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Abstract

We describe the topology of superlevel sets of (α-stable) Lévy processes X by introduc-
ing so-called stochastic ζ-functions, which are defined in terms of the widely used Persp-
functional in the theory of persistence modules. The latter share many of the properties
commonly attributed to ζ-functions in analytic number theory, among others, we show that
for α-stable processes, these (tail) ζ-functions always admit a meromorphic extension to the
entire complex plane with a single pole at α, of known residue and that the analytic prop-
erties of these ζ-functions are related to the asymptotic expansion of a dual variable, which
counts the number of variations of X of size ≥ ε. Finally, using these results, we devise a new
statistical parameter test using the topology of these superlevel sets. We further develop an
analogous theory, whereby we consider the dual variable to be the number of points in the
persistence diagram inside the rectangle ]∞, x]× [x+ ε,∞[.
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1 Introduction

The problem of the characterization of the topology of superlevel sets of random functions
has been a long studied topic in the theory of random fields. While a complete description
has been thus far unknown, partial descriptors of the topology of superlevel sets, such as their
Euler characteristic, have been described for certain classes of random processes [2–4,13,32,37].
Thus far, the study of the homology of superlevel sets of random functions in dimension one has
focused on either smooth random (Gaussian) fields [2,3], or irregular processes which are in some
sense canonical, such as Brownian motion [4, 13, 37]. In this paper, following the universality
reasoning detailed in [36, §3], we will adopt the second point of view while enlarging the category
of processes considered to objects acting as universal limits of random processes in 1D.

This work is another stage in a program started in [35] and later continued in [36], which
aimed to characterize the barcodes of random functions as completely as possible (in dimension
one). To do this, we adopted the tree formalism originally developped by Le Gall [19,20], which
brings benefits in the probabilistic setting. This formalism allowed us to partially study the case
of Markov or self-similar processes, and to processes admitting the two latter as limits [36]. In
this paper, we further develop the theory to describe almost completely the case of (α-stable)
Lévy processes.

The understanding of so-called topological noise is an active area of research in Topological
Data Analysis (TDA) (cf. section 2.3 for a quick introduction, or [12, 34] for a more compre-
hensive one). This topological noise is characterized by the behaviour of the small bars of the
barcode of a function and its role is particularly difficult to grasp. Nonetheless, topological noise
has proved useful in a variety of different applications, which seem to exploit the information
contained therein, sometimes directly, or indirectly through the use of Wasserstein p metrics
on the space or functionals such as Persp [10, 15, 17, 31, 43], despite the absence of general sta-
bility results. The program described above is based around the intuition that while it might
be hopeless to find a general stability theorem, there should be a form of statistical stability of
barcodes.
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By statistical stability we mean that any two samples drawn from the same probability
distribution should have “close” or “similar” behaviour of its topological noise. For example, this
paper shows that, at least in the simple setting of 1D and for a fairly wide range of distributions,
this topological noise does indeed exhibit the robustness sought. More precisely, we show that
the number of bars of length ≥ ε, N ε, is a dual to Perspp, and that it exhibits the statistical
robustness required, such as an almost sure asymptotic behaviour as ε→ 0.

If this notion of statistical stability is a good one, a natural subsequent question is whether it
is possible to differentiate stochastic processes given their topological signature. In this paper, we
partially answer this question positively through the development of a statistical test constructed
with the functional N ε, which can differentiate α-stable processes for different values of α. In
dimension one, while interesting, this development is unlikely to do better than wavelet analysis
or other known techniques (cf. [16] and the references therein). However, further developments
in this direction could eventually lead to “topological statistics”, i.e. robust statistical tests for
random fields, for which all known techniques do not generalize, but for which barcodes are
easily computable.

This discussion and the results of this paper hint at the fact that statistical stability is a
correct notion of stability to consider, and there are many open questions to be tackled, some
of these questions are:

• Dimensionality: are the statistical stability results of this paper particular to dimension
one, or do they generalize in some way to higher dimensional random fields?

• Signal vs. noise problem: Given the regular structure of topological noise shown in this
paper, does this allow us to detect the presence of an underlying topological signal?

• Statistical robustness of topological noise: What can we say, quantitatively, about
the variation of topological noise induced by perturbations of the distribution of the noise
(for instance in some Wasserstein metric)?

• Best proxys for topological signatures: much of this paper was inspired by what
is used in practice, namely Wasserstein p metrics and the Persp functional and its dual
N ε. However, there is no guarantee this yields the best possible proxys to answer the two
previous problems. In this regard, is it possible to prove or disprove which proxys do best
in what context?

From a more probabilistic point of view, this paper introduces so-called ζ-functions associated
to a stochastic process, constructed using the Perspp functional we previously discussed. The
main, and perhaps most important, departure from the conventional TDA theory is that we will
consider this quantity for complex p for reasons which will become evident throughout this paper,
but which are analogous to the ones behind the complexification of the Riemann ζ-function in
analytic number theory. There are some similarities to the results of Pitman, Yor and Biane
in [6, 38, 39] regarding the probabilistic interpretation of the ζ-function and more generally L-
functions based on connections with some families of infinitely divisible distributions connected
to Brownian motion. However, the ζ-functions herein are of different nature to those considered
by Pitman, Yor and Biane, as they stem from a different construction. For Brownian motion,
we fall back on one of the infinitely divisible distributions considered by these authors. Renewal
theory [23] intervenes at many different steps in this paper and combined with the results of
Pitman, Yor and Biane, it is a posteriori perhaps not surprising that the ζ-functions hereby
introduced share some of the analycity properties of the Riemann ζ-function.

1.1 Our contribution

More precisely, our contribution can be split along the following lines:

1. We establish a duality relation with respect to the Mellin transform between the study of
Perspp and the number of leaves of a ε-trimmed tree ≥ ε, N ε (cf. section 2.5). With the
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help of a correct notion of integration on trees developped in [37], it is possible to prove
an interpolation theorem for Perspp (proposition 2.18);

2. We introduce ζ-functions for stochastic processes and for persistent measures (cf. sec-
tion 2.6 and section 2.7 respectively). We show an interpolation theorem for Wasserstein
p-distances between diagrams (proposition 2.41) and a characterization of convergence
between diagrams in these Wasserstein distances in terms of the ζ-functions introduced
(theorem 2.45).

3. We show that in the context of α-stable Lévy processes, the associated (tail) ζ-functions
always admit a meromorphic extension to the entire complex plane, with a unique pole
at p = α with known residue (theorem 3.25). By duality, this meromorphic extension
implies the existence of an asymptotic series for N ε as ε→ 0, which we explicitly calculate
up to superpolynomial (i.e. smaller than any polynomial) corrections (theorem 3.15).
An explicit form of the meromorphic continuation of ζ̂ is shown to be related to the
superpolynomial corrections to the asymptotic expansion of theorem 3.15 (cf. section
2.1.1). We also define a generating function for the length of the kth longest bar (cf.
section 3.3.2);

4. We give an almost sure result detailing the asymptotics of N ε for any continuous semi-
martingale (proposition 3.1), which turns out to be related to the quadratic variation of
the process, providing further evidence for the link between regularity and Perspp hinted
at in [37, 40]. We conclude from this that the ζ-functions associated to continuous semi-
martingales always have a simple pole at p = 2;

5. We apply the theory above to different stochastic processes, such as Brownian motion,
reflected Brownian motion. We derive explicit formulæ for the respective ζ-functions of
these processes and infer the associated asymptotic expansions of N ε (theorems 4.2, 4.14
propositions 4.4 and 4.15) and in the case of Brownian motion, the explicit distribution of
the length of the kth longest bar (cf. section 4.1.2).

6. We design a statistical test for the parameter α of α-stable Lévy processes by using the
theory previously described (cf. section 3.3.3);

7. We study local trees and introduce local ζ-functions (cf. section 2.6) and deduce formulæ
for the number of points contained in the rectangle ]−∞, x]× [x+ ε,∞[ of the persistence
diagram, Nx,x+ε, by introducing the notion of propagators, which, for Markov processes,
reduces the problem of the study of Nx,x+ε to the study of hitting times of the process (cf.
section 3.4), in particular, we link the regularity of these propagators with meromorphic
extensions of the local ζ-functions of the process (proposition 3.40);

8. Finally, we apply the theory above to different stochastic processes, such as Brownian mo-
tion, reflected Brownian motion, Brownian motion with drift and the Ornstein-Uhlenbeck
process for which explicit computations are possible. We derive explicit formulæ for the
respective (local, global) ζ-functions of these processes and infer the associated asymptotic
expansions of Nx,x+ε (theorems 4.6, 4.14 propositions 4.13 and 4.15 and section 4.3). We
also infer formulæ regarding the Ornstein-Uhlenbeck process, in particular concerning its
local time (cf. section 4.4).

2 Generalities

2.1 The Mellin transform

Definition 2.1. Let f be a locally integrable function over the ray ]0,∞[. The Mellin trans-
form of f is

M[f(x)](s) :=

∫ ∞
0

xs−1f(x) dx .
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Note that d log(x) = dx
x is the Haar measure of (R+,×). The Mellin transform reflects the

Pontryagin duality with respect to this locally compact abelian group. Its theory is analogous
to that of the bilateral Laplace transform, as the map log : (R+,×) → (R,+) induces an
isomorphism of abelian groups.

Notation 2.2. For convenience, we will also employ the shorthand notation M[f ](s) = f∗(s).

Definition 2.3. The fundamental strip of f , 〈α, β〉 is the maximal set

〈α, β〉 := {z ∈ C |α < Re(z) < β}

where f∗(s) is well defined.

The Mellin transform can be inverted by virtue of the following theorem, which follows from
the Laplace inversion theorem.

Theorem 2.4 (Mellin inversion, [18,33]). Let f have fundamental strip 〈α, β〉 and let c ∈ ]α, β[.
Then

1. If f is integrable and f∗(c+ it) is integrable, then for almost every x

f(x) =
1

2πi

∫ c+i∞

c−i∞
f∗(s)x−s ds

If f is continuous, the equality holds everywhere.

2. If f is locally integrable and of bounded variation in a neighbourhood of x, then

f(x+) + f(x−)

2
= lim

T→∞

1

2πi

∫ c+iT

c−iT
f∗(s)x−s ds

A sufficient condition for the Mellin transform to be well-defined on 〈α, β〉 is that the function
is such that

f(x) = O(x−α) as x→ 0 and f(x) = O(x−β) as x→∞ .

In fact, Mellin transforms are a good tool to study asymptotic expansions as suggested by the
following theorem.

Figure 1: Contour for the evaluation of the Bromwich integral of the inverse Mellin transform.

Theorem 2.5 (Fundamental correspondence, [21]). Let f : ]0,∞[→ C be a continuous function
with non-empty fundamental strip 〈α, β〉. Then,
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• Assume that f∗(s) admits a meromorphic continuation to the strip 〈γ, β〉 for γ < α, that
it has only a finite amount of poles there and that it is analytic on Re(s) = γ. Assume
also that there exists η ∈ ]α, β[ such that along a denumerable set of horizontal segments
with |Im(s)| = Ti where Ti →∞,

f∗(s) = O(|s|−r) with r > 1 as |s| → ∞ and s ∈ 〈γ, η〉 .

Indexing the poles on 〈γ, β〉 by their location ξ and by their order k and denoting cξ,k
the kth coefficient in the Laurent expansion around ξ of f∗(s), we have an asymptotic
expansion of f around 0

f(x) ∼
∑
(ξ,k)

cξ,k
(−1)k−1

(k − 1)!
x−ξ logk(x) +O(x−γ) as x→ 0 .

• Conversely, if the function f has such an asymptotic expansion around 0, then f∗(s) has
a meromorphic continuation to the strip 〈γ, β〉.

Furthermore, an analogous statement holds true for asymptotic expansions around ∞ and mero-
morphic continuations beyond β.

Sketch of proof. It suffices to perform contour integration using the contour of figure 1. The
estimates of the theorem allow us to discard the top and bottom integrals and to state that the
integral of the path along Re(p) = γ is O(x−γ). Conversely, consider

f(x) ∼
∑
(ξ,k)

cξ,kx
ξ logk(x) +O(x−γ) as x→ 0

for some γ < α. It follows that

f∗(s) =
∑
(ξ,k)

cξ,k
(−1)kk!

(s+ ξ)k+1
+

∫ ∞
1

xs−1f(x) dx

+

∫ 1

0
xs−1

f(x)−
∑
(ξ,k)

cξ,k x
ξ logk(x)


︸ ︷︷ ︸

=O(x−γ)

dx ,

which is well-defined on the strip 〈γ, β〉. �

f(x) f∗(s) 〈α, β〉
xνf(x) f∗(s+ ν) 〈α− ν, β − ν〉
f(xν) 1

ν f
∗( sν ) 〈να, νβ〉

f(x−1) f∗(−s) 〈−β,−α〉
f(λx) λ−sf∗(s) 〈α, β〉
∂
∂xf(x) −(s− 1)f∗(s− 1)∫ x

0 f(t) dt −1
sf
∗(s+ 1)

Table 1: Functional properties of the Mellin transform

6



f(x) f∗(s) 〈α, β〉
e−x Γ(s) 〈0,∞〉

e−x
2 1

2Γ( s2) 〈0,∞〉

erfc(x) 2−s Γ(s)
Γ(1+ s

2
) 〈0,∞〉

csch(x) 21−s (2s − 1) Γ(s)ζ(s) 〈1,∞〉

csch2(x) 22−sΓ(s)ζ(s− 1) 〈2,∞〉

1
ex−1 Γ(s)ζ(s) 〈1,∞〉

Table 2: A short dictionary of Mellin transforms.

2.1.1 Analytic continuation

As stated by the fundamental correspondence (theorem 2.5), the existence of an asymptotic
expansion around 0 of f(x) entails a meromorphic continuation of f∗(s) to a larger strip. If
f(x) admits a converging Laurent series (with finite singular part) on some open disk around
the origin, then this extension is in fact valid over all of C, and the residues of the poles of f∗(s)
will be related to the Laurent coefficients of f(x). It turns out that in this context, one can even
write an explicit integral representation for the extension of f∗(s).

Lemma 2.6 (Integral representation of f∗). Let f be a meromorphic function admitting a
Laurent series at 0, with singular part of degree n, holomorphic on a neighbourhood of R∗+ and
integrable over the Hankel contour (cf. figure 2). Suppose further that its fundamental strip
〈n, β〉 is non-empty. Then, the function f∗ admits a meromorphic continuation on 〈−∞, β〉
given by

f∗(s) =
e−iπs

2i sin(πs)

∮
H
zs−1f(z) dz

= −Γ(s)Γ(1− s)
2πi

∮
H

(−z)s−1f(z) dz ,

where H denotes the Hankel contour.

Figure 2: The Hankel contour H.

Proof. We start by splitting the Hankel contour into three pieces.

1. A segment from ∞+ iε to ν + iε;

2. A circle Cν around the origin of radius ν;

3. A segment from ν − iε to ∞− iε.

7



For s ∈ 〈n, β〉, f is holomorphic everywhere on this contour, so that we may take ε = 0 according
to Cauchy’s theorem. Notice also that∫

Cν

zs−1B(z) dz = O(νRe(s)−n)→ 0 as ν → 0 .

It follows that for Re(s) > n∮
H
zs−1f(z) dz = lim

ν→0

{∫ ν

∞
+

∫
Cν

+

∫ ∞e2πi
νe2πi

}
zs−1f(z) dz

= (e2πi(s−1) − 1)

∫ ∞
0

zs−1f(z) dz

= 2ieiπs sin(πs)f∗(s) ,

as desired. The integral over the complex contour H converges for all s ∈ 〈−∞, β〉\{n}. Finally,
the second expression for f∗ is obtained through Euler’s reflection formula, namely

Γ(p)Γ(1− p) =
π

sin(πp)
,

which after some simplification yields the desired expression. �

Remark 2.7. If f has fundamental strip 〈n,∞〉, then the extension given by this procedure holds
over C.

Furthermore, if f posseses a meromorphic continuation to C \ R+ (i.e. we admit the possi-
bility of a branch cut on the positive real axis), then we can find a more explicit formulation for
the Hankel representation of f∗.

Lemma 2.8 (Functional equation of f∗). Suppose f posseses a meromorphic continuation to
C \ R+ and denote P the set of poles of f not including 0. Suppose further that f has the
following decay condition : for all s ∈ 〈n, β〉 and for some monotone increasing sequence of radii
rn →∞ as n→∞, ∫

Crn,ε

∣∣zs−1f(z)
∣∣ dz −−−→

n→∞
0 .

where Crn,ε is the circle of radius rn minus a small (symmetric) arc of length ε around the
positive real axis (cf. figure 3). Then,

f∗(s) = Γ(s)Γ(1− s)
∑
z0∈P

Res((−z)s−1f(z); z0) .

