asymptotic expansion in € whose first term is ®. The regularity
assumptions on the initial data stated in both theorems are precisely that enabling
one to guarantee that the limit system has a unique, stable solution and propagates
regularity. In particular it should be noted that in both cases, the assumptions on the
initial data imply that V- ®' belongs to L'([0,T]; L°(R x T)) (see Proposition 3.6.1).
Once the setting is posed so that the limit system does satisfy those properties, the
proofs are very much the same in both cases. So in the following we will only prove
Theorem 6, and leave to the reader the easy adaptations in the case of Theorem 5.

Proof. — As noted in Remark 4.2.1 above, we will only prove Theorem 6 here.

The idea is, as usual in filtering methods, to start by approximating the solution
of the limit system, and then to use a weak-strong stability method to conclude.

So let us consider the solution ® of (SW)) constructed in the previous chapter (see
Theorem 3 page 36), which we truncate in the following way:

(4.2.3) On =N P+ P,
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where Jp is the spectral truncation defined by
(4.2.4) Jy= Y I,
INEG N
with
Gy = {iT(n,m) e G/n <N, |k < N},
and IT; denotes as previously the projection onto (Ker L)*. Finally IIo® solves
8tH0(I>N - VH()A/H()‘I)N =0
Ho®njt=0 = Z IL,,,0,09°.
0<n<N

We recall that II, 0,0 denotes the projection onto the eigenvector W, oo of KerL.
Then for all fixed N € N we have (see Theorem 2)

(4.2.5) o®y belongs to L (R1; HY), Vo > 0.
Recall that such a result means that IIi®y is as smooth as needed, and decays as
fast as needed when 1 goes to infinity.

Moreover by the stability of the limit system (which is linear) we have of course,
for all T' > 0,
(4.2.6) A}gnoo [Tlo®@n — o @|| Lo (j0,7];L2(RxT)) = O-

Note also that for all fixed N € N, using the smoothness and the decay of the
eigenvectors of L, we get for any polynomial @ € R[X]

(4.2.7) Q(z1)®N € L=([0,T; C*(R x T))
We have moreover, for all T > 0,

(4.2.8)
(HHL(‘I’*‘I’N)||L°°([0,T];L2(RxT))+||(HKJFHP)(‘I)*‘I)N)HLO@([O,T];H;)) — 0 as N — oo,

and
(4.2.9)

(||H¢(<I’ = On)llL2(o,r;m) + (ke +11p) (@ — ‘I>N)||L2([0,T];Hg+1)) — 0as N — oo.

Finally since Jy commutes with A, the vector field @y satisfies the approximate
limit filtered system

KON + INQL(P, ) —vAL PN =0,

(4.2.10)
P nj1—o = JnD°.

Conjugating this equation by the semi-group £ leads then to
9, (,c (f) @N>+1L (z (f) @N) +INQL (,c (f) . L (3) @)qu'L,c (f) By =0,
€ € € € € €
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using the definitions (2.3.6) of @1 and A’;. Let us now rewrite this last equation in
a convenient way

() ) ol mel) o) e( o
=(Q-Qu) (c <£> Oy, L ( ) <I>N) C (A - AL <5> .
(e (2)oe(l) e 2 on o).

Because of (4.2.8) and (4.2.6), the last term in the right-hand side is expected to
be small when N is large, uniformly in &, and similarly for the third term, using
the stability of the limit system proved in the previous chapter. So we are left with
the first two terms, which as usual cannot be dealt with so easily since they do not
converge strongly towards zero. However they are fast oscillating terms, and will be

treated by introducing a small quantity e¢n (which will be small when e goes to zero,
for each fixed N), so that

(@%L) (E (é) equ) ~—(Q—Qp) <z: (2) Oy, L (é) @N) (A=A L (é) by,

Let us now define

6
on=— > oy )HAQ(H R IR 1 P 3
‘Aeek?‘é;“t{]es
4.2.11 I
e eZE(A_#)H A'TL,®
+v Z m A pwEN,

AFEp,
INES,iES N

and consider
(I)&N =&y +eon.
Let us prove the following result.

PROPOSITION 4.2.2. — For all but a countable number of 3, the following result
holds. Consider a vector field ®° = (ny,ug) € L*(R x T), with (Ilp + U )®° in H
for some a > 1/2. Denote by ® the associate solution of (SWy). Then there exists a
family (n-,n,ue,N) = L (L) @ n, bounded in the space L35, (RT,L?)N L7 (RY, H),
such that (Ip + Ik )(ne N, Ue,N) s uniformly bounded in the space Lio (RT, HY) N
L? (RF, Hg“), and satisfying the following properties:

o & v behaves asymptotically as ® as e — 0 and N — oo:

(4.2.12) VTS0, lim 1 |@0n = @ oz oy = O
o for all N € N, (ne,n,ue,N) is smooth: for all T >0 and all Q € R[X],
(4.2.13)  Q(z1)(Ne, N, ue,N) is bounded in L*=([0,T]); C°(R x T)), uniformly ine;
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o (Ne.N,Ue,N) Satisfies the uniform regularity estimate

(4.2.14) VT >0, sup lim HV . U57NHL1([07T];LOQ(RXT)) < CT;
NGN e—0

o (Ne.N,Ue,N) Satisfies approximatively the viscous Saint- Venant system (SWe):
(4.2.15)
Ot (Me,N 5 ue,N)-i%L(??s,N, ue N)+Q ((1e,N; Ue N ), (NN, e ) —VA (1N, ue N) = Re v
where R. Ny goes to 0 as € — 0 then N — oo:

(4.2.16) Jim lim (1R, Nl L2 (0,772 (Rx 1)) + €Nl Re N || Lo (0,71 xR xT) ) = 0

Proof. — Let us define ® as in (4.2.3) and ¢y as in (4.2.11). We can write
on = o + 65, with

it (A—p—f)
(AR

e — ILQUI,®N,I;Py)
N ; i(A—p— i) : g

INEG,ip, i€

o =v Y

AFp,
INES,iPES N

We will check that the approximate solution ®. n defined by
(4.2.17) PN = PN + PN

satisfies the required properties.
It will be useful to notice that there are two positive functions Ay (N) such that
if © belongs to Gy, then either ;=0 or

0<A_(N) < pu<AL(N) < +o0.

eié (Afﬂ)

—ILATL,Py.
i =g

It will also be useful to recall that, considering the asymptotics of A = 7(n,k,j)

II
as k or n go to infinity, the operator Z T)‘ is continuous from HY to Hy ' for any
A#£0
given o € R.

Finally we recall that the spectrum of L admits only 0 and co as accumulation
points.

e The correction ¢ is defined as the sum of two terms.

Let us consider the first one, ¢§§). It can in turn be written

o8 =Tlooy + 110y .

The first part, Hogbg\l,), is easy to handle since Il is of course continuous from H{
to Hf for any o.

Let us now study HJ_ng\l,). Clearly Q(II,®n,I1;®y) is in HY for any o > 0. We
infer that HJ_¢S$) belongs to HY for any o > 0. Indeed if p+ fi # 0 then |\ — p — fi
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is bounded from below since p and fi are in Sn and the accumulation points of A
are 0 and co. On the other hand if p + i = 0 then we use the continuity property

11
of Z TA recalled above.
A#£0
So we find that for all polynomials @ € R[X],
Qa1)9Y € L=([0,T); C®(R x T)),
as well as

Q)L G) U ¢ L2([0,T]; C*(R x T)).

This obviously implies that for all k € N
. t
VN EN, lim|[eQ(z1)L (g) 6% N2~ (o Tor ) = 0.

The second term d)s\?) is dealt with similarly, splitting it into two terms:

@) S e ATl S e AL
N =V : =) A wPnN + v A 0PN
F#u, A#£0,
INEG,ineS n\{0} INES

Because of the relations (2.2.1) satisfied by the Hermite functions, it is easy to see that
the first contribution can be rewritten as a finite combination of some eigenvectors of
L (which are smooth functions rapidly decaying in x1), and the second contribution

is dealt with again by using the fact that the operator Z LY is continuous from HY
A#£0
to Hg’l.
We conclude that for all @ € R[X]

t
Qe (£) o) € =0 THC=(R x 1)),
and thus
. t
VN € N, Ehﬂ% leQ(x1)L (g) ¢§3)|\Lw([o,T];ck(RxT)) =0, Vk e N.

