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Chapter 1

Introduction

In this report, we will derive a variety of results in theoretical physics from a geometrical
standpoint. In particular, we seek to show that many of the classical results in physics are
intrinsically linked to the symmetries of gauge space or of spacetime itself.

In order to achieve the latter, we use the language of differential geometry and of represen-
tation theory, which will allow us to beautifully describe and generalize some notions in physics.
The accompanying appendices are included for the sake of completeness and the reader is kindly
invited to read them as an introduction if he is not well-versed in some of the mathematical
concepts which we will use intensively throughout this report. We will focus on three main
topics, which are all perfectly understood in geometrical terms.

First, we will discuss dressing fields and give a geometrical picture to understand how these
objects naturally arise from the foliation of a reducible principal bundle. This language is
particularly well-suited to properly understand spontaneous symmetry breaking, as illustrated
by an explicit calculation of the Brout-Englert-Higgs mechanism in the electroweak sector of
the Standard Model. Our construction will also bring many of the perspectives that have been
taken by some people in the community [12, 13] under a single geometrical umbrella. Helpful
appendices for this section will be Appendix B and parts of appendix C.2.

Second, we will formulate an extension of General Relativity – the Einstein-Cartan Theory
of Gravity – which arises from purely geometrical considerations and the implementation of the
Einstein-Hilbert action. Following the steps of [21, 22, 23], we include torsion in this theory,
as it turns out that the inclusion of torsion has the benefit of coupling to spin, which in turn
makes the singularities disappear from the theory in the presence of high densities of fermionic
matter. However, we focus on the derivation and the geometrical concepts behind the theory,
which will allow us to see the naturality of General Relativity and this possible extension of
it from the geometrical point of view. A particularly helpful appendix for this chapter will be
appendix C.

Third, we look at manifolds which allow a so-called spin structure and explore the geometri-
cal nature of spin as well as some consequences of this nature in physical contexts. In particular,
we provide a geometrical derivation of the Dirac equation an give an approach which gener-
alizes it to all dimensions and to curved spacetimes, provided that the base manifold satisfies
some topological constraints. Here, the useful appendices will be appendix C, which covers the
geometrical framework we employ, and appendix E.1, which gives an in depth mathematical
description of spin.

Finally, appendix A contains some useful definitions and facts included for completeness
purposes and to set some vocabulary in place. Appendix D details how we can use the same
geometrical approaches to enlargen the applicability of non-relativistic Quantum Mechanics

1



2 CHAPTER 1. INTRODUCTION

to curved spaces. Last but not least, in appendix E.2, we provide a new graphical method to
compute traces of γ-matrices and we provide an interpration for what these γ matrices actually
are, as well as what the trace computations mean geometrically.



Chapter 2

Dressing Fields

The concept of “gauge invariance” is particularly important in physics, that is to say,
whenever possible, physicists try to ensure that the objects being manipulated are “gauge
invariant”. For this reason, giving a precise definition of what we mean by “gauge invariance”
is imperative in order to have a consistent treatment of gauge theories. Unfortunately, this is
rarely done in the physics community, which employs this term extremely widely in a variety
of different contexts. So widely, in fact, that one could argue that the term has become devoid
of meaning, much like the word “local”. Certain people in the community would argue that
such pedantry is utterly useless, but, as shown in Appendix D, being precise in this respect
can prove extremely helpful for certain applications.

This ambiguity on the definition of a gauge often is the source of different debates in physics
which could be entirely avoided or whose resolution would become trivial if the community could
agree on a single definition. This is what drove us to define what a gauge is in the context of
Klein and later Cartan geometries based on a physical situation in section C.1.5. For the rest
of this section, we will take the following definition (which is slightly altered with respect to
the one in the discussion of section C.1.5) of a gauge. We refer the reader to appendix C.1.5
for physical and geometrical motivations for this definition.

Definition 2.0.1. Let P be a principal G-bundle over a manifold M and let P ×G V be an
associated bundle with representation (V, ρ). In this context, we define a choice of gauge to
be a choice of section s : M → P ×G V from the base manifold into the associated bundle.

This definition is motivated by the fact that the objects which actually get gauge-transformed
in physics correspond exactly to these sections over an associated bundle with representation V .
With it, we understand that the term “gauge invariance” should really be “gauge covariance”,
as per the discussion given in C.1.5. This gauge covariance can be understood explicitly by
the fact that results don’t depend on the choice of a particular gauge that is made, as one is
always free to translate along the fibres of the principal bundle in a consistent way to retrieve
an analogous result in a different gauge. With the semantics out of the way, we are now ready
to consistently treat a problem which has arisen time and time again and which has generated
much debate within the community concerning the gauge invariance of spontaneous symmetry
breaking.

In order to treat this problem, we will first give a geometrical picture of what “spontaneous
symmetry breaking” looks like in a geometrical setting, after which we will have the tools to
study the particular case of the Higgs mechanism. In particular, with our constructions, we will
be able to naturally give rise to the maps presented in [12, 13], which render things explicitly
gauge covariant according to the authors. Having retrieved these tools, it will be possible to use

3



4 CHAPTER 2. DRESSING FIELDS

the results found in the previous references to perform the classical calculation of spontaneous
symmetry breaking of the Lagrangian of the electroweak sector of the Standard Model.

To be more explicit, the tools from [12, 13] we talked about are the so-called dressing fields,
which have been a concept studied widely by physicists for a number of years. Indeed, the
very first person to consider these constructions was P.A.M. Dirac [15], but the concept has
been rediscovered and discussed recurrently ever since [12, 13, 16, 17, 18]. The difference with
our treatment is that we will have a consistent geometrical picture and interpretation of these
dressing fields. Many attempts to formalize this concept have been explored [12, 13], but in the
author’s humble opinion, these attempts dwell too much on technicalities which can hinder if
not completely impede understanding. For this reason, we hereby provide a new construction
in the hope that it will help clarify how different methods employed in the symmetry reduction
of principal bundles are connected with each other.

Let us now give a brief picture of how these dressing fields have been interpreted in the
physics community. Intuitively and very loosely speaking, the dressing field supposes the
existence of a “God-given basis” which exists in the gauge internal space. This “God-given
basis” can then be used to measure “physical quantities” with respect to it. In other words, a
quantity is called “physical” if it is measured with respect to the “God-given basis”. Talking
about “physical quantities” here is perhaps also a great misnomer, since objects in gauge space
are never actually physically measurable and since the choice of what is physical will turn out to
be completely arbitrary. This implies that the presence of this basis makes everything “gauge
invariant”, at least under passive transformations, since a coordinate change will not affect the
geometrical quantity measured, which remains the difference between the God-given basis and
the measurement. Yet, under an active transformation, the physical quantity changes, since
this God-given basis stays fixed no matter the transformation. In this way, we have a clear
distinction between what constitutes a “passive” transformation and an “active” one.

This reflects the reason of why it is important to talk about “gauge covariance” instead of
“invariance”, as it is important that the quantities all change in the right way such that they
compensate each other in order not to affect the “physical” result.

2.1 Geometrical Setting

The language of differential geometry is naturally adapted to treat this kind of question, in
particular the language of foliations, distributions and principal bundles is perfectly adapted
to obtain the results we seek. In what will follow, we will briefly introduce these concepts. For
notation, we will take P to be a G-principal bundle with base manifold M , unless otherwise
specified. The statements below are presented for the sake of completeness, but we will not
show the proofs, unless they are of conceptual value. If the reader is interested, a more in-depth
treatment of this subject can be found in [1, 3, 11].

Theorem 2.1.1 (Constant rank map theorem). Let M and N be m and n dimensional man-
ifolds respectively and let f : M → N be a smooth map with constant rank r. For each point
p ∈M , there exists connected charts (U,ϕ) and (V, ψ) around p and f(p) respectively such that
ϕ(p) = 0, ψ(f(p)) = 0, f(U) ⊂ V and ψfϕ−1 is a restriction of the canonical map:

Rr × Rm−r −→ Rr × Rn−r

(x, y) 7−→ (x, 0) (2.1.1)

Definition 2.1.1. Let f : M → N be a smooth map with constant rank. Then, f is called an
immersion if the rank is m, and a submersion if the rank is n.
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Definition 2.1.2. An embedding is a one-to-one immersion f : M → N such that the
mapping f : M → f(M) is a homeomorphism (where the topology on f(M) is the subspace
topology inherited from N)

Definition 2.1.3. LetM be anm-dimensional smooth manifold as before. A q-codimensional
foliated atlas on M is an atlas A such that if (U,ϕ) and (V, ψ) ∈ A, then the coordinate
changes Φ = ψϕ−1 have the form:

Φ : Rm−q × Rq −→ Rm−q × Rq (2.1.2)

(x, y) 7−→ (Φ1(x, y),Φ2(y)) (2.1.3)

that is, such that the last q coordinates only depend on the last q variables.

Definition 2.1.4. Two foliated atlases are said to be equivalent if their union is a foliated
atlas. A foliation on M is an equivalence class of foliated atlases.

2.1.1 Bundle Reductions

With the previous definitions, we are ready to attack our problem.

Definition 2.1.5. Let G be a Lie group and H ⊂ G be a subgroup. Let P be a principal
G-bundle over M . A G-reduction of P is a submanifold P0 ⊂ P such that P0 → M is an
H-bundle and the action of H on P0 is the restriction of the action of H on P .

Lemma 2.1.2. Let µ : G × Q → Q, (g, x) 7→ g ∗ x be a smooth left action of a Lie group G
on a connected smooth manifold Q. Then, every orbit X ⊂ Q of this action is a submanifold.
Moreover, if the action is proper, then X is a proper submanifold.

Proof. Fix an orbit X ⊂ Q and choose x0 ∈ X. Set H = { g ∈ G | g ∗ x0 = x0 }. It suffices to
show the three following things:

1. H is a closed subgroup of G;

2. The following induced map is an injective immersion with image X

G/H −→ Q (2.1.4)

gH 7−→ g ∗ x0 ; (2.1.5)

3. If the original action is proper, then G/H → Q is a proper embedding.

Step 1 : Since µ−1(x0) is closed and H ×{x0} = µ−1 ∩ (G×{x0}), it follows that H ×{x0}
is closed in G×Q and thus that H is closed in G. The fact that this map is injective and with
image X is clear.

Step 2 : Define the map Ψ : G → Q by g 7→ g ∗ x0. Note that Ψ−1(x0) = H. Set
V := ker Ψ∗e ⊂ g, the Lie algebra of G. Let h denote the Lie algebra of the subgroup H.
Since Ψ is constant on H, it follows that Ψ∗e(h) = 0 and hence that h ⊂ V . We now proceed
to show the other inclusion. Recall that Lg (the left translation on G) and `g : Q → Q, the
left translation on Q defined by x 7→ g ∗ x, are diffeomorphisms. Then, consider the following
commuting diagrams:

G Q

G Q

Ψ

Lg `g

Ψ

TeG Tx0Q

TgG Tg∗x0Q

Ψ∗e

Lg∗ `g∗x0
Ψ∗g
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from which it is clear that ker Ψ∗g = Lg∗ ker Ψ∗e = Lg∗V for all g ∈ G. Thus, on G, Ψ has
constant rank r = dim g− dimV . By theorem 2.1.1 the components of the level surfaces of Ψ
foliate G with codimension r. The component of the identity in Ψ−1(x0) = H is the identity
component subgroup H0 with Lie algebra h. So V = h. The injectivity of the map comes from
considering the following commutative diagram:

TgG

Tgh(G/H) Tg∗x0M

Ψ∗g

since the two arrows pointing downwards have kernel Lg∗eV , we have that the bottom map is
necessarily injective, so that Ψ is an immersion.

Step 3 : The proof of this can be found in [1]. �

We apply this lemma in the following proposition which gives us a simple and sufficient
condition for the existence of a reduction.

Proposition 2.1.1. Let P be a smooth G-principal bundle and let Q be a manifold equipped
with a right G-action. Let f : P → Q be a smooth equivariant map (i.e. f(p ∗ g) = f(p) ∗ g for
all g ∈ G). Fix q0 ∈ Q and set:

H0 := {h0 ∈ G | q0 ∗ h0 = q0} = Stab(q0) (2.1.6)

Furthermore, suppose that q0 ∈ Q lies in the image under f of each fibre of P , then:

1. P0 = f−1(q0) is an H0-reduction of P ;

Moreover, fix another q1 ∈ Q and set H1 = Stab(q1) and, as before, suppose that q1 lies in the
image under f of each fibre of P so that by the previous point P1 = f−1(q1) is an H1-reduction.
Then:

2. There exists g ∈ G such that H1 = g−1H0g, and for any such element g, P1 = P0 ∗ g.

Proof. Proof of 1 : We start by showing that P0 is a submanifold of P . For this, it is once again
sufficient to show that f has constant rank. Since ∀x ∈ M, q0 ∈ f(π−1(x)), it follows that
Im(f) = X = q0 ∗G = Orb(q0) ⊂ Q. By the previous lemma, since the action Q ×H → Q is
proper, all the orbits, and in particular X, are submanifolds of Q. Since f takes values in X,
it follows that rankp(f) ≤ dimX. We show equality by proving rank(f |fibre) = dimX. This
follows from the fact that the restriction of the map f to any given fibre is nothing but the
map G → X sending g 7→ q0 ∗ g, which has rank dimX by the lemma. Thus, f has constant
rank and P0 is a submanifold of P .

Remark that P0 ∗H0 = P0, i.e. that P0 is stable under the action of H0. We now show that
this submanifold is indeed a principal bundle. Indeed, this follows rather easily by considering
p and p′ lying on the same fibre of P0. Then there is a g ∈ G such that p′ = p ∗ g ∈ P0. Thus
q0 = f(p ∗ g) = f(p) ∗ g = q0 ∗ g, which implies that g ∈ H0. It follows that the induced action
of H0 on P0 is transitive on each fibre of P0. Since P0 = f−1(q0) is closed in P and H0 is
closed in G, the induced action of H0 in P0 is proper and free. By theorem 4.2.4 of [1], P0 is a
principal H0-bundle over M and is therefore an H0-reduction of P .

Proof of 2 : Let P1 = f−1(q1). Both q0 and q1 lie in the image under f of each fibre of
P , this means that ∀x ∈ M , q0 ∈ f(π−1(x)) and q1 ∈ f(π−1(x)), so that we may pick two
representatives p0 and p1 in each fibre of P such that q0 = f(p0) and q1 = f(p1). Since both p0
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and p1 lie in the same fibre, it follows that ∃ g ∈ G so that p1 = p0 ∗ g. It is clear by the right
equivariance of f that this yields: q1 = f(p1) = f(p0∗g) = f(p0)∗g = q0∗g. Then, if h1 ∈ H1, we
have q0∗gh1 = q0∗g, which implies q0∗gh1g

−1 = q0, but by definition, this implies gh1g
−1 ∈ H0

so that H1 = g−1H0g. Finally, it is clear that P1 = f−1(q0 ∗ g) = f−1(q0) ∗ g = P0 ∗ g. �

With this criterion under our belts, we provide a construction for the reduction of symmetry
we can apply in a general sense to understand exactly where the dressing fields come from. Start
by taking an associated bundle to P with representation (V, ρ) of G, and write this associated
bundle as P ×G V . This associated bundle is naturally equipped with a G-right action given
by:

[p, f ] ∗ g = [p ∗ g, ρ(g−1)f ] (2.1.7)

Furthermore, if there exists a global section ϕ : M → P×GV , by theorem B.2.1, we may regard
this global section as being an equivariant function ϕ : P → V whose equivariance condition
is given by ϕ(p ∗ g) = ρ(g−1)ϕ(p). It is clear that we may see V = C2 as a manifold naturally
equipped with a right G-action given previously. Taking a suitable vector v0, we may then
simply consider its stabilizer H. Proposition 2.1.1 then yields that P0 = ϕ−1(v0) is a reduction
of P and is a principal H-bundle.

Notice that the foliation provided by the reduction of the bundle induces natural Ehresmann
connections on the principal bundle P . This is because an Ehresmann connection is fully
determined by its distribution. If we decide then to set ker$ = TP \ TP0 as our horizontal
distribution, or, equivalently, define TP0 to be the vertical distribution, we have a natural
Ehresmann connection, which can be defined in terms of the projectors onto these respective
spaces. Notice also that if i : P0 ↪−→ P is the natural inclusion, we may pullback forms,
functions, etc. from P onto P0 via this mapping. Therefore, we can look at the pullback of the
corresponding Ehresmann connection under this light as simply being i∗$.

At this point, it might be good to illustrate this procedure of reduction with a neat example,
which will help us understand a little bit better the nature of what will come in the following
chapters.

2.1.2 Cartan Geometries and Ehresmann Connections

We will now briefly examine the link between Cartan geometries modelled on (G,H) and
Ehresmann connections over a principal G-bundle. For the sake of simplicity, we consider here
the case of Euclidean space, for which we won’t need to worry about topological obstructions
which might otherwise cause trouble. Thus, let P denote a principal bundle with group ISO(n)
and let P ×ISO(n) V be the associated bundle to P with a representation of ISO(n), (V, ρ).
Now, suppose the existence of a global section s : M → P ×ISO(n) V , which may in turn be
regarded as a function s : P → V . As per our previous discussion, we consider a vector v0 ∈ V
and seek to calculate its stabilizer with respect to the right action of the group ISO(n) on
V . We quickly realize, however, that a vector with an interesting stabilizer in V is the origin
itself, since the rest of the vectors are in general changed by a generic rotation. From a simple
geometrical consideration, it’s obvious that Stab(v0) = O(n). By proposition 2.1.1, we have
that the bundle gets reduced to an O(n)-bundle, P0. In fact, notice that the origin is also
stable by SO(n), which means that we may further reduce the bundle to the group SO(n).
On the other hand, we may only do so if the base manifold is orientable as there are otherwise
topological obstructions in trying to do so.

Following the lines of our previous reasoning concerning the Ehresmann connection induced
by the foliation provided by the reduction, we have a bijective correspondence between Ehres-
mann connections on P whose kernel does not meet i∗TP0 and Cartan connections themselves.
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The proof of this as well as a more geometrical way of understanding Ehresmann connections
in all their generality may be found in the appendices of Sharpe’s book [1]. However, this illus-
tration helps us understand what happens with the connections. Indeed, we see how Cartan
connections arise from the reduction of a general principal bundle over a manifold. In some
sense, it’s as if part of the symmetry imposed on the system is redundant and, in the language
of a true physicist, can be “gauged away”. This also helps us see how Cartan geometries in
some sense are indeed imposing local Euclidean (or Poincaré) symmetries on the manifold M .

2.2 Application to Electroweak Theory

Having already given the example of how the construction above applies to the particular
case of Cartan geometries, we now apply the same construction in a more abstract setting,
namely to the spontaneous symmetry breaking mechanism present in electroweak theory. In so
doing, we will show that this mechanism can indeed be achieved in a gauge covariant manner.

2.2.1 Spontaneous Symmetry Breaking

In an analogous fashion to what we previously did, we now must find a vector v0 ∈ V such

that ∀x ∈ M we may find v0 ∈ ϕ(π−1(x)). This is in particular the case for v0 =
(
0 1

)T
.

Of course, we could have picked any vector in V , but many of these happen to have trivial
stabilizers under the action of G. Motivated by the previous proposition, we seek a vector
which has a non-trivial stabilizer in order to be able to reduce the bundle. We could have
taken any vector in Orb(v0) in order to achieve what we are about to do. Let us now calculate
Stab(v0).

Stab(v0) =

{
h ∈ G = SU(2)× U(1) | ρ(h−1)

(
0
1

)
=

(
0
1

)}
(2.2.8)

=

{
eiθ
(
α −β̄
β ᾱ

)
∈ G | eiθ

(
α −β̄
β ᾱ

)(
0
1

)
=

(
0
1

)}
(2.2.9)

=

{
eiθ
(
α −β̄
β ᾱ

)
∈ G | eiθ

(
−β̄
ᾱ

)
=

(
0
1

)}
(2.2.10)

=
{
ei
θ
2 eiθ

σz
2 ∈ SU(2)× U(1) | θ ∈ R

}
(2.2.11)

From this, we see that the stabilization of the vacuum is provided by a U(1) group provided
by the above construction which is a combination of the SU(2) and U(1) parts of SU(2) ×
U(1). This is completely consistent with the classical result on the generator of the U(1)-
electromagnetic symmetry we encounter in particle physics. In this case, though, we appreciate
the geometrical origin of this symmetry.