Proof. The proof relies on the use of the residue theorem by completing the Hankel contour into
a Pac-Man (cf. figure 3), whose circular contribution is going to zero, due to the assumption of
the lemma. By the residue theorem, we then have

f∗(s) = Γ(s)Γ(1− s)
∑
z0∈P

Res((−z)s−1f(z); z0) ,

as desired. �

2.2 Connected components of superlevel sets of stochastic processes

Let us briefly recall the construction of a tree from a continuous function f : [0, 1]→ R. For
a more complete description of this, the reader is welcome to consult [19,35].
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Figure 3: The Pac-Man contour.

Definition/Proposition 2.9 ( [19]). Let x < y ∈ [0, 1], the function

df (x, y) := f(x) + f(y)− 2 min
t∈[x,y]

f(t)

is a pseudo-distance on [0, 1] and the quotient metric space

Tf := [0, 1]/{df = 0}

with distance df is a rooted R-tree, whose root coincides with the image in Tf of the point in
[0, 1] at which f achieves its infimum.

Figure 4: A function f and its associated tree Tf in red.

The tree Tf has the particularity that its branches correspond to connected components of
the superlevel sets of f , as illustrated by figure 4. Let us now introduce the so-called ε-simplified
or ε-trimmed tree of T εf . This object is obtained by “giving a haircut” of length ε to Tf . More
precisely, if we define a function h : Tf → R which to a point τ ∈ Tf associates the distance
from τ to the highest leaf above τ with respect to the filtration on Tf induced by f , then

Definition 2.10. Let ε ≥ 0. An ε-trimming or ε-simplification of Tf is the metric subspace
of Tf defined by

T εf := {τ ∈ Tf |h(τ) ≥ ε}

Notation 2.11. Let us denote N ε the number of leaves of T εf .

9



2.3 A crashcourse in persistent homology

Throughout this section, we will detail and give the ideas behind persistent homology. A
proper introduction to this is out of the scope of this paper, so we encourage the reader to consult
the following classical references about this topic [12,24,30,34]. This section aims nonetheless to
give a brief introduction compiling the main results and intuition behind this field. To do so, it is
convenient to break down the topic along its title. First, we will briefly recall what homology is
and how it can be defined, and then we will explain the persistent aspect of persistent homology.
It goes without saying that a reader familiar with these concepts may skip this section entirely.

2.3.1 Homology

In general, the motivation behind the introduction of objects in algebraic topology such as
homology is to study topological spaces through algebra. That is, to attach an algebraic object
(such as a module, a group, etc.) to a topological space, in such a way that, loosely speaking, this
algebraic object remains invariant for any two homeomorphic topological spaces. Furthermore,
we would like this invariant to behave well with respect to continuous maps. Namely, if we have
a continuous map between two topological spaces f : X → Y , we would like to have an induced
morphism at the level of the two invariants we attached to M and Y . The most famous such
invariant for topological spaces is the fundamental group π1(X) first introduced by Poincaré.
Some useful references for further reading are [24,30].

In the terms of category theory, the above discussion is equivalent to saying that we use
functors between the category of topological spaces, Top, and a category of algebraic objects,
such as the category of groups, Grp, or that of modules over some ring R, ModR. In this sense,
homology is nothing other than a functor H∗ : Top→ModR. For our purposes, it is sufficient
to consider the ring R to be a field k, so that we are really working over the category of vector
spaces over this field Vectk. We will not detail the precise definitions of these objects, as we
will not really need them, but a good reference as an introduction to category theory is given
by Mac Lane in [27].

Recall that finding such a functor entails attaching a vector space to a topological space,
in such a way that continuous maps between topological spaces induce linear maps at the level
of vector spaces. To render this practical, let us first focus on triangulable spaces. Namely,
spaces which are homeomorphic to a simplicial complex (a set of oriented simplices glued to
one-another along edges, n-faces or points). Given a simplicial complex M , we can define a so-
called chain complex, which is nothing other than a sequence of vector spaces, denoted C∗(M,k),
called the space of chains (the star denotes an index, which we call the degree), where Cn is the
free k-vector space generated by the set of n-faces in the simplicial complex. For the sake of
notational simplicity, whenever the simplicial complex we are talking about and the field over
which we are working on is clear, we may drop M and k and denote C∗(M,k) = C∗.

We can define a linear map ∂ : C∗ → C∗ called the boundary map, which is defined degree-
by-degree as follows. The boundary map ∂ sends the generator of an n-face (an element of Cn)
to the (signed) sum of the generators of its boundary (which are elements of Cn−1), where the
sign in front of each generator is determined by the compatibility of its orientation with the
orientation of the n-face. With this definition ∂2 = 0, which reflects the fact that the boundary
of a boundary is always empty. So, we can see a chain complex as some graded vector space C∗
along with the map ∂. Looking at the restriction of ∂ to each degree of C∗, we can write ∂ as a
chain of morphisms

· · · → C2
∂−→ C1

∂−→ C0
∂−→ 0 ,

with the property that ∂2 = 0. This property implies in particular that Im(∂) ⊂ ker(∂). We
call ker(∂) the space of cycles, reflecting the fact that elements of ker(∂) tend to be “loops”
or “cycles” of n-chains. Homology quantifies exactly which cycles are not boundaries. More
precisely, fixing a degree n, we can define the nth homology group over the field k as

Hn(M,k) = ker(∂|Cn)/ Im(∂|Cn+1) ,

10



where ∂|Cn denotes the restriction of ∂ to Cn. In some sense, this gives a definition of what we
mean by an n-dimensional hole. All of this discussion is best illustrated by an example. In order
to avoid sign problems, it is often practical to work over k = Z2, so as to simplify calculations. In
general, this is restrictive, but it is enough for our purposes and let us fix the simplicial complex
M of figure 5. In this case, we see that C0 = 〈A,B,C〉Z2 and C1 = 〈a, b, c〉Z2 with all of the

Figure 5: An example of a simplicial complex M .

higher chains being 0. Furthermore, the boundary operator sends

∂ : a 7→ B + C , b 7→ A+ C , c 7→ A+B ,

with all other generators being sent to zero. From this, it is clear that ker(∂|C1) = (a+ b+ c)Z2,
which represents the cycle which loops around the simplicial complex and ker(∂|C0) = C0. It
follows that H1(X) = (a + b + c)Z2, so that we indeed detect a hole inside the complex. If we
now fill that hole with a cell which fills the triangle (let us note it ∆), we now have C2 = 〈∆〉Z2 ,
and its boundary ∂(∆) = a + b + c, so that by filling this “hole”, we have effectively killed the
H1. As for H0, it always quantifies the number of connected components, as (finite) simplicial
complexes are connected if and only if they are path connected, so these paths constitute cycles
which map any two elements of C0 to each other. In particular, if we suppose that X is path
connected, then Im(∂|C1) is always generated by all the sums of pairs of vertices in C0, so we
get one generator of H0 for every connected component.

At this point, given some triangulable space Y , the reader might be worried whether this
definition depends on the triangulation we chose for Y , but it is a theorem that this is a well-
defined invariant of topological spaces, cf. [24] for details. In fact, we have adopted a rather
restrictive point of view throughout this discussion, as in reality we can make sense on how
homology can be defined in more general settings [30].

2.3.2 Persistent homology

Now that we have roughly sketched out what homology is, let us introduce the idea behind
persistent homology. Once again, we refer the reader to consult the following references if he or
she desires a more detailed description of the theory [12,34]. In this case, instead of dealing with
a simple chain complex C∗(M), we induce a filtration on this complex, which is typically done by
giving a function on the underlying topological space M . For example, if M is a differentiable
manifold and f : M → R is a smooth function, then we can filter the complex C∗(M) by
considering the subsets Mr = {f > r} and considering C∗(Mr). We call this filtration of the
complex the superlevel filtration (an analogous definition can be given for sublevel filtrations).
Of course, we may then compute the homology of Mr for every r, which gives us a family of
vector spaces indexed by r. However, by the functorial nature of H∗, the fact that we have a
(continuous) inclusion ir,s : Mr ↪−→ Ms for every r > s yields a linear map between the vector
spaces H∗(ir,s) : H∗(Mr)→ H∗(Ms).

These morphisms are of interest to us, as they tell us about how the homology changes as we
vary the level r. This motivates the study of the so-called persistent homology, which is nothing
other than the family of vector spaces (H∗(Mr))r and the family of morphisms (H∗(ir,s))r>s.
This is more comfortably expressed in the language of category theory : persistent homology is
a functor H∗ : R → Vectk, where R is seen as a small category (the objects are elements of R
and there is a morphism between r → s if and only if r > s) defined by H∗(r) = H∗(Mr) and
H∗(r → s) = H∗(ir,s).
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If the function f is nice enough, for instance C1 and M is compact, the persistent homology
induced by the superlevel filtrations of f can be decomposed into so-called interval modules.
The latter are themselves functors defined as follows. Fixing a field k and if A is an interval of
R, then

kA(r) :=

{
k if r ∈ A
0 else

kA(r → s) =

{
id if r, s ∈ A
0 else

The decomposition theorem states the following (cf. Oudot’s book [34] for a more complete
description).

Theorem 2.12 (Decomposition theorem, Auslander, Ringel, Tachikawa, Gabriel, Azumaya).
Under some conditions for M and f , if H∗(M,f) denotes the persistent homology with values
in Vectk, then H∗(M,f) it is isomorphic to a (possibly infinite) direct sum of interval modules.
Moreover, this decomposition is unique up to isomorphism and permutation of the terms.

This theorem entails that if the filtration function f and the space M are nice enough, the
persistent homology functor H∗ in fact decomposes as a direct sum of interval modules, more
precisely, fixing a degree in homology we have

Hn =
⊕
i

kAi ,

where the Ai are intervals of R. Notice then that this means that the information contained in
the persistence module can be encoded by these intervals Ai. This collection of intervals is what
we call the barcode associated to a function f : M → R, typically denoted B(f). Another way
of representing this information is by keeping track of the endpoints of the interval. In this way,
we may represent the intervals as a collection of points in the half-plane

X := {(x, y) ∈ (R ∪ {±∞})2 |x < y} .

This collection of points is called the persistence diagram associated to f , and is typically denoted
Dgm(f).

This is not exactly the full story, as there are some technical caveats to this. Indeed, the
theorem requires “nice enough” M and f . Throughout this paper we will be dealing with C0

funtions (or in C0, up to a finite number of discontinuities), for which these spaces could be
of infinite dimension. Crucially, however, if M is compact and f is C0, the rank of the maps
H∗(ir,s) is always finite. Under this condition, the decomposition theorem above applies so we
may consider our modules to be decomposable (cf. [11, 34] for details).

Specializing all of this to H0 amounts to talking about connected components of superlevel
sets. In this sense, dimH0(Mr) is exactly equal to the number of connected components of Mr.
The rank of H0(ir,s) corresponds to the number of connected components of Ms which contain
all of Mr. The decomposition theorem can also be easily understood in this setting : bars
in the barcode (or equivalently points in the persistence diagram) indicate when a connected
component was “born” and when it gets absorbed by another one, with the rule that the “eldest”
connected component is the one which always “survives”.

2.3.3 Persistent homology as a measure

There is one last point to be discussed, which will come in useful in section 2.7. That is, it
can be useful to consider persistence diagrams as measures over the upper half-plane of R2. For
q-tame modules, we can define such a measure as follows : if a < b ≤ c < d ∈ R, then

Dgm(f)([a, b]× [c, d]) := rank(H∗(ib,c))− rank(H∗(ia,c)) + rank(H∗(ib,d))− rank(H∗(ia,d)) .

This turns out to be a measure, once we have ironed out some details, as done in [12]. As an
example, if the module is decomposable, then the persistence measure is nothing other than
the sum of Dirac masses at every point of the persistence diagram. As we will see, considering
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persistent diagrams as measures has considerable advantages. The reason for this is because the
space of measures is a linear space, so that we can operate on the space of diagrams with greater
ease than in the algebraic context. This injection onto a linear space yields some desirable
properties for persistence diagrams : for example, the ability to define Fréchet means [43], or a
notion of mean and expectation. This suggests that this injection is crucial in simplifying the
study of persistence diagrams in a probabilistic setting.

Furthermore, the fact that it is a space of measures allows us to use tools, such as optimal
transport. In particular, there are natural notions of distances – so-called Wasserstein distances
– which stem from this point of view. This approach has been explored in [17], to which we
refer the reader for further details. The idea is to use the diagonal as a source of infinite mass,
and study the optimal transport distances between diagrams (now seen as measures), where the
distance on the base space (the upper-half plane) is the `∞-distance on the plane, namely

dR2,∞((p, q), (r, s)) = max{|p− r| , |q − s|} .

Definition 2.13 (Wasserstein p distances for diagrams). If µ, ν are two persistent measures
(to which we have added the diagonal ∆ as a source of infinite mass), then the Wasserstein p
distance between two diagrams is given by

dp(µ, ν) :=

[
inf

π∈Γ(µ,ν)

∫
X 2
dpR2,∞(x, y) dπ(x, y)

]1/p

where Γ(µ, ν) denotes the set of all measures on X 2
whose marginals are µ and ν.

If p = ∞ we take the sup-norm, which is exactly the so-called bottleneck distance referred
to in [12,34], which we may define as follows, for any two persistent measures µ, ν,

d∞(µ, ν) := inf
π∈Γ(µ,ν)

sup
(x,y)∈supp(π)

dR2,∞(x, y) .

An important result testifying of why persistent homology is interesting is that it is a stable
construct in the following sense.

Theorem 2.14 (Stability theorem, [12]). Let (X, d) be a compact, triangulable metric space and
let f, g ∈ C0(X,R), then if we see Dgm(f) and Dgm(g) as persistence measures, then

d∞(Dgm(f),Dgm(g)) ≤ ‖f − g‖∞ .

Fixing a smaller functional space, it is possible to prove a stability theorem for dp as well.

Theorem 2.15 (Wasserstein p stability, [42]). Let (X, d) be a compact, triangulable metric space
of dimension D and let Lip(Λ, X) denote the space of real valued Λ-Lipschitz functions on X.
Then if f, g ∈ Lip(Λ, X), for every n ≥ D

dp(Dgmk(f),Dgmk(g)) ≤ CX,Λ,p ‖f − g‖
1−n

p
∞ ,

where Dgmk(f) denotes the persistence measure associated to the persistent homology in degree
k of f , Hk(X, f).

2.4 Trees and barcodes

There is a correspondence between trees and barcodes described in full detail in [35]. Starting
from Tf , we can look at the longest branch (starting from the root) of Tf . This branch cor-
responds to the longest bar of B(f) since branches of Tf correspond to connected components
of the superlevel sets of f . Next, we erase this longest branch and, on the remaining (rooted)
forest, look for the next longest branch. This will be the second longest bar of the barcode.
Proceeding iteratively in this way, we retrieve B(f). An illustration of this algorithm can be
found in figure 6.
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We can interpret N ε geometrically as being equal to the number of leaves of T εf . In terms of
the barcode, the same N ε counts the number of bars of length ≥ ε with the caveat that we count
the infinite bar as having length equal to the range of f . As we will see, reasoning in terms of
trees has some major advantages, so in what will follow we will adopt the following convention

Convention 2.16. The length of the infinite bar of B(f) will be set to sup f − inf f .

Figure 6: A depiction of the first steps of the algorithm which assigns a barcode B(f) to a tree
Tf .

2.5 Integration on trees and the duality between N ε and Perspp

Let us recall the following simple remark made in [35]. On a tree Tf , we can define a notion
of integration by defining the unique atomless Borel measure λ which is characterized by the
property that every geodesic segment on Tf has measure equal to its length. Formally, we can
express λ in two ways [37]

λ =

∫
R
dx

∑
τ∈Tf
f(τ)=x

δτ and λ =

∫ ∞
0

dε
∑
τ∈Tf
h(τ)=ε

δτ

By using the second way of writing λ, the identity

λ(T εf ) =

∫ ∞
ε

Na da

is clear, as every sum in the second expression is finite for all ε > 0 and has N ε terms. Of
course, we could very well have written it using the first sum, but this poses the difficulty that
if Tf is infinite, so is the sum considered in this formal expression for at least some value of x.
However, the restricted sum ∑

τ∈Tf
f(τ)=x
h(τ)≥ε

δτ

is finite for all ε > 0 and there are exactly Nx,x+ε terms in this sum. We thus obtain an
alternative expression for λ(T εf )

λ(T εf ) =

∫
R
Nx,x+ε dx .
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We deduce that more information is contained in Nx,x+ε than in λ(T εf ) (and by extension
than in N ε). The calculation above provides the connection between Chazal and Divol and
Baryshnikov’s functional Nx,x+ε and the functional detailed in this paper N ε, since N ε is nothing
other than the derivative of λ(T εf ).