Combining these results with (4.2.5), (4.2.6), (4.2.7) and (4.2.8) leads to (4.2.12)
and (4.2.13).

e The uniform regularity estimate (4.2.14) is obtained in a very similar way. Of
course the regularity of the correction established previously shows that its contri-
bution to V - u. y converges to zero as € goes to 0 in the sense of smooth functions
rapidly decaying with respect to 1. Therefore the only point to be checked is that

!
V- (E (é) <I>N> is uniformly bounded in L*([0,T]; L*(R x T)),
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which is obtained as the regularity property stated in Proposition 3.6.1, remarking
that the L bound comes from estimates which are stable by the truncation Jy and
by conjugation by the semi-group £. Indeed for almost all 3, provided that

1
(Ilx +1p)d° € HY for some a > 3’
any weak solution ® to (SW)y) satisfies the following estimates

IV - @l 1 0,79 (rxmy) < O

t !
v (e(0)%)
€
where C7 depends only on T' € RY, [[®°]|2(rx1) and ||(Ix + I1p)®°| e (neither
on N nor on €.)
e It remains then to establish the equation satisfied by (1. n,ue n). A direct
computation provides

as well as

S CTa
LY([0,T];L>(RXT))

0N = — Z e AL QI @, [T; B y)
AEpti
INEG,ip,ilES N
tro Y EIILAT, Oy

AFu,
INES,inES N

D S
N Oy 1)
INES,ip,iRES N
it(A—p)
(A
+ev — _IILA'TL0:PN
;, i(A = p) g
INES,inES

eii()‘fl"‘ﬁ)
QUL 0PN, ;P nN)

By (4.2.10) we infer that 9,®  is smooth and rapidly decaying (recalling in particular
that IIpQr = 0 due to Proposition 2.4.5 page 31), and thus the last two terms go to
zero as € — 0 (for all fixed V). The previous identity can therefore be rewritten

=< ) @ e(Jone (o)

(4.2.18) ; .
+vL (‘g) (A= AL <g> Oy +7eN

where

(4219) Vk € N,VN S N,VQ c :R,[‘X]7 gl_I% HQ(xl)T&NHLOO([QT];C’“(RXT)) =0.
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Now let us recall that
(4.2.20)

T2 e(9)0)cae)oce(or) e 9
;Ng EYINNAY (é) e

= (@-Qu) <£ (3) L (f)
€ €
+(Id— JN)Q1 <z: (f) ®, L (f o) +0r (c <f> (@ — ), L <f> (@n + <1>)> .
5 € € €
We thus have, recalling that
(ne,N7Ua,N) =L (g) (@N ait 5¢>N)7

(4.2.21)
1
8t(776,N> ue,N) + gL(na,Na uf—:,N) + Q ((na,Na ua,N)7 (776,Na UE,N)) - VA/(UE,N, ue,N)

RSN X N O A P
+eQ (E (é) b, L <§> 2Py + a¢N)) Y (z (g) ¢N) Fren

Note that the regularity estimates on ®x and ¢y allow to prove that the last two
explicit terms in the right-hand side go to zero as ¢ — 0 (for all fixed N), and
therefore to incorporate them into the remainder r. y.

The stability of the limiting filtered system (SW)) allows to prove that the second
term in the right-hand side of (4.2.21) goes to zero as N — oo uniformly in . We
have indeed

o (e(¢ o e(() own)

and recalling that only the Kelvin waves can have resonances,

QL (PN — @, 2N + @) [[L2mxT) < |QL (T (PN — @), UK (PN + @) [[L2(RxT)
+ QL (o(®n — @), (PN + D)) [l L2RxT)
+ QL (TL(Pn — @), TTo(Pn + D)) [l L2RXT)S

so by Proposition 3.3.3 page 39 and two-dimensional product rules on the Kelvin part
(recall as in the previous chapter that H® and H} spaces coincide in the case of Kelvin
modes) we infer that

(4.2.22)
1QL (Pn — @, ®n + @) [[2®xT) < Calllk (PN — @) gorr [Tk (P + )| mg
+ C[[o(en — @)l r2mxm) [T (PN + @)l 211
+ C[Mo(2n + @) 2mxm) L (PN — @)l 1 -

= QL (®n — ®,on + @) [ L2(RxT)
L2(RXT)
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So by (4.2.8) and (4.2.9) we conclude that
A ([ Qr (2n — @, PN + ) [| 20, 7);22(Rx ) = O-

Let us estimate the first term in the right side of (4.2.21). We can write as above
(recalling that Q(Ily - ,IIy - ) = 0)

e (S e (0))

<|[|Qr (Ux®, Ik ®)|| . +2[Qr (o®@, L )|l

L2
so we find that
(4.2.23)
t t t
H@L (c(2)ome(2)av)| <o (e () onizy +Imonz )
€ € 12 € L
and thus

. t t
]\;HII sup ||(Id - JN)QL <£ <—) (I),E (—) Q)) HL2([O,T];L2(R><T)) = 0
—00 g E £

Note that in the case when § belongs to A (Theorem 5), equations (4.2.22) and
(4.2.23) must be adapted using the third estimate of Proposition 3.3.3.
Finally to prove that for all V € N, for all " > 0, the quantity

Q1 </: G) (On — D), L (é) (@n + @)) 4 e(Id— Tn)Qr (/: (é) ®, L (é) q>>

goes to zero as € goes to zero, in the space L>°([0,7] x R x T), we simply notice that
Qe (c (E) (@n —®),L (f) (@n + @)) +(Id - JN)QL (g (E) e (E) q))
g £ c c
() re(() o) s (o () o)

and the convergence result is obvious if one considers the right-hand side, simply
because those terms are smooth for each fixed N.

Combining all the previous estimates shows that (7., n, ue,n) satisfies the expected
approximate equation (4.2.15), where R, y satisfies the expected estimate (4.2.16) as
well as

(4224) ngnoo 611_{1’(1) EHRE,N”LO"([O,T]XRXT) =0.
Proposition 4.2.2 is proved. o

Equipped with that result, we are now ready to prove the strong convergence
theorem. The method relies on a weak-strong stability method which we shall now
detail. We are going to prove that

(4.2.25) im lim [|(ne, ue) — (e,n, e Nl 22(0, 7] xRXT) = 0,

1
N —00e—0
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where (1, N, ue,N) is the approximate solution to (SW,) defined in Proposition 4.2.2.
Note that combining this estimate with the fact that (9. n,ue n) is close to £ (ﬁ) P
provides the expected convergence, namely the fact that

VT >0, lir% H(ns,us) - L <£) o =0.

€ L2([0,T]xRxT)

The key to the proof of (4.2.25) lies in the following proposition.

PROPOSITION 4.2.3. — There is a constant C' such that the following property holds.
Let (n°,u%) and (nl,u?) satisfy assumption (4.2.2), and let T > 0 be given. For all
e > 0, denote by (-, u:) a solution of (SW.) with initial data (n°,u"). For any couple
of vector fields (n,u) belonging to L>=([0,T]; C*°(R x T)) and rapidly decaying with
respect to x1, define

E(t) = % /((775 —0)® 4+ (1 +en)|uc — ul?) (t,2) da:—&—u/o /|V(u5—g)|2(t',x) dz dt’.

Then the following stability inequality holds for all t € [0,T]:

E(t) < CE(0)exp (x(t)) + we(t)
+ C/O ex<t>*x<t,>/ (BtQJr éV ‘u+ V- (Qu)) (n—n)t',z) dz dt’

¢ / 1
+ C/ ex(=x(t >/(1 +ene) (&su + < (Brwt + V) + (w- V)u - VAu> (u—ue)(t', x) dedt’,
0
where we(t) depends on u and goes to zero with e, uniformly in time, and where

t
€0 =C [ (IV - tlommen) + [Vulaer) ()it

Let us postpone the proof of that result, and end the proof of the strong conver-
gence. We apply that proposition to (n,u) = (17:,~, Ue,N), Where (- n,ue,n) is the
approximate solution given by Propositi)n 4.2.2. We will denote by x.,n and & n the
quantities defined in Proposition 4.2.3, where (1, u) has been replaced by (-, n, ue n)-

Because of the uniform regularity estimates on (1 n,ue,n), we have

vT >0, sup lim (||VUE,N||2L2([0,T];L2(RxT)) +1IV- UE,N||L1([O,T];L°°(R><T))) <Cr,
so we get a uniform bound on x. n:
sup lim ||xe, x| Lo (jo,77) < Cr-
N €—0

Then, from the initial convergence (4.2.2) we obtain that

VN eN, & n(0)exp(xen(t)) — 0ase— 0in L>([0,T7]).
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Moreover by Proposition 4.2.3 we have

(4.2.26)
1
8t (ns,Na us,N)+gL(7]s,N7 uE,N)+Q((T]€,N7 us,N)a (ne,Na U’E,N))_VA/ (ns,Na us,N) - Rs,N-

Let us estimate the contribution of the remainder term. We can write
t 4 1 2
e N Rl = (1 ) e =) () ot = I (0410,
with
t !
Ia(,ll)\f(t) = / eXe:N () =xe,n () /R57N70(77£,N - 775)(75', :E) dx dt/, and
0

t
2@ = / X () xen (1) / RL (14 ene)(ue,y — ue) () da dt’.