For the particular leaf L of the foliation implicitly chosen by our choice of v0, we express
explicitly what its elements look like:(

x ,
1

η

(
ϕ̄2 ϕ1

−ϕ̄1 ϕ2

))
∈ Lp (2.2.12)

where we have decomposed ϕ =
(
ϕ1(x, e) ϕ2(x, e)

)T
and we take |ϕ1|2 + |ϕ2|2 = η2. We can

see this by noticing that we must have ϕ

(
ϕ−1

((
0
1

)))
=

(
0
1

)
. Having said this, we can use

this map in order to pullback everything onto the leaf L. In doing so, we obtain a very similar
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procedure to the one described in [12, 13]. These are the so-called dressing fields u discussed
therein. To be fully clear and explicit, we have:

u(p) =
1

η

(
ϕ̄2(p) ϕ1(p)
−ϕ̄1(p) ϕ2(p)

)
∈ SU(2) (2.2.13)

However, contrarily to both papers, we have given here a fully geometrical picture of where
these dressing fields stem from. Through this procedure, we have illustrated that the “method
of dressing fields” may be embedded and properly understood in the context of reductions of
principal bundles and that the pullbacks under these dressing fields are nothing other than
pullbacks to particular leaves of the foliation induced by the reduction itself.

Since we have shown the geometric origin of this construction, we may now follow Attard’s
and François’s papers in order to retrieve the familiar results of electroweak symmetry breaking.
We see clearly that this is completely gauge independent, as we could have picked any v in the
orbit of v0, as prescribed by proposition 2.1.1. In this sense, the mechanism is gauge covariant.

2.2.2 Explicit Calculation Using Dressing Fields

In this section, we follow closely the developments carried out in [12, 13]. A lot more details
can be found in the latter.

We start by considering a principal SU(2) × U(1)-bundle and its endowed Ehresmann
connection ω and curvature Ω. Notice here that since the Lie algebra of the gauge group is
nothing more than su(2) ⊕ u(1) = su(2) ⊕ R, it quickly follows that all the forms may be
split into a su(2) and a u(1) component. This means in particular that we may choose local
representatives (i.e. pullbacks under a local section s : U → P ) for ω which we may write
A = a+ b and similarly for the curvature F = fa + fb.

We consider the associated bundle E = P ×SU(2)×U(1) (C2, ρ), where (C2, ρ) is nothing
other than the fundamental representation of the gauge group. Furthermore, we consider the
associated function ϕ to the section of this principal bundle Φ : U ⊂ M → C2 provided by
virtue of theorem B.2.1. The covariant derivative is:

Dϕ = dϕ+ (g′a+ gb)ϕ (2.2.14)

with g′ and g being the coupling constants of U(1) and SU(2) respectively. The electroweak
Lagrangian may be simply expressed as:

L(a, b, ϕ) =
1

2
Tr(fa ∧ ∗fa) +

1

2
Tr(fb ∧ ∗fb) + 〈Dϕ, ∗Dϕ〉 − (µ2〈ϕ,ϕ〉+ λ〈ϕ,ϕ〉2)vol︸ ︷︷ ︸

=:V (ϕ)

(2.2.15)

We are now interested in using the dressing field u in order to dress the fields which take
part in the Lagrangian (i.e. , the pulled back connection A, strength tensor F , etc.). Indeed,
if let i.e. A 7→ Â denote the newly dressed fields, we have:

Â = u−1Au+
1

g
u−1du = u−1(a+ b)u+

1

g
u−1du = a+ u−1bu+

1

g
u−1du︸ ︷︷ ︸

=:B

(2.2.16)

Since we have that u−1au = a, simply from decomposition of A and the fact that u is SU(2)-
valued. Next, we could examine the dressed F̂ and ϕ̂:

F̂ = u−1Fu = u−1(fa + fb)u = fa + u−1fbu =: fa +G (2.2.17)

ϕ̂ = u−1ϕ = η

(
0
1

)
(2.2.18)
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Notice here that G = dB +B ∧B. We then proceed to consider how these B fields transform

under a residual U(1)-transformation. In what will follow, we denote α = eiθ and α̂ =

(
α 0
0 1

)
to be the matrix corresponding to the residual U(1)-transformation. With this notation we
obtain:

Bα = (uα)−1 bα︸︷︷︸
=b

(uα) +
1

g
(uα)−1d(uα)

= (uα̂)−1b(uα̂) +
1

g
(uα̂)−1d(uα̂)

= α̂−1u−1buα̂+
1

g
α̂−1(u−1du)α̂︸ ︷︷ ︸

= α̂−1Bα̂

+
1

g
α̂−1dα̂

= α̂−1Bα̂ +
1

g
α̂−1dα̂ (2.2.19)

In order to retrieve the classical result of electroweak theory, we decompose this B = Baσ
a,

where σa are just the Pauli matrices. We thus obtain the following decomposition:

B =

(
B3 B1 − iB2

B1 + iB2 −B3

)
:=

(
B3

√
2W+

√
2W− −B3

)
(2.2.20)

Remark 2.2.1. Notice that if we really want B to be su(2)-valued, we have to have Ba ∈ iR,
which explains why Ba = −Ba. Additionally, this condition further yields the relation (W+)† =
W−.

With this choice of basis for the Lie algebra su(2), we can then simply write the transformed
fields after a U(1) transformation:

Bα =

(
B3 + 1

gα
−1dα α−1

√
2W+

α
√

2W− −B3

)
(2.2.21)

We here notice that the B3 transforms in the same way that a residual U(1)-connection would.
At first sight, it looks like the integration of a mass term will be difficult. On the other hand,
the fields W+ and W− seem to transform vectorially, which means we can include a mass term.

2.2.3 Changing Variables and Results

To solve the mass problem of B3, start by recalling that we still have the a part of the U(1)-
connection Â lying around. In particular, we may at this stage further perform a change of
variables. We define two 1-forms A and Z0 (we stress here is different than the A we considered
in the beginning, which denotes the connection) . We use the letter A because of standard
physics notation to denote the electromagnetic field and Z0 as follows:(

A
Z0

)
:=

(
cos θW sin θW
− sin θW cos θW

)(
a
B3

)
(2.2.22)

where θW , the Weinberg angle, is determined by cos θW = g√
g2+g′2

and sin θW = g′√
g2+g′2

. At

this point, it is then obvious that both of these 1-forms are SU(2)×U(1) invariant given their
construction. Finally, we give the transformation law of the field strength G:

Gα = α̂−1Gα̂ (2.2.23)
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which is once again good, because this should transform as a curvature. This now allows us to
express the Tr(F ∧ ∗F ) term in the Lagrangian:

Tr(F̂ ∧ ∗F̂ ) = Tr(fa ∧ ∗fa) + Tr(G ∧ ∗G) (2.2.24)

At this point we could for example compute G given the matrix expressions we were given. It
is straightforward to see that by taking the inverse matrix of equation 2.2.22, and after a long
and tedious calculation, we retrieve that:

Tr(F̂ ∧ ∗F̂ ) = dZ0 ∧ ∗dZ0 + dA ∧ ∗dA+ dW+ ∧ ∗dW−

+ 2g
[
sin θW

(
dA ∧ ∗(W+W−) + dW+∧∗(W−A) + dW−∧∗(AW+)

)
+ cos θW

(
dZ0∧∗(W+W−) + dW+∧∗(W−Z0) + dW−∧∗(Z0W+)

)]
+ 4g2

[
sin2 θW (AW+)∧∗(W−A) + cos2 θW (Z0W+)∧∗(W−Z0)

+ sin θW cos θW
{

(AW+)∧∗(W−Z0) + (Z0W+)∧∗(W−A)
}

+
1

4
(W+W−) ∧ ∗(W+W−)

]
(2.2.25)

where there is an implicit wedge in between the 1-forms associated to each particle. This
immediately gives us the coupling that is associated to each particle. As expected, we get
no coupling between the A field and the Z0 field and we retrieve the usual couplings that we
encounter in electroweak theory.

Now, we look at the potential term of equation 2.2.15. We immediately appreciate that we
may describe this potential in terms of the field η previously defined. Indeed the terms of the
potential simply become:

V (ϕ) = µ2〈ϕ,ϕ〉+ λ〈ϕ,ϕ〉2 = V (η) = µ2η2 + λη4 (2.2.26)

Notice in particular that for this R+-valued field η, V (η) has a unique minimum value, in this
context, there is no choice or “spontaneous symmetry breaking” in the sense that the system
does not determine an arbitrary minimum value–since in this case it is unique. We say that η
is the residual field after extraction of the dressing field u from the scalar auxiliary field ϕ.

Finally, note that we still have to consider the kinetic term in the Lagrangian 2.2.15,
〈Dϕ, ∗Dϕ〉. To do this, we first consider simply what the dressed covariant derivative, D̂,
is on the residual field η in this case:

D̂η = d

(
0
η

)
+ g

(
B3 W+

W− −B3

)(
0
η

)
+ g′

(
a 0
0 a

)(
0
η

)
=

(
gW+∧ η

dη − g B3 ∧ η + g′ a ∧ η

)
(2.2.27)

Finally, we compute the norm of 〈Dϕ, ∗Dϕ〉 = D̂η† ∧ ∗D̂η:

D̂η† ∧ ∗D̂η = (−gW−∧ η , dη + g B3 ∧ η − g′ a ∧ η) ∧ ∗
(

gW+∧ η
dη − g B3 ∧ η + g′ a ∧ η

)
= dη ∧ ∗dη−g2η2W−∧∗W+ − (g2 + g′2)η2 Z0∧∗Z0︸ ︷︷ ︸

Mass terms after proper expansion of η

(2.2.28)

As per the remark in the previous equation, we may now choose to expand η around its unique
minimum value, which will in turn give rise to the usual mass terms which appear in the
Lagrangian.
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2.3 Remarks on the Higgs Field

Our geometrical picture provided us with much insight about what the scalar field’s role is
in spontaneous symmetry breaking. Indeed, it constitutes a choice of a global section over an
associated bundle to the principal bundle with gauge group G. The existence of this Higgs field
itself gives us information about the cohomology of space and indeed of its global properties as
well, since the existence of such a global section can imply topological restrictions on the classes
of manifolds on which such a structure can exist. What we gain with this geometrical picture
is thus a hint of where to look further. Incidentally, although we didn’t go over this, the avid
reader will quickly realize that reductions of G-structures such as principal bundles quickly
give rise to the study of different kinds of manifolds (orientable, Kähler, spin, hyperkähler,
Calabi-Yau, etc.). It is often said that these manifolds come with an integrability condition.
But now we understand fully why. Indeed the foliation problem can be posed as an integrability
problem, thus the existence or non-existence of a reduction can be understood as the satisfaction
or not of a particular integrability condition. The reader is welcome to consult Haelfliger’s work
[11] on the link between foliations and integrability for more details about what we have just
discussed.



Chapter 3

Einstein-Cartan Theory of Gravity

3.1 Modelling Geometry

In this section, we will treat the Einstein-Cartan Theory of Gravity. Our main assumption
will be that spacetime can be regarded as a manifold M which exhibits local (infinitesimal)
Poincaré symmetry. In other words, we will be looking at a Cartan Geometry modelled on the
Klein geometry (ISO(n, 1), SO(n, 1)) on the manifold M . We are thus here looking at a model
of Minkowskian geometry.

In particular, the Klein pair associated to the Cartan geometry is simply given by (iso(n, 1), so(n, 1))
with group H = SO(n, 1). We notice that this geometry is reductive, since we may decompose
g = iso(n, 1) as a direct sum of h and an Ad(SO(n, 1))-module p complementary to h. Thus,
we have the decomposition iso(n, 1) ∼= Rn,1 ⊕ so(n, 1), where we set p = Rn,1 and h = so(n, 1)
in the notations of definition C.2.8.

We start by picking a basis of p = Rn,1. Thus, let {ei}i∈I ⊂ p be the standard basis in p
and let {Jij}i,j∈I ⊂ h denote the unique elements satisfying

ad(Ji
j)ek = δjkei − δ

i
kej (3.1.1)

recalling that the action ad(A) on g/h ∼= p is defined as ad(A)v = Av. This identification is
unique since p is an Ad(H)-invariant complement of h in g and in particular it is an H-module.
This means that:

ad(Ji
j) = ei ⊗ e∗j − ej ⊗ e∗i =: ei ⊗ ej − ej ⊗ ei (3.1.2)

under the isomorphism End(g/h) ∼= End(p) ∼= p∗⊗ p. Thus, {Jij}i,j∈I for i < j is the standard
basis of h, i.e. the generators of the Lorentz transformations. With this choice of basis made
and since the Lie algebra g is reductive, the Cartan connection 1-form $ and its associated
curvature form Ω̃ (and more generally any g-valued form) split as $ = $p+$h and Ω̃ = Ω̃p+Ω̃h.
In particular, we may write the following in accordance with our choice of basis:

$ =

(
0 0
$p $h

)
=:

(
0 0
θ ω

)
and Ω̃ =

(
0 0

Ω̃p Ω̃h

)
=:

(
0 0
Θ Ω

)
(3.1.3)

The structural equation of the geometry gives us the relation Ω̃ = d$+$∧$, which in terms
of the matrices translates to:(

0 0
Θ Ω

)
=

(
0 0

dθ + ω ∧ θ dω + ω ∧ ω

)
(3.1.4)

13
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In accordance with our choice of basis, we may express all of the forms in terms of their
components in the Lie algebra basis above as:

θ = θiei ω = ωijJi
j Θ = Θiei Ω = Ωi

jJi
j (3.1.5)

where we have used the Einstein summation convention.

Remark 3.1.1. The summation convention used in the case of the double indices written out
above for the forms in h in terms of the basis picked for the Lie algebra are to be understood
as sums over ordered indices, where we always take i < j. Explicitly we have that:

ωijJi
j =

∑
0≤i<j≤n

ωijJi
j (3.1.6)

This will only be the case for summations over these generators.

At this point, an important remark is in order.

Remark 3.1.2. The existence of such a Cartan connection relies heavily on the existence of a
so-called spin structure on the base manifold M . We will talk more about spin structures and
spin manifolds in chapter 4. For now, it is sufficient to understand that the existence of a spin
structure on the base M imposes topological constraints on M . As we will see in what will
follow, this is intimately related to the topological dependence of the existence of a Lorentzian
metric on the manifold M as well.

3.2 Metric Equivalence Problem

If our main goal is to look at General Relativity and find an extension of it, it is unavoidable
to consider metric structures on manifolds. On the other hand, at this point of our geometrical
analysis of the situation, it might not be obvious to the reader to see the correspondence
between metric manifolds and our geometrical picture so far. In fact, it will turn out that there
is a complete equivalence between metric geometries on the base manifold M and torsion free
Cartan geometries modelled on Minkowskian geometry. This thus motivates the point of view
adopted in General Relativity of setting the torsion to zero. On the other hand, the study
of this correspondence will give us good hints on how we can extend the General Relavity
formalism in the most natural way possible in order to include this torsion. As we will see
in the next chapter, it follows rather intuitively from the fact that since there is a SO(n, 1)
symmetry around, this introduced torsion should couple to spin. For now, we will take this
result for granted having the advantage of hindsight [21, 22, 23].

In what will follow, we will explore the equivalence problem of Lorentzian metric mani-
folds and manifolds equipped with a Minkowskian Cartan geometry. Keeping the topological
comments made in remark 3.1.2, our first important result is the following:

Proposition 3.2.1. A Minkowskian geometry on M determines a Lorentzian metric on M up
to a constant scale factor.

Proof. The adjoint action of H on g induces an action on g/h ∼= p ∼= Rn,1, given by ad(A)v =
Av. This action preserves the standard quadratic form on g/h, the Lorentzian quadratic form
η. In fact, η is the only quadratic form on g/h preserved by H, up to scale. Furthermore,
it is possible to use the isomorphisms provided by theorem C.2.3, ϕp : TxM → g/h (where
p ∈ π−1(x)) to transport this quadratic form η to a quadratic form on TxM , that we will
imaginatively call ηp, given explicitly by:

ηp(w) := η(ϕp(w)) for w ∈ TxM (3.2.7)
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Since ϕph = Ad(h−1)ϕp, it follows that this is well-defined since:

ηph(w) = η(ϕph(w)) = η(Ad(h−1)ϕp(w)) = η(ϕp(w)) = ηp(w) (3.2.8)

implies that the value of ηp(w) does not depend on our choice of point in the fibre π−1(x). We
only need to prove that ηp determines a g which is smooth over the manifold M . This follows
easily by considering the following diagrams:

TpP g

TxM g/h

R

ωp

π∗p

ϕp

ηp η

TP g

TM g/h

R

ω

π∗

g
η

The diagrams commute by virtue of the definition of ηp and ϕp. The upper composite in
the second diagram going from TP → R is clearly smooth. Since π∗ is a submersion, the
smoothness of g follows. �

The opposite correspondence holds in the case where we consider a torsion-free Minkowskian
geometry on M . To see this, we need the following lemma:

Lemma 3.2.1 (Cartan’s Lemma). Let V be an n-dimensional vector space, and let {ζi}i∈I ⊂
V ∗ be a basis of V ∗. Furthermore, let µi ∈ Λ2V ∗ be arbitrary. Then, there exists a unique
collection of elements {ζij}i,j∈I ∈ V ∗ satisfying:

1. ζij + ζji = 0 ∀i, j ∈ I

2. µi + ζij ∧ ζj = 0

Furthermore, suppose that ζi ∈ A1(U) where U ⊂ Rn is open and that µi ∈ A2(U), then the
forms guaranteed by the lemma are smooth, i.e. ζij ∈ A1(U).

Proof. We will prove existence. Smoothness will be a rather obvious consequence of existence,
and uniqueness is left to the reader. We start by writing µi = Aijk ζj ∧ ζk, where we may
assume that Aijk + Aikj = 0, so that the Aijk’s are uniquely determined. Set the elements ζij
to be:

ζij := −(Ajik +Aikj −Akji) ζk (3.2.9)

With this definition, it is easy to see by simple plugging into the equations of the lemma that
the statement holds. The smoothness follows from the expression of the ζij ’s given in equation
3.2.9. �

Remark 3.2.1. It will turn out that this structure of the ζij ’s is very similar to the index
structure within the definition of the Christoffel symbols in terms of the metric. In some sense,
this is not a coincidence, as we will remark in the next theorem.

Theorem 3.2.2. Let (M, g) be a smooth manifold equipped with a metric g. There is exactly
one torsion-free Cartan geometry modelled on Minkowskian geometry whose associated metric
is, up to scale, g.
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Proof. Let {e(x)i}i∈I be any choice of an orthonormal frame field on an open neighbourhood
U ⊂ M with respect to the metric g on the manifold. The determination of this orthonormal
frame field immediately provides us with an orthonormal coframe field {θ(x)i}i∈I via the duality
of T ∗xU and TxU . Cartan’s Lemma (3.2.1) guarantees the existence and smoothness of forms
Γij such that:

dθi + Γij ∧ θj = 0 (3.2.10)

These Γij are furthermore uniquely determined. We then set:

ω =

(
0 0
θi Γij

)
∈ A1(U, g) (3.2.11)

It is clear that in this way, ω is a g-valued 1-form on U . Furthermore, since {e(x)i}i∈I is a
frame, the composite:

TxU g g/h
θx proj

is an isomorphism, which means that ω is a Cartan gauge (cf. definition C.2.3). It is clear
that since the manifold is covered by some cover {Uα}α∈I and that on every such Uα we have
a Cartan gauge as prescribed above, the argument holds for the entire manifold.

We must now check two things:

1. That the metric induced on U from the standard inner Lorentzian metric present on p
corresponds to the one set by g, at least up to scale.

2. That a different choice of orthonormal frame {f(x)i}i∈I is gauge equivalent to the one
we have just prescribed and in this way, we will have determined that there is a unique
torsion-free Cartan geometry yielding the desired metric on M , g.

We start by checking the first point. Indeed, since the frame is orthonormal, we have simply
that g(ei, ej) = ληij , where ηij is the standard quadratic form on p and λ ∈ R. It is thus obvious
from this that the induced metric on M via the standard quadratic form on p is completely
equivalent (up to scale) to g.

Second, we must check that the orthonormal frame is gauge equivalent to any other. We
give ourselves another orthonormal frame, {f(x)i}i∈I (with corresponding coframe {ψ(x)i}i∈I)
with the same orientation as {e(x)i}i∈I (we restrict the orientation of our frames because of
the topological considerations to the A’s prescribed by equation C.1.7), the Cartan gauge ω
transforms as:

ω′ = Ad(h−1)ω + h∗ωH =

(
1 0
0 h−1

)(
0 0
θi ?

)(
1 0
0 h

)
+

(
0 0
0 ?

)
=

(
0 0

h−1θi ?

)
=

(
0 0
ψi ?