The study of N ε is in fact completely equivalent to the study of Perspp(f). Indeed,

Perspp(f) = p

∫
Tf

h(τ)p−1 λ(dτ) = p

∫ ∞
0

εp−1N ε dε ,

where h : Tf → R associating to τ ∈ Tf the distance between τ and the highest leaf (with respect
to the filtration of f) above τ in Tf . We immediately recognize the above integral as being the
Mellin transform of N ε. Allowing for complex p, this integral relation can be inverted by virtue
of the Mellin inversion theorem, provided that the fundamental strip of N ε is not empty. For
compact intervals and continuous functions f , this fundamental strip is never empty (provided
L(f) <∞) and in fact is exactly equal to 〈L(f),∞〉. Thus, for any real number c > L(f),

N ε =
1

2πi

∫ c+i∞

c−i∞
Perspp(f) ε−p

dp

p
,

which estabilished the duality relation desired. Notice also that Perspp is a norm in the sense
that

Perspp(f) = p ‖h‖p−1
Lp−1(λ)

,

For any (deterministic) continuous function f , Perspp(f) is nothing other than a sum of the
bars of the barcode to the power p. An in depth explanation of this is provided in [35, §2.2], but
let us briefly give some intuition for this. By the algorithm depicted in figure 6, if we denote b
any of the bars of the barcode, seen as embedded in the tree Tf the length of the branch, `(b),
can be written as

p

∫
b
h(τ)p−1λ(dτ) = `(b)p .

The bars of the barcode partition the tree Tf , so that the integration present in the definition
of Perspp is nothing other than the sum of the `(b)p’s.

Remark 2.17. This definition of Perspp coincides perfectly with a definition of Perspp typically
used in persistent homology [10,15,17,31,43], as long as we consider that the infinite bar has the
length of the range (i.e. the sup− inf) of the function f . Of course, within this framework an
equally valid definition for Perspp would have been to exclude the infinite bar from being counted
all-together, and to consider only the bars of finite length. This approach turns out to give
the correct definition for the Perspp-functional in the definition of tail ζ-functions (cf. definition
3.24), which is necessary to study Lévy α-stable processes for α < 2.

Additionally, by the usual inequalities of Lp-spaces,

Proposition 2.18. Perspp is almost log-convex, i.e. let p0 < p1 and θ ∈ [0, 1] and set p =
(1− θ)p0 + θp1, then,

Perspp ≤
p

p1−θ
0 pθ1

Persp0(1−θ)
p0 Persp1θp1 .

Proof. The statement follows directly from an application of Lyapunov’s inequality for Lp-spaces.
�

More generally, it is always true that one can express the Lp(µ)-norm of a function f as the
Mellin transform of the repartition function of |f |, µ(|f | > x).
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2.5.1 Calculation of N ε in dimension one

In dimension one, it is possible to use the total order of R and count N ε by counting the
number of times we go up by at least ε from a local minimum and down by at least ε from a
local maximum. This idea can be formalized by the following sequence, originally introduced
by Neveu et al. [32].

Definition 2.19. Setting Sε0 = T ε0 = 0, we define a sequence of times recursively

T εi+1 := inf

{
t ≥ Sεi

∣∣∣∣∣ sup
[Sεi ,t]

f − f(t) > ε

}

Sεi+1 := inf

{
t ≥ T εi+1

∣∣∣∣∣ f(t)− inf
[T εi+1,t]

f > ε

}

Figure 7: A function f in blue along with the times T εi and Sεi indicated. Because of the
boundary this function has exactly 3 bars of length ≥ ε and not just 2.

Counting the number of bars of length ε is thus exactly to count the number of up and downs
we make. More precisely

N ε = inf{i |T εi or Sεi = inf ∅} (2.1)

by which we mean that it is the smallest i such that the set over which T εi or Sεi are defined as
infima is empty.

Notation 2.20. We denote the range of X R. Symbolically,

Rt := sup
[0,t]

X − inf
[0,t]

X .

Moreoever, denote N ε
t the number N ε of the process X restricted to the interval [0, t].

Intuitively, this calculation process hints at the fact that if ε is small, the number of bars N ε

should strongly depend on the regularity of the process, as ultimately N ε counts the number of
“oscillations” of size ε. In a very precise sense, regularity almost fully determines the asymptotics
of N ε in the ε→ 0 regime. This intuition is corroborated by the following theorem.

Theorem 2.21 (Picard, §3 [37] and [35]). Given a continuous function f : [0, 1]→ R,

V(f) = L(f) = dimTf = lim sup
ε→0

logN ε

log(1/ε)
∨ 1

where dim denotes the upper-box dimension, a ∨ b = max{a, b},

V(f) := inf{p | ‖f‖p−var <∞} and L(f) := inf{p | Persp(f) <∞} .
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For the rest of this paper it is exactly the functional Perspp which shall occupy us.

Remark 2.22. The Pers∞ functional is stable under L∞ perturbations of f . However, it is
unknown whether a similar stability result exists for p <∞.

2.6 ζ-functions associated to stochastic processes

Definition 2.23. Let f be a stochastic process on some compact topological space X. Its
ζ-function ζf is defined by:

ζf (p) := E
[
Perspp(f)

]
= p

∫ ∞
0

εp−1E[N ε] dε .

for p ∈ 〈L(f),∞〉.

This is reminiscent of the structure of the ζ-function, but a priori not enough to draw
any parallels. However, it turns out that this nomenclature turns out to have a meaning for
stochastic processes. Similarly, we could consider the Perspp functional of T>xf , which denotes
the forest

T>xf = {τ ∈ Tf | f(τ) > x}

Remark 2.24. In the tree setting the number Nx,x+ε is also the number of branches of length
≥ ε in the forest T>xf .

Following this analogy, it is natural to define

Definition 2.25. The local ζ-function associated to f at x, ζxf is defined as

ζxf (p) := E
[
Perspp(T

>x
f )

]
= p

∫ ∞
0

εp−1E
[
Nx,x+ε

]
dε .

Proposition 2.26. The two ζ-functions we have so far defined are related via the following
formula

ζf (p) = p

∫
R
ζxf (p− 1) dx .

Proof. Let us start by noticing that N ε is nothing other than

N ε = − ∂

∂ε
λ(T εf ) = − ∂

∂ε

∫
R
Nx,x+ε dx ,

where this derivative is defined and locally constant almost everywhere. From this and the fact
that the derivative ∂Nx,x+ε

∂ε is also defined and locally constant almost everywhere and

N ε = −
∫
R

∂Nx,x+ε

∂ε
dx .

Applying the Mellin transform to both sides and applying Tonelli’s theorem,∫ ∞
0

εp−1N ε dε = −
∫
R
dx

∫ ∞
0

εp−1Nx,x+ε dε .

From the derivation functional property of the Mellin transform (cf. table 1) we get∫ ∞
0

εp−1N ε dε =

∫
R
dx (p− 1)

∫ ∞
0

εp−2Nx,x+ε dε .

Applying the expectation to both sides, multiplying times p and applying Tonelli’s theorem once
again, we have the desired result, namely,

ζf (p) = p

∫
R
ζxf (p− 1) dx .

�

17



Remark 2.27. If the process starts at 0, it is in general easy to compute ζxf for x > 0, but more
challenging to do so for x < 0. In what will follow, we will always focus on x > 0.

Notation 2.28. For the rest of this paper we will take the following conventions. First, we will
sometimes omit the subscript t of N ε

t whenever convenient. The Laplace transform L is always
taken with respect to the variable t and its conjugate variable will always be λ. Similarly, Mellin
transforms will always be taken with respect to the variable ε and its conjugate variable will be
p.

Lemma 2.29. Let f(x, t) : [0,∞[2→ R+ such that the functions f(x,−) and f(−, t) are mono-
tone in their arguments. Then, denoting Lt the Laplace transform with respect to t,

MxLt[f ] = LtMx[f ]

Proof. The monotonicity of f in its arguments ensures that f is a measurable, positive function.
The statement holds by virtue of Tonnelli’s theorem. �

Remark 2.30. Notice this last lemma is applicable to N ε
t , E[N ε

t ], P(N ε
t ≥ k) and other such

quantities.

2.7 Average diagrams and characterizations of Wasserstein convergence of
diagrams

Notation 2.31. For the rest of this section, denote

X := {(x, y) ∈ R2 | y > x} and ∆ := {(x, x) ∈ R2} ,

which we equip with the metric `∞-metric on R2 recalled in equation 2.3.3. Let ε > 0 and
denote ∆ε ⊂ X an open tubular neighbourhood of radius ε around ∆ inside X and denote its
complement in X by ∆c

ε. Finally, denote

Rx,ε := ]−∞, x]× [x+ ε,∞[ .

By looking at persistence diagrams of functions as measures (cf. section 2.3.3 for details), it
is possible to define a notion of an average diagram of a stochastic process.

Definition 2.32. Let M be a compact, triangulable metric space, E(M) be a Polish metric
space of (q-tame) functions on M and let D denote the space of measures on the upper half-
plane X . Let φ : E(M) → D be the map taking f 7→ Dgm(f), where Dgm(f) is seen as a
measure, and let X : Ω → E(M) be a stochastic process of law µ on E(M). Then, the average
diagram of X is given by

E[Dgm(X)] := Eµ[φ] =

∫
E(M)

φ(f) dµ(f) .

Remark 2.33. Note that E[Dgm(X)] is itself a measure. Whenever this measure is absolutely
continuous with respect to the Lebesgue measure on X , there exists g : X → R such that for
any test function f : X → R

E[Dgm(X)] (f) =

∫
X
g(x, y)f(x, y) dx dy .

A sufficient condition to ensure the existence of g is that ∂x∂yE[Nx,y] exists (this is equivalent
to requiring the existence of ∂x∂εE[Nx,x+ε]). Instead of using birth-death coordinates, we may
also express this density in terms of birth-persistence coordinates. In these coordinates, we will
denote this density function by g(x, ε), somewhat abusing the notation.
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Definition 2.34. The space of measures on X with finite Persp will be denotedDp. Symbolically,

Dp :=
{
µ ∈ D

∣∣ Persp(µ) := dp(µ,∆) <∞
}
,

where dp is the Wasserstein p-distance on the space of diagrams defined in [17] and explicited
in definition 2.13.

This allows us to define a ζ-function for µ ∈ Dp as follows.

Definition 2.35. Let µ ∈ Dp and suppose that for some q > p

µ(∆c
ε) = O(ε−q) as ε→∞ ,

then define the ζ-function associated to µ by

ζµ(p) := Perspp(µ) = pM[µ(∆c
ε)] (p) .

Remark 2.36. A priori, ζµ(p) is defined on the strip 〈p, q〉 ⊂ C. This could have also been
guaranteed by replacing the condition of decay of µ(∆c

ε) by requiring that µ ∈ Dp ∩ Dq.
As before, we may also define a local ζ-function.

Definition 2.37. The local ζ-function associated to µ at x is defined as

ζxµ(p) := pM[µ(Rx,ε)](p) .

Remark 2.38. These definitions are compatible with the notions of ζ-functions defined for a
stochastic process. Seeing E[Dgm(X)] as a measure on X , ζX = ζE[Dgm(X)] (and the same holds
for local ζ-functions).

A characterization of the topology metrized by the distance dp is useful and has been inves-
tigated by Divol and Lacombe in [17]. The reader familiar with optimal transport will recognize
this as an adaptation of the known characterization for probability measures of Wasserstein
topology by vague convergence and convergence of pth-moments. That this equivalence holds
for measures of a priori infinite mass is, however, a non-trivial extension.

Lemma 2.39 (Characterization of the topology metrized by dp, [17]). Let (µn)n ⊂ Dp and
µ ∈ Dp. Then, the following equivalence holds{

dp(µn, µ)
n→∞−−−→ 0

}
⇐⇒

{
µn

v−−−→
n→∞

µ and Persp(µn) −−−→
n→∞

Persp(µ)
}
.

Remark 2.40. Of course, given our choice of notation, if p < ∞, we can rewrite Persp(µn) →
Persp(µ) as ζµn(p)→ ζµ(p).

Furthermore, it is possible to show that

Proposition 2.41 (Interpolation for optimal transport). Let 1 ≤ p < q ≤ ∞ and θ ∈ ]0, 1[.
Define pθ by

1

pθ
=
θ

p
+

1− θ
q

.

Then, for µ, ν ∈ Dp ∩ Dq

dpθ(µ, ν) ≤ 21−θ dθp(µ, ν) (Persq(µ) + Persq(ν))1−θ .

Consequently, if p ≤ r ≤ q, then Dp ∩ Dq ⊂ Dr.

Remark 2.42. For probability measures, Wasserstein interpolation follows trivially from an ap-
plication of Jensen’s inequality. However, since diagrams are a priori of infinite mass, this
interpolation result needs to be shown.
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Proof. Let π be an optimal transport for dp. Applying Littlewood’s inequality,

dpθ(µ, ν) ≤
∥∥dR2,∞

∥∥
Lpθ (π)

≤
∥∥dR2,∞

∥∥θ
Lp(π)

∥∥dR2,∞
∥∥1−θ
Lq(π)

= dp(µ, ν)θ
[∫
X 2
dqR2,∞(z, z′) dπ(z, z′)

] 1−θ
q

≤ dp(µ, ν)θ
[
2q
∫
X 2
dqR2,∞(z,∆) + dqR2,∞(∆, z′) dπ(z, z′)

] 1−θ
q

,

where this equality holds everywhere on the support of π. This can be shown by defining

S = {(z, z′) ∈ X 2 ∩ supp(π) | dR2,∞(z, z′) > dR2,∞(z,∆) + dR2,∞(z′,∆)} .

This set S either has null or positive measure. If it has positive measure, then we can modify the
transport plan π by sending the projections of S to the diagonal, thereby producing a transport
plan of strictly inferior cost to that of π, which is a contradiction. Hence, S is of null measure,
so the equality holds over the support of the measure. Finally, this entails

dpθ(µ, ν) = 21−θ dp(µ, ν)θ (Persq(µ) + Persq(ν))1−θ .

If q = ∞, since π is an optimal transport between µ and ν and µ, ν ∈ D∞, π itself must have
compact support and the diameter of the support is bounded above by Pers∞(µ) ∨ Pers∞(ν),
so the inequality of the proposition follows. �

Lemma 2.43 (Sequential continuity of the inverse Mellin transform). Let fk : ]0,∞[→ C be a
sequence of functions uniformly bounded by a function g : ]0,∞[→ R+, whose Mellin transform
g∗ is defined over some non-empty strip 〈α, β〉 ⊂ C. Suppose further that there is a function
f : ]0,∞[→ C such that f∗ : 〈α, β〉 → R+ and f∗k → f∗ uniformly on every compact set of 〈α, β〉.
Then, fk → f almost everywhere.

Proof. For every k, |fk| ≤ g ∨ |f | and so the sequence (fk)k is bounded in a weighted L1 space.
Up to extraction of a subsequence, fk converges a.e. to some function h, also bounded above by
g ∨ |f |. By dominated convergence, along this subsequence, f∗k → h∗, which entails that h = f
a.e. since the Mellin transform is injective and (h − f)∗ = 0 identically on 〈α, β〉, since along
any subsequence f∗k → f∗ uniformly on every compact set of 〈α, β〉. It follows that the sequence
(fk)k has f as its only accumulation point, finishing the proof. �

Remark 2.44. It is sufficient to consider that for all s ∈ ]α, β[, the sequence (xs−1fk(x))k is
absolutely uniformly integrable.

Both of these lemmas allow for a comprehensive characterization of the objects we have thus
far been concerned with throughout this paper.

Theorem 2.45 (ζ characterization of Wasserstein p-convergence). Let (µn)n ⊂ Dp ∩ Dq be a
sequence of q-tame measures and µ ∈ Dp ∩ Dq and suppose that the sequence (µn(∆c

ε))n can be
uniformly bounded above by a function g : ]0,∞[→ R+ such that for ε ∈ ]0, 1] g(ε) = O(ε−p) as
ε→ 0 and on [1,∞[, g(ε) = O(ε−q) as ε→∞. Then, the following are equivalent:

1. There exists p < r < q such that dr(µn, µ)
n→∞−−−→ 0.

2. There exists p < r < q such that µn
v−−−→

n→∞
µ and ζµn(r)→ ζµ(r).

3. For almost every x ∈ R and ε > 0, µn(∆c
ε)→ µ(∆c

ε) and µn(Rx,ε)→ µ(Rx,ε).

4. For almost every x ∈ R, ζxµn → ζxµ and ζµn → ζµ uniformly on every compact of 〈p, q〉.

5. For all p < r < q, dr(µn, µ)
n→∞−−−→ 0.

Proof. Let us break down the proof in different steps.
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• (1) ⇐⇒ (2) by lemma 2.39.

• (2) =⇒ (3). By the Portmanteau theorem, the vague convergence of µn to µ entails
that for any continuity set A of µ, µn(A) → µ(A). In particular, since the µn and µ are
q-tame, Rx,ε is a continuity set of µ for almost every x and ε, so µn(Rx,ε)→ µ(Rx,ε) and
µn(∆c

ε)→ µ(∆c
ε) a.e..