The first term can be estimated in the following way:

()] < CrllRellr o,11:22mxm) 1e,8 = 0|l 1o (0,177:L2 (R ) -

For the second term we can write
IIs(?Jz,(t)l < CrllvV 1+ ene(ue, N —ue) | Lo o,13:22 RxT) |V 1 + €N Re N || 1 (j0,77: L2 (R xT)) -
Now we can write

V1 +eneRenll7emury < CURe N 2mxr) + Ellmell 2@ [ Re v |7 amxcry)-

Since
el Re N7 amxr) < IR Nl L @xml|Re v [l L2 (®xT)

we infer that the quantity E%RE) N goes to zero as € goes to zero and N goes to infinity,
in the space L2([0,T]; L*(R x T)), so in particular

. A 1
Jim lim g2 | Re.N Nl 2 (jo,77:L4 (R xT)) = 0.

Finally by the uniform bound on 7. in L*([0,T]; L?(R x T)) and by the smallness
assumptions on R, n, we deduce that

t
/ eXeN () =xe,n () /R&N (e Ny —Me)s (1 +ene)(ue,n — ue)) (t/, x) dx dt’
0

< 5UMe,n — 776||%°°([0,T];L2) + V14 ene(ue,n — UE)H%OO([O,T];N)) + we,n (1),

N =
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where
i i flwe v (8] 2 (o, 7)) = 0-
We now recall that by Proposition 4.2.3, using (4.2.26), we have
Ee,n(t) < CE N (0) exp (xe,n (1)) + we (1)
+ C/Ote"f‘N(t)Xf‘N(t/)/RaN ((ne,v = me), (1 + eme) (ue,ny — ue)) (¢, @) dw dt!

where

En(t) = 5 (10 = ne )O3 + VI 20t — o) ()13 )
o [ 190 ) O 0
0

Putting together the previous results we get that hm hm & n(t) = 0 uniformly
N—o00 e—0
on [0, T], hence that

Jm lim 1,5 — Mell oo (jo,77:L2(R xT)) = 0,

hm hm V1 +ene(ue,Nn — ue)l Lo (jo,77:L2RxT)) =0,

]\}En hm [, v = tell 20,77, (RxT)) = 0
By interpolation we therefore find that
Jim lim (17,8 = el oo (0,73 22(Rx ) + |Ue, v — vell L2073 R xT))) = O,

hence (4.2.25) is proved.

To conclude the proof of Theorem 6 it remains to prove Proposition 4.2.3. As the
energy is a Lyapunov functional for (SW,.), we have

£t / = ( S = )+ (14 en) (5 lul? —Ma) (t',2) dv dt’
K /0 / v(Vu — 2Vue) - Vu(t', z) da dt
S/Ot/ (@01 = ne) + (1 + ene)uw - (w — ue)) (¢, z) da dt’
a /ot/ (Omem+ 0u((1 4 emJue) - = SOme[uP)) (¢ 2) dar

p /ot/V(A% (u—ue) — Aue - w) (t',x) dedt’.
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Using the conservation of mass and of momentum we get
t
E(t) —&:(0) < // (Oen(n —ne) + (1 4+ en) (Opu — vAw) - (u—ue)) (¢, ) da dt’
0
! €02 /
+ [ 29 e (n- 5) ¢ doas
t
+ // <@(ﬁxlui +Vn)+ V- ((1+en)ue ® u5)> cu(t, x) dx dt’
0
t
+//81/775Ag- (uw— ), x)dzdt'.
0

Integrating by parts leads then to
(4.2.27)
k 1
E(t) — £-(0) < / / (&g +-Vout V- (ﬂg)) (n —n:)(t', ) dz dt’
0.

¢ 1
IALESS (@“ ~(Briut + Vi) + (- V)u - A_) (- )t @) dwdt’
0 1> B
ot
- / /(1 +en)Du: (u—ue)®* (', z) da dt’
//( 2V u+t(n— ns)V~(gy)+nsg~Vg> (t',x) dz dt’ + R.,

where "
t) = //synaAg- (w—u)(t',z)dxdt’.
0

The last term is rewritten in a convenient form by integrating by parts
(4.2.28)

//( MV u+ (n - na)V(ﬁu)Jrnag-Vg) (t',z) dz dt’

//< 2V ou+(m—n)(u-Vn+nV-u) +neu- Vn) (t',z) dx dt’

//< 2V -u+ (n—n)nV-u % Vf) (', x) dz dt’

// V2V - w(t', x) da dt’.

Plugging (4.2.28) into (4.2.27) leads to
(4.2.29)  £.(1) — //<am+ 1S utv. ))( )t x) dx d + Ro(t)
+ / /(1 +ene) (aty + —(658&L +Vn)+ (u-V)u— VAQ) (u—u)(t',z) dz dt’

//1+€77€ Du : (u—u)®?(t', x) dx dt’ —// )2V - u(t', x) dedt’.
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In order to get an inequality of Gronwall type, one has to control the right-hand
side in terms of £.. We start by estimating the flux term. We have

—/t/(l +en.)Du: (u—u)®* (', ) da dt’
0

/

t
< / IVl z2rscry + elellz2roeny IVl roemy) e — el B () e

<c / (Il e + elnellz2groeny Vel e grery) N1 — el 2 rocry
0
Xl = vel| g mocery (t) @t

and

||U_Ua||%2(RxT)
<1+ ene(ue — w)||72@mxry + llnell L2 @emy 1w = we | L2 gocmy 1w = wel 1 ey

which implies

lu— Us||L2(RxT) <2([/1+ene(u ||L2 (RXT) + 162|772 ®mx) llu— Us||H1 (RxT)"

Therefore, using the uniform bounds on 7., v/1 + €n-u. and on u. given by the energy
estimate, we gather that
(4.2.30)

//1—1—5175 Du: (u—u)®?(t', x) dv dt’

<c / IVull e + el Vaull o)l /T e (e — )l 21w — e s ()
+0e [ (19ulle + €9l el () 0
0

v C
<X [l el @)t + & [ Tl T 2 — w38 dt + )

We also have
(4.2.31)

/ / PV -t @) dedt’ < 3 / 19 - e o 1= 7l ey () '
so we are left with the study of the remainder R.. We have
t
R.(t) < 5V||775HL°°(R+;L2(R><T))/ | Aull pagrx)llw — vell Lagxr) () dt’.
0

The above estimate on ||u — u.||L2(rxT) implies in particular that ||u — uc||2(rxT) 18
bounded in L*([0, T']), hence we get that ||u—u. || 1(rxT) is also bounded in L([0, T]).
So we infer directly that R.(¢) goes to zero in L>°([0, 1) as € goes to zero. That result,

SOCIETE MATHEMATIQUE DE FRANCE 2007



920 CHAPTER 4. CONVERGENCE RESULTS

joint with (4.2.30) and (4.2.31) allows to deduce from (4.2.29) the following estimate:

1

555(15)—85(0)§/0 /(8@+§V@+V~(ﬁ@)) (n—ne)(t',x) da dt’

t
+/ /(1 +ene) (8&—0— l(ﬁxlgl +Vn) + (- V)u - VA@) (w—ue)(t ) de dt’
¢ / Va2 /T F e (e — )22 e ()
+3 [ 19 alaslly @) a0 + )

thus applying Gronwall’s lemma provides the expected stability inequality. Theorem 6
is proved. O

4.3. Strong convergence of filtered weak solutions towards a weak solution

The aim of this section is to prove an intermediate convergence result, in the sense
that we will seek a strong convergence result of the filtered weak solutions, towards a
weak solution of the limit system; thus no additional smoothness will be required on
the initial data other than L?(RxT). As explained in the introduction of this chapter,
the lack of compactness in the spatial variables of 1. will prevent us from obtaining at
the limit the expected system (SWp): a defect measure remains at the limit, which we
are unable to remove. In order to gain some space compactness and to get rid of that
defect measure, we propose in the final paragraph of this section (Paragraph 4.3.4
below) an alternate model which takes into account capillarity effects, and for which
one can prove the strong convergence of filtered solutions towards a weak solution
of (SW())

The first result of this paragraph is the following.