)
(3.2.12)

However, since this new gauge must also be torsion free, the forms denoted by this ? are
immediately prescribed by the Cartan Lemma. This means that the two frames are gauge
equivalent, as desired. �

Remark 3.2.2. We can see here the motivation behind remark 3.2.1. The Γij ’s correspond in
some way to the Christoffel symbols. Furthermore, the link with the metric dependence is now
clear thanks to the theorem above. We can clearly see how, given a metric and assuming the
Cartan geometry is torsion free, we easily retrieve the Levi-Civita result we know.
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In some sense, the last theorem justifies the assumption of no torsion in classical General
Relativity. Indeed, we see here that the determination of the metric on the manifold M as well
as some topological global conditions specify the geometry of the manifold completely. It is
thus little to no surprise that we retrieve only something which depends on the metric in the
Einstein-Hilbert Lagrangian. However, we note that if we want to include torsion, then there
is no single Cartan geometry which is specified in this configuration. The remaining degree
of freedom, torsion, must thus be fixed by the theory. This means in particular that it must
appear in some way in the Lagrangian. Recall, however, that the torsion Θ stems from the
soldering form θ, it will thus be sufficient to include this Θ in the Lagrangian in some way to
completely fix the geometry, at least up to scale.

3.2.1 The Soldering Form and Vielbeine

In the following discussion, it is perhaps simpler at this point to take the more traditional
approach of physicists and finally choose some local coordinates to perform calculations. Over
an open neighbourhood U ⊂M , we have an orthonormal frame field as defined in the proof of
theorem 3.2.2, {e(x)i}i∈I . If {xµ}µ∈I are local coordinates, then we have a linear transformation
at every point mapping these local coordinates onto the orthonormal frame field chosen. By
abuse of notation we will note this linear map with an e. In terms of indices, we thus have:

ei = eµi ∂µ and θi = eiµdx
µ (3.2.13)

From the proof of theorem 3.2.2, it becomes clear from the orthonormality condition on ei that
given a metric, g, we have:

g(ei, ej) = g(eµi ∂µ, e
ν
j ∂ν) = gµνe

µ
i e
ν
j = ηij (3.2.14)

which is a well-known relation in the context of tetrads. However, we now understand where
exactly this stems from. The link between the tetrads and the soldering form (or any frame
field) is now clear. However, the reader should understand that tetrads are nothing other than
an object which occurs from a choice of coordinates and a frame on the base manifold. The
natural geometrical corresponding object is really the soldering form (or more generally, the
Cartan connection).

Remark 3.2.3. Some authors seem to like equation 3.2.14 so much that they wish to promote
it to a definition of the “tetrad” field and this is valid as shown in the proof of proposition
3.2.1. However, it is important to stress one more time that, while in the torsion-free case
the soldering form is enough to determine the entire geometry, this is no longer the case in
the presence of torsion. We also need to add constraints to the vertical part of the Cartan
connection ωh.

We revisit the objects introduced in section 3.1 under this choice of coordinates. Indeed,
since {dxµ}µ∈I is a basis for T ∗xU , in a Cartan gauge, we may always write:

ωij = ωijµ dx
µ , Θi = T iµν dx

µ ∧ dxν and Ωi
j = Ωi

jµν dx
µ ∧ dxν (3.2.15)

3.3 Fixing the Lagrangian of Einstein-Cartan Gravity

As discussed above, we want to find a Lagrangian which fixes the geometry. This, in
particular, means that we must choose a Lagrangian containing terms depending on Ω and on
θ. To find a reasonable form of the Lagrangian, we take inspiration from the Einstein-Hilbert
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action and realize that the form of the action we are seeking must reduce to Einstein-Hilbert
in the torsionless case. Recall that the Einstein-Hilbert action takes the form:

S =
1

2κ

∫
M
R (3.3.16)

where R is the Ricci scalar curvature. While it is possible to have an in-depth discussion
of the description of the scalar curvature in the setting of representation theory, for the sake
of brevity, we will do computations in local coordinates following the reasonings discussed in
section 3.2.1. We may write the Ricci scalar in terms of the connection form as simply being:

R = eαi e
β
j Ωij

αβ (3.3.17)

This expression actually generalizes to the torsion case, except that, in that case, the Ricci
curvature depends on the connection 1-form ω, which might carry a part that includes torsion
(i.e. the forms deviate from the canonical forms guaranteed by Cartan’s Lemma). It is practical
at this point to split the two independent degrees of freedom that enter the action in order
to be able to compute the variations in an easier manner. For this, we recognize our previous
discussion of the determination of torsionless geometries by the metric. We conclude that
the remaning freedom that we have left must thus be found in the connection coefficients ω.
Thus, by virtue of theorem 3.2.2, we may find the forms Γ, which guarantee vanishing torsion
given the forms θ in a certain Cartan gauge. In this way, we may write that the more general
connection coefficients ω can be written as:

ω = Γ +K (3.3.18)

In the literature, K is known as the contorsion tensor. Writing the structural equations for
this ω yields:

Ω = dΓ + Γ ∧ Γ︸ ︷︷ ︸
R

+ dK +K ∧K + [Γ,K] (3.3.19)

Θ = dθ + Γ ∧ θ︸ ︷︷ ︸
=0

+K ∧ θ (3.3.20)

where R is the Levi-Civita Riemann curvature tensor. Notice that because of the last equation
regarding torsion, we may use Cartan’s Lemma once more in order to find a unique expression
for the K forms in terms of the torsion tensor. If we write Θi = T ijk θ

j ∧ θk, we have that:

Kij = (Tjik + Tikj − Tkji) θk (3.3.21)

This point of view will become handy when we will vary the action with respect to the torsion
later on. It is also helpful to give a full description of this in terms of coordinates:

Kijµ = (Tjiµ + Tiµj − Tµji) (3.3.22)

Furthermore, after some lengthy but easy calculations that the reader is welcome to check,
we can detail the Bianchi identities in the presence of torsion. These yield:

R ∧ θ = 0 (3.3.23)

dR = [R,Γ] (3.3.24)

Which means that we can write the action in terms of coordinates as simply being:

S =
1

2κ

∫
M
eαi e

β
j (Rijαβ + (dK)ijαβ +Kik

αK
j
kβ −Kik

βK
j
kα) (3.3.25)

where the last term with the graded commutator [Γ,K] present in equation 3.3.19 vanishes
when we express it in local coordinates.
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3.4 Variation in Vacuum

Immediately, we notice that variation of this equation with respect to the vielbein eαi yields
a result similar in form to the Einstein Field Equations. This is because of the form of the
Ricci scalar in terms of the curvature form Ω as prescribed by equation 3.3.17. The result after
variation with respect to the vielbein is the equation:

eβj Ωij
αβ −

1

2
eβme

γ
ne
i
αΩmn

βγ = 0 (3.4.26)

Now we notice that this curvature tensor Ω does not present all the nice symmetries that the
Riemann tensor usually does. Hence, because this Ω contains non-trivial factors arising from
the choice of vertical connection, this Ω is not to be confused with the ordinary Levi-Civita
Riemann tensor, R. At this point, it is possible to decouple this equation and to explicitly write
it in terms of the Riemann tensor along with a correction provided by the 1-form connection K,
by using equation 3.3.19. In this way, it becomes clear that when torsion vanishes, we retrieve
the normal Einstein Field Equations.

In an analogous way, we may vary the action S with respect to Kij
α. The contribution of

the last term is simply:

e[a
m e

b]
n δ

m
[i δ

k
j]K

n
kb = 0 (3.4.27)

where the bracket denotes the antisymmetrization of indices. It is possible to express this
equation in terms of the torsion tensor with which the reader might be more familiar. After
some tedious calculations using the definition of the K’s in terms of the torsion coefficients Tijk
and renaming of the indices, we arrive at our final result, which is simply:

2(T cab + gca T
d
bd − gcb T dad) = 0 (3.4.28)

where g is the metric determined by the vielbeine e.

Remark 3.4.1. The condition on the torsion coefficients as well as the symmetries of the torsion
tensor imply simply that if we are not in the presence of fermionic matter, the torsion vanishes.
In particular, notice also that the variation with respect to torsion yields an algebraic constraint.
This combined with the field equations implies that torsion does not propagate outside of matter
as a wave, as does curvature.

With this remark, we can establish that in the vacuum, the torsion vanishes, which implies
in turn that K = 0, which means that the curvature equation reads:

eγjR
ij
αγ −

1

2
eγme

δ
ne
i
αR

mn
γδ = 0 (3.4.29)

which after multiplication by eiβ simply yields the normal Einstein Field Equations:

Rαβ −
1

2
gαβR = 0. (3.4.30)

Remark 3.4.2. That a Schwarzschild solution exists for this modified version of General Rel-
ativity is trivial, since we know of the existence of this solution for normal GR. Since this
solution is found in vacuum, the equations reduce to the ordinary Einstein Field Equations in
this scenario.
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3.5 Variation in Matter

In reality, if we consider the gravitation Lagrangian and we add a matter term LM , then,
under variation with respect to the K’s (or alternatively the torsion) we get that:

T cab + gca T
d
bd − gcb T dad = κσcab (3.5.31)

where the tensor σ can be shown to be related to the spin tensor. Notice that if the torsion is
set to zero (meaning we are in the vacuum), the curvature equation simply reduces down to the
normal Einstein Field Equations, as expected. Of course, this is somewhat by construction.

Similarly, we also find that the energy-momentum tensor inherited from LM couples to the
curvature equation:

eβj Ωij
αβ −

1

2
eβme

γ
ne
i
αΩmn

βγ = κP iα (3.5.32)

On the other hand, note that this tensor P iα is not symmetric and does not correspond to the
canonical energy-momentum tensor prescribed by the Belifante-Rosenfeld procedure. Indeed
this includes the effects of fermionic matter and it can be shown that the antisymmetric part of
this tensor can be related to the spin tensor. If we think about it, this makes complete sense,
since we have seen how the Ω-form splits into the Riemann tensor and the correction which
takes into account the torsion.

The reader might wonder at this point what is gained from this point of view, aside from
the obvious consequence of the inclusion of spin in the formalism. An additional bonus of this
inclusion is that we may get non-trivial spin-spin interactions in the presence of high densities
of fermionic matter. In particular, this implies that singularities are avoided in this modified
version of General Relativity. At the same time, we preserve the experimental accuracy of GR,
as the contributions of spin-spin interactions in normal experiments at reasonable densities (say,
that of a star) remain negligible, so that the theory still agrees quite well with experiment.

3.6 Outlook

As we have seen, Einstein-Cartan theory is perhaps one of the most natural extensions
one could think of for General Relativity. With the help of Cartan geometries, we were able
to easily generalize the geometrical concepts that arise in General Relativity, as well as see
why we may assume that torsion vanishes in the context of determining the full geometry of
the manifold given a metric. Even with this generalization, it became clear that, at least in
vacuum, torsion always disappears. In so doing, we were able to fix the irregularities that arise
in General Relativity, as well as providing a clear depiction of where all of these ideas stem
from.

As discussed previously, the above results basically all stem from an infinitesimal Poincaré
invariance on the manifold at every point. In the sense of the discussion presented in remark
C.2.1, one can geometrically picture this notion as seeing a Klein geometry rolling without
twisting or slipping on the manifold M . In our particular case, this Klein geometry is nothing
other than Minkowski space, which in some way justifies the point of view of seeing Einstein-
Cartan theory as attaching Minkowski space everywhere. On the other hand, while this picture
is helpful to visualize what is going on, we are not done exploiting this infinitesimal Poincaré
symmetry, which still holds many consequences, as we will see in the next chapter.



Chapter 4

Spin Manifolds

Spin is a notion that has confused mathematicians and physicists since Cartan first in-
troduced it in 1913 [26]. While the algebraic formalism is well-understood, it is a geometrical
concept which has remained elusive. In the words of Michael Atiyah: “No one fully understands
spinors. Their algebra is formally understood but their general significance is mysterious. In
some sense they describe the “square root” of geometry and, just as understanding ‘

√
−1’ took

centuries, the same might be true of spinors” [27].

In this chapter, we continue our exploitation of infinitesimal Poincaré symmetry in order to
find some interesting consequences, which come about in a purely geometrical way, but which
have non-trivial physical implications. For starters, we give an abstract construction of the
spin representations of so(V,Q), the Lie algebra of the orthogonal group over a vector space V
equipped with a quadratic form Q, and we explore Clifford algebras and their behaviour. In so
doing, we will be able to give some non-trivial results about the computation of different objects
which come about recurrently in Quantum Field Theory (QFT), in particular concerning the
product of γ-matrices as well as their traces. We then proceed to give a purely geometrical
derivation of the Dirac equation in flat space in the context of Cartan connections based on a
Cartan geometry modelled on (iso(V,Q), so(V,Q)). This will show that the Dirac equation is
actually the only first-order rotationally invariant differential equation applicable to particles
of spin 1

2 . From this point, we will proceed to generalize our findings to curved space and
give the expression of a natural generalization of the Dirac equation for curved space-times
in arbitrary dimension and signature (provided a matrix representation of the Clifford algebra
can be found and also provided the manifold obeys the proper topological constraints related
to the signature).

4.1 The Dirac Equation(s) from Symmetry Principles

In this section, we will derive the Dirac equations as natural geometrical consequences of
imposing infinitesimal Poincaré symmetry (in the sense of Cartan geometries), or at the very
least, of imposing local Lorentz symmetry (or rather Spin(3, 1) symmetry, to be completely
accurate). This assumption alone, together with the discussion in appendix C.2.6, provides us
with a natural framework to extract all the natural first order differential operators which we
can associate to a rotationally invariant system.

We shall thus consider a manifold M on which we have a Cartan geometry modelled on
(g = iso(V,Q), h = so(V,Q)). In particular, the Minkowski and Euclidean case are the main ge-
ometries we will be concerned with here. The consideration of a Minkowski geometry, however,
comes with certain topological constraints on M , as previously remarked in chapter 3.

21
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4.1.1 Geometrical Setting

We start by defining exactly what kind of manifold we will be dealing with in the rest of this
discussion; we specify this for the sake of completeness, but we will not dwell on the definition
and meaning of the topological classes that will be involved in defining such objects. It will be
sufficient for us to know that topological constraints exist and that we know of sufficient and
necessary topological constraints to guarantee the existence of a spin structure on a manifold.

Definition 4.1.1. A spin manifold M is a manifold on which a spin structure exists. That
is, there exists Spin-principal bundle over M . In particular, a spin manifold is a manifold on
which the second Stiefel-Whitney class of M vanishes [29].

Now that we know exactly what kind of object we are dealing with, we may neglect any
kind of topological obstruction when we consider spinorial representations of O(V,Q) in an
associated bundle.

Having said this, let M be an oriented spin manifold and let P be the oriented orthonormal
frame bundle over M , i.e. P = (M,O(V,Q)) equipped with projection π : P → M . At least
locally, we may always think of P as being:

P = {(x, e1, e2, · · · , en), x ∈M and e1, · · · , en ∈ TxM} (4.1.1)

where {e1, e2, · · · , en} denotes an orthonormal basis. It is trivial to see that π(x, e1, · · · , en) = x.
On such a principal bundle, we may induce a right action of SO(V,Q) on P given by:

(x, e1, · · · , en) ∗R(s) 7−→ (x, (e1, · · · , en) ·R(s)) (4.1.2)

where · now denotes simple matrix multiplication. Recall from section 3.1 that we may express
the Cartan connection form on P related to the Cartan geometry we considered as:

$ =

(
0 0
θ ω

)
∈ A1(P, iso(V,Q)) (4.1.3)

We immediately notice that ∀ν ∈ TpP , we have π∗(ν) = θi(ν)ei. Just as before, we may
decompose ω into the generators of so(V,Q) which we will note J ij as in the previous chapter.
Notice that it is always possible to find vector fields on P such that these vector fields are duals
of the ωij ’s and the θi’s. We call these dual vector fields XJij and Xθi . In this setting, the
following lemma is easy to see, since we can take the Xθi ’s to be horizontal lifts of the ei’s and
that the XJij ’s are completely vertical.

Lemma 4.1.1. Using the same notation as above,

π∗Xθi = ei and π∗XJij = 0 (4.1.4)

Furthermore, let X be an arbitrary vector field on M , then its horizontal lift is simply given
by 〈X|ei〉Xθi , where we consider the metric to be the one fully determined by the Cartan
geometry, as we saw in the previous chapter.

Lemma 4.1.2. 1. Fix p ∈ P and define c : [0, 1]→ P by considering c(s) = p ∗R(s), where
R(s) = esJ

j
k , then c′(0) = XJjk |p.

2. Let F : P → Vk transform according to F (p ∗ h) = ρ(h−1)F (p), where Vk denotes the
representation space of highest weight k and h ∈ SO(V,Q). Then,

(XJjkF )(p) = −ρk(J jk)F (p) (4.1.5)
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3. Let X be a vector field on M and consider the functions 〈X|ei〉 : P → R, then :

XJjk

〈X|e0〉
...

〈X|en〉

 = −ρ1(J jk)

〈X|e0〉
...

〈X|en〉

 (4.1.6)

where ρ1 denotes the vector representation.

From the above, it follows that we may decompose the universal covariant derivative D̃F :
P → g∗ we explored in appendix C.2.6 as follows:

D̃F = Xθi(F )⊗ (ei)
∗ +XJij (F )⊗ (J ij)

∗ (4.1.7)

where there is an implicit summation over the generators and basis vectors of the Lie algebra
and where ∗ denotes the dual of the element, since we are considering elements in g∗. This
gives us some fundamental facts we will need later on in order to retrieve the Dirac operator.

4.1.2 Natural Differential Operators

Before we derive the Dirac equations, we will take a detour through the natural differential
operators which stem from the universal covariant derivative we defined previously and examine
the case of operators in dimension 3. This will be for illustrative purposes, to show how this
all fits together and what kind of operators we can expect from such a decomposition. While
the full treatment of what is to follow requires some representation theory to decompose tensor
products of irreducible representations, we will not go into the details of the representation
theory at hand, but it has been treated extensively by Cartan [10] and other authors. The
results obtained in this section will serve as a blueprint for the necessary steps to take for the
derivation of the Dirac equations in flat space and will hint at some of the problems we might
run into when trying to generalize the Dirac equation to curved spaces.

Euclidean 3D space can be regarded as a Cartan geometry modelled on (iso(3), so(3)). The
covariant derivative over the Cartan geometry we have considered can essentially be understood
as the part of the universal covariant derivative which is horizontal with respect to the base
manifold M . In other words, if F : P → Vk is a smooth function from a principal bundle into a
representation Vk of highest weight k, the covariant derivative can be seen as DF : P → Vk⊗p∗.
Furthermore, p∗ ∼= p ∼= R3 can be seen as nothing other than the representation V1, i.e. the
vector representation of the orthogonal group. With an analogous choice of basis as above,
we may decompose the covariant derivative in terms of the vector fields we specified above,
namely:

DF = Xθi(F )⊗ (ei)
∗ ∼ Xθ1(F )⊗ e1 +Xθ2(F )⊗ e2 +Xθ3(F )⊗ e3 (4.1.8)

Notation 4.1.1. In what will follow, we will note Xi the vector field that we previously wrote
Xθi in order not to clutter the notation too much. We may do this without ambiguity since we
are here only considering the horizontal part of the universal covariant derivative.

The interesting things happen when we apply the above concepts to a particular irreducible
representation. For example, let F be a vector-valued smooth function (which can be seen as
a section of an associated bundle with typical fibre V1

∼= R3). In this case, because of the
representation theory of the orthogonal group in 3D, we know that the universal covariant
derivative takes values in:

V1 ⊗ p∗ ∼= V1 ⊗ V1 = V2 ⊕ V1 ⊕ V0 (4.1.9)
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This means that the universal covariant derivative naturally decomposes into three irreducible
representations and has components in V2, V1 and V0 respectively. For the sake of notational
brevity, we introduce the following definition:

Definition 4.1.2. We denote Γ(k) the space of smooth sections over an associated bundle with
representation Vk with highest weight k.

Remark 4.1.1. This is completely analogous to talking about smooth functions from a principal
bundle P into the representation Vk by virtue of theorem B.2.1.