• (3) =⇒ (4). Since µn(∆c
ε)→ µ(∆c

ε) a.e., if we let s ∈ 〈α, β〉, then

|ζµn(s)− ζµ(s)| ≤ |s|
∫ ∞

0
εRe(s)−1 |µn(∆c

ε)− µ(∆c
ε)| dε

= |s|
{∫ 1

0
+

∫ ∞
1

}
εRe(s)−1 |µn(∆c

ε)− µ(∆c
ε)| dε

The domination conditions of the theorem on µn(∆c
ε) and µ(∆c

ε) guarantee that this quan-
tity is integrable as soon as p < Re(s) < q. By dominated convergence, ζµn → ζµ on every
compact of 〈p, q〉. We apply the same reasoning to the Rx,ε by noting that the measure of
Rx,ε is always dominated by that of ∆c

ε.

• (4) =⇒ (5). Fix r ∈ ]p, q[ and take a compact setK around r contained in 〈p, q〉. It suffices
thus to show that the convergence of these ζ-functions entails vague convergence of the
µn, which will show the result by lemma 2.39. Denoting Aε ∈ {Rx,ε,∆c

ε}, the boundedness
condition of the theorem on µn(Aε) entails that, by lemma 2.43, µn(Aε)→ µ(Aε) almost
everywhere. Since the collection of Rx,ε and ∆c

ε together forms a π-system, so for every
continuity set of µ, we have convergence of their measures µn to µ, and so by applying the
Portmanteau theorem once again, µn → µ vaguely, which shows the result.

• (5) =⇒ (1) trivially.

�

Remark 2.46. Of course, by interpolation, it is sufficient that for all µ and Re(s) > p, ζµn(s) be
bounded to guarantee that for any s ∈ ]p,∞[, ds(µn, µ)→ 0, if dp(µn, µ)→ 0.

Remark 2.47. Theorem 2.45 applies to average diagrams from any stochastic process satisfying
the hypotheses of the theorem. This entails that if the ζ-functions of a process converge on some
open set 〈α, β〉 ⊂ C, the underlying expected diagrams themselves converge in some Wasserstein
distance.

3 ζ-functions of Lévy processes and semimartingales

3.1 Semimartingales

A first important motivating result regarding ζ-functions is the following.

Proposition 3.1. Let X be a continuous semimartingale X = M +A on the interval [0, t] such
that for s ≥ 1

E
[
[M ]

s/2
t +

(∫ t

0
|dA|s

)s ]
<∞ .

Then, the (local) ζ-function of X is meromorphic on Re(p) ≥ 2 (resp. Re(p) ≥ 1) with a single
simple pole at p = 2 (resp. p = 1). Furthermore, if X is a continuous semimartingale (and some
conditions) and [X]t <∞, then in Ls

N ε
X ∼

[X]t
2ε2

as ε→ 0 .

Remark 3.2. By quadratic variation, we mean the quadratic variation in the probabilistic sense,
i.e. in the sense that we take the limit of the variation of the process as the mesh of the partition
of the interval [0, t] goes to zero, as opposed to the real quadratic variation, where the supremum
over all partitions is considered.
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Proof. The statement holds by the almost sure existence of continuous modifications of local
times for continuous semimartingales and the fact that uniformly in x and t, it is known [41, Ch.
VI Thm. 1.10] that under the technical hypothesis of the theorem,

2εNx,x+ε
X

Ls−−−→
ε→0

LxX(t) .

Recall the density occupation formula for the local times of a continuous semimartinglale X [28,
Cor. 9.7], which states that, almost surely, for every t ≥ 0 and any non-negative measurable
function φ on R ∫ t

0
φ(Xτ ) d[X]τ =

∫
R
φ(a)LaX(t) da .

Taking φ to be the constant function 1, we get that in Ls

λ(T εf ) =

∫
R
Nx,x+ε dx ∼ 1

2ε

∫
R
LxX(t) dx as ε→ 0

=
1

2ε

∫ t

0
d[X]τ =

[X]t
2ε

+ o(ε−1) as ε→ 0 .

But for δ > 0 small enough, by monotonicity of N ε,

N (1+δ)ε ≤
λ(T εf )− λ(T

(1+δ)ε
f )

δε
=

1

δε

∫ (1+δ)ε

ε
Na da ≤ N ε ,

so that in Ls for every δ > 0 small enough,

[X]t
2ε2

1

1 + δ
. N ε .

[X]t
2ε2

1

1− δ
as ε→ 0 .

Since δ can be taken to be arbitrarily small

N ε ∼ [X]t
2ε2

as ε→ 0

in Ls as desired. �

Remark 3.3. If the continuous semimartingale is Brownian motion, the same arguments as well
as a result regarding the representation by downcrossings of the local time by Itô [25, §2.4] show
that this asymptotic relation holds in fact almost surely.

Corollary 3.4. If X is a continuous semimartingale, then in expectation Perspp(X) admits a
pole of order 1 at p = 2 of residue [X]t.

In [36], we have already studied the functional N ε for Markov processes. Let us briefly recall
some useful known facts about N ε.

Proposition 3.5 (P, [36]). Using summation by parts, it is possible to write

E[(N ε
t )s] =

∑
k≥1

(ks − (k − 1)s)P(N ε
t ≥ k)

For processes on the interval which are not periodic (in the sense of [36]), if k ≥ 2

P(N ε
t ≥ k) = P(Sεk−1 ≤ t) , (3.2)

and P(Nt ≥ 1) = P(Rt ≥ ε). Furthermore if X has the strong Markov property,

E[N ε
t ] ∼ P(Rt ≥ ε) as ε→∞ .

Finally, for k ≥ 2 the Laplace transform (with respect to time, as per our convention) of equation
3.2 is

L(P(N ε
t ≥ k))(λ) =

E
[
e−λS

ε
k−1

]
λ

. (3.3)
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Proof of proposition 3.5. The only thing to prove is the result of equation 3.3, as the previous
statements are all proved in [36]. Since we are dealing with processes which are not periodic in
the sense of [36], then

P(N ε
t ≥ k) = P(Sεk−1 ≤ t) ,

since as soon as the hitting time Sεk−1 is attained we have at least k bars (due to the boundary
of the interval). Using standard functional properties of the Laplace transform it is easy to see
that

L[P(Sεk−1 ≤ t)](λ) =
L[P(Sεk−1 = t)](λ)

λ
,

where P(Sεk−1 = t) denotes the probability density function of Sεk−1. However, the Laplace trans-

form of this density function is nothing other than the moment generating function E
[
e−λS

ε
k−1

]
,

since Sεk−1 is a positive random variable. �

Remark 3.6. If the process has the strong Markov property, we can write E
[
e−λS

ε
k−1

]
as the

product of the Laplace transform of the distribution of its increments

Sεk−1 =
k∑
i=0

(Sεi − T εi ) + (T εi − Sεi−1) .

The expression of E
[
e−λS

ε
k−1

]
is particularly simple as soon as these increments are independent

and identically distributed.

Remark 3.7. Ordering the bars of the barcode of a function f by their length, and denoting the
length of the kth longest branch by `k, the following equivalence holds

N ε
t ≥ k ⇐⇒ `k ≥ ε .

The probability distribution of both of the events above are thus the same. Consequently, there
is a one-to-one correspondence between the elements of the sums

E
[
Perspp

]
=
∑
k≥1

E
[
`pk
]

= p
∑
k≥1

M[P(N ε
t ≥ k)](p)

whenever these quantities are defined. In particular, the distribution of each bar is in principle

readily available, since E
[
`p−1
k

]
is the Mellin transform of the distribution of `k. We will later

see that in particular cases, we can gain access to the explicit distribution of bars in this way
(cf. section 3.3.2).

3.2 Renewal theory

Throughout this section, we shall consider that the stopping times Sεk−1 are such that the
sequence (U εk)k≥0 is a sequence of i.i.d. atomless random variables, where

U εk := Sεk − Sεk−1 .

We shall adapt and enounce some theorems from renewal theory (cf. Allan Gut’s book [23] for
a detailed account of this) Let us define N̂ ε

t by

N̂ ε
t := max{k |Sk ≤ t} .

Tautologically, for every k, N̂ ε
t ≥ k ⇐⇒ Sεk ≤ t. In fact, adopting the convention that the

infinite bar has length the range of the process, we can write, always under convention 2.16 that

N ε
t = 1{Rt≥ε} + N̂ ε

t
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Remark 3.8. Notice that convention 2.16 for the infinite bar might not be the most natural or
more convenient from this point of view. Indeed, if we had adopted the convention that the
infinite bar always has length at least ε, then

N ε
t = 1 + N̂ ε

t

and N ε
t is a first passage time process defined by

N ε
t := min{k |Sk > t} .

Nonetheless, as previously stated, we will keep adopting convention 2.16 for the rest of this
paper.

According to renewal theory, N̂ ε
t posses various desirable limit theorems which we shall

briefly recall and refer the reader to [23] for complete proofs of the latter.

Theorem 3.9 (Strong Law of Counting Processes, Theorem 5.1 [23]). Let 0 < E[U ε1 ] <∞, then

N̂ ε
t

t

t→∞−−−→
a.s

1

E[U ε1 ]
and

E
[
(N̂ ε

t )s
]

ts
t→∞−−−→ 1

(E[U ε1 ])s

for all s > 0. If E[U ε1 ] =∞, then the limits are 0.

Theorem 3.10 (CLT for Counting Processes, Theorem 5.2 [23]). Let 0 < E[U ε1 ] = µ <∞ and
σ2 = Var(U ε1 ) <∞, then

N̂ ε
t − t/µ√

σ2t
µ3

t→∞−−−→
P
N (0, 1)

Furthermore,

E
[
N̂ ε
t

]
=
t

µ
+
σ2 − µ2

2µ2
+ o(1) as t→∞

Var(N̂ ε
t ) =

σ2t

µ3
+ o(t) as t→∞ .

These results are in particular applicable for Lévy processes, where it is possible to show
that the requirement that the sequence (Uk)k is i.i.d. is satisfied. In particular, the theorems
above give the asymptotic long-time behaviour of the number of bars.

3.3 Lévy processes

For Lévy processes, the small scale asymptotics of N ε can also be studied up to the following
caveat : a wide range of Lévy processes have almost surely discontinuous paths (but nonetheless
càdlàg), but our construction of trees (as done in [35]) is based on continuous functions. For
this reason, it is necessary to define what tree we associate to a process X when Xt has almost
surely discontinuous paths. Luckily, this caveat has been treated for càdlàg processes in [19,37].
We will adopt the approach taken by Picard in [37], where the reader can find the details of the
construction. Loosely speaking, Picard’s approach consists in “completing” the function at the
discontinuity points by joining an imaginary line linking the points of discontinuity (cf. figure
8).

In any case, it has been shown that on some fixed interval [0, t], it is possible to obtain the
behaviour of the number of bars of length ≥ ε as ε→ 0.

Proposition 3.11 (Picard, §3 [37]). Let X be a Lévy process and suppose that, almost surely
X has no interval on which it is monotone. Define

ξ(ε) := E[Sε + T ε]
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Figure 8: A depiction of the construction of a tree associated to a càdlàg function. The figure
is taken from [37]

for
Sε := inf{t |Xt − inf

[0,t]
X > ε} and T ε := inf{t | sup

[0,t]
X −Xt > ε} ,

then ξ(ε)N ε → 1 as ε → 0 in probability. If ξ(ε) = O(εα) for some α, then the convergence is
almost sure.

Remark 3.12. The hypothesis on X is satisfied if X or −X is not the sum of a subordinator and
a compound Poisson process, in which case TX is finite, so N ε is bounded. Furthermore, the
convergence is always almost sure for α-stable processes for which |X| is not a subordinator by
the scaling property. In fact, in that case there exists a constant Cα such that almost surely,

N ε ∼ Cα
εα

as ε→ 0 .

If we can quantify correction terms to this asymptotic relation in L1, this gives rise to a statistical
test for α by using the stability results discussed in [36], we will explore this in more detail in
section 3.3.3. By the self-similarity of α-stable process following the arguments of [37, §3], we
can already at least conclude that ∣∣E[N ε

α]− Cαε−α
∣∣ ≤ 1 .

Notation 3.13. In what will follow, we will denote by Sε and T ε two independent random
variables distributed as the analogously denoted ones in proposition 3.11. Furthermore, define
U ε = T ε + Sε. In particular, if ε = 1, abusing the notation we will denote U1 = U .

Remark 3.14. Henceforth, unless otherwise specified, we will always assume that X almost surely
has no interval on which it is monotone.

This result by Picard is exactly the Strong Law of Counting Processes (theorem 3.9) applied
to the stopping times we previously considered. Self-similarity allows us to trade the t → ∞
limit by an ε → 0 limit. However, Picard’s result is more general that what could’ve been
deduced with self-similarity, as it applies to Lévy processes which are not necessarily α-stable.
In this setting, one could ask whether it is possible to prove an analogous theorem to the CLT
of Counting Processes (theorem 3.10).

Theorem 3.15. Let X be a Lévy process such that almost surely X has no interval on which it
is monotone, using the notation defined in 3.13,

E[N ε
t ] =

t

E[U ε]
+

(
E
[
(U ε)2

]
2E[U ε]2

− 1

)
+ P(Rt ≥ ε) + o(ρ−nε ) as ε→ 0 .

25



for any n ∈ N, where ρε denotes the radius of convergence of the Taylor series of E
[
e−λU

ε]
around λ = 0, which can be bounded below by − log(P(T ε > 1)∨P(Sε > 1)), which is larger than
1 for ε small enough. Furthermore, if X is α-stable, the formula above becomes

E[N ε
t ] =

t

E[U ] εα
+

E
[
U2
]

2E[U ]2
+ o(εαn) as ε→ 0 . (3.4)

Let us stress that the main addition over the CLT of Counting Processes (theorem 3.10) is
two-fold :

• We have found a similar limit for a processes which is not self-similar, and so for which
the t→∞ limit was a priori not interchangeable with the ε→ 0 limit.

• We have further specified the rate of decay of the remainder in terms of ε, and this will
turn out to be of importance;

To show the theorem, it is convenient to show first some technical lemmata, one of which is a
slight refinement to a technical lemma proved in [37].

Lemma 3.16 (Picard, Proposition 3.14 [37]). The variables Sε and T ε admit finite moments of
order k for all k and the moment generating function E

[
e−λU

ε]
is well defined on a neighborhood

of zero. Furthermore, the radius of convergence of E
[
e−λU

ε]
around 0, ρε, then

ρε ≥ − log(P(Sε > 1) ∨ P(T ε > 1)) ,

if X is α-stable, then ρε = ρε−α, for some constant ρ > 0 (which might be infinite). Finally,
there exists 1 ≤ Ck ≤ 2k Li−k(

1
2) such that

E[U ε]k ≤ E
[
(U ε)k

]
≤ Ck E[U ε]k .

Remark 3.17. The bound on the constant in this lemma is not optimal. Notice also that this
result entails ρε →∞ as ε→ 0.

Lemma 3.18. Keeping the same notation (cf. notation 3.13) as before,

U ε
Lr−−−→
ε→0

0 and U ε
a.s.−−−→
ε→0

0 .

for every r ≥ 1.

Lemma 3.19. For every k, there exists a constant Dk such that

1−Dke
−λE[U ε]k . E

[
e−λU

ε
]
≤ 1 as ε→ 0 .

Furthermore, for real γ and σ,

1− E
[
e−γU

ε] ≤ ∣∣∣1− E
[
e−(γ+iσ)Uε

]∣∣∣ ,
In particular, ∣∣∣∣∣ E

[
e−(γ+iσ)Uε

]
1− E

[
e−(γ+iσ)Uε

]∣∣∣∣∣ ≤ E
[
e−γU

ε]
1− E[e−γUε ]

.

Lemma 3.20. For any δ > 0, weakly in L2([δ,∞[), for any k ≥ 0

1

2πi

∫ γ+iT

γ−iT
eλtλk dλ

D−−−−→
T→∞

0

at a rate O(T−n) for any n ∈ N. Furthermore, for any k ≥ 0

1

2πi

∫ γ+iT

γ−iT

eλt

λk
dλ

D−−−−→
T→∞

tk−1

(k − 1)!

weakly at a rate O(T−(n+k−1)) and the convergence is strong as soon as k ≥ 2.
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Proof of lemma 3.16. It is sufficient to show it for Sε knowing that an analogous treatment is
possible for T ε. The points in [0, Sε] are characterized by the fact that

Xt − inf
[0,t]

X < ε .

In particular, the supremum over all t ranging within [0, Sε] of this quantity is also less than ε.

P(Sε > a) = P
[

sup
0≤t≤a

(
Xt − inf

[0,t]
X

)
< ε

]
.

Consider now an interval [0, kµ], where µ > 0 and k is an integer and let us slice this interval
into k segments of length µ. It is clear that the following inequality holds

sup
0≤t≤kµ

(
Xt − inf

[0,t]
X

)
≥ sup

1≤j≤k

(
sup

(j−1)µ≤t≤jµ

(
Xt − inf

[(j−1)µ,t]
X

))
,

since over each smaller interval we can have only smaller spread than over the entire interval.
However, the right hand side is a supremum over i.i.d. random variables, so that

P(Sε > kµ) ≤ P

[
sup

1≤j≤k

(
sup

(j−1)µ≤t≤jµ

(
Xt − inf

[(j−1)µ,t]
X

))
< ε

]

= P

[
sup

0≤t≤µ

(
Xt − inf

[0,t]
X

)
< ε

]k
= P(Sε > µ)k .