THEOREM 7 (strong convergence towards weak solutions). — Let (n%,u") € L?(R x
T) and (n2,u?) satisfy (4.1.1). For all e > 0, denote by (n-,u.) a solution of (SW¢)
with initial data (n2,u?), and by

d.=L <—£) (e, ue).

Up to the extraction of a subsequence, ®. converges strongly in L3 (RT; Hy (RxT))
(for all s < 0) towards some solution ® of the following limiting filtered system: for
all i\ € &, there is a bounded measure vy € M(RTxRxT) (which vanishes if A = 0),
such that for all smooth ®% € Ker(L —iAId),

/@ % (z )dx—y/ /A’L<I> O (¢, ) drdt’

//QL ®,®) - (', z) drdl —|—/ /V (®%) oa(dt’ dz) = /<I>0-<T>§\(x) dr,

where Qr, and A are defined by (2.3.6) page 23, and where ®° = (n°, u?).
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REMARKS 4.3.1
e Note that, by interpolation with the uniform L? (R*; HY(R x T)) bound on u.,

loc
we get the strong convergence of u. in L7 (R*; L*(R x T)): up to extraction of a

loc
t /
= (2(2)7)
€
o As explained above, the presence of the defect measure vy at the limit is due to
a possible defect of compactness in space of the sequence (ne)e>0. As the proof of the

subsequence,

— 01 L7 (RT).
L2(RXT)

theorem will show, that measure is zero if one is able to prove some equicontinuity in
space on ne, or even on €ne. Since we have been unable to prove such a result, we
study in the final paragraph of this section a slightly different model, where capillarity
effects are added in order to gain that compactness. Note that the model introduced in
Paragraph 4.3.4 is unfortunately not very physical due to the particular form of the
capillarity operator (see its definition in (4.3.9) below).

Theorem 7 is proved in Sections 4.3.1 to 4.3.3, and the result in the presence of
capillarity is stated and proved in Section 4.3.4 .

4.3.1. Strong compactness of I1y .. — Let us prove the following lemma.

LEMMA 4.3.2. — With the notation of Theorem 7, the following results hold.

e For all ix € &\ {0}, 1\ ®. is strongly compact in L?([0,T]; H*(R x T)) for all
T>0andall s € R;

o [Iy®. is strongly compact in L*([0,T]; Hy, (R x T)) for all T > 0 and all s < 0.

Proof

e For all A # 0, we recall that by Proposition 2.2.3 page 14, the eigenspace of
L associated to the eigenvalue i\ is a finite dimensional subspace of H*(R x T).
Therefore the only point to be checked is the compactness with respect to time,
which is obtained as follows.

Let (n,k,j) € N x Z x {=1,0,1} be given, such that A = 7(n,k,j) # 0, and
let W, 1, ; be the corresponding eigenvector. Multiplying the system (SW;) by Uy, 1 ;
(which is smooth and rapidly decaying as |x1] goes to infinity) and integrating with
respect to = leads to

= = iT(n, k,j - _
at/(ng(\llmk-’j)o + me - \Il:z,k,j) (t7x) dx + %/(T}E(ka,j)o + me - ;L,k’j)(tx) dx

_ _ 1 _
—&-V/Vug SV () de — /m6 (ue - V)W, i (tx) da— 3 /ngv W, dr =0
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where \Tln,k,j denotes the complex conjugate of ¥, 1 ;, or equivalently

00 (ex0 (DY [ 1o+ e 0, )0,2) o)

£

(4.31) + y/v (exp (M) u> V() de

3

it k,j _ 1 _
— /exp <w> (ms (ue - V)W 4+ 57]?V : \IJ;L,W») (t,z) dz =0.

By the uniform estimates coming from the energy inequality we then deduce that
itr(n, k,j - -
o0 (w0 (I [0 4 e W00 o)

is uniformly bounded in €. Therefore the family

<exp <t§) nms,ms))oo

is compact in L%([0,7]; H*(R x T)) for any s € R, and since en.u. converges to 0 in
L>(RT; H*(R x T)) for all s <0, we deduce that

itA
exp (?> I\ (e, ue) = I\ P,

is compact in L2([0,T]; H*(R x T)) for any s € R.

e For Iy @, = IIy(n., u.) the study is a little more difficult since the compactness
with respect to spatial variables has to be taken into account. By the energy estimate
we have the uniform bound

®. is uniformly bounded in L? (R*, L*(R x T)).

loc

We recall that we have defined in Section 3.1 (Definition 3.1.1 page 34) the space

Hy =3¢ € PRXT)/ > (14+n+k) (@ Wnh)ismer) <+ ¢
n,k,je€S

where S =N x Z x {—1,0,1} or equivalently (see Proposition 3.1.2 page 34)
HS = {w CLX R xT)/(Id — A+ f222)*/%) € L*(R x T)} .

As (¥,,0.0)nen is a Hilbertian basis of Ker L, we have for all T'> 0 and all s <0

D (@cn0,0) o) Y00 — Hode — 0 as N — oo uniformly in e.
=N L2([0,7); )

Let © be any relatively compact open subset of R x T. Proposition 3.1.2 page 34
implies that, for all s > 0

Hj(Q) Cc Hf Cc H°(R x T),
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and conversely for s <0,
(4.3.2) H°(R xT)C Hj C H*(Q).
Thus for all s < 0 and all T' > 0, we have

Z ((I)€|\Ij"x070)L2(R><T) V.00 — Ho®Pe — 0 as N — oo uniformly in €.

=N L2([0,T);H# (92))

Moreover the same computation as previously shows that for any n € N,

O (/(775%,0,0 + Mg - tUn,0,0)(t, ) dx) + V/VuE : Vi, 0,0(t, x) dz

(4.3.3)
/mE (ue - V)n,0,0(t,z)de =0,

and, since en.u. converges to 0 in L?(R™; H*(R x T)) for any s < 0 we get

Z I, 0,0(7e, ue) is compact in L*([0,7] x R x T).
n<N

Combining both results shows finally that
My ®. is compact in L?([0,T7; Hy,.(R x T))
for all T'> 0 and all s < 0. Lemma 4.3.2 is proved. O

As the spectrum of L, & is countable (see Chapter 2), we are therefore able to
construct (by diagonal extraction) a subsquence of ®., and some @, € Ker (L — i\ d)
such that for all s <0 and all T > 0

(4.3.4) Vide S, Ih®. — @, in L2([0,T]; Hj,,(R x T)).

Note that the @ defined as the strong limit of II,®. can also be obtained as the weak
limit of exp (”)‘) (1, ue). We have indeed the following lemma.

LEMMA 4.3.3. — With the notation of Theorem 7, consider a subsequence of
(P2)es0, and some @y in Ker (L — iAId) such that for all s <0 and all T > 0

Vide &, INL®. — @y in L([0,T]; Hi (R x T)).
Then, for all iA € &, e (e, ue) converges to ®y weakly in L2([0,T] x R x T). In
particular, for all i\ € &, the vector field ® belongs to L*([0,T]; H'(R x T)).
it
Proof. — Denote by (1, uy) any weak limit point of the sequence exp <%> (Me, ue)

(recall that the sequence is bounded in L} (R x R x T)). Let y and ¢ be any test
function and vector field in D(R* x R x T). Multiplying the conservation of mass
n (SW.) by ex exp (_1;)‘) and integrating with respect to all variables leads to

12 i it
// <8775 exp (%) (atx + %x) + (1 4 ene)ue exp <%) . Vx) dz dt = 0.
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Because of the bounds coming from the energy estimate (1.4.5) page 7, we can take
limits in the previous identity as € goes to 0 to get

//(UA -Vx +iAnnx) dx dt = 0.

it

Similarly, multiplying the conservation of momentum by e exp (?) and integrating

with respect to all variables leads to

// (6(1 + eneue exp (%) <5t¢ + %1#) + eexp <?) (14 ene)ue - (ue - V)i

itA € itA
+0Bx1 exp (?) (1 +en:)ue - ¢J_ +(1+ 5775)7]5 exp <?) V-1

+evue exp (%) : Aw) dxdt = 0.