In this case, the decomposition takes the form:

D : Γ(1)→ Γ(2)⊕ Γ(1)⊕ Γ(0) (4.1.10)

yielding the following maps rig : Γ(1)→ Γ(2), ∇× : Γ(1)→ Γ(1), ∇· : Γ(1)→ Γ(1), given by:

rig ∼


X1 0 −X3

0 X2 −X3

0 X3 X2

X3 0 X1

X2 X1 0

 ∇× ∼

 0 −X3 X2

X3 0 −X1

−X2 X1 0

 and ∇· ∼
(
X1 X2 X3

)
(4.1.11)

The suggestive naming of these representations hints at their geometric meaning in the case
where M is the Euclidean 3D plane. However, in order to be able to interpret these findings
and conclude that, it is useful to consider the following lemma, which will allow us to perform
the computation of these objects in a particular gauge (we look at the case of 3D, but the proof
easily generalizes to arbitrary dimension):

Lemma 4.1.3. Fix a local section σ : M → P such that σ(x) = (x, e1, e2, e3) such that
(e1, e2, e3) is an orthonormal frame on M . Then,

1. At points of P in the image of σ, we have Xi = σ∗(ei)− ωjk(σ∗(ei))XJjk . Now let
0 0 0 0
θ1 0 −ω1

2 ω1
3

θ2 ω1
2 0 −ω2

3

θ3 −ω1
3 ω2

3 0

 (4.1.12)

denote the infinitesimal gauge corresponding to σ.

2. Under the conditions above:

Xi〈X|ej〉 = ei〈X|ej〉 − ωk`(ei)XJk`
〈X|ej〉 (4.1.13)

where we may use lemma 4.1.2 to further simplify the last expression.

Proof. We start by proving the first statement. By lemma 4.1.1, π∗(Xi) = ei so that π∗(Xi −
σ∗ei) = 0. It follows that Xi = σ∗(e1) + λk`XJk`

for some functions λk`. Applying ωk` to this

equation, we have 0 = ωk`(σ∗(ei)) + λk`, which proves the first result.
The second result follows from considering:

Xi〈X|ej〉 = (ei − ωk`(ei)XJk`
)〈X|ej〉 (4.1.14)

�
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With this we are finally able to give meaning in a given gauge to the operators we got from
representation theory. To make our results more readable, we let

ω1
2 = α, ω1

3 = β, and ω2
3 = γ (4.1.15)

Then:

Theorem 4.1.4. Given the splitting of the universal covariant derivative as shown above, and
taking X to be the vector field on M which corresponds to the function F : P → V1 given by:

F (x, e1, e2, e3) =

〈X|e1〉
〈X|e2〉
〈X|e3〉

 (4.1.16)

The following assertions hold:

1. If we interpret the operator ∇· : Γ(1) → Γ(0) as a map from vector fields on M to
functions on M , with respect to the gauge above, it assumes the form:

∇ · F = (e1 − α(e2) + β(e3)) 〈X|e1〉
+(e2 + α(e1)− γ(e3)) 〈X|e2〉
+(e3 − β(e1) + γ(e2)) 〈X|e3〉 (4.1.17)

2. The operator ∇× : Γ(1) → Γ(1) as a map from vector fields on M onto vector fields on
M with respect to the same gauge takes the form:

∇× F =

β(e2)− α(e3) −e3 − γ(e2) e2 − γ(e3)
e3 + β(e1) −α(e3)− γ(e1) −e1 + β(e3)
e2 − α(e1) −e1 − α(e2) β(e2) + γ(e1)

〈X|e1〉
〈X|e2〉
〈X|e3〉

 (4.1.18)

3. In the particular case where M = R3, α, β and γ are all identically zero. Moreover, if
we take the canonical basis for R3, we simply have the divergence and curl operators for
the operators of the spin 0 and spin 1 representations, respectively. Finally, a similar
analysis can be carried for the spin 2 representation, this will yield the operators of rigid
motion in 3D Euclidean space.

This means in particular that if we equate the above to zero, we get rotationally invariant
equations. In the case of spin zero this simply yields:

∇ · F = 0 (4.1.19)

which is indeed rotationally invariant. Doing the same for the spin 2 representation, we get
the equations of rigid motion in 3D Euclidean space:

rigF = 0 (4.1.20)

Finally, for vector (spin 1) representation, the more general rotationally invariant equation we
can consider is given by:

∇× F = mF (4.1.21)

This is due to the fact that the representations of both sides transform in the same way. Under
a reversal, we get that the sign in front of the m coefficient gets flipped. This remark will be
of importance when we derive the Dirac equation.
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4.1.3 The Dirac Equation

The discovery of spinors has had not only the well-known developments in physics, but has
also had important consequences in our understanding of geometry and mathematics as well.
It is important to stress that the Dirac equation’s existence does not depend on a particular
physical theory at all, but is rather a consequence of the symmetries of space. In the physical
case, the only assumption needed for its derivation is infinitesimal Poincaré symmetry and
nothing else. We will find out in this section that because of the geometrical source of the
Dirac equations, their structure can be expected to always be the same.

We will now show that, at least in flat space, we can see the Dirac equation as stemming from
the decompositions of the universal covariant derivative. The first important remark to make in
order to get there is that there is no reason to limit ourselves to the representations of so3 which
are integer valued over a spin manifold. We may instead consider the half-spin representations
as well. For starters, let us take the simplest half-spin representation, V 1

2
, which corresponds to

the fundamental representation of sl2 as we showed earlier. As before, motivated by geometrical
reasons, we consider the tensor product decomposition of V 1

2
⊗V1 = V 3

2
⊕V 1

2
. This implies that

the covariant derivative for the spinors can in some way be seen as D : Γ(1
2)→ Γ(3

2)⊕Γ(1
2). In

our case, we will only worry about the mapping Γ(1
2) → Γ(1

2) as this is the part which yields
the Dirac equation. By a similar procedure as in the case of the decomposition of the vector
representations, the representation theory decomposition yields:

/∂ =

(
X3 X1 − iX2

X1 + iX2 −X3

)
(4.1.22)

which we may then apply on the spinors. However, notice that contrarily to the previous case
where we could immediately relate the function F : P → V1 to a vector field X which we could
then project the different components, the case for spinors is somewhat trickier, since they are,
in a sense, the square root of a vector. We have been able to appreciate this twice already. It
turns out that even from the point of view of representation theory, such a conception of the
square root of a vector is true since, for example, if we place ourselves in dimension 2n + 1,
the tensor product of the spinor representation with itself gives back S⊗S =

∧n
k=0 V , thus we

may reconstruct the vectors of the original space if we start from certain spinors. In the case
of 3D, we have a special case in which S ⊗S = V ⊕C. Thus every spinor can be considered as
the square root of a vector

In the case of Euclidean space, the above is no mystery and /∂ = σi∂i, which may be readily
applied on the spinors themselves, since the action of the vectors σ when we see it as an element
of the Clifford algebra has already been readily specified previously on the space of spinors.
In that case, since elements of V 1

2
transform in the same way under rotation as the spinors

themselves, it follows that the equation:

(/∂ −m)ψ = 0 (4.1.23)

is invariant under rotation. Under reversal, we simply get the same equation, with the sign in
front of m changed. At this point a few remarks are in order:

Remark 4.1.2. The fact that the Dirac equation shows up is of no surprise, this is because this
is the only first order operator which acts on spinors which is invariant under rotations. We
clearly see here that the Dirac equation is nothing other than a geometrical consequence of
the geometry of flat space. The reader should notice at this point that it is also obvious that
/∂ /∂ = ∇2, since ∂i is clearly a vector and as we have seen previously, in the Clifford algebra, we
simply have that any vector squares to Q(v).
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Remark 4.1.3. The generalization for curved spaces here is somewhat tricky, due to the presence
of the correcting factors coming from the connection. Since these factors identically vanish in
the case of flat space, we have no problem here. Ideally, we would like to use what we previously
saw in the case of the V1 representation, but the problem is that, this time, we are dealing with
spinors, which are not straightforward quantities to describe in terms of the vectors as we have
discussed previously. We may, however, take inspiration from what is happening in flat space
in order to generalize this in a straight forward way to the case of curved space. We will do
this in section 4.2

The case of 4D Minkowski Space

In this case, we are looking at the group so(3, 1), of which the representation theory is well
known. A caveat is, however, that since the Lorentz group is non-compact, its the representation
theory changes. On the other hand, using Weyl’s unitary trick, we may find a one-to-one
correspondence between the representation theory of sl2(C) ⊕ sl2(C) and the one of so(3, 1).
Overall, we won’t concern ourselves too much with the details of the representation theory of
the Lorentz group, however we will give some handwavy arguments and insights as to why this
is in a way not very surprising. This identification can be understood from a geometrical and
from a physical point of view as well. Both perspectives are worth looking at, as they provide
different kinds of insight as to what is actually going on.

Let us take a look at the geometry first and examine so(4,C) for the sake of simplicity.
There are multiple angles from which we can understand this isomorphism from a geometrical
point of view, but we will take a similar approach to the one we took in section E.1.2 when
we explored the case of the matrix representations Clifford algebras in the case of 3D. As
before, we can consider the action of the orthogonal group over P(V ). In this way, we can
realize PSO4(C) ∼= SO4(C)/Z2 as the connected component of the identity of the group of
motions of P3(C) carrying the quadric hypersurface −t2 +x2 +y2 +z2 = 0 onto itself. However,
a quadric hypersurface over P3(C) has two rulings, which means that we may identify the
quadric hypersurface with P1(C) × P1(C). This means that PSO4(C) acts on P1(C) × P1(C),
but the connected component at the identity of the automorphism group of P1(C) × P1(C) is
nothing but PGL2(C)× PGL2(C), so that we get the inclusion:

PSO4(C)→ PGL2(C)× PGL2(C) (4.1.24)

To get the reverse inclusion, we consider V = U ⊗W where U and W are the pullbacks of the
fundamental representations onto the first and second factor of sl2 × sl2. Then, clearly, the
action of PGL2 × PGL2 on P(U ⊗W ) will preserve decomposable tensors, i.e. points of the
form [u⊗ w]. However, the locus of all such points must be a quadric hypersurface because of
Segre embedding, thus giving us the reverse inclusion.

Next, we take a look at the physical point of view, which is a nice interpretation of the
use of Lorentz symmetry in physics and is inherently linked to the geometrical picture we just
talked about. We start by noting that SO(3, 1) ∼= PGL2(C), so that we may (handwavingly)
see this as simply being the projection onto one of the factors of SO4(C). Then, using the
embedding of P1×P1 above into the quadric hypersurface, we render explicit the isomorphism
of the rulings and the quadric via a similar procedure to the one we employed in the case of 3D
in section E.1.2. In this case, we only need one of the rulings because we are concerned with
SO(3, 1), thus if [ξ : ζ] ∈ P1(C), then:

[ξ : ζ] 7−→ [ξ2 + ζ2 + 1 : 2ξ : −2ζ : ξ2 + ζ2 − 1] (4.1.25)
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The physical interpretation of this map is rather neat. Consider very distant, fixed stars
so that we may identify these stars with points on the celestial sphere, to which we may
assign coordinates on the Riemann sphere. We may write these coordinates [ξ : ζ], since the
Riemann sphere is actually P1(C). The line specified in V by the homogeneous coordinates
above corresponds to to the line of sight of a particular event in Minkowski spacetime to the
distant fixed star having coordinates [ξ : ζ]. A Lorentz transformation, seen as an element
of PGL2, acting on the locus of all such points in P1(C) is then equivalent to stating that
this is how this observer sees the appearence of the night sky change as he or she travels at
relativistic speeds. This picture reconciles the geometric reasoning above, as well as providing
some physical intuition as to why the light cone plays such an important role in the story.
While a bit unrelated, one can also understand the connection between the light cone and
spinors in the physical case as being linked to the causal limits of the theory as well as to the
fact that chiral spinors travel along the light cone.

Having said the above, the construction of the actual matrix representation of the Clifford
algebra can be done in an analogous way to the 3D case and we give here only some guidelines
and leave the details out for the sake of conciseness. We start by noticing that in this case, due to
the even dimensionality of the Minkowski case, the decomposition of V into maximally isotropic
subspaces will look like V = W ⊕W ′ with dimW = 2. The space of spinors is then

∧
W .

Again, due to the fact we are in even dimension, there will be two irreducible representations
of the special orthogonal group, which correspond to S+ = ΛevenW and S− = ΛoddW , which
are the two irreducible chiral representations. As far as the full orthogonal group is concerned
though, no such splitting occurs. This motivates our consideration of

∧
W as a whole instead

of splitting it explicitly into the irreducible components of SO(3, 1). We can then simply use
the accidental isomorphism we just provided to identify what the chiral representations should
look like. Finally, after distiguishing both representations appropriately, we fall back on the
γ-matrices we know and love.

To get the Dirac equation in Minkowski flat space, it is then sufficient to consider the
splitting of the tensor product of the vector representation and the half-spin representation. If
we do so, we have to take care of the fact that we have indexing of these representations with
2 numbers now, since we have so(3, 1) ∼= sl2⊕ sl2. Examining the the (1

2 , 0)⊕ (0, 1
2) component

of this tensor product decomposition, we get the usual Dirac equation in exactly the same way
we did in the case of 3D:

(/∂ −m)ψ = 0 (4.1.26)

where here we now have /∂ = γµ∂µ as expected.

Remark 4.1.4. The reader might be wondering where the factor i in front of /∂ present in the
usual Dirac equation went. We recall that this factor i came from trying to factorize the Klein-
Gordon operator, which reads � + m2. Thus the factor i is necessary in order to obtain this
factorization. Without the factor i we have:

(/∂ −m)(/∂ +m) = �−m2 (4.1.27)

so we see that for us to obtain a consistent treatment, we need an extra factor i either in front
of /∂ or simply from the square of m2. In our case, this factor has been implicitly absorbed by
this m factor in the equation. We recall that this m for us was nothing other than a constant
figuring in the most general first order differential operator operating on spinors which we found
with the use of representation theory. We considered it then as an arbitrary parameter. Of
course, in the case of physics, we want to recover Klein-Gordon back, in which m plays the
role of the mass, so we must add this factor i by hand. In what will follow, for the sake of
respecting convention, we will always add this factor i in front of the /’ed operator.
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With this last remark, we have thus obtained the form of the Dirac equation in both
Euclidean 3D and Minkowski spacetime. In both cases, they read:

(i/∂ −m)ψ = 0 (4.1.28)

4.2 Dirac Operators and Curved Space

In order to apply the same reasoning to curved space, we must do a little bit more work,
as the generalization does not come in a straight forward manner due to the strange square
root-like nature of spin. We start by making a series of remarks which bullet point important
aspects and problems which we will have to solve. These remarks will then be the main building
pillars to our generalization of the above to curved space.

Remark 4.2.1. The first remark to make is that the gamma matrices γµ present over in flat
space are inherently linked to a choice of an orthonormal basis, since these γ’s are honest
to goodness vectors from the point of view of the Clifford algebra. This means that γµ is a
direction which agrees with the direction of the orthogonal basis taken for the ∂µ.

Remark 4.2.2. We may see these γ-matrices as acting on the spinor space, and indeed this was
also the case when we constructed the matrix representation, the vectors in the Clifford algebra
act on

∧
W via the action we had denoted with an ∗ in section E.1.

Remark 4.2.3. The problem we ran into previously came about when we considered the con-
nection as acting on the spinor components. In order to fix it, we must take a closer look at the
structure of the connection. The h-valued part of the Cartan connection is nothing other than
an h-valued 1-form on the principal bundle. This has as a consequence that we must pick a Lie
algebra basis in order to express this 1-form. So far, these sound like trivialities, but the solu-
tion to the problem comes precisely at the stage of picking a basis for the Lie algebra. Recall
that in our previous construction, we had made the point to choose generators J ij along which
we decided to express our connection coefficients. For spinors, the story must be different. We
recall, however, that because of the construction of the Clifford algebra, we may always give
the expression of the generators of so(V,Q) in terms of σµν = γµ ∧ γν = 1

2 [γµ, γν ]. With this,
we now know we should write the connection form as simply being given by:

ω = ωij γi ∧ γj (4.2.29)

Thus, it is clear how the connection coefficients must act on the spinor components, since there
is no ambiguity as to how things act on the spinors anymore due to our previous discussion
concerning the action of vectors on the spinorial representation. We once again appreciate the
square root-like nature of the spinors, since in order to find the corresponding action on spinor
space, we had to take the “wedge square root” of the generators of the rotation group.

Remark 4.2.4. In order to give consistent treatment in curved space we must absolutely have
a representation of dimension 4, because otherwise there is a problem as far as the connection
is concerned. Indeed, the h-valued part of the Cartan connection must keep the correct dimen-
sion. However, if we have bigger half-spin representations, the gamma compatibility condition
absolutely requires a bigger matrix, which just doesn’t fit into this framework. This imposes
limitations on the spins that fundamental particles can carry and forbids anything beyond the
(3

2 , 0) and (0, 3
2) representations of the Lorentz group. In particular, it rules out the existence

of the graviton as a fundamental particle.

With all of the remarks above, we are now ready to generalize our treatment of vector
representation splitting of the universal covariant derivative to the case of spinors. Since we will
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mainly be concerned with the half-spin representation (1
2 , 0)⊕ (0, 1

2) for the case of a geometry
modelled on Minkowski spacetime, we focus a curved space equivalent to the operator /∂ we
found earlier, which we will denote /∇. Notice that in that case, we were dealing with spanning
vector fields over P which we previously denoted X. These were taken to be the duals of the
Cartan connection forms. We can thus see that picking these vector fields is nothing other than
finding a lift of a connection present on M to the principal bundle on P . With this remark,
we are ready to take a look at general Dirac operators.

In light of the remarks above, let us start by picking a section from the base manifold onto
P which we can take to be: σ : M → P given by σ(x) = (x, {ei}i∈I), where the {ei}i∈I ’s are
an orthonormal basis. Pushing everything down with this choice of section, the Dirac operator
in the case of curved space can then be associated with:

/∇ = ei∇ei (4.2.30)

where ∇ here denotes the connection induced on the manifold M by the Cartan connection
$ and where there is an implicit summation over the i’s. Notice also that we understand this
multiplication to really be between elements in the Clifford algebra. Actually, this is because
we may see these vector fields (at least locally) as being embedded in the Clifford algebra itself.
Over an open neighbourhood, we may always find a chart relating the manifold to Rn, which
we can take as our vector space, on which we may then impose the Clifford algebra in the
usual way. In this manner, we notice that actually this is truly Clifford multiplication taking
place over a general manifold M . Another picture we can have is to use the Clifford matrix
representation. We can then write this as:

/∇ = γi∇ei (4.2.31)

On the other hand, we must always remember that this equation only holds for an orthogonal
basis. If we wish to think in terms of local coordinates, we once again must play the vielbein
game and let ei = eµi ∂µ, then we may rewrite the above as simply being:

/∇ = γieµi∇µ (4.2.32)

It is possible to interpret these results in terms of frame fields. This is somewhat akin to the
famous vielbeins we had in the previous chapter. We can see the gamma matrices or the Pauli
matrices as simply being the link between two bases living in two different spaces. In this way,
any vector a may be transformed into /a, which basically embeds it into a Clifford algebra.
We may thus consider / : V ↪→ C`(V,Q) as being the natural inclusion. This map, however,
requires the choice of an orthogonal basis (although it is independent of this choice and thus is
a natural mapping in the categorical sense). This provides a handwavy geometrical motivation
as to why spin manifolds must be orientable, as this choice of orthogonal basis must not change
orientations from point to point over the manifold M .

Choosing a section to pull everything back to the base manifold, we are now ready to write
the general curved Dirac equation, which reads, perhaps unsurprisingly:

(i /∇−m)ψ (4.2.33)

Expanding everything in terms of our previous definitions, and recalling that ψ is a section
over an associated bundle, we have that:

iγieµi∇µψ = mψ ⇐⇒ iγieµi

[
∂µ −

1

2
ωαβµ γα ∧ γβ

]
ψ = mψ (4.2.34)

which is the desired equation in curved space.
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Conclusion

Throughout this report, we have treated many different aspects of physics under a geo-
metrical light. Indeed, starting from a description of spontaneous symmetry breaking in the
electroweak sector, through a formulation of an extension of General Relativity and ending in
a description of spin and a generalization of the Dirac equation, we have shown that geometry
provides powerful tools to treat problems in physics. This might not hint at a similarity between
these different topics per se, but on the other hand, what we can say is that the geometrical
approach is so general as to being able to encompass them all.

The reason for this is not so mysterious either. In the end, it relies on the fact that nature
seems to be inherently symmetric and the manifestations of these symmetries are perfectly
described in the language of differential geometry. We stress that despite the fact that we
were hereby restricted to cover only three topics, many other results can be understood from
a geometrical standpoint.

For example, the Gribov ambiguity and Singer’s approach to proving the impossibility
of the existence of a global section corresponding to the Lorentz gauge fixing condition was
geometrical in nature. In fact, many other such difficult problems can be understood under
this light, which might lead to eventual possible solutions of them.