By the non-monotonicity of X, P(Sε > µ) < 1. In particular, if we let µ = 1, and denote
c = P(Sε > 1) < 1, then:

lim
k→∞

eλk P(Sε > k) ≤ lim
k→∞

eλk P(Sε > 1)k = lim
k→∞

(eλc)k = 0

as soon as λ < log(1/c). It follows that E
[
e−λS

ε]
is well-defined for λ in some neighbourhood

of zero and in particular all moments of Sε are well-defined and finite. Finally, combining the
above remark with an application of Markov’s inequality we get

P(Sε > 2kE[Sε]) ≤ 2−k .

Almost surely, Sε

2E[Sε] ≤ G, where G is a geometric random variable. The moments of G can
easily be calculated, yielding the estimation in the lemma for the moments..

This shows that the radius of convergence of the Taylor series E
[
e−λS

ε]
is bounded below by

− log(P(Sε > 1)), since Taylor series converge up to their nearest singularity. If X is α-stable,
we can use the relation which tells us that, in distribution U ε = εαU , so that by the ratio test,

lim sup
k→∞

|λ|
k + 1

E
[
(U ε)k+1

]
E[(U ε)k]

= εα |λ| lim sup
k→∞

1

k + 1

E
[
Uk+1

]
E[Uk]

.

This limit is equal to 0 ≤ ρ−1 <∞, since E
[
e−λU

]
is analytic on a non-trivial disk around 0, by

lemma 3.16 and usual properties of the Laplace transform.

lim sup
k→∞

|λ|
k + 1

E
[
(U ε)k+1

]
E[(U ε)k]

< 1 ,

whenever |λ| < ρε−α, which shows the desired result.
�
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Proof of lemma 3.18. The statement in Lr follows from the following observation.

0 ≤ E[(U ε)r] ≤
∞∑
k=1

krP(U ε ≥ k) ≤
∞∑
k=1

krP(U ε ≥ 1)k

by the arguments of lemma 3.16. This sum converges, since P(U ε ≥ 1) < 1. As ε → 0,
P(U ε > 1) → 0, since X is almost surely nowhere monotone, so that the entire sum tends to
0. The almost sure statement follows from the fact that U ε is monotone, since both T ε and
Sε are monotone functions of ε. Since Lr convergence implies almost sure convergence along a
subsequence εn, for εn+1 < ε < εn+1 by monotonicity of U ε

U εn+1 < U ε < U εn ,

so the convergence is almost sure. �

Proof of lemma 3.19. The first inequality of the lemma relies on the fact that

E
[
e−λT

ε
]
≤
∑
k≥0

e−λkP(T ε > k) ≤
∑
k≥0

[
e−λP(T ε > 1)

]k
=

1

1− e−λP(T ε > 1)
∼ 1− e−λP(T ε > 1) as ε→ 0 ,

since P(T ε > 1)
ε→0−−−→ 0. Notice an analogous inequality holds for Sε. By Markov’s inequality,

we know that
P(T ε > 1) ≤ E

[
(T ε)k

]
≤ CkE[T ε]k

from which the first inequality follows by lemma 3.18. The second and third inequalities follow
from noticing that for any x and y

||x| − |y|| ≤ |x− y|

and applying Jensen’s inequality. �

Proof of lemma 3.20. Consider a test function ϕ ∈ C∞c ([δ,∞[), then integrating by parts

1

2πi

∫
R

[∫ γ+iT

γ−iT
eλtλk dλ

]
ϕ(t) dt =

(−1)k

2πi

∫
R
dt ϕ(k)(t)

∫ γ+iT

γ−iT
eλt dλ

= (−1)k
∫
R

eγtϕ(k)(t)

πt
sin(Tt) dt (3.5)

By performing the change of variables y = Tt, we see that the integral is weakly approaching 0,
as ϕ is not supported at 0. Additionally, away from 0, the function

eγtϕ(k)(t)

πt

is a compactly supported C∞-function, integrating by parts n subsequent times equation 3.5
yields bounds of this integral by CϕT

−n, where Cϕ is a constant which depends on the test
function and its support.

Let us now show that
1

2πi

∫ γ+iT

γ−iT

eλt

λk
dλ

D−−−−→
T→∞

tk−1

(k − 1)!
.

Once again integrating by parts,∫
R
dt ϕ(t)

[
1

2πi

∫ γ+iT

γ−iT

eλt

λk
dλ− tk−1

(k − 1)!

]
= (−1)n

∫
R
dt ϕ(n)(t)

[
1

2πi

∫ γ+iT

γ−iT

eλt

λk+n
dλ− tn+k−1

(n+ k − 1)!

]
.

28



Applying the residue theorem to evaluate the complex integral we get, for T > γ,

1

2πi

∫ γ+iT

γ−iT

eλt

λk+n
dλ =

tn+k−1

(n+ k − 1)!
+

1

2πi

∫
CT

eλt

λk+n
dλ ,

where CT is the circle of center λ = γ and radius T . By the estimation lemma, the contribution
of this integral is bounded by eγtT−(n+k−1) . It follows that∣∣∣∣∫

R
dt ϕ(t)

[
1

2πi

∫ γ+iT

γ−iT

eλt

λk
dλ− tk−1

(k − 1)!

]∣∣∣∣ ≤ T−(n+k−1)
∥∥∥eγtϕ(n)(t)

∥∥∥
L1
,

thereby giving the speed of convergence desired. �

Proof of theorem 3.15. Throughout this proof, we shall denote

F (λ, ε) :=
1

λ

E
[
e−λU

ε]
1− E[e−λUε ]

.

The assumption of non-monotonicity of the Lévy process ensures that, almost surely, Sε and
T ε both tend to 0 as ε → 0. Consider now the times T εi and Sεi given in definition 3.36. Since
X is Lévy, T εi+1 − Sεi and Sεi − T εi are independent from one another, and are both equal in
distribution to T ε and Sε respectively.

By lemma 3.16, Sε and T ε admit finite moments for all k and the function E
[
e−λU

ε]
is well

defined, so, by equation 3.3

L(E[N ε
t ])(λ) = L(P(Rt ≥ ε))(λ) +

1

λ

∑
k≥1

E
[
e−λU

ε
]k

= L(P(Rt ≥ ε))(λ) +
1

λ

1

E[e−λUε ]
−1 − 1

(3.6)

If we denote ρε the radius of convergence of the Taylor series at zero associated to E
[
e−λU

ε]
, for

|λ| < ρε,

E
[
e−λU

ε
]

=

∞∑
k=0

(−λ)kE
[
(U ε)k

]
k!

.

This radius of convergence ρε can be bounded below with the results of lemma 3.16 by

− log(P(Sε > 1) ∨ P(T ε > 1)) < ρε ,

which entails that ρε → ∞ as ε → 0. We deduce from this series the Laurent series associated

to λ−1(E
[
e−λU

ε]−1 − 1)−1, namely

F (λ, ε) =
1

λ2E[U ε]
+

1

λ

[
E
[
(U ε)2

]
2E[U ε]2

− 1

]
+

3E
[
(U ε)2

]2 − 2E[U ε]E
[
(U ε)3

]
12E[U ε]3

+O(λ) .

where the remainder in λ is an analytic function of λ for |λ| < ρε. By the inequalities of lemma
3.19, the function doesn’t admit any poles on the half plane Re(λ) > 0, so that the Taylor series
above converges over the same disk as that of E

[
e−λU

ε]
.

Observe now that for some small γ > 0, the inverse Laplace transform of F (λ, ε) can be
written as

L−1[F ](t, ε) =
1

2πi

{∫ γ+iρε

γ−iρε
+

∫ γ+i∞

γ+iρε

+

∫ γ−iρε

γ−i∞

}
eλtF (λ, ε) dλ . (3.7)

Weakly, the integrals going off to infinity are of order o(ρ−nε ) for any n ∈ N, since for any test
function ϕ ∈ C∞c ([0,∞[), integrating by parts∫

R
dt ϕ(t)

[
1

2πi

∫ γ+i∞

γ+iρε

eλtF (λ, ε) dλ

]
=

(−1)n

2πi

∫
R
dt ϕ(n)(t)

∫ γ+i∞

γ+iρε

dλ
eλt

λn
F (λ, ε) dλ
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But using lemma 3.19,∣∣∣∣∫ γ+i∞

γ+iρε

dλ
eλt

λn
F (λ, ε) dλ

∣∣∣∣ ≤ eγt ∫ γ+i∞

γ+iρε

∣∣∣∣F (λ, ε)

λn

∣∣∣∣ dλ = O(ρ−n−2
ε ) ,

which entails that the integrals going to infinity in equation 3.7 converge weakly to 0 at a rate
o(ρ−nε ) for any n ∈ N. Thus, asymptotically as ε→ 0, for t > 0,

E[N ε
t ] =

t

E[U ε]
+

(
E
[
(U ε)2

]
2E[U ε]2

− 1

)
+ P(Rt ≥ ε) + o(ρ−nε ) ,

for any n ∈ N. If the process is α-stable, then (Xcαt)t≥0 = (cXt)t≥0 in distribution for all c, so
that U ε = εαU in distribution and

E[N ε
t ] =

t

E[U ] εα
+

E
[
U2
]

2E[U ]2
+ o(εαn) as ε→ 0 ,

for all n ∈ N. As ε→ 0, 1− P(Rt ≥ ε) = o(εn) for any n, since

P(Rt ≤ ε) ≤ P(T ε > t) ≤
εαkE

[
(T 1)k

]
tk

for any k by Markov’s inequality. �

Remark 3.21. A similar theorem can be proven in Ls(Ω) for α-stable processes. For instance, if
X is α-stable and s = 2 one obtains that for every n ∈ N,

Var(N ε
t ) ∼

[
Var(U)− 2E[U ]2

E[U ]3

]
t

εα

+
5Var(U)2

4E[U ]4
+

Var(U)

E[U ]2
−

2E
[
U3
]

3E[U ]3
+

7

4
+ o(εαn) as ε→ 0 .

Interestingly, there is a constant term appearing in this expansion, which can be understood
as induced by the boundary. This interpretation comes from Picard’s analysis of the problem [37],
in which the first term of this asymptotic series was also derived (cf. proposition 3.11).

If X has almost surely discontinuous paths, Xt exhibits macroscopic jumps. These will turn
out to bring significative contributions, so much so that

Corollary 3.22. If α 6= 2, the ζ-function of any α-stable Lévy process is ill-defined for any
p ∈ C.

Proof. The ζ-function of a stochastic process X can be written as

ζX(p) = E[Rpt ] + E

∑
k≥2

`pk(Xt)

 , (3.8)

if X is α-stable, the first term can be written as

E[Rpt ] = t
p
αE[Rp1] ≥ t

p
αE[|X1|p] ,

where we have momentarily taken p ∈ R. Since X1 has a Lévy α-stable distribution, taking p
now complex, E[Rpt ] is infinite as soon as Re(p) ≥ α, since X1 does not admit any moments of
order (of real part) larger than α. Applying theorem 3.15, we know that the second term in the
above decomposition of ζX is only defined for Re(p) > α, so the fundamental strip of ME[N ε

t ]
is empty. �
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In fact, it is possible to show that P(X1 > ε) ∼ P(R1 > ε) as ε→∞. It turns out that the
distribution of R1 is dominated by the probability of having one large jump, which confirms our
previous statement on the effect of the discontinuity of Lévy processes on the distribution of R.
This is the so-called single big jump principle.

Proposition 3.23 (Single big jump principle, Bertoin, [5]). If X is an α-stable process (α < 2),
there exists a constant k such that

P(R1 ≥ ε) ∼
k

εα
as ε→∞ .

Loosely speaking, it is intuitive to think that a corrective asymptotic power series for P(Rt ≥
ε) of the form

P(R1 ≥ ε) ∼
∑
k≥1

akε
−kα as ε→∞

should exist for the following reason. By the single big jump principle, the probability that the
range exceeds ε for large ε is dominated by the probability of a single big jump. However, it
is also possible to have n large jumps of size Jkε where

∑n
k Jk ≥ 1. The probability of each of

these jumps happening is of order O(ε−α) and by independence, the probability that k jumps of
size O(ε) happen is O(ε−αk). In general, we cannot expect these events to be disjoint from one
another, so the coefficients ak of this sum may be negative. Finally, by the scaling invariance
it is sufficient to show that this is so for R1. Corrective terms to the above asymptotic relation
should thus in principle exist, but the explicit calculation of these terms is out of the scope of
this paper.

By contrast, we will now show that E[N ε
t ] − P(Rt ≥ ε) is well-behaved. This motivates the

following definition

Definition 3.24. The tail ζ-function of the stochastic process X on [0, t] is defined as

ζ̂X(p) := E
[
Perspp(X)−Rpt

]
.

Theorem 3.25. The tail ζ-function associated to an α-stable Lévy process is given by

ζ̂X(p) =
t
p
α

Γ( pα)
B∗
( p
α

)
, (3.9)

which extends to a meromorphic function of p to the entire complex plane (since B∗ is itself
meromorphic), with a unique simple pole at p = α of residue E[U ]−1 αt.

Proof of theorem 3.25. To show that this quantity is well-defined, let us start by noticing that

L(E[N ε
t ]− P(Rt ≥ ε))(λ) =

E
[
e−λε

αU
]

λ(1− E[e−λεαU ])

which for Re(λ) > 0 goes to zero (uniformly in λ) exponentially fast as ε → ∞, showing that
E[N ε

t ] − P(Rt ≥ ε) does as well for ε → ∞ by an application of Markov’s inequality. We can
also compute the contribution of the second term of equation 3.8. First, notice that

L

E

∑
k≥2

`pk(Xt)

(λ) =
p

λ
M

[
E
[
e−λε

αU
]

1− E[e−λεαU ]

]
(p)

Using the scaling property of the Mellin transform Mz[f(λz)](p) = λ−pf∗(p) and inverting the
Laplace transform

E
[
Perspp(X)−Rpt

]
=

pt
p
α

Γ(1 + p
α)
M

[
E
[
e−ε

αU
]

1− E[e−εαU ]

]
(p) . (3.10)
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Finally, setting

B(z) :=
E
[
e−zU

]
1− E[e−zU ]

and B∗(p) :=Mz[B(z)](p) ,

the polynomial scaling property of the Mellin transform,Mz[f(zα)](p) = 1
αf
∗( pα) yields the final

result. �

Remark 3.26. Theorem 3.25 can be used to give an alternative proof for the series expansion of
theorem 3.15.

Alternate proof of theorem 3.15. By lemma 3.16 and the analyticity of the expresion of B with
respect to E

[
e−zU

]
, B admits a Laurent series on some non-trivial annulus around zero with a

single simple pole at z = 0. By the fundamental correspondence (theorem 2.5), the existence of
this Laurent expansion guarantees that B∗( pα) admits a meromorphic continuation to the whole
complex plane with only simple poles at every p = −nα for every n ∈ N and at p = α. The
poles at the negative integer multiples of α are compensated exactly by those of the Γ-function
in the denominator of the expression of ζ̂, leaving only a pole at α. Now, recalling that

ζ̂(p) = pM[E[N ε
t ]− P(Rt ≥ ε)](p) ,

M[E[N ε
t ]−P(Rt ≥ ε)] has a supplementary pole at p = 0. Admitting that ζ̂(p)/p has the decay

condition to apply the fundamental correspondence by inverting the Mellin transform we get
the asymptotic relation desired. �

3.3.1 Exponential corrections

The fundamental correspondence is limited in that it allows us only to describe E[N ε] asymp-
totically up to terms smaller than any polynomial. However, in accordance to the discussion
of section 2.1.1, a finer study of the analytic properties of ζ̂ can yield the superpolynomial
corrections to our estimate, assuming that B(z) admits a meromorphic extension to the whole
complex plane. Using lemmata 2.6 and 2.8,

ζ̂X(p) = t
p
αΓ
(

1− p

α

) ∑
z0∈P

Res((−z)
p
α
−1B(z); z0) (3.11)

M(E[N ε
t ]− P(Rt ≥ ε))(p) = −

t
p
αΓ
(
− p
α

)
α

∑
z0∈P

Res((−z)
p
α
−1B(z); z0) . (3.12)

Recognizing that

Mz

[
ez0/z

z0

]
(p) = −Γ(−p)

(
−1

z0

)1−p
,

we may formally invert the Mellin transform if all the z0’s are simple poles to obtain the expo-
nentially small corrections

E[N ε
t ]− P(Rt ≥ ε)−

t

E[U ] εα
−

[
E
[
U2
]

2E[U ]2
− 1

]
∼
∑
z0∈P

etz0/ε
α

αz0
Res(B(z); z0) as ε→ 0 .

Generally, the poles are not simple so the corrective terms to this series stem from residues of
higher order poles (the corrections remain nonetheless superpolynomially small as ε→ 0).