Once again the bounds coming from the energy estimate (1.4.5) will enable us to take
the limit as € goes to 0, to get

//(mv )+ Briuy - Y+ iAuxy) dz dt = 0.

It follows that (nx(t), ux(t)) belongs to Ker (L — i\Id) for almost all t € RT, and
we conclude by uniqueness of the limit and L? continuity of IIy that &) = (Mx, wy).
The lemma is proved. O

4.3.2. Strong convergence of .. — As a corollary of the previous mode by mode
convergence results, we get the following convergence for ®..

LEMMA 4.3.4. — With the notation of Theorem 7, the following results hold. Con-
sider a subsequence of (®.), and some @ € Ker (L — i\Id) such that as constructed
in (4.3.4), for all s <0 and all T > 0

Vid€ S, Id. — @y in L*([0,T]; Hi (R x T)).
Then,

o, — & = Z ®y weakly in L (RT; L*(R x T)),
iAeES
and &, — ® strongly in L1 (RT; Hy (R x T)) for all s < 0.

Moreover, defining Ky as in (3.4.1) page 46, we have for any relatively compact
subset Q of R x T, for all T > 0 and for all s <0,
(4.3.5)

t
H(Id— KN)(I)6||L2([O7T];HS(Q)) + ||(Id - KN)E(E)(I)EHLQ([O7T];HS(Q)) — 0 as N — o0,

uniformly in €.
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Proof. — The first convergence statement comes directly from the uniform bound
on ®. in the space L (RT; L?(R x T)) and the L? continuity of II,.

In order to establish the strong convergence result, the crucial argument is to
approximate (uniformly) ®. by a finite number of modes, i.e., to prove (4.3.5). The
main idea is the same as for the approximation of IIp®. in Lemma 4.3.2. We have for

allT >0 and all s <0

Z (\Iln,k,j|q>5)L2(R><T) U, — e — 0 as N — oo uniformly in €,
n<N,[k|<N L2([0,T);H3)

and similarly

—it(n )L ¢
Z emir(mkid) e (\I/n,k,j|¢’s)L2(R><T) Yo kg — E(g)q)s — 0as N — oo,
n<N,|k|I<N

L2([0,T];H})

uniformly in e. Therefore for all relatively compact subsets 2 of R x T, the embedding
of Hj into H*(Q2) recalled in (4.3.2) implies that both quantities

Z (‘IJ71,k7j|¢’s)L2(RxT) Vo g,y — Pe
n<N,|k|<N

and
—iT k) (B, | © 1 cHe
Z e € ( n,k,j| 5)L2(R><T) n,k,j — (g) €
n<N[K|<N
converge strongly towards zero in L2([0,T]; H5(Q)) as N goes to infinity, uniformly
in e. Finally (4.3.5) is proved.
The strong convergence is therefore obtained from the following decomposition:

d.— & = (Id— Kn)®. + Kn(®. — ®) — (Id — Kn)®

The first term converges to 0 as N — oo uniformly in ¢ in L? (R*, Hi (R x T))
for all s < 0 by (4.3.5). By Lemma 4.3.2, the second term (which is a finite sum of
modes) converges to 0 as ¢ — 0 for all fixed N in L? (RT; H*(R x T)) for all s < 0.

The last term converges to 0 as N — oo in L? (R*; L2(R x T)). Thus taking limits
as € — 0, then as N — oo leads to the expected strong convergence. O

4.3.3. Taking limits in the equation on II,®.. — The next step is then to
obtain the evolution equation for each mode @, taking limits in (4.3.1) and (4.3.3).
In the following proposition, we recall that the first result (concerning the geostrophic
motion) relies on a compensated compactness argument, i.e., on both the algebraic
structure of the coupling term and the particular form of the oscillating modes, which
implies that there is no contribution of the equatorial waves to the geostrophic flow.
That result was proved in Section 4.1 (see also Proposition 2.4.5 page 31). Here we
will prove the second part of the statement, concerning the limit ageostrophic motion.
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PROPOSITION 4.3.5. — With the notation of Theorem 7, there is a subsequence of
(®.) such that the following result holds. Consider a family (®x)ires such that @y €
Ker (L — i\ d) and such that for all s <0 and all T > 0

Vide 6, L&, — &y in L*([0,T]; Hi (R x T)),

as constructed in (4.3.4).
Then, ®o = (no,uo) satisfies the geostrophic equation: for all (n*,u*) belonging
to Ker L and satisfying u* € H'(R x T),

¢
/(77077* +ug oud)(t, ) dac—i—u/ /Vuo,g-Vug(t',x) dx dt' = /(77077* +udu3)(z) d.
0

Moreover for A # 0, &) = (®Y, ®)) satisfies the following envelope equation: there
is @ measure vy in M(RY x R x T), such that for all smooth ®5 = (®5 , (®3)') €
Ker (L — iAd),

/@A-éj(t,x) d:v—&-z//t/VCI)')\:V((I))\) (t',x) dz dt’ +/ /V Yua(dt', dz)
+ 3 /Q ) B (, z) da dt’z/(bo-(f’f\(x) da,

zu ipRES
=p+i

where Q is defined by (2.3.4) page 23.

Proof. — Let us first recall that for A # 0, Ker (L — iAId) is constituted of smooth,
rapidly decaying vector fields, so that it makes sense to apply I to any distribution.
Starting from (4.3.1) we get that for all smooth ®3 = (@3 g, (?3)’) € Ker(L—iAld)

[ (%) 0830 me @) ) o~ [ 0280+ (85))(0) da

(4.3.6) n / t / v (exp (”;A) u) V(L) (', x) da i’

//exp (”I ) (e (ue - V) (@3 +;n€v (®3)) (¢ ) da dt’ = 0.

Taking limits as € — 0 in the three first terms is immediate using Lemma 4.3.3 and
the assumption on the initial data. The limit as ¢ — 0 in the two nonlinear terms is
given in the following proposition.

PROPOSITION 4.3.6. — With the notation of Proposition 4.3.5, we have
K ZtlA T ! ! ! e /
exp me-(ue-V)(®3)' (¢, x) de dt’ — Z (P ®3) (¢, x) dx dt’,
0 € ntpa=x
i, ilES
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1/t/e it' A
- X
2 Jo . P €

) 2V - (®3) (¢, x) da dt! — // > 0oV - (B3 (F,x) dadt!

A=A
7/ V- (®}) va(dt dx).
0

ip,ileS

Before proving that result, let us conclude the proof of Proposition 4.3.5. It remains
to check that

/ Z @L-((I) -V)(23) +(I>;LO(I);LOV (® )) dz

nA=X
iXNip,iRES

V)R (B3) 4V - (@,,005)850 ) d,

i
uﬂb A
T, ES

since

/ Z B (23) + V- (B,,00,)85, ) dx:/ S Q@ 0;) - B dr.

Clearly one has
_/cp; (@ V(@) d = /(«p; V), (3) dx+/q>; (®3)'V - @, de,

so since p and [ play symmetric roles, we just need to check that

, 1 =
S (fo5 @5 i [ vameay oy )

ptA=X ,
i, i ES _
= > V- (0 ®})®5 0 da.
HtA=X
TN, i, il ES

Recalling that

V5 o = —iA(@}) — By (BF) " =

—i(+ ) (BY) — B (B3)'

)

we have
/V . (<I>M70<I>1~L)<T>§,O dx =i(p+ i) / D, 0P - (®%) dx + /@MOﬁxlCI)}L . (<T>§\)’L dz.
Then we write
inPuo=V- (IDL
so that
/V . (<I>N,0<I>;1)<i>§70 dx = /V . <I>L<I>i1 (@3 dx + iﬁ/@lm(b;] (@3 dx
~ [ uosni@y (@3 da
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Exchanging the roles of p and [ in the first integral we get

> /v D, 0P})03  da

pEA=A
i, ii€S

- /v LD - (B} dx+z,u/<1>uofl> (@) dzf/qw(mcb;fv%,o) (@) dw),

;+u A
SO

> /v (®0®p) % gdz = Y /V<I>’<I>’ o3) dx+/ D, 0V®;0 (P )dx)
HA=X ptpa=X
i, €S eSS

The result finally follows from the fact that, by symmetry,

Z/ 1oV ( Z /V P 0Pu0) - (93) da

ptpa=X H =X
i, ilES i, ilES

which finally implies that

_ 1
> (/(I’;L.(q:j\)/v@}tdx—i/@MOQ#OV (®3) da) = > /v D, 0P%) 03 da.