In the author’s opinion, geometry is perhaps one of the most powerful – and yet underrated
– tools that physicists posses to understand nature, as shown by illustration in this report. In
any case, the consequences of a good understanding of the geometry might be worth the detour
to study it further and, in particular, to seek new ways of implementing the geometrical point
of view in various other branches of physics.
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Appendix A

Definitions and Facts

A.1 Group Theory

Definition A.1.1. Let X be a set and G be a group. A (right) action of G on X is a
function:

∗ : X ×G −→ X (A.1.1)

(x, g) 7−→ x ∗ g (A.1.2)

Such that ∗ satisfies the following (if e ∈ G is the identity element on G):

1. ∀x ∈ X, x ∗ e = x (compatibility with the identity)

2. ∀x ∈ X, ∀g, h ∈ G, x ∗ (gh) = (x ∗ g) ∗ h (compatibility with the group operation)

If such a function exists, we say that G acts on X and we will note: Gy X.

Definition A.1.2. We characterize actions in the following ways. We say that a group action
∗ is:

• Transitive or that G acts transitively on X if X 6= ∅ and if ∀(x, y) ∈ X2, ∃ g ∈ G such
that x ∗ g = y.

• Free or that G acts freely on X if x ∗ g = x =⇒ g = e.

• Effective (or faithful) if for each e 6= g ∈ G, ∃x ∈ X such that x ∗ g 6= x (a free action
on a non-empty set is always faithful)

Remark A.1.1. We could’ve easily defined a left action in an analogous fashion. There exists
a sort of duality on right and left actions, which is given by the simple fact that if G y X on
the left, then one can induce a right action by simply composing ∗ with the inverse operation
of the group. This is simply a direct consequence of the formula (gh)−1 = h−1g−1.

Definition A.1.3. The orbit of a point x ∈ X under the right action of G on a set X is
defined to be:

Orb(x) := {y ∈ X | y = x ∗ g, ∀g ∈ G} (A.1.3)

The stabilizer of x ∈ X under a right G-action on a set X is defined as being the set:

Stab(x) := {g ∈ G | x = x ∗ g} (A.1.4)
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A.2 Lie Groups and Algebras

Notation A.2.1. We will note the right and left actions of an element of a group g ∈ G on a
set X by: Rg and Lg respectively.

Definition A.2.1. A subalgebra h of g is called a Cartan subalgebra if h is nilpotent and
h = I(h), where:

I(h) := {x ∈ g | [y, x] ∈ h ∀y ∈ h} (A.2.5)

As we have seen, if g is finite dimensional, it is always possible to find a Cartan subalgebra
of g. If we further impose a condition of being simple, then it is possible to decompose the Lie
Algebra in terms of a Cartan Subalgebra h and one-dimensional vector spaces gα indexed by
the positive roots of the Lie Algebra. In this way, we obtain that the Lie Algebra g can simply
be written as:

g = h⊕
⊕
α∈Φ

gα (A.2.6)

It is noteworthy that Φ is not a linearly independent set, however it turns out that the set
spans h∗. Additionally, we can pick a basis of h∗ in a particular way using Φ. Indeed, we can
form set Π ⊂ Φ which forms a basis with the additional condition that for every α ∈ Φ, we can
express α as a linear combination of all positive or all negative integers of vectors in the set Π.
The choice of Π is not unique, however, once it is set, we have that Φ can be partitioned into:

Φ = Φ+ t Φ− (A.2.7)

Where Φ± refer to the roots made out of positive (resp. negative) integer linear combinations
of vectors in the set Π.

Definition A.2.2. The Killing form K is the bilinear symmetric non-degenerate quadratic
form K : g× g→ C given by:

(x, y) 7→ 〈x|y〉K = 〈x|K|y〉 where K := Tr(adxady) (A.2.8)

Notice here that by abuse of notation we denote K as the matrix corresponding to this bilinear
form which can be constructed in g∗ ⊗ g.

Remark A.2.1. We notice here that the duality between 〈 | and | 〉 is given with respect to the
standard basis of the vector spaces in which they live. This means that if we want to map
|x〉 ∈ h → h∗ via the inner product defined by the Killing form, the correct formula is simply
given by: |x〉 7→ 〈x|K.

The Killing form is important for many reasons, but it is particularly interesting because it
allows us to define the concepts of orthogonality and angles between vectors. We may restrict
the Killing form to h and it turns out that the form remains non-degenerate on h. Thus, there
exists an isomorphism given by K from h→ h∗, explicitly this gives us:

h∗ × h∗ →C
(〈x|, 〈y|) 7→ 〈x|y〉K = 〈x|K|y〉

In what will follow however, we will stick to the notation 〈x|y〉K for the inner product on h∗

defined by the Killing form. It turns out that the geometry defined by the Killing form will
play an important role in the classification of simple Lie Algebras.
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Remark A.2.2. It shouldn’t come to us as a surprise that this geometry is what will characterize
the algebra since the Killing form contains all the information about the commutation relations
characterizing the Lie Algebra at hand.

We may further introduce another definition that will be practical later on.

Definition A.2.3. Let 〈αj |, 〈αi| ∈ Π. Consider the elements |hi〉 ∈ h corresponding to the
element such that:

2〈αi|
〈αi|αi〉K

7→ |hi〉 which is just |hi〉 =
2K|αi〉
〈αi|αi〉K

(A.2.9)

via the Killing duality we exposed earlier, then we have that for any root αj ∈ h∗, we have
that:

〈αj |hi〉 =
2〈αi|αj〉K
〈αi|αi〉K

∈ Z (A.2.10)

We call the set of |hi〉’s the fundamental coroots it follows from this duality that the set
{hi}i∈Π forms a basis of h.

Definition A.2.4. ∀α ∈ Φ, let sα : h∗ → h∗ be the reflection with respect to the hyperplane
orthogonal to α defined by:

λ 7→ sα(λ) = λ− 2
〈α|λ〉K
〈α|α〉K

α (A.2.11)

This set of reflections constitutes a group acting on h∗. We call this group the Weyl Group
and will be denoted by W.

The Weyl group has interesting properties, but notably it has the property to act freely
and transitively on the set of roots (more accurately on the Weyl chambers, a notion we will
encounter later on). This set of properties and the definition of sα provide motivation for the
following definition:

Definition A.2.5. The Cartan Matrix A is the matrix whose components are given by:

Aij =
2〈αi|αj〉K
〈αi|αi〉K

∈ Z (A.2.12)

Furthermore, if i 6= j then Aij ≤ 0 and Aii = 2 trivially.

Remark A.2.3. Notice that the Cartan Matrix is not always symmetric, this is only true when
all the roots have the same length with respect to the norm induced by the Killing inner
product.

A.2.1 Dynkin Diagrams

Now that we have these definitions in our toolkit, more can be said about the structure of
simple Lie algebras by looking at the geometry of its roots. To start, we may define the angle
between two roots αi and αj using the Killing inner product as:

cos θij =
〈αi|αj〉K√

〈αi|αi〉K〈αj |αj〉K
(A.2.13)

This angle may be written in terms of the Cartan Matrix. After some trivial algebraic manip-
ulations we arrive at:

4 cos2 θij = AijAji (A.2.14)
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In turn, this tells us about the nature of the elements in the Cartan Matrix. Indeed, since
cos2(x) is bounded, the elements of nij := AijAji are bounded and are integers between 0 and
4. The only possibilities are thus nij ∈ {0, 1, 2, 3}, since 4 would mean that the two roots are
colinear.

To illustrate the procedure further, it is helpful to look at an example at this point.

Example A.2.1. Let us consider g = sl3(C). The Cartan subalgebra h is simply given by the
diagonal matrices of trace zero (in fact, this holds for sln(C)). We may then choose the ordered
basis of h to be the following two matrices:

E1,2 :=

1 0 0
0 −1 0
0 0 0

 and E2,3 :=

0 0 0
0 1 0
0 0 −1

 (A.2.15)

Furthermore, we notice that a basis of h∗ can be obtained by considering the dual elements of
Ei,i+1:

E∗i,i+1 :

λ1

. . .

λn

 7→ λi − λi+1 (A.2.16)

With this duality, it is easy to see that we have two roots in the set Π defined earlier. We call
them αi. Furthermore it is easy to compute the Killing form and restrict it to h, in so doing
we obtain:

K =

[
12 −6
−6 12

]
=⇒ A =

[
2 −1
−1 2

]
(A.2.17)

We can thus see that n12 = 1. We may represent this graphically as:
α1 α2

which illus-
trates quite simply that there are two fundamental roots α1, α2 in sl3(C). The number of edges
connecting roots i and j indicate the value entry nij in the matrix n introduced above. Since
there is one edge linking the two fundamental roots in our example, it means that the n matrix

has form:

[
4 1
1 4

]
Definition A.2.6. We call diagrams constructed as explicited above Dynkin diagrams.
Notice that the diagrammatic representation in the above example is only dependent on g and
nothing else.

Figure A.1: All possible Dynkin diagrams, each corresponding to a simple Lie Algebra

It turns out that we may characterize all simple Lie Algebras using this kind of diagram.
Indeed we have:

Theorem A.2.1. Let ∆ be the Dynking diagram of a Lie Algebra g, then:
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1. ∆ is a connected graph ⇐⇒ g is a non-trivial simple Lie Algebra;

2. Two nodes are connected by at most 3 bonds;

3. Let Q(x1, · · · , xl) be the quadratic form defined by:

Q(x1, · · · , xl) = 2

l∑
i=1

x2
i −

∑
i 6=j

√
nijxixj (A.2.18)

We notice that the quadratic form defined only depends on the diagram and nothing else,
furthermore it is positive definite.

We complement this theorem with a beautiful theorem of the classification of Lie Algebras
(which even we will not use, but the result is beautiful given its simplicity)

Theorem A.2.2. If ∆ is a graph satisfying the properties given in Theorem A.2.1, then we
have that ∆ must be one of the diagrams in Figure A.1

Actually, it is possible just from the diagram to go backwards and retrieve the whole
structure of the Lie Algebra, which is why Dynkin diagrams are a powerful tool in Lie and
Representation theory.

A.3 Finite dimensional irreducible modules

In what will follow, we will interest ourselves in the representation theory of Lie Algebras.
It turns out the same formalism we used to classify simple Lie algebras is also useful to classify
the associated irreducible representations. In particular, the following theorem is of utmost
importance:

Theorem A.3.1. Let 〈λ| ∈ h∗ and let |hi〉 be a fundamental coroot of the simple Lie Algebra
g. Then there is an irreducible representation associated to 〈λ| and the dimension of it is finite
if and only if:

• 〈λ|hi〉 ∈ Z, i.e. if the weight is integral;

• 〈λ|hi〉 ≥ 0 ∀i ∈ {0, · · · ,#Π}, then we say the weight is dominant integral.

This means that we can completely characterize an irreducible representation (of finite
dimension) by examining the weights 〈λ| associated to it. In particular the dominant integral
weights λ ∈ h∗ are interesting as we will see in the following theorem attributed to Élie Cartan:

Theorem A.3.2. Every finite dimensional irreducible g-module (representation) has the form
L(λ) for some λ ∈ h∗ dominant integral.

Thus by considering all integral weights we have all the representations (of finite dimension)
and there is nothing else. To further characterize these dominant integral weights, it is useful
to pull-back the fundamental coroots back to h∗.

Definition A.3.1. Using the canonical inner product, that is: let 〈ωi|hj〉 = δij . We call the
ωi the fundamental weights and they also (trivially) form a basis of h∗.
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α1

α2

ω1

ω2

Figure A.2: Fundamental roots and weights of sl3(C), the lattice ΛR (resp. ΛW ) is the one
spanned by the roots α (resp. by the weights ω, which correspond to irreducible representations
of the algebra). Notice we have highlighted here the first Weyl chamber.

At this point, it is useful to consider what the basis transformation between the ωi’s and
the fundamental roots αi looks like. It turns out that they are connected through the Cartan
Matrix and the reader is encouraged to verify this. We have that:

〈αi| =
∑
j

Aij〈ωj | (A.3.19)

Definition A.3.2. A lattice Λ, of a basis of vectors {ei}i∈I is simply the integer linear
combinations of the ei’s, i.e. :

Λ =
∑
i∈I

Zei (A.3.20)

Furthermore it is practical to define:

Definition A.3.3. The open Weyl chambers for a given root system (h, αi) are the connected
components of h \ ∪αVα where the Vα are the hyperplanes through the origin perpendicular to
α. In particular, the first Weyl chamber is:

W1 = {λ ∈ h | 〈αi|λ〉K > 0 ∀ i} (A.3.21)

A.4 Differential Geometry

Definition A.4.1. A fibre bundle is a structure (E,B, π, F ), where E,B and F are topolog-
ical spaces which are called the total space, the base space and the fibre respectively and
π : E → B is a continuous surjection satisfying a condition of local triviality condition, i.e.
such that ∀x ∈ E,∃U ⊂ B an open neighbourhood such that there is a homeomorphism φ,
such that the following diagram commutes (π1 denotes the canonical projection onto the first
coordinate):

π−1(U) U × F

U

∃φ

π π1
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In particular, if the structure is such that F is a vector space, we call this particular kind of
fibre bundle a vector bundle.

Definition A.4.2. Given a general fibre bundle (E,B, π, F ), we define a section of this bundle
to be a continuous function s : B → E such that s ◦ π is the identity map on B.

Notation A.4.1. We will note Γ(E) to be the set of all (smooth) sections of E.

Definition A.4.3. Let V be a vector space. We will call an ordered basis (v1, · · · , vn) ∈ V n a
frame in V .

Definition A.4.4. A V -valued Koszul connection on a smooth vector bundle E with base
M is a R-linear function:

∇ : Γ(E) −→ Γ(E ⊗ V ∗) (A.4.22)

Such that the Leibniz rule holds ∀f ∈ C∞(M) and ∀σ ∈ Γ(E), i.e. :

∇(σf) = (∇σ)f + σ ⊗ df (A.4.23)

In particular, note that a Koszul connection naturally induces a covariant derivative on the
manifold by considering the following map for X ∈ TM :

∇X : Γ(E) −→ Γ(E) (A.4.24)

which is obtained by considering: ∇Xσ = ∇σ(X). This covarint derivative then satisfies the
following (for X1, X2, Y1, Y2 ∈ TM , f ∈ C∞(M) and a ∈ R):

1. ∇fX1+X2Y = f ∇X1Y +∇X2 (C∞(M)-linear in the first component)

2. ∇X(aY1 + Y2) = a∇XY1 +∇XY2 (R-linear in the second component)

3. ∇X(fY ) = f ∇XY +X(f)Y (Leibniz)

4. ∇X(A⊗B) = ∇XA⊗B +A⊗∇XB (⊗-Leibniz compatible)

5. For any contraction C, we have ∇X ◦ C = C ◦ ∇X (Contraction compatible)

In particular, the compatibility with the tensor product and the contractions can actually be
deduced from the first postulates. It will thus be sufficient in the future to check if two Koszul
connections coincide on a basis of vectors of TM . We see immediately that the Levi-Civita
connection is a particular case of a Koszul connection.

In the following, let φ : M → N be a diffeomorphism between two smooth manifolds M
and N . We are looking for some way to induce the manifold structure of N onto M via the
morphism φ.

Definition A.4.5. The diffeomorphism φ induces a diffeomorphism

φ∗ : C∞(N) −→ C∞(M) (A.4.25)

f 7−→ f ◦ φ (A.4.26)

We call this morphism φ∗ the pullback associated with φ. Furthermore, this new morphism
induces another one on the 1-forms on the manifold M (which we will still note φ∗) in such a
way that the following diagram commutes:

C∞(N) C∞(M)

T ∗N T ∗M

φ∗

d d

φ∗
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Similarly, we can carry the vector field and smooth structure that is present on M to N
via the morphism φ.

Definition A.4.6. The morphism φ induces yet another morphism between the tangent vector
bundles TM → TN called the pushforward by φ such that the following diagram commutes

TM TN

M N

φ∗

πM πN

φ

Explicitly, if the curve: γ : (−ε, ε) → M is an integral curve of vector field X ∈ TM we have
the formula:

φ∗(X) :=
d

dt

∣∣∣∣
t=0

(φ ◦ γ) (A.4.27)

Or, alternatively, if X is a vector field and f ∈ C∞(N), we have that:

(φ∗X)(f) = X(φ∗f) = X(f ◦ φ) (A.4.28)

Remark A.4.1. We may see the pushforward as a bundle map from TM → φ∗TN , which in
turn can be viewed as a section of the bundle Hom(TM, φ∗TN) over M . It is also noteworthy
to state that pointwise we have that the induced morphism φ∗ : TxM → Tφ(x)N .

A.5 Functional Analysis

Hilbert spaces are the generalization of Euclidean spaces to infinite dimensional spaces. In
particular, they are Banach spaces whose norm stems from an inner product structure on the
vector space. Lots of the results that hold in the finite dimensional case still hold for the infinite
dimensional case, however, one must be careful about certain manipulations when dealing with
a general Hilbert space structure.

Definition A.5.1. A Hilbert space (H, 〈 | 〉) is a real or complex inner product space that
is also a complete metric space with respect to the distance function induced by the inner
product.

In particular, this inner product induces also the notion of orthogonality of vectors in the
space where it is defined. We now list some important results from the theory of Hilbert spaces.

Theorem A.5.1 (Projection onto a closed convex space). Let Γ be a convex closed subset of
H. Then for all x ∈ H, there exists a unique point of Γ, pΓ(x) called the projection of x
onto Γ such that:

‖x− pΓ(x)‖ = inf
g∈Γ
‖x− g‖ . (A.5.29)

Proposition A.5.1. Let Γ be a closed convex subset of H and x ∈ H and let pΓ(x) be its
projection. Additionally, let γ ∈ Γ. Then the following are true:

<〈x− pΓ(x) | pΓ(x)− γ〉 ≥ 0 and
∥∥pΓ(x)− pΓ(x′)

∥∥ ≤ ∥∥x− x′∥∥ ∀x′ ∈ H (A.5.30)

Corollary 1. Let F be a closed subspace of H. Then: H = F ⊕ F⊥.
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Definition A.5.2. LetH be a Hilbert separable space of infinite dimension. We call a Hilbert
basis or orthonormal basis of H every sequence (en)n∈N which is complete (total) and such
that:

〈ei | ej〉 = δi,j (A.5.31)

Theorem A.5.2. In a separable Hilbert space, such bases exist.

Theorem A.5.3 (Bessel, Parseval). Let H be a separable Hilbert space and let (en)n∈N be an
orthonormal basis. The map defined by:

H −→ `2(N) (A.5.32)

x 7−→ (〈x|en〉)n∈N (A.5.33)

is a linear isometrical bijection. In particular, the following identities are true:

x =
∑
n∈N
〈x | en〉en and ‖x‖2 =

∑
n∈N
|〈x | en〉|2. (A.5.34)

Theorem A.5.4 (Riesz Representation Theorem). Let H∗ be the continuous dual of the Hilbert
space H (i.e. the space of all continuous linear functionals from H to R (or C)). Then, the
mapping Ξ : H → H∗ defined by Ξ(x) = ξx, where ξx(y) = 〈x|y〉 is an isometric (antilinear)
isomorphism.



Appendix B

Principal Bundles

In physics, we are often concerned with the particular reference frame of any particular
observer. Mathematically, if this observer lives on some manifold M , this reference frame can
be seen as a basis choice for the tangent space TpM at the point p ∈M at which the observer
lies at a given instant.

For example, imagine an airplane travelling through R3. The plane is free to turn, move
around and have different orientations at any given moment. Furthermore, the pilot is free to
choose any particular set of reference axes at any moment, which we will assume are constrained
to change in a smooth manner. In particular, these axes need not be orthogonal at any given
moment.

This kind of physical situation immediately motivates the study of these frames and the
way they behave as the observer moves around the manifold. We start by noticing that TM
actually forms a vector bundle over M (cf. definition A.4.1). Usually, in physics, it is customary
to consider a coordinate system over M and define an ordered basis of TpM as the vectors
corresponding to an infinitesimal change in each of the coordinates. Such a choice of local basis
for TM over some neighborhood U ⊂M where the coordinates are defined is called a natural
basis. However, we need not always choose a natural basis to study manifolds. As a matter of
fact, in all generality, we shouldn’t (consider again the case of the pilot continuously changing
his set of axes). By noticing that we need not have a particular choice of coordinates on the
manifold in order to have a particular frame, it allows us to obtain a much more powerful tool
to study differential geometry:

Definition B.0.1. Let Fp denote the set of all frames at any given point p ∈ M . We define
the frame bundle over M (which we will denote F (M)) as the disjoint union over all points
in the manifold of these Fp’s. In symbols:

F (M) :=
∐
p∈M

Fp (B.0.1)

In particular, we notice that at least locally, we can always determine an arbitrary basis
(X1, · · · , Xn) for TU . In that case, we note that we have that these Xi actually induce a
function:

φ : U −→ F (U)

p 7−→ (X1(p), · · · , Xn(p))

Whose values are frames in various tangent spaces of U . In particular, this allows us to define:

41
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Definition B.0.2. We define such a function φ to be a moving frame over U . In particular,
notice that every moving frame determines a set of vector fields (X1, · · · , Xn) and vice-versa.