3.3.2 Distribution of the length of branches

The distribution of the length of the kth branch (in the sense of figure 6) can be calculated.
Recall that

E
[
`pk(X)

]
= pM[P(N ε

t ≥ k)](p) .
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For k ≥ 2,

L[E
[
`pk(X)

]
](λ) =

p

λ
M
[
E
[
e−λU

ε
]k−1

]
(p) .

If we suppose once again that X is a Lévy α-stable process, this can be simplified to yield

E
[
`pk(X)

]
=

t
p
α

Γ( pα)
M
[
E
[
e−εU

]k−1
]( p
α

)
,

Taking the Mellin transform of a power is in general difficult. Inversion is also in general
complicated due to the presence of the Γ-function in the denominator of the above expression.
To remediate the first problem, we can form the generating function yielding the distribution
for the kth bar,

Gα(z; p) :=
∑
k≥2

E
[
`pk(X)

]
zk =

t
p
α

Γ( pα)
M
[

z

(zE[e−εU ])−1 − 1

]( p
α

)
,

which allows us to express

Proposition 3.27. For k ≥ 2, the distribution of the length of the kth longest branch is
characterized by its Mellin transform which is given by

E
[
`pk(X)

]
=

1

k!

∂k

∂zk

∣∣∣∣
z=0

Gα(z; p) .

Whenever convenient, the expression above can also be evaluated by considering a circular
contour of small enough radius r around the origin Cr and evaluating

E
[
`pk(X)

]
=

1

2πi

∮
Cr

Gα(z; p)

zk+1
dz .

3.3.3 Statistical parameter testing for α-stable processes and perspectives

What we will aim to do in this section is to illustrate by example why barcodes can be a robust
statistical tools for parameter testing. Parameter testing is a widely studied subject, notably for
self-similar processes, where the problem has been treated in dimension 1 (a non-comprehensive
list of references is [16] and the references therein). A variety of different methods, such as
multi-scale wavelet analysis, have been used to produce these results (although other methods
such as the ones of [16] have also been used), so our approach does not offer anything new in this
respect. The interest of our method lies in possible applications to higher dimensional random
fields, for which wavelet analysis is not an effective tool. A complete theoretical framework for
this would require the study of the trees of higher dimensional random fields, which are out of
the scope of this paper : instead, this section acts as a proof of concept for the use of topological
estimators and their utility, by studying what happens in dimension 1.

In what follows, we will consider X to be an α-stable Lévy process, of which we will aim to
estimate the parameter α. From proposition 3.11 we know that almost surely

N ε
t ∼ Ctε−α as ε→ 0 .

In particular, given some sample we may compute the sampled value of N ε
t , which we will denote

N̂ ε
t explicitly. A close inspection of the behaviour of the sample mean N

ε
t should thus yield an

estimation for the parameter α of the process X.

Remark 3.28. In fact, the same reasoning allows us to estimate the Hurst parameter H of a
fractional Brownian motion (fBM), which also exhibits self-similarity. In this case, the analogue
of the asymptotic result of proposition 3.11 is [37, §3]

a.s. N ε ∼ Ctε−
1
H as ε→ 0 .
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More precisely, given a sample, our test consists in performing the following steps.

1. Sample M paths of the stochastic process X (for example at regular intervals of size 1
N

for some N) ;

2. Compute the barcode of the sampled paths. To do this, first construct a filtered simplicial
complex (which is in this case nothing other than a chain with ∼ N links) by taking
each point to be a vertex of a complex and joining adjacent sampling points with an
edge. The filtration on this complex is the value of the process at the edge (for an edge
connecting vertex a to vertex b, the value of the filtration is Xa∧Xb). Finally, the persistent
homology of this complex can be computed with the gudhi package [1], which incidentally
also offers a convenient implementation of filtered simplicial complexes due to Boissonnat
and Maria [7].

3. For some range of small enough ε, and for some positive constant c > 1 compute the
quantity

α̂M := logc

[
N
ε/c
t −N

2ε/c
t

N
ε
t −N

2ε
t

]
.

Here, the notion of some range of small enough ε and the constant c both depend on N ,
with the limiting condition that as N →∞, the lower bound on the range of valid ε goes
to zero.

Our claim is that the computed quantity α̂ is a valid estimation of the parameter α (for fBM,
the quantity obtained in this way is an estimate of 1

H ).

Lemma 3.29 (Convergence of the sample means). The quotient

N
ε/c
t −N

2ε/c
t

N
ε
t −N

2ε
t

P−−−−→
M→∞

E
[
N
ε/c
t −N2ε/c

t

]
E
[
N ε
t −N2ε

t

]
at a rate CsM

−s, for every 1 ≤ s ≤ 2 where Cs is a constant depending on s and the sth moment
of N ε/c. In particular,

α̂M
P−−−−→

M→∞
α+ ξ(ε)

at the same rate, where ξ(ε) is a superpolynomially small function of ε.

Remark 3.30. The at first seemingly convoluted expression for the estimator α̂M can be explained
due to the results of theorem 3.15. The substraction present in the numerator and denominator
is performed so that the constant terms of equation 3.4 vanish. Ignoring the superpolynomial
contributions to this expression which remain small, we then have that the argument inside the
log of the estimator is roughly

cα̂M ≈
t

E[U ](ε/c)α −
t

E[U ](2ε/c)α

t
E[U ]εα −

t
E[U ](2ε)α

≈ cα .

With this in mind, let us now formally prove the statement of lemma 3.29.

Proof. That the numerator and the denominator tend to the respective expected values holds
by a simple application of the weak law of large numbers, since N ε

t is a random variable in Ls for
s ≥ 1. The rate of convergence of this limit can be obtained via a simple application of Markov’s
inequality, by noting first that the summands in the denominator tend to their limits faster than
those of the numerator, as the latter’s sth moments are always larger than the former’s. From
theorem 3.15, we see that the limit can be expressed as

E
[
N
ε/c
t −N2ε/c

t

]
E
[
N ε
t −N2ε

t

] = cα
1 + g(cε)

1 + g(ε)
,

where g is a function tending to 0 superpolynomially fast as ε → 0, determined by the super-
polynomial corrections to the results of theorem 3.15. The statement of the lemma ensues. �
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Lemma 3.31 (Probable L∞-distance of sampling). Denote X̂ the trajectory samples of the α-
stable process X at every interval of length 1

N . More precisely, somewhat abusing the notation
we can write,

X̂t =

N−1∑
n=0

1[ n
N
,n+1
N

[(t) X n
N
.

There exists a constant k such that

P
(

sup
t∈R

∣∣∣Xt − X̂t

∣∣∣ ≤ ε) & 1−
(

k

Nεα

)N
as εN1/α →∞ .

Remark 3.32. The asymptotic dependence above fixes admissible values of ε as a function of N
as holding whenever the asymptotic dependence above is valid (it must be valid between ε/c and
2ε). Furthermore, the parameter c we chose above is also further constrained by the requirement
that the asymptotic relation of theorem 3.15 holds between ε/c and 2ε. More precisely, we fix
c and ε such that the superpolynomial contributions in the expansion of theorem 3.15 are
negligible with respect to the term in ε−α and by imposing that εN1/α is large enough so that
the asymptotic relation of lemma 3.31 simultaneously holds within the range [ εc , 2ε]. In practice,
we may fix c and ε by looking at a log-log chart of N ε, the regime of validity of ε and the value
of c become clear, as shown in figure 9.

Remark 3.33. With respect to the barcode, linear interpolation between values of X or the
consideration of the process X̂ is equivalent.

Remark 3.34. It is not a priori obvious that the event above is measurable. However, continuity
in probability and the a.s. existence of a càdlàg modification of the process allows us to interpret
this event to be a supremum over every t ∈ Q, rendering the event measurable.

Proof. It suffices to show the result over the interval [0, 1]. Noticing that the sampling coincides
with the value of the path at every t = 1

N , it suffices to evaluate the probability that over N
intervals of length 1

N the real sampled path Xt(ω) (notice the absence of a hat) strays away from

the sampled path X̂t(ω). Focusing on a single interval [0, 1
N ], the single big jump principle 3.23

states that there exists a constant k such that this probability of straying away in this interval
is

P(R 1
N
≥ ε) ∼ kε−α

N
as εN1/α →∞ .

By independence, over N such intervals

P
(

sup
t∈R

∣∣∣Xt − X̂t

∣∣∣ ≤ ε) & 1−
(

k

Nεα

)N
∼ 1 as εN1/α →∞ ,

as desired. �

Now, let us recall the following theorem.

Theorem 3.35 (P, Theorem 3.1 [36]). Let δN :=
∥∥∥X − X̂∥∥∥

L∞
, then there exists a δN -matching

between the barcodes of X̂ and X. In particular, for any ε ≥ 2δN

N ε+δN
X ≤ N ε

X̂
≤ N ε−δN

X

Moreover, if E[N ε
X ] is continuous with respect to ε, then

N ε
X̂

L1

−−−−→
N→∞

N ε
X and N ε

X̂

P−−−→
n→∞

N ε
X ,

which at fixed N quantitatively translates to

E
[∣∣∣N ε

X −N ε
X̂

∣∣∣] ≤ 2ωε(δN ) and P(
∣∣∣N ε

X −N ε
X̂

∣∣∣ ≥ k) ≤ 2ωε(δN )

k
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Figure 9: In orange, a histogram of the number of bars of length ≥ ε, N ε found as a function
of log ε from a simulation of a Lévy 1.2-stable process as a random walk. In blue, the function
C1.2ε

−1.2.

where ωε is the modulus of continuity of E[N ε
X ] on the interval [ε − δN , ε + δN ]. Finally, the

following inequalities also hold

N δn
X̂
≥ N2δN

X and N δN
X ≥ N2δN

X̂
.

This statement can be specialized given our two lemmas above. The theorem provides bounds
on N ε

X̂
provided that we know the value of δN , since if ε is small enough, N ε

X has some almost
sure asymptotic behaviour. On the other hand, by virtue of lemma 3.31 we have a probable
estimate of δN , i.e. with probability q, we may give a bound of δN , rendering the statement
quantitative. The second part of the statement of theorem 3.35 provides bounds on the L1

distance between N ε
X̂

and N ε
X , provided that we know that E[N ε

X ] is continuous. This happens
to be the case for Brownian motion, as shown in [36]. Showing it in full generality for Lévy
processes requires a closer study of the range of Lévy processes and the continuity of the inverse
Mellin transform of ζ̂X(p)/p. However, for the purposes of the construction of our statistical
test, lemma 3.29 suffices, as it provides us with a quantitative guarantee that the parameter α
is well estimated by our estimator α̂M .

3.4 Propagators and local ζ-functions

In dimension one, it is possible to use the total order of R and count Nx,x+ε by counting
the number of times we go up from x to x + ε. This idea can be formalized by the following
sequence of stopping times already introduced in the literature of classical probability theory
(cf. for instance [41]).

Definition 3.36. Setting Sx,ε0 = T x,ε0 = 0, we define a sequence of times recursively

T x,εi+1 := inf

{
t ≥ Sx,εi

∣∣∣∣∣ f(t) ≤ x ∧ (x+ ε)

}

Sx,εi+1 := inf

{
t ≥ T x,εi+1

∣∣∣∣∣ f(t) ≥ x ∨ (x+ ε)

}
. (3.13)

Counting the number of bars of length ε is thus exactly to count the number of up and downs
we make. More precisely,

Nx,x+ε = inf{i |T x,εi or Sx,εi = inf ∅} , (3.14)

by which we mean that it is the smallest i such that the set over which T εi or Sεi are defined as
infima is empty.
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With the aforementioned, it is possible to define a Feynman-like formalism to perform the
computation of E[Nx,x+ε].

Definition 3.37. Let X be a (strong Markov) stochastic process and let

T a := inf{t ≥ 0 | Xt > a}

be the hitting time of a by X. We define the propagator from x to y by

〈x|y〉 := Ex
[
e−λT

y
]

whenever this exists.

Remark 3.38. Whenever convenient, we may take λ = iω, and modify the subsequent expressions
appropriately.

If the process X has the strong Markov property and the increments between the stopping
times T x,εi and Sx,εi are identically distributed, we can once again apply renewal theory. In
particular, the Laplace transform of the occupation numbers LNx,x+ε

t can be understood in
terms of the propagators above. For x > 0,

L(E
[
Nx,x+ε
t

]
)(λ) =

〈0|x+ ε〉
λ

∑
k≥0

(〈x+ ε|x〉〈x|x+ ε〉)k

=
〈0|x+ ε〉

λ(1− 〈x+ ε|x〉〈x|x+ ε〉)

Similarly, all moments of the distribution can in principle be calculated

L(E
[
(Nx,x+ε

t )s−1
]
)(λ) =

〈0|x+ ε〉(1− 〈x+ ε|x〉〈x|x+ ε〉)
λ

Li−s+1(〈x+ ε|x〉〈x|x+ ε〉)

where Li denotes the polylogarithm.

Remark 3.39. If Xt −Xs = Xt−s in distribution, we can rewrite the above as,

L(E
[
(Nx,x+ε)s−1

]
)(λ) =

〈0|x+ ε〉(1− 〈ε|0〉〈0|ε〉)
λ

Li−s+1(〈ε|0〉〈0|ε〉)

If 〈x+ ε|x〉〈x|x+ ε〉 and 〈0|x+ ε〉 admit an asymptotic expansion for small ε (alternatively,
we can suppose that this function is a smooth enough function of ε), then the Mellin transform
of the expression above admits a meromorphic continuation. Furthermore,

〈x+ ε|x〉〈x|x+ ε〉 = 1 + o(1) as ε→ 0

so that the order of the divergence of L(E
[
Nx,x+ε
t

]
) is dictated exclusively by the order of the

first correction in ε to the product above. In reality,

Corollary 3.40. Suppose that the increments in the sequence of stopping times defined by
(T x,εi , Sx,εi ) are i.i.d. and that 〈0|x + ε〉 and 〈x + ε|x〉〈x|x + ε〉 have asymptotic expansions
of the form of that of the fundamental correspondence (cf. theorem 2.5), then, the function

ML(E
[
Nx,x+ε
t

]
)(p, λ) has a meromorphic extension on the half plane Re(p) > −k for any

k ∈ N.

Proof. It’s a simple application of the fundamental correspondence. �

37



3.4.1 Itô diffusions

Computing the local ζ-functions is sometimes easier than computing the ζ-function associ-
ated with the process X. This is because the computation of the distribution of U ε might not
always be straightforward. An example of this is the case of Itô diffusions, i.e. solutions to
stochastic differential equations of the form

dXt = µ(Xt) dt+ σ(Xt) dBt ,

for some smooth functions µ and σ. These processes have the strong Markov property and the
sequence of stopping times (T εi , S

ε
i ) defined above are identically distributed as µ and σ do not

depend explicitly on time. Furthermore, these processes have infinitesimal generator

G = µ(x)
∂

∂x
+
σ2(x)

2

∂2

∂x2
.

We can use the theory of diffusion developped by Itô and McKean [25] to find explicit expressions
for the propagators 〈x|y〉. The propagator is exactly the fundamental solution associated with
the equation

(G − λ)ρ(x, λ) = 0 subject to

{
ρ(y, λ) = 1 ρ(x, λ)

x→−∞−−−−→ 0 for x < y

ρ(y, λ) = 1 ρ(x, λ)
x→+∞−−−−→ 0 for x > y

The solution to the above boundary value problem has been shown to be of the form [25, p.130]

ρ(x, λ) =
Ψλ(x)

Ψλ(y)
= 〈x|y〉 ,

where if x < y (resp. x > y) Ψλ(z) is (up to some constant) the unique increasing (resp.
decreasing) positive solution of the equation

GΨλ = λΨλ .

Noting Ψλ the solution for x < y and Φλ the solution for x > y, for x > 0,

L(E
[
Nx,x+ε
t

]
)(λ) =

Ψλ(0)

λΨλ(x+ ε)

1

1− Ψλ(x)
Φλ(x)

Φλ(x+ε)
Ψλ(x+ε)

. (3.15)

These solutions Ψλ(z) and Φλ(z) are smooth in z, so that the (Laplace transform of the) local
ζ-function ζxX admits a meromorphic continuation to C.

3.4.2 Obtention of the local time for continuous semimartingales

The obtention of an expression for the propagators of a semimartingale is in principle suf-
ficient to obtain an expression for the Laplace transform (in time) of the local time. This is
possible due to the following theorem.

Theorem 3.41 (Revuz,Yor, Ch. VI Theorem 1.10 [41]). Let X be a continuous semimartingale
and let LxX(t) be its local time on the interval [0, t] at level x. Writing X = M + A the Doob
decomposition of X, suppose that for s ≥ 1

E
[
[M ]

s/2
t +

(∫ t

0
|dA|s

)s]
<∞ ,

then in Ls,

2εNx,x+ε
t

Ls−−−→
ε→0

LxX(t) ,

in particular, this convergence holds in distribution as well.
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Notation 3.42. Whenever the underlying process is implicitly clear, we will denote the local
time by Lxt .