B p=X pt =X
i, €S i, €S

Now let us prove Proposition 4.3.6. The idea is to decompose @, on the eigenmodes
of L, by writing

(e, ue)(t, ) = £ (g) w.(ta)= Y o

INES

IO, (¢, 2).

Note in particular that by (4.3.5), for any s < 0,
t
(1) (0) £ (1) Kiyale) — 0 in L2, (R Hi (R < )

as IV goes to infinity, uniformly in €. Let us also introduce the notation

t
(I)s,N = L (_g) (ns,Nvus,N) = Ky®., and
q)a,)\,N N H)\q)57N~

We will start by considering the first nonlinear term in Proposition 4.3.6, namely
K Zt/)\ Tk \/ (4] /
exp | — | me - (ue - V)(®Y)' (t', ) dz dt’.
0
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We can notice that

// exp (23 ) e (w98 (¢ ) ot

€

[ f
+//p<

The uniform bounds coming from the energy estimate imply clearly that the first
term converges to 0 as € — 0. Then we can decompose the second contribution in the

t
/ / exp(
0
t
_ / / exp(
0 J(R\[-R,R])xT

t i\ -
(437) 4 / /[ o Texp<z )(us—us,m-<us-v><¢;>’<t’,x>dxdt’

Zt/)\ B\ (1! /
) Enette - (ue - V)(®Y)' (', ) dz dt

</
”EA) e - (ue - VY@Lt ) da b’

following way:

g1
”:) we - (ue - VY@Lt 2) do dt’

g1
”;) e - (ue - VY@L (¢ 2) do dt’

3

t it' \ -
+/ / exp (’ ) Uen - (e — uens) - V) (BL) (¢, 2) da dt!
0 J[-R,R]XT €

3

t y
—|—/ / exp (Zt /\) e, N - (ue s - V)(RF) (', x) de dt’.
0 J[-R,R]xT

Let us consider now all the terms in the right-hand side of (4.3.7). The uniform bound
on u. and the decay of ®3 imply that the first term on the right-hand side converges
to 0 as R — oo uniformly in €.

By the inequality

! Zt/)\ B\ (1! !
exp (Ue —ue N) - (ue - V)(PY) (¢, z) da dt
0 J[-R,RIxT

£

< Cllue = ue Nl 2o, 1715 (- B, R) x 1)) e | L2 (j0,77: 11 (R ) | X [ 2.0 (R 1) 5

with — 1 < s <0,

we deduce that the third term converges to 0 as N — oo uniformly in €.
Now let us consider the third term on the right-hand side. Since u. y corresponds
to the projection of ®. onto a finite number of eigenvectors of L, we deduce that

VN € N,dCy, Ve > 0, ||U57N||L°C(R+;H1(R><T)) < Cy.
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Thus

/ / <w
exp
0 J[—-R,R]XT €

) e N - ((ue —ue ar) - V)(@Y) (', x) do dt’

< Onllue — ve arll L2(jo,17: 525 (= R, R)x 1) | A [ W20 (RxT)

and, for all fixed NV and R, the fourth term converges to 0 as M — oo uniformly
in €.

It remains then to take limits in the last term of (4.3.7). It can be rewritten

' Zt//\ Tk \/ (1! !
exp Ue N - (Ue,ar - V)(PY) (V' x) da dt
0 J[-R,R]xT €

t
B /o /[7R,R]><T

it(AN—p— =
S e (O (@) (B0 V@ () ol
i, RES

This in turn can be written in the following way:
K it'(\— p— fi -
Iy > o (COTLEE Y 0l (@ V@) () doa
0 JI-RRIXT,; ‘e €
t 'tl )\ _ i v —
- > o (COTEE) (@ - ) (B VB )
0 JI-RRIXT,; rts €
t 't/ A _ Y] —
[ > enp (PO 0 (@ s~ ) VIO () ot
Jo J[-RRIXT,; ‘e €
t
o)
0 J[-R,R]xT

We have denoted

> exp <M> Oy (D - V(@) (t,2) dedt.

g
i, nES

(I)#)N = H#(I)N, where (I)N = KN(I).

The first two terms on the right-hand side go to zero as e goes to zero, for all
given N, M and R, due to the following estimates: for —1 < s < 0,

t
/0 /[ e D0 [ B B (B VB ()] dea
—R,R]x

i,IAEeES

< Onml|®L n — Pivll2 (o, 1085 (= R R <) | P ar | Loo (0,77 1 (Rx ) | R [ W20 (Rx T
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and similarly
t —
/ / Z @, n - (PLpns — ) - V(@Y ()| da dt!
0 JI-RRIXT ;o
< Onml|®L = Phsll 2o, 7010 (1= Ry B ) | P, N 1 Loe (0,77 11 (Rx 1)) | R [ W2.00 (R x T -

Finally let us consider the last term, which can be decomposed in the following
way:

t <g/ _ _ -~
// 3 exp <M> v (B - V(@) (), x) da di
0 J[-R,R]XT €

in,IleES

t
= / / STy (R V@) () dadt’
0 J[-R,R|xT

i, iaeS
A=p+i
t 't/ A _ 1 _
+// 3 exp<7l( a “)> v (P V(@) (), 2) dadt.
0 JI-R,RIXT ;,5nes €
AFp+i

For fixed N and M, the nonstationary phase theorem (which corresponds here to a
simple integration by parts in the ¢’ variable) shows that the second term is a finite
sum of terms converging to 0 as ¢ — 0. And the first term (which does not depend
on €) converges to

/ot/ Z &, (B V(@) (', ) da dt’

pta=X
iXip,ii€S

as N, M, R — oo, because ®/; converges towards ®’ strongly in L2([0,T]; L2(R x T))
when N goes to infinity, and then by Lebesgue’s theorem when R goes to infin-
ity.

Therefore, taking limits as € — 0, then M — oo, then N — oo, then R — oo in
(4.3.7) leads to

/ot / P (?) me - (ue - V)(®)(t', ) dx dt!
— / D (D V(@) (Hx) dudt.

iNip,ipeS

Finally let us consider the second term of the proposition, namely
I it'\ _
5/ /exp (Za > 2V - (®3) (', x) dadt'.
0
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The first step of the above study remains valid, in the sense that one can

1 it .
—/ /exp <Z > 2V - (@) (', x) dxdt’
2 Jo €
I it -
_ _/ / exp <’ )ngv (@) (¢, 2) drdt
2 Jo JR\|-R,RxT €

I it'\ _
+ —/ / exp (Z ) 2V - (®3) (V' x) dedt,
2Jo Ji-rRxT €

and the first term converges to zero uniformly in € as R goes to infinity, due
to the spatial decay of the eigenvectors of L. For such a result, a uniform
bound of 7. in L*(RT;L?(R x T)) is sufficient. However the next steps of
the above study do not work here, as we have no smoothness on 7. other than
that energy bound. In order to conclude, let us nevertheless decompose the re-
maining term as above, for any integers N and M to be chosen large enough

write

below:
1/t A i
5/0 /[RR] Texp <7’E )ngv(q);)/(t/,ﬁ) d(Edt/
—R,R]x
L/ it! - |
25/0 /[ raper D\ € (e — ne,n )1V - (R3)' (', 2) da dt
(4.3.8) —R,R]x
ns,N(ns - ns,M)V . (éi)/(t/,ﬂi) da dt/

1/f/ (it’
= exp
R,R]x
i (=
exp
R, R xT

it' A
The sequence — — exp
2 €

A

ns,an,Mv . (‘ij)l(tl, x) dx dt/.