Remark B.0.1. Notice that a given frame (X1, · · · , Xn) might not correspond to the natural
basis induced by a coordinate system over some open set U ⊂ M . This implies in particular
that [Xi, Xj ] need not be zero for a general moving frame.

We note that F (M) is equipped with a natural right action of GL(n,R) induced by the
action of the elements of this group on any particular frame of TpM by simple matrix mul-
tiplication on the right. This action is free and transitive by a standard result from linear
algebra, which states that there is a unique, invertible, linear transformation sending one basis
to another. The idea of a group acting on a manifold will turn out to be the key to generaliz-
ing geometric concepts further. Going back to our pilot, this action is precisely his (smooth)
freedom of choice of axes at any given instant. This whole discussion motivates the following
definition:

Definition B.0.3. A principal G-bundle is a fibre bundle π : P → X together with a
continuous right action ∗ : P × G → P such that if x ∈ X, y ∈ π−1(x) =⇒ y ∗ g ∈ π−1(x),
i.e. the group action preserves the fibres of P . Furthermore, we demand that this action is
free and transitive.

Note that the frame bundle F (M) actually forms a principal bundle over M under the
action of GL(n,R).

Remark B.0.2. Notice here that the condition of the action being free and transitive actually
implies that the fibres themselves are homeomorphic to the group G itself.

Remark B.0.3. In the above, we have defined the bundles in the general case, for what will
follow, we will be concerned with bundles over manifolds, which means we must replace the
continuity condition by one of smoothness of the maps above.

As usual in mathematics, it is useful to state explicitly what we mean by a (iso)morphism
of principal bundles.

Definition B.0.4. Let (P, π,M,G) and (Q, π′, N,H) be a principal G and H-bundle respec-
tively. A principal bundle (iso)morphism is the given of smooth maps (bijective diffeo-
morphisms) (u, f, ρ) such that the diagram commutes:

P Q

P ×G Q×H

P Q

M N

u

∗G
u×ρ

∗H

i1

π

u

i1

π′

f

where the morphism i1 denotes the inclusion into the first coordinate and ρ is a group (iso)morphism
ρ : G→ H.

Remark B.0.4. In the case where H = G or if the bases are the same, the diagram simplifies
considerably by taking the morphisms to simply being the identity.
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B.1 Tensors

In physics, so-called tensorial quantities are often of interest. Heuristically, physicists un-
derstand tensors as being quantities which “transform under a certain way”. In order to make
this concept more precise, we introduce the following definition:

Definition B.1.1. Let (P, π,M,G) be a principal bundle over M . Furthermore, let (V, ρ) be
a representation of G. We denote by Aq(P, (V, ρ)) (or Aq(P, ρ) for short) the following set:

Aq(P, ρ) := {η : ΛqTP → V | R∗gη = ρ(g−1)η, ∀g ∈ G} (B.1.2)

With the definition of this set Aq(P, ρ), we are ready to give a more precise meaning to
tensors. In particular, we want to characterize this “transformation under a certain way” using
the precision provided by representation theory. It follows quite naturally, then, that we should
define the following:

Definition B.1.2. Let (P,M, π,G) be a principal G-bundle and let (V, ρ) be a representation
of G. A tensorial form of type (V, ρ) is an element of the set Aq(P, ρ) (cf. definition B.1.1).
In particular, a tensor of type (V, ρ) is nothing other than an element of A0(P, ρ).

In the end, we regard tensors as objects which are G-equivariant on a principal G-bundle
in this particular sense.

B.2 Associated Bundles

We next introduce some practical definitions and facts about so-called associated bundles.
These notions will become useful later when we explore how all these concepts are applicable
in physics.

Definition B.2.1. Let (P, π,M,G) be a principal G-bundle and let F be a smooth manifold
equipped with a left G-action. We define:

1. PF = P ×G F := (P × F )/ ∼G, where (p, f) ∼G (p′, f ′) ⇐⇒ ∃ g ∈ G such that
(p′, f ′) = (p ∗ g, g−1 ∗ f). We note an element of PF as [p, f ] where here the brackets are
to be understood as the equivalence class of a point (p, f) in P × F ;

2. The well-defined map πF : PF →M which takes [p, f ] 7→ π(p).

The associated bundle to (P, π,M,G) with fibre F , is the bundle (PF , πF ,M).

It is important to give the notion of (iso)morphisms for any of the objects we introduce.
For this, we have the following definition:

Definition B.2.2. Let (PF , πF ,M) and (QF , π
′
F , N) be the associated bundles to the prin-

cipal G-bundles (P, π,M) and (Q, π′, N). An (iso)morphism of associated bundles is a
(bijective) bundle map (ũ, v) such that for some u, (u, v) is a principal bundle morphism, i.e.
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such that the following diagram commutes:

PF QF

M N

P Q

P Q

ũ

πF π′F

v

∗G

u

π

∗G

π′

u

Remark B.2.1. Notice that it is always possible to construct such an associated bundle by simply
considering F to be different smooth representations (which may in particular be linear) of G.
These are naturally equipped with a left action of G.

Theorem B.2.1. Let (P, π,M,G) be a principal G-bundle and (PF , πF ,M) be its associated
bundle. Let furthermore (U, x) be a chart of M . Then, there exists a bijection:

{Local sections s : U → PF }
{
G-equivariant φ : π−1(U)→ F

}ψ

σ

Where the G-left equivariant condition is given by (if ∗ denotes the corresponding left and right
actions):

∀g ∈ G, ∀p ∈ π−1(U) : φ(p ∗ g) = g−1 ∗ φ(p) (B.2.3)

Remark B.2.2. This bijection allows us in particular to express the local sections of PF in terms
of functions φ defined from the base onto the fiber univocally.

Proof. We proceed by first expliciting the map σ. Let φ be a G-equivariant function from
π−1(U)→ F . Then:

σ : φ 7−→ (sφ : x 7→ [p, φ(p)]) (B.2.4)

where p ∈ π−1(x). We start by checking that this map is well-defined. Indeed, we have that
if p, q ∈ π−1(x), then there is a unique g ∈ G such that q = p ∗ g. By the underlying quotient
present in PF and the equivariance condition on φ, we have:

[p, φ(p)] = [p ∗ g, g−1 ∗ φ(p)] = [p ∗ g, φ(p ∗ g)] = [q, φ(q)] (B.2.5)

And so, the map is well-defined. We now check that the condition of being a section is satisfied,
but we have:

πF ([p, φ(p)]) = π(p) = x (B.2.6)

Thus the condition is satisfied, so sφ is indeed a local section. Next we examine the reciprocal
of ψ. First however, we introduce an intermediate map:

ip : F −→ π−1
F (π(p)) (B.2.7)

f 7−→ [p, f ] (B.2.8)

This map is clearly a bijection (surjection is clear and injectivity follows from the freedom of
the action ∗). Furthermore, we have the property that:

ip(f) = [p, f ] = [p ∗ g, g−1 ∗ f ] = ip∗g(g
−1 ∗ f) (B.2.9)
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With these two facts in mind, let s : U → PF be a section, we take the map ψ to be:

ψ : s 7−→
[
φs : p 7→ i−1

p (s(π(p)))
]

(B.2.10)

We further need to check that φs is G-equivariant and that these two are inverses of each other.
The equivariance can be shown by the property of the map ip we uncovered previously, it is
left to the reader as an exercice. Finally, we show that ψ ◦ σ = id, the other order is left also
to the reader. We aim to show that if p ∈ π−1(U) then ψ(σ(φ))(p) = ψ(σ(φ(p))) = φ(p):

ψ(σ(φ))(p) = ψ(sφ)(p) = i−1
p (sφ(π(p))) (B.2.11)

Now recall that sφ(π(p)) = [q, φ(q)], where q is any element in π−1(π(p)). In particular p ∈
π−1(π(p)) so we have:

ψ(σ(φ))(p) = i−1
p ([p, φ(p)]) = φ(p) (B.2.12)

�

B.3 Connections in Principal Bundles

Now that we have a proper sense of the space in which we are working, we want to generalize
concepts that we commonly encounter in differential geometry to these principal bundles. In
particular, one of the first natural objects that we look at while considering manifolds are
connections, covariant derivatives and similar objects. Before definining these concepts, it
is interesting to take a look of the structure that the principal bundle construction provides
us with in order to better understand the kind of objects we are dealing with. We start by
introducing some notation and some definitions.

B.3.1 Lie Algebra Valued Forms

We start by first taking a small detour to define some notation that will become handy
later on for different purposes.

Notation B.3.1. For two Lie algebra-valued k and q-forms η and ζ on a principal bundle P ,
we define a (k + q)-form [η, ζ] defined by:

[η, ζ](v1, · · · , vp+q) =
∑

σ∈Sk+q

sgn(σ)
[
η(vσ(1), · · · , vσ(k)) , ? ζ(vσ(k+1), · · · , vσ(k+q))

]
(B.3.13)

where Sk+q is the permutation group of k + q elements and the vi ∈ TpP .

The notation as a commutator can be justified by the fact that if g is a matrix algebra,
then the operation [η, ζ] is nothing other than a graded commutator, i.e. :

[η, ζ] = η ∧ ζ − (−1)deg η deg ζζ ∧ η (B.3.14)

It follows from this graded commutativity that we may express:

[ζ, η] = −(−1)deg η deg ζ [η, ζ] (B.3.15)

Sometimes, for convenience, or depending on the context, we may write things like (for forms
of odd degree):

ω ∧ ω =
1

2
[ω, ω] (B.3.16)

It is to be understood in such occasions that we implicitly use the matrix algebra structure of
g in such cases. For more general purposes, the notation with [ , ] is preferred.
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Lemma B.3.1. Let α, β ∈ Ap(P, g) be homogeneous g-valued p-forms. Then:

[α, [β, β]] =

{
2[[α, β], β], if deg β is odd

0, if deg β is even.
(B.3.17)

Proof. Use the graded Jacobi identity, i.e. :

(−1)ba[[β, β], α] + (−1)b
2
[[β, α], β] + (−1)ab[[α, β], β] = 0 (B.3.18)

where a = deg α and b = deg β. The result above is a consequence of graded commutativity.
�

Corollary 2. [[α, α], α] = 0 for all homogeneous α ∈ A(P, g).

Proof. We may without loss of generality assume that deg α is odd. So that:

[α, [α, α]] = 2[[α, α], α] by the lemma (B.3.19)

= −2[α, [α, α]] by graded commutativity (B.3.20)

�

B.3.2 Vertical and Horizontal Spaces

Definition B.3.1. Consider a general principal bundle P whose base is a smooth manifold M
and let π : P → M denote the canonical projection. Consider then a point x ∈ M such that
for p ∈ P we have π(p) = x. Then we have that if the map i : π−1(x) → P is the natural
inclusion, then the image of the tangent space i∗(Tpπ

−1(x)) is a subspace TpV ⊂ TpP called
the vertical subspace at p. We call all vectors v ∈ TpV vertical tangent vectors at p. It
is clear then from the definition that Y ∈ TpV ⇐⇒ π∗(Y ) = 0.

pp

u

π−1(p)

Y

M

P

Figure B.1: An illustration of the definition of vertical tangent vectors
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Remark B.3.1. More explicitly, recall the definition of the pushforward (cf. A.4.6) as the
derivative of an integral curve of a vector field. Then it is clear that it is true. Indeed, since
we are solely focusing on a single fibre, the flow generated will be in some way “vertical” to
the base space M . It is then obvious that by projecting back the integral curve gets reduced
to a single point, hence why the vector field induced by π∗ gives zero.

Since we are focusing here on principal bundles, tautologically, we have a Lie group G
acting on the smooth principal bundle P . In particular, we may consider the smooth mapping
σp : G → P that takes a 7→ p · a. We may thus look at g, the Lie algebra of the Lie group,
which also acts on the principal bundle on the right. Indeed, the action is naturally induced
by the exponential of any element A ∈ g. Explicitly, we have that the map t 7→ etA induces a
curve on G (recall G is in particular a manifold, since it is a Lie group). However, due to the
presence of the action of G on P , it induces also induces a curve on the principal bundle by
considering the curve γp(t) = p · etA. As such, by taking γ′p(0), we have a vector that lives in
TpP . We denote this map σ(A)(p) = γ′p(0). We can thus see that the action of the Lie group
induces an morphism between g and the vector fields via σ : g → TP . Notice that we may
describe this morphism in an equivalent manner with:

σp∗(A) = σ(A)(p) (B.3.21)

Definition B.3.2. The fundamental vector field, σ(A), is the vector field corresponding
to A, ∀A ∈ g. In particular, ∀p ∈ P we have that the map A 7→ σ(A)(p) is an isomorphism
because G acts without fixed points.

Furthermore, the σ(A)’s satisfy the following proposition:

Proposition B.3.1. Let G act on the right on P , then we have the following:

1. σ : g→ TP is linear;

2. σ([A,B]) = [σ(A), σ(B)] for A,B ∈ g (i.e. σ is a Lie algebra morphism);

3. If G acts transitively and freely and A 6= 0 then σ(A) is not the zero vector field;

4. If G acts freely and A 6= 0, then σ(A) is nowhere zero.

Remark B.3.2. Notice that since the action of G takes fibres to themselves, the set of all σ(A)(p)
is precisely the set of vertical vectors at TpP , since we may write them as σp∗(A). We can then
see that the integral curves are then restricted to the fibre of π(p).

Definition B.3.3. The adjoint mapping (and we will note Ad(a) or Ada) from g→ g is the
mapping given by:

Ad(a) = (LaR
−1
a )∗ = (R−1

a La)∗ (B.3.22)

Proposition B.3.2. If Ra denotes the function from P → P such that p 7→ p · a, then ∀A ∈ g
and ∀a ∈ G, the vector field (Ra)∗σ(X) is the fundamental vector field given by:

(Ra)∗σ(A) = σ(Ad(a−1)A) (B.3.23)

The vector fields σ(A) are difficult or even impossible to picture (mostly because picturing a
principal bundle itself can be impossible due to dimensionality issues), however, in a way, they
encode the G-structure that is present on the principal bundle. This is why they are particularly
useful in the constructions that will follow and also why they play such an important role in
the study of principal bundles.

We would now like to generalize the notion of a connection to a principal bundle. For this,
we have the following definition given by Ehresmann in 1950:
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Definition B.3.4. An (Ehresmann) connection over a principal bundle π : P → M over
M with a group G is a C∞ g-valued 1-form ω on P such that:

1. ω(σ(A)) = A ∀A ∈ g;

2. R∗aω = Ad(a−1)ω ∀a ∈ G

Definition B.3.5. The curvature of the Ehresmann connection ω is the g-valued 2-form
Ω on P given by: Ω = dω + 1

2 [ω, ω]

Proposition B.3.3. The curvature form behaves under transformation as: ∀a ∈ G we have
that: R∗aΩ = Ad(a−1)Ω.

Notice here that if ω is an Ehresmann connection, then the map ωp : TpP → g is onto. In
particular, ker(ωp) forms a subspace of TpP .

Definition B.3.6. The subspace ker(ωp) := TpH ⊂ TpP is called the horizontal subspace
at p (determined by the connection ω). Vectors in this subset are called horizontal.

Remark B.3.3. All Ehresmann connections thus give naturally rise to these distributions of
horizontal subspaces TH. We will later on see that giving the connection form ω or giving
the distribution of the horizontal spaces is basically equivalent, some authors even define the
Ehresmann connection in terms of these C∞-distributions they generate. We can kind of see
these horizontal subspaces as being a “lifted” copy of TM into TP .

Proposition B.3.4. If H is the distribution given by the Ehresmann connection the following
are true:

1. TpP = TpV ⊕ TpH;

2. Tp·aH = (Ra)∗TpH;

3. H is a C∞-distribution.

Remark B.3.4. Using the decomposition of TpP it is possible to express Y ∈ TP as:

Y = h(Y ) + v(Y ) (B.3.24)

where h and v are projectors onto the horizontal and vertical subspaces respectively. In par-
ticular, we may write the projector h and v as:

v(Y ) = σ(ω(Y )) , h(Y ) = Y − σ(ω(Y )) (B.3.25)

since we saw in remark B.3.2 that the set σ(g) is the set of all vertical vectors. From this, it is
clear that h and hence v are C∞.

Remark B.3.5. We also note that from the decomposition TpP = TpV ⊕ TpH and from the
fact that TpV = ker(π∗), the morphism π∗ : TpH → Tπ(p)M is an isomorphism. Consequently,

it follows that for every vector field X ∈ TM there exists a unique vector field X̃ ∈ TP such
that X̃ is everywhere horizontal and π∗(X̃p) = Xπ(p), ∀p ∈ P . Heuristically, this means that,
in some way, it’s as if the horizontal spaces were the lifts of the tangent spaces Tπ(p)M up to
some p ∈ P .

Definition B.3.7. We call this unique vector field X̃ the lift of X at point p ∈ P .
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There are then two simple facts about lifts which we summarize in the following proposi-
tions:

Proposition B.3.5. X̃ is a C∞-vector field on P stemming from a unique X ∈ TM if and
only if ∀a ∈ G, we have that Ra∗(X̃) = X̃.

Lemma B.3.2. Consider a connection ω on a principal bundle P over M with group G. For
any A ∈ g and horizontal vector field Y on P , the vector [σ(A), Y ] ∈ TH.

Proof. We look at the definition of the Lie derivative:

lim
t→0

1

t
(Y −RetA∗Y ) , (B.3.26)

notice that here Y is horizontal, but so is RetA∗Y , since the flow along the vertical vector
fields preserves horizontality. Thus, the entire quantity is in TH for all t, which proves the
lemma. �

Proposition B.3.6. If X̃ and Ỹ are the lifts of X,Y ∈ TM , then the following are true:

1. X̃ + Ỹ is the lift of X + Y ;

2. ∀f ∈ C∞(M), then (̃fX) = (f ◦ π)X̃;

3. h([X̃, Ỹ ]) = [X̃, Ỹ ].

With the machinery of the Ehresmann connection behind us, we now aim to generalize all
the concepts previously seen applicable to connections, that is we seek to build a notion of
parallel transport, covariant derivatives, the structural equations, the curvature and torsion
tensors and finally the Bianchi identities.

B.4 Geometrical Concepts on Principal Bundles

B.4.1 Parallel Transport

Our aim is now to define what parallel transport is on principal bundles. To do this, we
consider parallel transport along a piecewise C1-curve γ : [0, 1]→ P .

Definition B.4.1. We say that such a curve γ is horizontal if all the γ′(t) ∈ Tγ(t)P are
horizontal. We may further define a lift of a piecewise C1-curve γ : [0, 1]→ M , γ̃ : [0, 1]→ P
such that γ̃ covers γ, i.e. such that π ◦ γ̃ = γ.

Remark B.4.1. Given an initial condition, i.e. p0 ∈ P such that π(p0) = c(0), then there exists
a unique lift of γ such that γ̃(0) = p0.

We can now define parallel transport of the fibres of P along γ : [0, 1]→M .

Definition B.4.2. We have that ∀p ∈ π−1(γ(0)), let the function τt(p) ∈ π−1(γ(t)) be simply
the following function:

τt : π−1(γ(0)) −→ π−1(γ(t)) (B.4.27)

p 7−→ γ̃p(t) (B.4.28)

Where γ̃p(t) denotes the lift with initial condition p ∈ P . Such a function τt is called the
parallel transport of the fibres of P .

Remark B.4.2. If γ̃ is a lift of the curve γ, it is clear that Raγ̃ is also a lift of γ. Consequently,
this fact, along with the uniqueness of the lifts implies that τt ◦ Ra = Ra ◦ τt. Finally, τt is a
diffeomorphism, whose inverse is simply parallel transport along the reverse portion of γ from
t→ 0.
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B.4.2 Covariant Derivative and Curvature

We first start by remarking that we may define a different kind of exterior derivative which
is linked to the Ehresmann connection ω. With a proper definition of what parallel transport
means on a principal bundle, it is possible to define the notion of a covariant derivative. Indeed:

Proposition B.4.1. If ϕ is a tensor r-form of P of type (V, ρ) (i.e. ϕ ∈ Ar(P, ρ)) and h is the
horizontal projection induced by an Ehresmann connection ω, then:

1. The form ϕh defined by: ϕh(X1, · · · , Xn) = ϕ(hX1, · · · , hXn) for Xi ∈ TpP is a tensor
form of type (V, ρ);

2. dϕ is a tensorial (r + 1)-form of type (V, ρ);

3. The (r + 1)-form d∇ϕ defined as d∇ϕ = (dϕ)h is a tensorial form of type (V, ρ).

Definition B.4.3. We call the (r + 1)-form of proposition B.4.1 the exterior covariant
derivative of ϕ. We call the operator d∇ : Ωr(P, ρ) → Ωr+1(P, ρ) an exterior covariant
differentiation.