This theorem entails in particular that for s ≥ 2,

(2ε)s−1E
[
(Nx,x+ε

t )s−1
]
−−−→
ε→0

E
[
(LxX(t))s−1

]
.

Under the technical hypothesis that if for some a > 0, Re(λ) > a for every ε > 0 the function

e−λtE
[
(2εNx,x+ε

t )s−1
]

is bounded above by some integrable function of t, the dominated conver-

gence theorem entails that the Laplace transform of the limit and the limit of the Laplace trans-

forms also coincide. Alternatively, we may also check whether E
[
(2εNx,x+ε

t )s−1
]

is a monotone

function of ε over some neighbourhood for ε small enough and apply the monotone convergence
theorem. This allows us to conclude that

L[E
[
(LxX(t))s−1

]
](λ) = lim

ε→0
(2ε)s−1L[E

[
(Nx,x+ε

t )s−1
]
](λ) .

Finally, this has consequences for the distribution of LxX(t) since E
[
(LxX(t))s−1

]
is exactly the

Mellin transform of the distribution of the local time.

4 Examples of applications

4.1 Brownian motion

For the rest of this section, B will denote a standard Brownian motion started at 0.

4.1.1 Associated ζ-function and asymptotic expansions for N ε

Let us start by remarking that, in distribution

sup
[0,t]

B −Bt = |Bt| .

The stopping times T ε and Sε of theorem 3.15 are identically distributed and are distributed
as the hitting times of ε by a reflected Brownian motion. An application of Doob’s stopping
theorem (cf. [8, p.641]) shows that

E
[
e−λU

ε
]

= sech2(ε
√

2λ) . (4.16)

The term P(N ε
t ≥ 1) = P(Rt ≥ ε) can also be computed by considering the fundamental solution

of the corresponding heat equation with Dirichlet boundary conditions. We obtain [36]

P(Rt ≥ ε) = 4
∞∑
k=1

(−1)k−1k erfc

[
kε√
2t

]
.

Respectively, since Brownian motion is a 2-stable Lévy process, using equation 3.9 (here, B(z) =
csch2(

√
2z)) we can write

ζ̂B(p) = 23− 3p
2 t

p
2

Γ(p)

Γ(p2)
ζ(p− 1) . (4.17)

Remark 4.1. This can be obtained by using the functional properties of the Mellin transform
(scaling, power of the argument) shown in table 1 and by the results of table 2.

Putting everything together, we get

Theorem 4.2. The ζ-function of Brownian motion on the interval [0, t] admits an meromorphic
extension to the whole complex plane. Furthermore, it is exactly equal to

ζB(p) =
4(2p − 3)√

π

(
t

2

) p
2

Γ

(
p+ 1

2

)
ζ(p− 1)

for all p and has a unique simple pole at p = 2 of residue t.
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Remark 4.3. That the Riemann ζ-function appears in this expression is a posteriori not surpris-
ing. Loosely speaking, this connection between the Riemann ζ-function and Brownian motion
appears through the relation of Brownian motion with Jacobi’s ϑ-function, which is a fundamen-
tal solution of the heat equation [6]. Work connecting stable distributions whose Laplace trans-
form is of the form of equation 4.16 have been widely studied by Pitman, Yor and Biane [6,38,39].
In [6], one can also find connections between stable distributions of this form and number theo-
retical L-functions. It is also interesting to recall that there exists a probabilistic interpretation
of the Riemann hypothesis through Li’s criterion [29] as detailed in [6, §2.3].

Proof of theorem 4.2. Taking the Mellin transform of P(Rt ≥ ε)

M(P(Rt ≥ ε))(p) = 22− 3p
2 (2p − 4)t

p
2

Γ(p)

Γ(p2 + 1)
ζ(p− 1) .

Multiplying the above expression by p and adding both terms and using the fact that Γ(z+1) =
zΓ(z) and the Legendre duplication formula, we obtain the result. �

The meromorphic extension of ζ allows us to directly compute correction terms for the
asymptotic series given in [36]. M(E[N ε

t ])(p) has only two poles, one at p = 0 and one at p = 2.
Furthermore, along a vertical strip,M(E[N ε

t ])(p) decays rapidly enough to use the fundamental
correspondence (theorem 2.5). Using contour integration and the Mellin inversion theorem, we
can conclude that

E[N ε
t ] =

t

2ε2
+

2

3
+O(εn) as ε→ 0 ,

for any n ∈ N, as prescribed by theorem 3.15. The expectations in the expression of the theorem
can be read on the expansion

sech2(
√

2ε) = 1− 2ε+
1

2!

16

3
ε2 +O(ε3) .

As previously shown, the analyticity of ζB beyond Re(p) = 2 guarantees that there are no
polynomial corrections in ε to E[N ε

t ] as ε→ 0. The analyticity of ζB on the half plane Re(p) > 2
suggests that E[N ε

t ] is rapidly decreasing as ε → ∞. This is corroborated by the more general
approximation of proposition 3.5 for Markov processes found in [36], namely E[N ε

t ] ∼ P(Rt ≥ ε)
as ε→∞.

Applying the observations made in section 2.1.1, the superpolynomial corrections to the
asymptotic series can be found by looking carefully at the meromorphic extension of ζB.

Proposition 4.4. For Brownian motion E[N ε
t ] admits the following series representations which

converge well for large and small ε respectively

E[N ε
t ] = 4

∑
k≥1

(2k − 1) erfc

(
(2k − 1)ε√

2t

)
− k erfc

(
2kε√

2t

)

=
t

2ε2
+

2

3
+ 2

∑
k≥1

(2(−1)k − 1)
e−π

2k2t/2ε2t

ε2

[
1 +

ε2

π2k2t

]
.

Proof. This asymptotic formula for E[N ε
t ] can be obtained by using the arguments of section

2.1.1. Indeed, B(z) = csch2(
√

2z) admits a meromorphic continuation to the entire complex

plane and has poles of order two at z = −π2n2

2 for every n ∈ Z \ {0}. It follows that

Res

(
(−z)

p
2
−1B(z),−π

2n2

2

)
= 21− p

2 (2π)p−2(p− 1) .

Taking the inverse Mellin transform of equation 3.12, we obtain the desired result. The second
expression converging fast for large ε is obtained by using the functional equation of the ζ-
function and taking the inverse Mellin transform of the expression obtained. �
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Alternative proof of proposition 4.4. Note that

L(E[N ε
t ])(λ) =

4

λ

∑
k≥1

(2k − 1)e−(2k−1)ε
√

2λ − ke−2kε
√

2λ (4.18)

=

[
2 cosh(ε

√
2λ)− 1

λ

]
csch2(ε

√
2λ) . (4.19)

By inverting the Laplace transform in equation 4.18 (this can be done by first decomposing the
hyperbolic expressions into a series of exponential terms, of which the inverse Laplace transform
can be found by virtue of a table or using some computational software such as Mathematica.
The normal convergence of the resulting series guarantees that the inverse transform of the
expression is exactly the series of the inverse transforms of the resulting exponentials), we obtain

E[N ε
t ] = 4

∑
k≥1

(2k − 1) erfc

(
(2k − 1)ε√

2t

)
− k erfc

(
2kε√

2t

)
, (4.20)

which converges quickly for large ε. For ε → 0, we can get a quickly converging expression by
recalling the Mittag-Leffler expansion of the hyperbolic cosecant,

csch2(ε
√

2λ)

λ
=

1

λ

∑
k∈Z

1

(ε
√

2λ− iπk)2

=
1

2ε2λ2
+

1

λ

∑
k≥1

4ε2λ− 2π2k2

(2ε2λ+ π2k2)2
.

We can take the inverse Laplace transform termwise by using the residue theorem, due to the
absolute and uniform convergence of the expression. After some algebra, this operation results
in

E[N ε
t ] =

t

2ε2
+

2

3
+ 2

∑
k≥1

(2(−1)k − 1)
e−π

2k2t/2ε2t

ε2

[
1 +

ε2

π2k2t

]
,

which confirms that E[N ε
t ] is extremely well approximated by t

2ε2
+ 2

3 when ε is small. �

From the alternative proof of proposition 4.4 and the formulas above give the functional
equation of ζB we can naturally retrieve the functional equation of the Riemann ζ-function.
This is part of the usual folklore of ζ and similar functions, where functional equations are
essentially related by Poisson summation.

Proposition 4.5. Defining

ηB(p) := (3 · 2p − 8)(p− 2)(2πt)−
p
2 ζB(p),

The functional equation of ζB is given by

ηB(p) = ηB(3− p) .

In particular, as expected from the symmetry of ζ, the axis of symmetry of ηB is Re(p) = 3
2 .

Finally, we can calculate the moments of N ε
t . After some calculations, we obtain

L(E[(N ε)s])(λ) =
1

λ

[
sinh2(ε

√
2λ) Li−s(sech2(ε

√
2λ))− tanh2(ε

√
λ/2)

]
.
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4.1.2 Distribution of the length of the kth longest branch

Following the discussion of section 3.3.2, we know that for k ≥ 2, we can calculate the moment
generating function Gα(z; p), noticing that Brownian motion is a 2-stable process (α = 2). Then,

z

(zE[e−εU ])−1 − 1
=

2z2

cosh
(
2
√

2ε
)
− 2z + 1

.

However, taking the Mellin transform of this expression is not easily feasible. To do so, we will
write the above expression as a geometric series of decaying exponentials. Denoting y := e−2

√
2ε,

we can write the expression above as

4z2y

y2 − 2(2z − 1)y + 1
=

4z2y

(y − y+)(y − y−)
,

where y± are the roots of the polynomial in the denominator of the expression, namely

y± = 2z − 1± 2i
√
z(1− z) .

Partial fraction decomposition entails

4z2y

y2 − 2(2z − 1)y + 1
=

A(z)y

y − y+
− A(z)y

y − y−
,

where

A(z) =
4z2

y+ − y−
=

z2√
z(z − 1)

.

Finally, we may express each of the terms above as a geometric series. Summing both terms,

−A(z)
∑
k≥1

(
yk− − yk+
yk+y

k
−

)
yk = 4z2

∑
k≥1

yk+ − yk−
y+ − y−

yk

Recalling that y = e−2
√

2ε and taking the Mellin transform with respect to ε

M
[

z

(zE[e−εU ])−1 − 1

]
(p) = 23−3pΓ(2p)z2 Li2p(y+(z))− Li2p(y−(z))

y+(z)− y−(z)
.

Finally, the generating function can be written as

G2(z; p) = 8
Γ(p)

Γ(p2)

(
t

8

) p
2

z2 Lip(y+(z))− Lip(y−(z))

y+(z)− y−(z)
.

When z is in the vicinity of 0, y+ and y− are both complex, it is thus a priori not obvious that
the quantity defined above should remain real for real p. However, this must be so, since

yk+ − yk−
y+ − y−

= ak(z) ,

where ak(z) is the solution to the following difference equation

ak(z) = 2(2z − 1) ak−1 − ak−2 , (4.21)

with seed a0 = 0 and a1 = 1. In fact, it is possible to express ak(z) as defined in equation 4.21
in terms of the Chebyshev polynomials of the second kind Uk

ak(z) = Uk−1(2z − 1) and ak(0) = (−1)k−1k ,
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and incidentally ak
ak−1

corresponds to the kth convergent of the continuous fraction

2(2z − 1)−
1

2(2z − 1)−
1

2(2z − 1)−
1

. . .

.

Using these relations, it is possible to rewrite G2 as

G2(z; p) = 8
Γ(p)

Γ(p2)

(
t

8

) p
2

z2
∑
k≥1

ak(z)

kp
.

Since ultimately what interests us are the derivatives of this function at 0, we can rewrite G2(z; p)
formally as

G2(z; p) = 8
Γ(p)

Γ(p2)

(
t

8

) p
2

z2
∞∑
n=0

∑
k≥1

a
(n)
k (0)

n!

zn

kp
.

The problem thus boils down to effectively computing the coefficients a
(n)
k (0). To do so, we can

consider augmenting the recurrence problem to phase space (ak, a
(1)
k , a

(2)
k , · · · , a(n)

k ) noticing the
following relation

a
(n)
k (z) = 2(2z − 1)a

(n)
k−1(z) + 4na

(n−1)
k−1 (z)− a(n)

k−2(z)

Setting z = 0 and a
(n)
k (0) = a

(n)
k in this relation yields

a
(n)
k = −2a

(n)
k−1 + 4na

(n−1)
k−1 − a(n)

k−2 .

For example, it is easy to verify that

a
(1)
k =

2

3
(−1)kk(k2 − 1) and a

(2)
k =

22

15
(−1)k−1k(k2 − 1)(k2 − 22) .

In general, the following formula holds

a
(n)
k =

2n(−1)k+n+1

k

n∏
i=0

k2 − i2

2i+ 1
.

Thus, the Mellin transforms of the distributions of the longest branches may be expressed as

linear combinations of shifted and twisted ζ-functions, since the a
(n)
k ’s are polynomials of degree

2n+ 1 in k. Computing the first few terms yields

E[`p2(B)] =
23− 5p

2 t
p
2 Γ(p)

Γ(p2)
(2p − 22)ζ(p− 1)

E[`p3(B)] =
24− 5p

2 t
p
2 Γ(p)

3Γ(p2)
[(2p − 22)ζ(p− 1)− (2p − 24)ζ(p− 3)]

E[`p4(B)] =
24− 5p

2 t
p
2 Γ(p)

15Γ(p2)
[4(2p − 22)ζ(p− 1)− 5(2p − 24)ζ(p− 3) + (2p − 26)ζ(p− 5)] ,

and so on. These Mellin transforms can be inverted to yield explicit expressions of P(`k ≥ ε),

P(`2(B) ≥ ε) = 4
∑
k≥1

k

[
erfc

(
kε

√
2

t

)
− 4 erfc

(
2kε

√
2

t

)]

P(`3(B) ≥ ε) =
8

3

∑
k≥1

k

[
4
(
4k2 − 1

)
erfc

(
2kε

√
2

t

)
−
(
k2 − 1

)
erfc

(
kε

√
2

t

)]

P(`4(B) ≥ ε) =
8

15

∑
k≥1

k

[(
k4 − 5k2 + 4

)
erfc

(
kε

√
2

t

)
− 16

(
4k4 − 5k2 + 1

)
erfc

(
2kε

√
2

t

)]
.

These calculations can be performed for any `k without any additional difficulty.
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4.1.3 Local ζ-functions and corrections to the local time

In what will follow, we will denote

ϕ(x, t) :=
1√
2πt

e−x
2/2t .

Theorem 4.6. The local ζ-function of Brownian motion at the level x > 0 admits a meromor-
phic continuation to the entire complex plane given by

ζxB(p) = 2−
3p
2 (2p − 1) t

p
2 ζ(p)Γ(p+ 1)

 1F1

(
−p
2 ; 1

2 ; −x
2

2t

)
Γ
(p

2 + 1
) −

√
2x2

t

1F1

(
1−p

2 ; 3
2 ; −x

2

2t

)
Γ
(
p+1

2

)
 .

Proof. It suffices to calculate the propagatators, which in this case can be done explicitly. Using
the reflecting property, for any a > 0,

〈a|0〉 = 〈0|a〉 = e−a
√

2λ .

So by our previous work

L(E
[
Nx,x+ε
t

]
)(λ) =

e−(x+ε)
√

2λ

λ(1− e−2ε
√

2λ)
.

The Mellin transform of this expression can be calculated easily to be

ML(E
[
Nx,x+ε
t

]
)(p, λ) = 2−

3p
2 (2p − 1)λ−1− p

2 e−x
√

2λ Γ(p)ζ(p) .

Using lemma 2.29 and inverting the Laplace transform we get the desired expression. �

We can also extract asymptotic relations for E
[
Nx,x+ε
t

]
.

Proposition 4.7. For Brownian motion and x > 0,

E
[
Nx,x+ε

]
=
∞∑
k=1

erfc

(
x+ (2k − 1)ε√

2t

)

∼ 1

2ε

∫ t

0
ϕ(x, s) ds+

∑
k≥0

4(−2)k
(
22k+1 − 1

)
ζ(2k + 2)

π2k+2

[
∂k

∂tk
ϕ(x, t)

]
ε2k+1 as ε→ 0 .

Proof. To deduce an asymptotic expression of E[Nx,x+ε], it is much easier to consider the prob-
lem in terms of the dual variables p and λ. Notice thatML(E[Nx,x+ε]) only has poles (in p) at
every odd negative integer (stemming from those of Γ and the non-presence of trivial zeros of
ζ) and at 1 (stemming from the pole of the ζ-function). The residues of these simple poles can
be calculated

Res(ML(E
[
Nx,x+ε
t

]
), 1) =

e−x
√

2λ

2
√

2λ3/2

Res(ML(E
[
Nx,x+ε
t

]
),−(2k + 1)) =

2
(
22k+1 − 1

)
ζ(−2k − 1)

(2k + 1)!
e−x
√

2λ(2λ)k−
1
2 .