)
)
)

) (Me —Me. N )Me is uniformly bounded in N € N and £ > 0

in the space L} (R* x R x T), so up to the extraction of a subsequence it converges
weakly, as ¢ goes to zero, towards a measure vy, n, which in turn is uniformly bounded
in M(R* x R x T). Denoting by vy its limit in M(RT x R x T) as N goes to
infinity, we find that

1/t it’'A 5
5/ / eXP< >(77€_7767N)77€v () (t',2) dwdl’
0 J[-R,RIxT £
. / / &) ua(dt' da)
RR]><T

as ¢ goes to zero and N goes to infinity, which in turn converges to

—/Ot/V-(CDj‘\)’U,\(dt’dx)

!/

as R goes to infinity, due to the smoothness of V - (%)’
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Note that as & is countable, one can choose a subsequence such that for all i\ € &,
it' A

) (Me — me,N)Me converges towards vy as € goes to zero
€

1
the sequence —5 exp

and N goes to infinity.

Now let us consider the last two terms in (4.3.8). We recall that n. n corresponds
to the projection of ®. onto a finite number of eigenvectors of L, so it is smooth for
each fixed N. In particular we can write, for any s < 0,

it .
exp (—) Ne.N (e — Neat)V - (B (¢, ) dx dt!
[-R,R]XT €
< CNMe = Me,nt || oo (0,79 155 (- B, R) x ) | @2 T w2.00 (RxT) -

So letting M go to infinity we find that this term converges to zero uniformly in &
for each fixed N and R.

Finally for the last term of (4.3.8) we write similar computations as for the first
nonlinear term in Proposition 4.3.6. We have indeed

[ L oo (2
S e 2

S e 2
A e
Ty

The two first terms in the right-hand side are easily shown to converge to zero as e
goes to zero, for each fixed N and M. We have indeed

[y

) Ne,NTe, MV (@;),(t/, LE) dx dt’

iy
CXp(zt()\ u

- N e, N O(q);l. e, 1\4)0v (@;)I(tl,ff) dx dtl

TR

i, ileES

it —p— .,
©Xp <%) we, N — P, N)o(q)ﬁ@]u)ov . ((D)\)/(tl, x) dr dt’
) Dpems — Paa)oV (@), 2) dodt

AN
exp(l A—p

S
ox p(it’(kfﬂf i)

zu eSS

=

- ) (@u.3)0(@aar)oV - (D) (¢, x) dzdt'.

ut ’LHEG

it' (N —p— i =
exp <(+Lu)> (PN — PN )o(Pae,n)oV - (3)' (', 2) drdt!
’L;l, Z,U.GG

S Cul|®pe. Ny — PuNllLoe(o,17: 50 (= R.R xT) | PA ] Ww2o0

and similarly

[y

it'(N—p— i =
exp (L) (@, ) @.cr — D)oV - (B3 (V) da
i, 7,;166

S CONlIPae,mr — Pl Lo (0,108 (= R, R xT) | PRl wr2.os -
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Finally the last term on the right-hand side is dealt with by a nonstationary phase
argument, and we have as above, as ¢ goes to zero and then M, N and R go
successively to infinity,

e

exp (M) (®1,8)o(Pa,n)oV - (B1)'(t,2) ddt’

i, z,uGG c
— / / > @00V - (R3) () dzdt.
fiifes
Proposition 4.3.6 is proved, and therefore also Theorem 7. O

4.3.4. The case when capillarity is added. — In this final paragraph we propose
an adaptation to the Saint-Venant model which provides some additional smoothness
on 7., and which enables one to get rid of the defect measure present in the above
study. The model is presented in the next part, and the convergence result stated
and proved below.

4.8.4.1. The model. — Let us present an alternative to the Saint-Venant model stud-
ied up to now, which presents the advantage of providing the additional smoothness
of en. which is lacking in the original system. Its disadvantage however is that there
is no real physical meaning to the capillarity operator we use in that model. With
the notation of Chapter 1, we choose indeed the capillarity operator

(4.3.9) K(h) = k(=A)**h,

where £ > 0 and a > 1/2 are given constants. After rescaling as in Chapter 1, we
find the following system:

ﬁlj_

(4.3.10) ou+u-Vu+ —u + - V

8t77+£V- ( 1+4en) u)
n=0,

11 Au+5nV( A)*

77\15:0 = 77 y  Ujg=0 = u.

In the next part we discuss the existence of bounded energy solutions to that system
of equations (under a smallness assumption), and the following part consists in the
proof of the analogue of Theorem 7 in that setting. One should emphasize here that
the additional capillarity term that is added in the system will not appear in the limit,
since it comes as a O(e) term. Moreover it is a linear term, so it should not change the
other asymptotics proved in this chapter. However its unphysical character (as well
as the smallness condition on the initial data) made us prefer to study the original
Saint-Venant system for all the convergence results of this chapter.

4.8.4.2. Ezistence of solutions. — The following theorem is an easy adaptation of
the result by D. Bresch and B. Desjardins in [2] (see also [23] for the compressible
Navier-Stokes system), we give a sketch of the proof below.
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THEOREM 8 (existence of solutions in the case with capillarity)
There is a constant C > 0 such that the following result holds. Let (n2,ul) be a
family of H** x L?>(R x T) such that for all € > 0,

5 [ (00 kPR 2R o+ (L el ) (o) o < £

If £° < C, then there is a family (n.,u:) of weak solutions to (4.3.10), satisfying the
enerqgy estimate

1 ¢
5/(n§+n€2|(—A)o‘n5|2+(1+577€)|u5|2) (t,x) dm+u/ /|Vu5|2(t’,x) dx dt’ < E°.
0

Proof. — Weak solutions can be constructed by a standard approximation scheme
obtained by regularization: compactness on the approximate solutions comes from
the a priori bounds derived from the energy inequality, which is obtained formally in
a classical way by multiplying the momentum equation by u, using the mass conser-
vation and integrating by parts. It allows to derive immediately the following a priori
bounds (denoting by 7 and u approximate solutions):

n€ LR L*(R x T))
en € L*(R*; H*(R x T))
(1+en)fuf? € L(R*; LI (R x T))
|Vu|? € LYR'; LY(R x T)).
Since @ > 1/2, the first bound implies in particular that
en € L°(RT xR x T),

and in particular if & is small enough (compared to the reference height which
is 1 here), then 1 + en is bounded from below. We infer that w is bounded
in L°(RT; L2 (R x T)) x L*(R*, H' (R x T)).

It is standard (see [2], [23]) to deduce that 1+ en is compact in L7 (RT; HY(R x
T)), and that u is compact in L7 (R*; L2(R x T)).

Taking the limit in the non-linear terms is now possible: we need indeed to deal
with the following nonlinear terms:

u-Vu, V-((1+en)u) and Au.

1+en

The compactness of 1 4+ en and u derived above allows to deal with the two first
terms in a standard fashion. For the last one we just have to recall that 1/(1 4 en) is
bounded in L>(R*; H?*(R x T)). This completes the proof of Theorem 8. O
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4.8.4.83. Convergence. — In this section our aim is to show that the capillarity term
enables us to get rid of the defect measure present in the conclusion of Theorem 7
page 90. As the proof is very similar to that theorem, up to the compactness of 7.,
we will not give the full details. The result is the following.

THEOREM 9 (strong convergence in the case with capillarity)
Under the assumptions of Theorem 8, denote by (ne,us) a solution of (4.3.10) with
initial data (n°,u?), and define

P, =L <—§) (Ne, ue).

Up to the extraction of a subsequence, ®. converges weakly in L? (R*; HE (R x T))

(for all s < 0) toward some solution ® of the following limiting filtered system: for
all i\ in & and for all smooth @3 in Ker (L —iAId),

t t
/@@;(m) da:—y/ /A/ch.cf;(t’,x) dxdt’—i—/ /QL@,@)@;@’,@ da dt’
0 0
:/(bo-(f’j(x) dx,

where ®° = (n°, u").

Proof. — We will follow the lines of the proof of Theorem 7. In particular all the
results of Sections 4.3.1 and 4.3.2 are true in this situation and we will not detail the
proofs. So the point, as in Section 4.3.3, consists in taking the limit as € goes to zero,
of the equation on II®..