With this new differentiation, it is possible to rewrite the definition of the curvature of an
Ehresmann connection in a neat way:

Proposition B.4.2. We may write Ω = d∇ω.

Remark B.4.3. Note that for this exterior covariant derivative we do not necessarily have
(d∇)2 = 0.

Definition B.4.4. Let (P, π,M,G) be a principal bundle over M and let ω be an Ehresmann
connection on P . Moreover, let E be the associated bundle to a representation (V, ρ) of G (i.e.
P ×G V ) and let Y be a tangent vector field on M and Ỹ be its horizontal lift to P . Then,
the covariant derivative or exterior connection DY : Γ(E) → Γ(E) (cf. notation A.4.1)
associated to this data is defined by the following diagram:

A0(P, ρ) A0(P, ρ)

Γ(E) Γ(E)

ιỸ d
∇

ψ

DY

ψ

Here, the isomorphism ψ is the one that we explicited in theorem B.2.1 and where the mapping
ι is the canonical isomorphism, for V,W vector spaces such that if w ∈W :

ι : V ⊗W ∗ −→ Hom(W,E) (B.4.29)

v ⊗ ζ 7−→ [w 7→ ζ(w)v] (B.4.30)

and the map ιw denotes the evaluation at w morphism given by:

ιw : V ⊗W ∗ −→ Hom(W,E) (B.4.31)

v ⊗ ζ 7−→ ζ(w)v (B.4.32)

Although this definition is a functional one, we want to be a bit more explicit if we want
to perform some calculations. To this end we have the following proposition:
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Proposition B.4.3. When the representation (V, ρ) is effective (cf. definition A.1.2), then:

1. Given a fixed basis of V , {ēi}i∈I , there is a canonical interpretation of P as the bundle
of frames given by:

p ∈ P 7→ (e1(p), · · · , en(p)), where ei(p) = [p, ēi] ∈ PV = P ×G V ; (B.4.33)

2. The covariant derivative DYX of a section X ∈ Γ(E) may be calculated as follows.
Express X in terms of the chosen basis ei(p), i.e. X = ai(p)ei(p). Let Ỹp ∈ TpP be the
horizontal lift of Yx (such that π(p) = x), then we have that:

(DYX)x = Ỹp(a
i(p))ei(p) (B.4.34)

where we apply Einstein’s summation convention in the equations.

It is instructive to have a careful look at the proof of this proposition, the reader is thus
strongly suggested to attempt it and go through the calculation in parallel in order to really
understand how to manipulate the notation and the concepts at hand.

Proof. The first point of the proposition is simply due to the identification of the G-principal
bundle with its associated bundle. The more interesting point of the proof is in the second
part. We now prove the second point.

Let us thus choose a basis on some open neighbourhood of P , such that we have that for
each point p ∈ P , we have:

p = (e1(p), · · · , en(p)) where ei(q) = [p, ēi] ∈ P ×G V (B.4.35)

where the ēi form a basis of V . Here, we use the same notation as in the proof of theorem B.2.1.
With this choice of basis, we may then express the section X ∈ Γ(E) as simply being given by
X = ai(p)ei(p), where the ai are C∞-functions. We then need to evaluate ψ(X). However, as
seen in theorem B.2.1, this is nothing other than:

ψ(X)(p) := f(p) = ai(p)ēi (B.4.36)

The reader is welcome to check that this f(p) is indeed in A0(P, V ) (i.e. that f(p ∗ g) =
ρ(g−1)f(p)), but essentially, this is true due to the equivariance condition on the associated
bundle.

We now embark in the actual computation of the covariant derivative. For this, we give
ourselves a horizontal lift of the vector field Y ∈ TM , that we will denote Ỹ ∈ TH. We recall
that for any x ∈M , this lift to point p ∈ π−1(x) is unique by virtue of remark B.3.5.

Then, according to the definition of the covariant derivative given in B.4.4, we apply the
operator ιỸ d

∇ to this function f and evaluate it at point p ∈ P . This yields the following:

(ιỸ d
∇f)(p) = (ιỸ (df ◦ h))(p) = (df(hỸ ))(p) (B.4.37)

But notice that the lift is a horizontal lift, in particular, this means that hỸ = Ỹ . Additionally,
replacing with the definition of f in equation B.4.36 and recalling the natural identification
T ∗P ⊗ V ∼= Hom(TP, V ), we may finally write:

(ιỸ d
∇f)(p) = dfp(Ỹp) = daip(Ỹp)ēi (B.4.38)

Finally, we take this expression back to Γ(E) with ψ−1, thus finally obtaining the expression
of the covariant derivative (DYX)x at a point x ∈ M (since the expression does not depend
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of the lift p chosen due to equivariance of the expressions and because the representation is
effective):

(DYX)x = daip(Ỹp)[p, ēi] = Ỹp(a
i)[p, ēi] (B.4.39)

�

From the proof of this proposition, it is easy to see how one can generalize this to general
tensorial forms, furthermore due to the linearity properties of all of the maps above and their
behaviour, the proposition yields the following result:

Proposition B.4.4. The operator D is such that:

D : Γ(E)→ Γ(E ⊗ T ∗M) defined by ιY (Df) = (Df)(Y ) := DY f (B.4.40)

where DY is the operator defined in definition B.4.4 is a Koszul connection (cf. definition
A.4.4).

Remark B.4.4. Notice that this amounts to saying that all the linearity conditions, the Leibniz
condition as well as the compatibility with the tensor product are immediately obeyed by
the covariant derivative we have defined since it is a Koszul connection. One can see this
immediately from the proof of proposition B.4.3.

B.4.3 Torsion and its Discontents

At this point, we would like to define the torsion. However, it is in general not possible
to define torsion for connections in all principal bundles P . The presence of torsion on a
manifold requires extra structure. To be exact, it requires to equip the principal G-bundle with
a representation (V, ρ) of same dimension as M and to look at the associated bundle PV .

It is, however, important to note that one doesn’t really notice this in an introductory class
to differential geometry simply because the frame bundle F (M) exhibits this extra structure
in a canonical way, that is, we may choose the representation of F (M) at any given point
x ∈ M to simply be TxM , corresponding to the fundamental representation of GL(n,R). In
this particular case, looking at the associated bundle amounts to nothing other than considering
TM .

Additionally, over any local trivialisation of the principal bundle U ×G ↪−→ P we have that
we may express any point p = (x, g) for some x ∈ U and g ∈ G. We may thus also define over
this local trivialisation the projection onto the second coordinate, π2 : (x, g) 7→ g. With the
above, it is possible to define the following:

Definition B.4.5. Let p ∈ F (M) and x ∈ U such that π(p) = x, we have the existence of a
certain Rn ∼= TxM -valued 1-form θ defined by:

θp(Yp) = ρ(π2(p)−1)(π∗Yp) ∀p ∈ F (M) (B.4.41)

We call this 1-form the canonical form or the dual form of the principal bundle F (M).

Remark B.4.5. This definition may seem a little bit untangible at first, so let us unwind it to
understand it a bit better. Any choice of section s = (X1, · · · , Xn) is nothing other than a
moving frame over the local trivialization U ⊂ M . Let furthermore x ∈ M and Yx ∈ TxM .
The pullback of the dual form under the section is:

s∗θx(Yx) := θs(p)(s∗Yx) = ρ(π2(s(x))−1)(π∗s∗Yx) = ρ(π2(s(x))−1)((π ◦ s)∗Yx) (B.4.42)



B.4. GEOMETRICAL CONCEPTS ON PRINCIPAL BUNDLES 53

However, since s is a section we have the condition π ◦ s = id, which yields in turn:

s∗θx(Yx) = ρ(g)−1(Yx) (B.4.43)

where this ρ(g) is simply the matrix corresponding to the frame (X1(p), · · · , Xn(p)), since ρ is
the fundamental representation. In other words, this yields nothing other than the coordinates
of the vector Yp in the {Xi(p)}i basis.

Remark B.4.6. It is sometimes more convenient to look at the particular case under a different
light. Indeed, some authors consider (somewhat by abuse of notation) the point p ∈ P itself to
be a function x 7→ g, where g ∈ GL(n,R). In other words, we regard the point p as an element
of GL(n,R). Furthermore, because in the case of the frame bundle, it is clear we are dealing
with the fundamental representation, we may also write, again by abuse of notation:

θp(Yp) := p−1(π∗Yp) ∀p ∈ F (M) (B.4.44)

It is important to be said that with these identifications, there is not really an ambiguity in
the notation, so far as the reader is aware of what is going on. In what is to follow, we will
sometimes find it convenient to use this notation for the sake of not complicating further the
notation and for the sake of clarity.

Notation B.4.1. In what is to follow, up until definition B.4.7, we will focus on F (M) to see
how things behave in this particular case which provides a natural definition of torsion. This
is to provide some motivation for the definitions, as well as providing the reader with a more
readable approach to the concept before we proceed to generalize. We will thus from here on
make the identification of GL(n,R) with its fundamental representation whenever necessary,
i.e. g ∈ GL(n,R) ∼ ρ(g). We will also use the identification mentioned in remark B.4.6.
Finally, · will denote usual matrix multiplication.

The connection ω on the frame bundle F (M) allows us to define a particular set of vector
fields in F (M).

Definition B.4.6. For ξ ∈ Rn, the basic vector field corresponding to ξ, B(ξ), is defined
by letting B(ξ)p be the unique horizontal vector at u such that π∗(B(ξ)p) = p(ξ). In particular,
let {ei}i∈I be the standard basis of Rn and {vi}i∈I is a basis of TpH, then B(ei)p is the unique
horizontal vector at p which covers pi.

We will now state a couple of important results:

Proposition B.4.5. For all ξ ∈ Rn, we have:

1. θ(B(ξ)) = ξ;

2. Rg∗B(ξ) = B(g−1 · ξ), ∀g ∈ GL(n,R).

Moreover, if ξ 6= 0, then B(ξ) is nowhere zero and if (ξ1, · · · , ξn) is a basis of Rn, then
(B(ξ1), · · · , B(ξn))p is a basis for TpH.

Lemma B.4.1. Consider the basic vector fields determined by a connection on F (M). For all
N ∈ gl(n,R) and ξ ∈ R, we have:

[σ(N), B(ξ)] = B(N · ξ) (B.4.45)
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It is possible to introduce a generalization of this canonical form and thus to extend the
realm of principal bundles over which we may speak about torsion. We are thus looking for a
similar concept, which we want this time to be vector space valued. This vector space is thus
required to have the same dimension as M and must have a left action of G on it if it is to
exhibit a similar behaviour as the canonical form. We may thus define:

Definition B.4.7. Let (P, π,M) be a principal G-bundle and let (V, ρ) be a representation of
dim M of the group G. A soldering form on P is a 1-form θ ∈ Ω1P ⊗ V such that:

1. ∀X ∈ Γ(TP ) we have θ(v(X)) = 0;

2. ∀g ∈ G, Lg[(Rg)
∗θ] = θ;

3. TM and PV are isomorphic as associated bundles.

A soldering form thus provides an identification of V with each TxM . It is here useful to
consider as an illustration of this concept the case of the canonical form on F (M).

Example B.4.1. Here, we take V = Rdim M , which is naturally equipped with a left action of
GL(n,R). Let {pi} be the basis of vectors of the frame p ∈ F (M). In particular we may identify
the point p with the map p : Rdim M → Tπ(p)M ∼= TpH, which sends ξ ∈ Rdim M 7→ π∗(B(ξ)p).

More explicitly, we may see this as the map taking (x1, · · · , xdim M ) 7→ xipi. Notice that for
the frame p, it is possible to define a coframe f , by simply taking the dual vectors of the basis
{pi}. We may then consider a map p−1 to simply be the map:

p−1 : Tπ(p)M −→ Rdim M (B.4.46)

Y 7−→ (f1(Y ), · · · , fdim M (Y )) (B.4.47)

Finally, we define the soldering form θ : Γ(TF (M))→ Rdim M to simply be:

θ : X 7→ p−1(π∗X) (B.4.48)

Notice then that by virtue of propositions B.4.6 and B.4.5, this definition of θ obeys all the
conditions imposed on a soldering form.

Definition B.4.8. We may define the torsion form to be the V -valued 2-form obtained by
taking the exterior covariant differential on the soldering form. Explicitly:

Θ = d∇θ ∈ Ω2(P )⊗ V (B.4.49)

Proposition B.4.6. The torsion form and the soldering form transform according to the
following transformation laws:

∀g ∈ G R∗gθ = ρ(g−1)θ and R∗gΘ = ρ(g−1)Θ (B.4.50)

In other words, we have that θ ∈ A1(P, ρ) and Θ ∈ A2(P, ρ).

B.4.4 Structural Equations and Bianchi’s Identities

Theorem B.4.2 (Structural equations). Let ω be an Ehresmann connection over the principal
bundle P over M with group G. Then, if P is the bundle of frames, with the dual form θ and
torsion form Θ, we have that the first structural equation is:

dθ = −ω Z θ + Θ (B.4.51)
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Where Z indicates that we let ω act on θ. Now let P be any principal bundle, and Ω be the
curvature form of ω. Then we have the second structural equation:

dω = −1

2
[ω, ω] + Ω (B.4.52)

Remark B.4.7. We would’ve ideally had an identical equation for Θ as we did for Ω. However,
since θ and Θ are both V -valued and ω is g-valued, it is nonsensical to write [ω, θ], since [ , ] is
defined for g-valued forms only. The operation Z is thus a compromise in between, which lets
the connection act on θ.

More precisely, if G has a matrix structure, we pick as a basis for V the corresponding
expressions of g in the representation ρ. Recall that we may do this, because the condition on
the soldering form is that its representation space V have same dimension as TpM . We may
thus pick a basis of V , {ei}i∈I and we note {ej}j∈I the dual basis for V ∗. In that case, if G is
a matrix group and since since V is a G-representation, there is a natural linear action of g on
V via ρ. This means that we can identify g ⊂ Hom(V, V ) ∼= V ∗ ⊗ V . We can take a basis for
the latter to be {ei ⊗ ej}(i,j)∈I2 . Let then ωij ∈ T ∗P ⊗ g be the components corresponding to
the Ehresmann connection, i.e. such that:

ω = (ρ∗ω)ij e
j ⊗ ei (B.4.53)

Furthermore, in this basis, it is clear that the expressions of θ and Θ should be:

θ = θiei and Θ = Θiei (B.4.54)

This makes it clear what the symbol Z implies. However, sometimes by abuse of notation we
do not write explicitly the presence of ρ, since usually it is clear which representation we are
using. This will be illustrated in the following example. At the end of the day, the reader may
regard (at least most of the time and for the standard cases) this operation as simply being
matrix multiplication under the ∧-product.

Remark B.4.8. These equations are nothing other than integrability conditions imposed on
the manifold. A more careful analysis requires the introduction of foliations and the fully
detailed constructions as well as the obtention of the structural equations from integrability
considerations can be found in Sharpe’s book [1], which the curious reader is encouraged to
consult.

Example B.4.2. In the case of F (M) we may rewrite both results with respect to the standard
basis {ei}n of Rn, indeed then we have that:

θ = θiei Θ = Θiei (B.4.55)

And similarly if {Eij}(i,j)∈I2 = {ei ⊗ ej}(i,j)∈I2 is the standard basis of gl(n,R) in the funda-
mental representation, then we have that:

ω = ωijE
j
i Ω = Ωi

jE
j
i (B.4.56)

One of the important results in Riemannian geometries are the so-called Bianchi identities.
These turn out to also generalize beautifully in the case of principal bundles. We give the
generalized version of the Bianchi identities:

Theorem B.4.3 (Bianchi identities). For a connection ω over the frame bundle we have:

d∇Θ = Ω Z θ and d∇Ω = 0 (B.4.57)
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Proof. This is a good exercise for the reader to check if he is confortable with the notation.
We give a couple of indications on how to obtain the result. Consider d2 = 0 on the first and
second structural equations, from which two identities will follow. Then, consider the exterior
covariant derivative on Θ and Ω respectively applied on three arbitrary vector fields in TP and
use the identities found previously. In the case of d∇Ω, recall that ker ω = TH. �

B.5 Reductions

An important concept in dealing with principal bundles is the one about reductions. In
some way, so far we have only considered a principal G-bundle. However, what if we only cared
about a particular subgroup of H. Can we build an analogous bundle using the G-structure
already present on the principal G-bundle? To answer this question, we have the following
definitions and facts:

Definition B.5.1. Let G be a Lie group and H ⊂ G be a subgroup. We consider (P,G, π,M)
a principal G-bundle over M . An H-reduction of this bundle is a submanifold P0 ⊂ P such
that (P0, H, π f |H ,M) is an H-bundle and the action of H on P0 simply be the restriction of
the G-action present on P to H.

Remark B.5.1. Actually, one may generalize this concept not only for subgroups but for any
mapping ϕ : H → G which need not be the inclusion. This allows us to treat spin structures,
which we will tackle later on.

The following lemma allows us to construct a submanifold given a left G-action on a general
manifold M . Indeed:

Lemma B.5.1. Let µ : G×M → M be a smooth left action (g, x) 7→ g ∗ x of a Lie group G
on a connected smooth manifold M . Then every orbit X ⊂M of this action is a submanifold.

Similarly, the following proposition is also practical in the construction of reductions.

Proposition B.5.1. Suppose that (P,H, π,M) is a smooth principal H-bundle. Let Q be
a manifold equipped with a smooth, proper right H-action. Let f : P → Q be a smooth
equivariant map (i.e. f(p ∗ h) = f(p) ∗ h for all h ∈ H). Fix q0 ∈ Q and set H0 = Stab(q0) (cf.
definition A.1.3). Suppose furthermore that q0 ∈ f(F ) for all fibres F of P . Then:

• P0 = f−1(q0) is a H0-reduction of P ;

Fix another point q1 ∈ Q, we may then define an analogous group H1 = Stab(q1) and suppose
that q1 ∈ f(F ) for all fibres F of P . Then we have a P1, an H1-reduction of P and furthermore:

• ∃h ∈ H such that H1 = Ad(h−1)H0 and for any such h, we have P1 = P0h.

Note that in particular, we may use different representations in order to build H-reductions
of manifolds, since the associated bundles of representations are equipped with natural left
actions, lemma B.5.1 allows us to use this to construct the corresponding reduced manifold. In
practice, the concept of reduction helps us understand many phenomena we study in differential
geometry, however these reductions may not always be possible. To understand why this is, we
need a concept from topology:

Definition B.5.2. Let X be a topological space and A be a subspace of X. Then, a continuous
(smooth) map F : X × [0, 1]→ A is a deformation retraction of a space X onto a subspace
A if ∀x ∈ X and ∀a ∈ A we have:

F (x, 0) = x, F (x, 1) ∈ A, and F (a, 1) = a (B.5.58)
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In other words, a deformation retraction is a homotopy between X and A. It may be seen as
a special case of a homotopy equivalence.

Remark B.5.2. Here we can see why homotopy groups play a crucial role in the determining
topological obstructions to the existence of a reduction of principal bundles.

We illustrate this with some examples:

Example B.5.1. Consider the frame bundle F (M) over a manifold M . In this case, we have
that G = GL(n,R), the following reductions correspond to concepts in differential geometry:

• GL+(n,R) < GL(n,R) is an orientation on M . Note that this is not always possible.
In fact, we may only do this when the bundle is orientable;

• SL±(n,R) < GL(n,R) is a pseudo-volume form. This is always possible to construct.

• SL(n,R) < GL(n,R) is a volume form. Indeed, since SL(n,R) is a deformation re-
traction of GL+(n,R), this is also only possible if and only if the bundle is orientable;

• O(n,R) < GL(n,R) is a Riemannian metric. Indeed, notice here that this is actually
always possible, since O(n,R) is the maximally compact subgroup of GL(n,R). Thus
every smooth manifold M may be equipped with a Riemannian metric in this fashion;

• O(1, n − 1) < GL(n,R) is a Lorentzian metric. There is a topological obstruction to
this. This reduction is possible if and only if the second Stiefel-Whitney class vanishes.