The rapid enough decay of ML(E
[
Nx,x+ε
t

]
) on the upper and lower ends of a vertical strip

in the complex plane allows us to apply the inverse Mellin theorem and contour integration to

obtain an asymptotic series of L(E
[
Nx,x+ε
t

]
)(λ)

L(E
[
Nx,x+ε
t

]
)(λ) ∼ e−x

√
2λ

[
1

2ελ3/2
√

2

+

n−1∑
k=0

4(−1)k
(
22k+1 − 1

)
ζ(2k + 2)

π2k+2
(2λ)k−

1
2 ε2k+1 +O(ε2n+1)

]
.
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Noticing that

L
[
2k
∂k

∂tk
ϕ(x, t)

]
(λ) = e−x

√
2λ(2λ)k−

1
2 ,

one can write that as ε→ 0

E
[
Nx,x+ε
t

]
∼ 1

2ε

∫ t

0
ϕ(x, s) ds+

∑
k≥0

4(−2)k
(
22k+1 − 1

)
ζ(2k + 2)

π2k+2

[
∂k

∂tk
ϕ(x, t)

]
ε2k+1

This series formally diverges, so we consider it as an asymptotic series only. From this formula we
retrieve some classical results from probability theory [25], namely that the local time is a good
first order approximation of Nx,x+ε

t (in fact almost surely) as well as an explicit expression for the
expected value of the local time of Brownian motion. One can find a converging representation

of E
[
Nx,x+ε
t

]
by expanding out its Laplace transform as a sum of exponentials as done for N ε

t .

In this case, one obtains a series which converges absolutely and uniformly on every compact
set of x ≥ 0 and ε > 0

E
[
Nx,x+ε
t

]
=
∞∑
k=1

erfc

(
x+ (2k − 1)ε√

2t

)
.

�

The distribution of Nx,x+ε
t is at this point in principle accessible given out previous work.

After some algebra, we find that

L(E
[
(Nx,x+ε

t )s−1
]
)(λ) =

2e−x
√

2λ

λ
Li−s+1

(
e−2ε

√
2λ
)

sinh(ε
√

2λ)

where Li denotes the polylogarithm. Now, recalling the discussion of section 3.4.2,

2εNx,x+ε
t

Ls−−−→
ε→0

Lxt (B) ,

where Lxt (B) denotes the local time of the Brownian motion.

Remark 4.8. In fact, for Brownian it is true that

2εNx,x+ε
t

a.s.−−−→
ε→0

Lxt (B) .

We have

L(E
[
(2εNx,x+ε

t )s−1
]
)(λ) = 2

1−s
2 λ−

s+1
2 e−x

√
2λ Γ(s) + o(1) as ε→ 0 ,

so in particular, following the discussion of section 3.4.2 this entails that

ML(P(Lxt = w))(s, λ) = 2
1−s
2 λ−

s+1
2 e−x

√
2λ Γ(s) . (4.22)

Inverting the Mellin transform can be easily done in this case. Doing so for w > 0, we obtain

L(P(Lxt = w))(λ) =
e−(x+w)

√
2λ

√
λ

.

Finally, the inverse Laplace transform of this now familiar expression is

P(Lxt = w) = 2ϕ(x+ w, t) =
2√
2πt

e−(x+w)2/2t .

Of course, this is a classical result that can be obtained in variety of different ways. Nevertheless,
for more complicated processes, it might be possible to retrieve the distribution of their local
times in this manner. Notice that the distribution of Lxt has an atom at w = 0, corresponding
to the probability of not reaching level x, which is why the integral of the probability density
above is not 1.

Remark 4.9. Inverting the Laplace transform first in equation 4.22, we immediately retrieve a
formula for all the moments of this distribution.
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4.1.4 Calculation of the average persistence diagram

In accordance to the discussion of section 2.7, using the results of proposition 4.7 the density
of the persistence diagram of Brownian motion can be computed to be

Proposition 4.10. For x > 0 and ε > 0, the density of the average persistence diagram of
Brownian motion in birth-persistence coordinates (cf. remark 2.33) is

g(x, ε) =

√
2

πt3

∞∑
k=1

(2k − 1)(x+ (2k − 1)ε) e−
(x+(2k−1)ε)2

2t

4.2 Reflected Brownian motion

We can carry out a similar procedure for the reflected Brownian motion.

4.2.1 Associated ζ-function and N ε

Theorem 4.11. The ζ-function of the process |B| is

ζ|B|(p) =
21− p

2 (2p − 2)t
p
2

√
π

Γ

(
p+ 1

2

)
ζ(p− 1)

which has a unique pole at p = 2 of residue t.

Proof. The theorem immediately follows from applying proposition 2.26. �

We immediately deduce by inverting the Mellin transform that

Proposition 4.12. The function E[N ε
t ] admits the following representations for reflected Brow-

nian motion

E[N ε
t ] =

∑
k≥1

2k

[
erfc

(
kε√
2t

)
− 2 erfc

(
2kε√

2t

)]

=
1

2ε2
+

1

6
+
∑
k≥1

4π2k2e−
2π2k2

ε2 + ε2e−
2π2k2

ε2 − 2e−
π2k2

2ε2
(
π2k2 + ε2

)
π2k2ε2

.

4.2.2 Local ζ-function, Nx,x+ε and local time

Here, calculating the propagators stem from classical results [8],

〈x+ ε|x〉〈x|x+ ε〉 =
e−ε
√

2λ cosh(x
√

2λ)

cosh((x+ ε)
√

2λ)
,

so

L(E
[
Nx,x+ε
t

]
)(λ) =

e−x
√

2λ

λ
csch(ε

√
2λ)

Inverting the Laplace transform, we get

Proposition 4.13. For x > 0 and ε > 0, we can express E[Nx,x+ε] in the following form

E
[
Nx,x+ε

]
= 2

∑
k≥0

erfc

[
x+ (2k + 1)ε√

2t

]
.

We deduce from this

L(ζ|B|)(λ, p) = 21− 3p
2 (2p − 1)λ−1− p

2 e−x
√

2λΓ(p+ 1)ζ(p)
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Theorem 4.14. The ζ-function of the process |B| is

ζ|B|(p) =
21− p

2 (2p − 2)t
p
2

√
π

Γ

(
p+ 1

2

)
ζ(p− 1)

which has a unique pole at p = 2 of residue t.

Proof. The theorem immediately follows from applying equation 2.26. �

We immediately deduce by inverting the Mellin transform that

Proposition 4.15. The function E[N ε
t ] admits the following representations for reflected Brow-

nian motion

E[N ε
t ] =

∑
k≥1

2k

[
erfc

(
kε√
2t

)
− 2 erfc

(
2kε√

2t

)]

=
1

2ε2
+

1

6
+
∑
k≥1

4π2k2e−
2π2k2

ε2 + ε2e−
2π2k2

ε2 − 2e−
π2k2

2ε2
(
π2k2 + ε2

)
π2k2ε2

.

4.3 Brownian motion with drift

Throughout this section, we will denote Bµ,σ
t the Lévy process defined by

Bµ,σ
t = µt+ σBt .

We will assume that σ > 0 and without loss of further generality that µ ≥ 0. By the scale
invariance and almost sure (1

2 − δ)-Hölder continuity of Brownian motion, it follows that the
process Bµ,σ almost surely leaves and never returns to any compact set [0, x] when studied
over the ray [0,∞[. Using this and the Markov property of Bµ,σ, the following was shown by
Baryshnikov.

Proposition 4.16 (Baryshnikov, [4]). For σ = 1 and x > 0, Bµ,1 satisfies

E
[
Nx,x+ε
Bµ,1

]
=

1

e2µε − 1

on the infinite ray [0,∞[.

Following this result, we may deduce the local ζ-function associated to Bµ,1 is given by the
following expression

ζxBµ,1(p) = (2µ)−pΓ(p+ 1)ζ(p) .

Of course, we would like to have a similar result over a compact set [0, t]. However, the compu-
tations in this restricted space turn out to be somewhat more challenging. Applying our theory
of propagators detailed in section 3.4, and noticing that Bµ,σ is Lévy, it suffices to compute 〈0|a〉
to gain access to the Laplace transform of E

[
Nx,x+ε
t

]
.

Proposition 4.17. The propagators of the process Bµ,σ for a > 0 are given by

〈0|a〉 = e
aµ−a

√
µ2+2σ2λ

σ2

〈a|0〉 = e
−aµ−a

√
µ2+2σ2λ

σ2 .

Proof. Since Bµ,σ is a Lévy process, we start by noticing that 〈a|0〉 = 〈0|−a〉, so that it suffices
to calculate 〈0|a〉 and 〈0| − a〉. Denote M θ

t the martingale defined by

M θ
t =

eθB
µ,σ
t

E
[
eθB

µ,σ
t

] .
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We may compute the expectation in the denominator to be exactly

E
[
eθB

µ,σ
t

]
= eθµt+

1
2
θ2σ2t .

Further denoting
T a = inf{t ≥ 0 |Bµ,σ

t = a} ,
we can calculate the propagators by considering the two following cases

1. 〈0|a〉. In this case, M θ
t is bounded for θ > 0 and by an application of Doob’s stopping

theorem,

〈0|a〉 = E
[
e−λT

a
]

= e
aµ−a

√
µ2+2σ2λ

σ2 ;

2. 〈0| − a〉. In this case, M θ
t∧Ta is bounded for θ < 0, so that once again by the stopping

theorem

〈0|−a〉 = E
[
e−λT

−a
]

= e
−aµ−a

√
µ2+2σ2λ

σ2 ,

which finishes the proof. �

Following the discussion of section 3.4,

L(E
[
Nx,x+ε
t

]
)(λ) =

ex
µ−
√
µ2+2λσ2

σ2

2λ
e
εµ

σ2 csch

(
ε
√
µ2 + 2λσ2

σ2

)
.

Taking the Mellin transform we get

ML(E
[
Nx,x+ε
Bµ,σ

]
)(p, λ) =

e
x(µ−

√
µ2+2λσ2)
σ2

λ

(
σ2

2
√
µ2 + 2λσ2

)p
Γ(p)ζ

(
p,

1

2
− µ

2
√
µ2 + 2λσ2

)
,

where ζ now denotes the Hurwitz ζ-function, namely

ζ(p, z) =
∑
k≥1

1

(k + z)p
,

which also admits a meromorphic continuation to the entire complex plane, so we can conclude
that ζxBµ,σ does as well. Again, we notice the presence of poles at every negative integer and at
p = 1. However, inverting the Laplace transform of this expression is difficult as soon as µ > 0,
however, as expected, setting µ = 0 and σ = 1, we retrieve the local ζ-function of Brownian
motion.

4.3.1 Distribution of Nx,x+ε
Bµ,σ and the local time Lxt (Bµ,σ)

As before, it is possible to calculate the moments of the occupation numbers Nx,x+ε
Bµ,σ , the

result of this calculation is

L(E
[
(Nx,x+ε

Bµ,σ )s−1
]
)(λ) =

2e
x
σ2

(
µ−
√
µ2+2λσ2

)
e
µε

σ2

λ
Li−s+1

(
e−

2ε
σ2

√
µ2+2λσ2

)
sinh

(
ε
√
µ2 + 2λσ2

σ2

)
,

which implies that for x > 0,

MwL(P(Lxt = w))(λ, s) = e
x(µ−

√
2λσ2+µ2)
σ2

(
σ2√

µ2 + 2λσ2

)s−1

Γ(s)

So for w > 0,

L(P(Lxt = w))(λ) =
e
xµ

σ2
√
µ2 + 2λσ2

λσ2
e−

(x+w)

σ2

√
µ2+2λσ2

Leading to

P(Lxt = w) = e
xµ

σ2

∫ t

0

(x+ w)2 − sσ2

√
2πs5σ6

e−
(x+w)2+µ2s2

2sσ2 ds .
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4.4 Ornstein-Uhlenbeck process

Let us now consider the case of the Ornstein-Uhlenbeck process, i.e. the Itô diffusion satis-
fying the following SDE (for θ > 0 and σ > 0)

dXt = −θXtdt+ σdBt .

From our discussion in section 3.4.1, it suffices to find the solutions to the differential equation

σ2

2

∂2Ψ

∂x2
− θx∂Ψ

∂x
= λΨ .

The solutions to the above equations are known, as this is nothing other than Hermite’s differ-
ential equation. We can identify the two linearly independent solutions satisfying the respective
boundary conditions to be

Ψλ(x) = 1F1

(
λ

2θ
;
1

2
;
x2θ

σ2

)
and Φλ(x) = He

(
−λ
θ

;
x
√
θ

σ

)
.

where 1F1 denotes the confluent hypergeometric function and He(µ; z) denotes the µth Hermite
polynomial. The propagators of the Ornstein-Uhlenbeck process are readily given products of

these functions, as mentionned in section 3.4.1, and expressions for LE
[
Nx,x+ε
t

]
can be deduced

from equation 3.15. For x = 0, the expression obtained simplifies considerably to give

L[E
[
N0,ε
t

]
](λ) =

σ

λε
√
θ

Γ
(
λ
2θ

)
Γ
(
θ+λ
2θ

)
1F1

(
θ+λ
2θ ; 3

2 ; ε
2θ
σ2

) .
This Laplace transform can in principle be formally inverted by virtue of the residue theorem.
The expression above admits poles at every λ = −2θk, but there are also poles stemming from
the zeros of the confluent hypergeometric function in the denominator, which are more difficult
to locate. Nonetheless denoting P the set of poles stemming from 1F1, we get the following
formal expression

E
[
N0,ε
t

]
=

√
πσ(2θt+ log(4)) erfi

(
ε
√
θ

σ

)
− 2ε
√
θ1F

(1,0,0)
1

(
1
2 ; 3

2 ; θε
2

σ2

)
π3/2σerfi

(
ε
√
θ

σ

)2

− σ

2ε
√
θ

∑
k≥1

(−1)ke−2θkt

k2 Γ
(

1−2k
2

)
Γ(k) 1F1

(
1−2k

2 ; 3
2 ; ε

2θ
σ2

) +
∑
z∈P

Res(eλtLE
[
N0,ε

]
, z) .

More interestingly, equation 3.15 can be used to yield the distribution of the local time of the
Ornstein-Uhlenbeck process. The expresions for x > 0 are rather involved, so we will study
the case x = 0 explicitly only. The simplification that occurs for the 0 level is due to the

supplementary scaling symmetry of the latter. Taking the limit as ε → 0 of LE
[
(N0,ε

t )s−1
]

we

obtain

MwL(P(L0
t = w))(λ) =

Γ(s)

λ

(
σΓ
(
λ
2θ

)
√
θΓ
(
θ+λ
2θ

))s−1

.

This expression yields the Laplace transform of all the moments of L0
t . For integer s ≥ 2, these

Laplace transforms can be formally inverted by using the residue theorem and computing the
residues of the expression above. For example,

E
[
L0
t

]
=

σ√
θ

(2θt+ log(4))√
π

+
σ√
θ

∑
k≥1

(−1)k+1e−2θkt

k2Γ(1−2k
2 )Γ(k)

E
[
(L0

t )
2
]

=
2σ2

θ

(
6(θt+ log(4))2 − π2

)
3π

− 2σ2

θ

∑
k≥1

e−2θkt
(
−2kH−k− 1

2
+ 2kHk + 2θkt+ 1

)
k4Γ(1−2k

2 )2Γ(k)2
,
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and so on. The Hk above denote the kth Harmonic number, i.e.

Hk =
k∑

n=1

1

n
=

∫ 1

0

1− zk

1− z
dz ,

where the second representation of Hk holds for non-integer k. Finally, taking the inverse Mellin
transform we get

L[P(L0
t = w)](λ) =

√
θΓ
(
θ+λ
2θ

)
λσΓ

(
λ
2θ

) exp

[
−
w
√
θΓ
(
θ+λ
2θ

)
σΓ
(
λ
2θ

) ]
.

This expression exhibits essential singularities at every λ = −(2k − 1)θ for every k ∈ N. For
x > 0, it is possible to treat the problem analogously, but the expressions involved – while ex-
pressible in terms of Hermite polynomials and confluent hypergeometric functions – remain quite
involved. Nonetheless, the elementary methods introduced in this paper allow us to calculate
such quantities, which have not been quantitatively studied until recently in [26] via perturbative
methods.

For the sake of completeness we give the expression of MwLP(Lxt = w)(λ, s) for x > 0,

MwLP(Lxt = w)(λ, s) =
Γ(s)

1F1( λ2θ ; 1
2 ; x

2θ
σ2 )λ

 λ

σ
√
θ

He(−λ+θ
λ , x

√
θ

σ )

He(−λ
θ ,

x
√
θ

σ )
+
xλ

σ2

1F1

(
1 + λ

2θ ; 3
2 ; x

2θ
σ2

)
1F1

(
λ
2θ ; 1

2 ; x
2θ
σ2

)
1−s

.

Studying the poles in λ of this expression, it is in principle possible to give expressions for the
moments of the local times at x, as we did in the case of x = 0.
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