Equation (4.3.6) page 96 can be written here as follows: for all smooth ®} =
(@3 0, (P3)") belonging to Ker (L —iAld),

[0 (%) 0850 e @300~ [0285 4 (83))(0) da

—aﬁ/ot/(—A)o‘eXp (?) V- (—A)(BL) (¢, 2) da d’

(4.3.11) _/Ot/ 1 —l—VsnsA (eXP (it:\) UE) (B3t 2) dar i’
[ o (B2) e e @3 @y

€
t g/
t'A -
—/ /exp <Z€ > Neue - VO3 o(t', ) dedt’ = 0.
0
REMARK 4.3.7. — We have chosen to keep the unknowns (ne,u:) and not write the

analysis in terms of (Ne,me) as previously (recall that m. = (1 + ene)ue): the study

of me rather than u. is indeed unnecessary here as the factor

which appears

€
in the diffusion term in the equation on u. can be controled in this situation, contrary
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to the previous case. The advantage of writing the equations on (ne,u.) is that there
is no nonlinear term in 1., contrary to the previous study, but of course the difficulty
is transfered to the study of the diffusion operator; the gain of regularity in n. will
appear here.

Taking limits as ¢ — 0 in the two first terms is immediate. For the third term,
we simply recall that 7. is bounded in L>®(R";L?*(R x T)) and en. is bounded
in L>®°(R*; H**(R x T)), so en. goes strongly to zero in L=(R*; H*(R x T)) for
every s < 2a. Since ®3 is smooth, we infer that

¢ »
an/ /(—A)O‘ exp <Zt€)\> NV - (=A)(@Y) (¢, ) dedt’ — 0, ase — 0.
0

Let us now consider the fourth term,

¢ v it' A _
_/0 / 1+5775A (exp ( e ) us) (@) dedt
It is here that the presence of capillarity enables us to get a better control. Let us
/t/ Y Afe #A ue | - (@) (', 2) dr dt!
_ « .
o J 1+en P\ y PR
¢ ztl)\ TR\ (4! !
=v V | exp ) ue ) V(®3) (t',x)dx dt
0
t it' A ENe =,
—V/O /V(exp( - >u5> :v<1+;775(qh)/> (t',x)dzdt’.

Clearly the first term on the right-hand side converges towards the expected limit:

write

we have

V/Ot/v <exp <”;A> u> V(@Y 2) da dt’

t
—>y/ /W; V(L) (', 2) dzdt, ase — 0,
0

To study the second one, we can notice that

6776 Fox\/ 6775 Fox\/ 6775 ok \/
v 1)) =v 1) + vy,
(Hm&( 9) (H%)< e v(e)

and since the second term on the right-hand side is obviously easier to study than the
first one, let us concentrate on the first term. We have

ene _ eVne Ve

v - )
1+en. 14en. (1+en)?

Since e7. is bounded in L*®(RT; H?*(R x T)), we infer easily, by product laws in
Sobolev spaces, that

e2n.Vn. is bounded in L*®°(R™; H(R x T)), for some o > 0.
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But on the other hand 7. is bounded in L>(R*; L?(R x T)), so we have also
en.Vn. — 0 in LR H** 2R xT)).
By interpolation we gather that
2n.Vn. — 0 in L>®R";L*(R x T)),

and the lower bound on 1 + en. ensures that

2
\Y
T L0 i L®RYLXRxT)).
(1+ene)
The argument is similar (and easier) for the term v lle , so we can conclude that
ETle

o it i
— A . . (I)* i /
/o/1+677€ <eXp< £ >u> ( A)(taﬂf)dl‘dtt
V/ /V‘I’A V(@) (¢, ) ddt.
0

Finally we are left with the nonlinear terms: let us study the limit of

[if e

The study is very similar to the case studied in Section 4.3.3 (see Proposition 4.3.6),
so we will not give all the details but merely point out the differences. First, one
can truncate the integral in 7 € R to z1 € [—R, R], where R is a parameter to be
chosen large enough in the end. As previously that is simply due to the decay of the
eigenvectors of L at infinity. So we are reduced to the study of

t
/ / exp<
0 J[-R,R]XT

i it'A S ,
- exp Nete - VO3 o(t', ) dz dt’.
0 J[-R,R|XT € '

The limit of the first term is obtained in an identical way to Section 4.3.3, since u.
satisfies the same bounds, so we have

K ztl)\ B\ (4! !
exp (ue - V)ue - (©3)'(t', x) de dt
0 J[-R,R]XT €

t
— > (@, V)P, - (3) (', 2) dadt,
0 A
s

g/ t g/
”;) (e Ve (83) (¢, ) dav dt! — / / v . (?) DeuV-85 o, ) de dt
0

Zt/)\ Tk \/ (4! !
5 (ue - V)ue - (®3) (t',z) dedt’ and

as € goes to 0 and R goes to infinity.
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Now let us concentrate on the last nonlinear term. With the notation of Sec-
tion 4.3.3, we can write

/f / (z’t’/\
exp
0 J[-R,R]xT €
t it' A -
= / / exp < ) (e = me,N )ue - VO3 o(t', ) d dt’
0 J[-R,R]xT €

' ztl}\ T * !/ /
+ exp ns,N(us - us,M) : V(I))\,O(t ) 33) dx dt
0 J[-R,RIxT €

! it' A ., )
+ exp TNe, NUe, M * vq)) O(t ,x) dx dt'.
0 J[-R,R]xT € ’

The first two terms on the right-hand side converge to zero, due to the following
estimates: for some —1 < s < 0 and for all ¢ € [0,7],

/t / <z’t’)\
exp
0 J[-R,R]xT €

< Crllne = ne, Nl oo (0,731 (- R, R} x ) el 220,791 (1= R, R} xT) | @A w2 (R < T)

) et - VO3 o (', ) d dt’

> (Me = Me,N)ue - v‘ii’o(t/, x) dx at’

and similarly
t
I/ exp (
0 J[-R,RIxT

Finally the limit of the third term is obtained by the (by now) classical nonstationary
phase theorem, namely we find, exactly as in the proof of Proposition 4.3.6, that

! it'\ = ,
exp Tle, NUe, M * V(I))\ Q(t y 33) dx dt
0 J[—-R,R|XT € ’

t
—>// > B0 VO (', z) dudt,
0

pAa=X
ip,iieS

it' A
€

) Ne, N (Ue — Ue M) - V‘ii’o(t’, x) dx dt’

< Or nllte = te nr || 220,115 (= R B x ) || PR W2 0 (RxT) -

as € goes to 0 and M, N and R go to infinity.
That concludes the proof of the theorem. O
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k, a regularizing kernel, p. 68

P> weakly convergent series, p. 41
L, singular perturbation, p. 9
L, semi-group generated by L, p. 22

N, pseudo-differential operator on Ker L, p. 51

IL, 1 j, projection on W, . ;. p. 21

IT,, projection on Ker (L — ¢\Id), p. 21
IIp, projection on Ker L, p. 10

I1, , projection on (Ker L)+, p. 36
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IIx, projection on Kelvin modes, p. 20
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IIp, projection on Poincaré modes, p. 20

IIg, projection on Rossby modes, p. 20

@, quadratic operator in the Saint-Venant system, p. 23
@1, quadratic operator in the limit filtered system, p. 23
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S*, set of indices (n, k, j) corresponding to (Ker L)+, p. 41
(SW¢), the shallow water system, p. 65

(SWh), the limit system after filtering, p. 65

G, spectrum of L, p. 20

Gk, subset of & corresponding to Kelvin modes, p. 20

G p, subset of & corresponding to Poincaré modes, p. 20
&R, subset of & corresponding to Rossby modes, p. 20
G, subset of G defined by a frequency truncation, p. 78

iTn,k,j, eigenvalues of L, p. 12
W5 Sobolev space, p. 14

®dy, first coordinate of the three component vector field ®, p. 22

O’ = (P, Py), last two coordinates of the three component vector field @, p. 22
't = (D3, —®P4), image of &’ by a rotation of angle 7/2, p. 3

®, complex conjugate of @, p. 32

b, =L (—ﬁ) (Me, ue), where (1z,u.) solves the Saint-Venant system, p. 90
®, a solution to the limit system (SWp), p. 90

®,, an element of Ker (L — i\ d), p. 93

@, an approximation of ®, p. 77

@y, an approximate Leray solution of (SWy), p. 46

®. v, an approximation of @, p. 98

®. 5. n, the projection of @, n onto Ker (L — iAId), p. 98

®, a solution to the geostrophic equation, p. 50

¢, coefficients of ¢ € Ker L in the (¥y0,0) basis, p. 50

énN, a corrector to @, p. 79
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¥, Hermite functions, p. 11
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