Appendix C

Klein and Cartan Geometries

C.1 Klein Geometries

We will now use the machinery we developped in order to study the particular case of
principal bundles on Lie groups themselves. Indeed, note that we may induce a principal
bundle structure on a Lie group G by simply considering a closed subgroup H and taking G/H
to be the base manifold and equipped with the natural right action provided by G. While this
may seem very abstract and purely a mathematical game, the consequences for spaces to which
physicists are normally accustomed to work in come out rather naturally from this formalism
without having to do much effort at all. In fact, the study of this precisely was one of the
main focus points of the celebrated Erlangen Programm developped by Klein in the 1870’s
[6]. This will not only provide a solid footing for the next chapter, in which we will address
a generalization of what is to follow, but will also get the reader accustomed to the notation,
while introducing interesting examples of what has been mentioned above.

The motivation behind the original study of Klein geometries was to undercover the under-
lying symmetries of a given space. This set of symmetries gives naturally rise to a Lie group
which one might study. From there, the logical progression is to study the homogeneous spaces
of a given Lie group G. That is, a manifold P identical to the group G but without preferred
origin. Since this manifold P has the same structure as this G, the group G acts on it transi-
tively and freely. This means that, in some way, Klein geometries are actually the most natural
example one could think of for principal bundles. Indeed, the G action in this particular case
is tautological by considering group multiplication.

Without further ado, we introduce the following definitions:

Definition C.1.1. A Klein geometry is a pair (G,H), where G is a Lie group and H < G
is a closed subgroup such that G/H is connected. G is called the principal group of the
geometry (akin to the terminology of principal bundle). The kernel of a Klein geometry
G/H is the largest subgroup K < H such that K is normal in G. The geometry is said to be:

• Effective if K = {1} and locally effective if the group K is discrete;

• Geometrically oriented if G is connected;

• Primitive if the identity component He ⊂ H is maximal among the proper closed con-
nected subgroups of G;

• Reductive if there is an AdH -module decomposition of g = h⊕ p, where g and h are the
Lie algebras of G and H respectively.

58
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Finally, the space M = G/H is called the space of the Klein geometry or sometimes, by
abuse of language, merely the Klein geometry.

Remark C.1.1. Strictly speaking, we consider that while the principal bundle P that is asso-
ciated to a Klein geometry is isomorphic to G, an important distinction is that we consider
that there is, in some way, no preferred point of P , we don’t have a fixed choice of origin on
M corresponding to the coset eH. On the other hand, by abuse of notation, we will often just
write G/H for the base of the bundle. It is, however, important that the reader be aware of
this subtle distinction. This is also compatible with the original motivation of the study of
Klein geometries, which was the study of homogeneous spaces on which a Lie group G is free
to act on.

Note that definition C.1.1 gives us right away a structure which is a principal H-bundle.
Notice to this bundle, we can attribute a connection in the sense of Ehresmann. However, due
to the natural extra G-structure we have on the geometry, a little bit more can be said. To
establish the link with Ehresmann and principal bundles, this extra information provided by
the G-structure can simply be understood as being given a solder form in addition to the usual
principal connection present on the H-bundle, we will later come back to this correspondence
when we look at the link between Cartan geometries and Ehresmann connections.

Remark C.1.2. While the study of general Klein geometries is interesting on its own right, we
will focus mostly on reductive Klein geometries, which comprise a lot of the spaces that are of
interest in physics.

C.1.1 Connection on a Klein Geometry

On Euclidean space, the parallel transport of vectors allows us to define when two vectors
at two different points of En are equal. This notion is so fundamental that some authors define
equality of vectors over an affine space by saying that two vectors are equal if there exists
a translation carrying one to the other. In particular, this notion also allows us to trivialize
the tangent bundle over the whole of En. Notice, however, that this depends strongly on
the existence of a group (namely the group of translations in this case) acting smoothly and
transitively on Rn to be able to translate the vectors from one point to another.

This notion can be transposed in the case of Klein geometries and indeed to any Lie group
G. Notice, however, that in the case where the group is not abelian, there are in general two
ways of doing this, either by inducing a right or a left action. In what will follow, we study the
case of the left action, knowing that we can treat the right action case in an analogous manner.
The left action induced by multiplication on the left can thus be noted Lg and it induces an
action on the tangent spaces (which correspond in this case to copies of the Lie algebra g) by
considering, for example, Lg∗ for any g ∈ G.

We may thus study the case where we want to apply this construction to trivialize the
tangent bundle of G. We have then that for g ∈ G, we may identify g = TgG and define a
1-form which is invariant by action on the left. Indeed:

Definition C.1.2. The left-invariant 1-form ωG : TgG→ g defined by:

ωG(v) := (Lg−1)∗(v), ∀v ∈ TgG (C.1.1)

is called the left-invariant Maurer-Cartan form on G

Remark C.1.3. We can thus see that the construction of this 1-form is, in a way, almost
tautological. In fact, the Maurer-Cartan form is actually the father of all left-invariant R-
valued forms on G. These may be obtained in full generality by taking the exterior powers
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ΛkωG : ΛkTgG → Λkg and composing with some linear map Λkg → R. A particularly neat
example of this is simply taking ΛnωG where n is the dimension of the Lie algebra. This yields
a volume form, which actually corresponds exactly to the Haar measure on G.

In particular, notice that this notion actually generalizes in a full manner what we meant
by parallel transport in the case of En. Indeed, we thus may use the Maurer-Cartan form as a
way of characterizing a connection over G if we are considering a Cartan geometry. In the case
of Klein geometries, it remains to be checked that the Maurer-Cartan form as defined above is
actually compatible with the Ehresmann connection induced on the principal bundle P ∼= G
with base M ∼= G/H. For this, we have the following proposition:

Proposition C.1.1. Let (G,H) be a Klein geometry, the Maurer-Cartan form satisfies:

1. ωG is a linear isomorphism on each fibre;

2. R∗hωG = Ad(h−1)ωG for all h ∈ H;

3. ωG(σ(A)) = A for all A ∈ h.

Remark C.1.4. This proposition allows us to take this characterization of the Maurer-Cartan
form as a definition of it in the case of Klein geometries. We want to adopt this as a definition,
since later on when we generalize the concept to the case of Cartan geometries, the conditions
of compatibility above will give us a good hint on how to define the Cartan connection.

Remark C.1.5. Note also that point 2 of proposition C.1.1 actually holds for any g ∈ G,
however, we restrict the property to H since we are interested in the particular case of a Klein
geometry. The reason for this restriction will become clear when we study Cartan geometries

C.1.2 Structural Equation

With respect to the Maurer-Cartan form, all Klein geometries are flat (i.e. Ω = 0). This is
exactly what the following theorem tells us.

Theorem C.1.1 (Structural Equation for Lie Groups). The structural equation for the Klein
geometry (G,H) is given by:

dωG +
1

2
[ωG, ωG] = 0. (C.1.2)

Remark C.1.6. Although it is easy to think about this formula as a mere application of the
exterior derivative to the Maurer-Cartan form, it is important to understand that its meaning
runs far deeper than that. Indeed, this equation is a fundamental defining structure of the
group itself. For example, in the case where dωG = 0, this implies the Lie group is abelian.
Furthermore, it provides us with a local characterization of the Lie group itself. Indeed, the
structural equation should really be understood as an integrability condition that we can then
use in order to define the exponential map of the Lie algebra to provide a local description of
the group itself.

To be more precise about the last point of the last remark, we have the following theorem:

Theorem C.1.2. Let N be a connected smooth manifold and let g be a Lie algebra. Let ω be
a g-valued 1-form on N satisfying the following conditions:

1. dω + 1
2 [ω, ω] = 0;

2. ω : TN → g is an isomorphism on each fibre;
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3. ω is complete.

Then:

1. The universal cover N , π : G → N , has, for an arbitrary choice e ∈ G, the structure of
a Lie group with identity element e and algebra g whose Maurer-Cartan form is π∗ω;

2. The period group Γ = Φω(π1(N, b)) ⊂ G acts by left multiplication on G as the group of
covering transformations for the cover π : G→M .

Remark C.1.7. About this theorem, it is important to remark that the last point is there just
for the sake of completeness, as we did not introduce what the period group was. The takeaway
from this point is that we may identify the Lie group with the three conditions above alone up
to some covering. It is also noteworthy to state the fact that the Maurer-Cartan form on a Lie
group G is complete.

Remark C.1.8. Dropping condition 3 in theorem C.1.2 leaves us with a manifold M which is
locally a Lie group. Similarly, dropping condition 1 in theorem C.1.2 yields a “deformation” of
a Lie group. For example consider ωt := ω+ tη such that t ∈ [0, 1] and ω satisfies conditions 1,
2 and 3. For all t, we choose the form η such that ωt still satisfies point 2. On the other hand,
the form may still be able to satisfy 3, but it will in general not be able to satisfy 1 any longer,
in this case, we no longer get a Lie group even locally. This remark will be of relevance when
we consider the generalization of these concepts to Cartan geometries.

C.1.3 Homogeneous Spaces and Metric Klein Geometries

Theorem C.1.2 has in particular shown a sort of correspondence between the Lie algebra g
and the group G. In particular, if we go back to considering Klein geometries, it is interesting
to note that due to the structural equation form and the properties of the Maurer-Cartan
form, this motivates the definition of what the Klein geometry looks like locally in the light
of theorem C.1.2. In the case of the Klein geometry (G,H) we can in particular associate the
pair (g, h), the discussion aboves thus motivates us to define the following:

Definition C.1.3. An infinitesimal Klein geometry or a Klein pair (g, h) is a pair of
Lie algebras such that h is a subalgebra of g. The kernel k of (g, h) is the largest ideal of g
contained in h. If k = 0, we say the pair is effective. Furthermore, if there is an h-module
decomposition such that g = h⊕ p, we say (g, h) is reductive.

With this definition, we are tempted to find a way to characterize the tangent bundle
of the Klein geometry given its Klein pair. Let us thus consider (U,ψ) a bundle chart for
the principal H-bundle over G/H. This means in particular that we have a diffeomorphism
ψ : U ×H → π−1(U). It is clear, then, that the following diagram commutes:

T (π−1(U)) T (U ×H) TU × TH

TU

π∗
ψ∗

πU∗×πH∗

πU∗
proj1

This diagram, implies the following one. Let g ∈ G and π(g) = x. Then the following diagram
also commutes by virtue of exactness of its rows:

Tg(gH) TgG Tx(G/H)

h g g/h

ωH ωG ϕg
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The ϕg is simply the unique morphism making the diagram commute. We can thus identify the
tangent space Tx(G/H) with g/h pointwise. However, notice that the morphism ϕg depends of
the choice of the g over x. On the other hand, since πRh = π and the fact that ωH is nothing
other than the Ehresmann connection for the H-bundle (so R∗ωH = Ad(h−1)ωH), we have
that ϕgh = Ad(h−1)ϕg. Recognizing this, we have the following proposition:

Proposition C.1.2. T (G/H) ∼= G×H g/h as vector bundles over G/H.

With this identification, we are finally ready to look at what all of this is good for. Indeed,
while the way started introducing Klein geometries as a natural generalization of Rn gave us
a taste for this, the power of Klein geometries is perhaps best appreciated through the help of
examples of applications.

By considering the isometry groups of every homogeneous space (or maximally Killing
space) it is possible to recover the structure of the Klein geometry in an obvious manner. The
following diagram illustrates some of the most relevant examples to physics:

SO(3, 2)

SO(3, 1) SO(3, 1)

SO(3)

AdS4

Σ

H3

H3

ISO(n, 1)

ISO(n) SO(n, 1)

SO(n)

SO(n− 1)

Mn,1

Σ

En

Hn

Sn−1

SO(4, 1)

SO(4) SO(3, 1)

SO(3)

dS4

Σ

S3

H4

We have here displayed three examples of groups in physics, notably anti-de Sitter, Minkowski

and de Sitter space in the above. Here, the label above each arrow G
G/H−−−→ H is to be

understood as being the base space corresponding to the Klein geometry G/H. Notice that
this diagram is not necessarily transitive. The arrows are there to indicate the reductions in
the groups that take place, they should be interpreted as meaning “H is a subgroup of G”.
Furthermore, here the Σ stands for the space of space-like hyperplanes.

Notice that for each of the diagrams, if we look at the branches on the left, from top to
bottom, we have that we identified the space of space-like hyperplanes and then we identified
the position space of the system. Similarly, for the branches on the right from top to bottom,
we identify the “event space” and then the “velocity space”. However, because all of these
concepts can be expressed in terms of groups and of their quotients, their geometry is fully
described by the theory of Klein geometries, which renders the above, in some way, trivial.

At this stage, it is noteworthy that because almost all of the Lie groups considered by
physicists are semisimple (an important exception to this is the Poincaré group), in particular
their geometries are also reductive. This has important consequences as noted above. Indeed,
we may consider the particular case of de Sitter space, whose isometry group is simply SO(4, 1).
In this case, since the Lie algebra so(n, 1) is semisimple, obtain a metric by simply considering
the Killing form on it. This metric is given explicitly by:

〈ψ|φ〉 = −1

2
tr(ψφ) (C.1.3)

Which is proportional to the Killing form. This metric restricts in a proper manner to the
induces space dSn and thus we get the metric on the homogeneous space for free, but we have
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even more than that as we will see in the following section. The power of Klein geometries
lies in the fact that it treats all homogeneous spaces on the same grounding. In so doing, it
is easy to see how looking at different spaces simply amounts to understanding the Lie groups
and algebras of the different isometry groups at hand. This method allows for powerful ways
of obtaining results. In particular, for example, we know already what the Haar measure for
all of these spaces just because we know what the Maurer-Cartan form is.

Perhaps more importantly, we know how we can bring everything back to the homogeneous
space in which we are interested in given a choice of a section over the bundle. This will be
later exposed when we talk about gauges in section C.1.5.

C.1.4 Tetrads and Connections

After the development of general relativity, Einstein looked for a way to include the phe-
nomenon of spin into his theory. However, he was forced to do so in a rather ugly manner.
This formalism is known as the “vierbein” or “tetrad” formalism (for higher dimensions, the
term “vielbein” is used) and is applied relatively often in general relativity nowadays. These
so-called tetrads appear for free in the context of Klein geometries (and in fact in full generality,
they appear in Cartan geometries as well as we will se in the next section). We will illustrate
how this happens precisely in the case of Klein geometries.

Recall that Klein geometries are equipped with a connection, the so-called Maurer-Cartan
form ωG. This connection induces, at least locally, an isomorphism TG

∼−→ g. However, since
we are dealing with a principal H-bundle, there is an Ehresmann connection on it as well,
that we will call ω. Furthermore, the base structure is simply given by (or at least is non-
canonically isomorphic to) G/H. For now, we will assume (as we will see later without loss of
much generality) that G is a simply connected group. We may summarize all this information
by looking at the following commutative diagram:

h

TG g G

g/h G/H

ωG

ω

e

exp

proj

π∗ π

exp

Notice then that actually, since ωG is an isomorphism, we have that ω = proj∗ωG, thus recov-
ering the Ehresmann connection as simply being the pullback of the Maurer-Cartan form of
the Klein geometry, but we have additional structure. Indeed, this (suggestively named) map
e : TG→ g/h ∼= T (G/H) is the so-called tetrad we encounter in relativity. It is nothing other
than the pullback of the Maurer-Cartan form under the map π. It is perhaps also important to
point out explicitly (and this turns out to be the case even in the case of Cartan geometries)
that this is equivalent to choosing an appropriate soldering form on the principal H-bundle G.

Notice that this corresponds exactly to the physics view of somehow attaching a Minkowski
space to every point, which seemed a somewhat ad hoc thing to do a priori. On the other
hand, now we are really able to appreciate why this had to be the case by having this extra
mathematical structure to guide us. The famous tetrad stemmed from nothing other than the
fact that we are now considering the Klein pair (iso(3, 1), so(3, 1)). The space attached thus
corresponds exactly to a Minkowski space, but we can see that this came naturally simply out
of symmetry groups considerations and nothing else. The fact that it is impossible to describe
spin without this extra structure implies that spin, in a way, is a consequence of the existence



64 APPENDIX C. KLEIN AND CARTAN GEOMETRIES

of these symmetry groups on the space we live in. More accurately (but getting ahead of
ourselves), we can say that (curved) space is really nothing other but a “lumpy” version of the
homogenous space described by the (ISO(3, 1), SO(3, 1)).

C.1.5 Gauges and Klein Geometries

Figure C.1: A gauge, in the proper sense of the word

In physics, we often deal with so-called “gauges”, people rarely bother to define precisely
what is meant by this terminology, which was coined by Hermann Weyl in 1918 [5]. To get an
intuitive idea of what it is, consider an actual gauge as depicted in figure C.1 (Weyl’s original
term was referring to the gauge of a railway track and referred to a scale factor, however, due
to a happy accident of language we may consider an actual gauge). It is constituted of two
main parts:

1. A part which is fixed, but arbitrary, in the case of the gauge this simply constitutes the
markings on the gauge. A choice of such markings is called a choice of gauge;

2. A moving part, which is characterized by the moving needle, which characterizes what
we are actually interested in measuring.

To understand why this picture is relevant at all, let us go back to considering the pilot in
his airplane. As outside observers, we might want to describe the motion of this pilot. Indeed
in this case, it is obvious that the moving part is the pilot. However, it is necessary to compare
the movement of the pilot with respect to some arbitary choice of movements for the observer
himself. This thus amounts to choosing a particular section. This gives us a hint of what we
should define and exactly how.

We make the ideas above more precise. Let us start by assuming that we have an open
set U over the manifold M = G/H such that there exists a global section s over U . Once one
of these sections exists, it is trivial to see that many others do as well, simply by acting with
elements of H on the global section s. However, if we are dealing with a principal bundle, there
will be a smooth section relating the choice of gauges by virtue of the free and transitive action
of H on the sections.

Definition C.1.4. We will call a choice of a map s : U → H a choice of gauge. This can be
regarded as a choice of motions that vary in a smooth manner on a principal bundle P .

Remark C.1.9. Note that this definition is general to all principal bundles P , it is just termi-
nology. In particular, we will employ it in the next section as well.

Remark C.1.10. It is important to stress that the choice of a gauge bears no geometrical
meaning whatsoever.
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Gauge Picture of Trivializations

So far, we have worked over a neighbourhood U to define the sections that define the choice
of gauges. However, on such a chart (U,ψ), we have the trivialization ψ : U ×H → π−1(U). In
fact, due to the fact that this diffeomorphism ψ is right equivariant, specifying the particular
trivialization is completely equivalent to choosing a section over U . Indeed, the trivialization
ψ corresponds to the section s defined by s(x) = ψ(x, e), ∀x ∈ U and e ∈ G is the identity
element. Due to right equivariance, it holds then that ψ(x, h) = s(x)h.

We might thus be curious as to how exactly this behaves under change of coordinates. Let
s1 and s2 be two sections over U , then there is a smooth map k : U → H linking both gauges
by : s2(x) = s1(x)k(x) for x ∈ U . Thus, if ψ1 and ψ2 are the trivializations corresponding to
the sections s1 and s2, we have that:

ψ−1
2 ψ1(x, h) = (u, k(x)−1h) (C.1.4)

These functions k are important enough to give them a name. For this we have the following
definition:

Definition C.1.5. The functions k : U → H which map one choice of section, s1, to another
one, s2, are called the transition functions or gauge transformations.

Remark C.1.11. Going back to our previous problem on tracking the airplane, we notice that
we could approach the problem by describing the motion of one of its points, given by the curve
q(t) ∈ M for t ∈ [0, 1]. We may use the gauge s to track the motion of the plane. Notice here
that if the internal configurations of the plane (in other words, its orientation) along its path
are given by g(t), then both s(q(t)) and g(t) lie in the fibre over q(t). They both must thus
differ by an element k(t). The latter simply describes how the plane turns around point q(t).
It is very important to once again emphasize that there is no intrinsic meaning to k(t) or the
choice of gauge s alone. However, combined, they describe the motion of the plane.

Remark C.1.12. From what we have seen, we notice that it is enough to give the functions k
in order to be able to reconstruct the principal bundle G.

Maurer-Cartan Form Trivialization

One might be interested in seeing how the Maurer-Cartan form behaves under a local
trivialization. The following proposition gives us this explicitly:

Proposition C.1.3. Over a local trivialization (U,ψ), the following diagram commutes, where:

ϕ(v, y) = Ad(h)−1ωG(v) + ωH(y) (C.1.5)

T(x,h)(U ×H)

g

TxU × ThH

πU∗×πH∗

ψ∗ωG

ϕ
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Infinitesimal Gauges

We might be interested to see what happens to ωG when we choose a particular gauge s.
We can actually use the section s : U → G to pull back the Maurer-Cartan form. We define
the 1-form η := s∗ωG. Then the structural equation pulls back and yields:

dη +
1

2
[η, η] = 0 (C.1.6)

We note that not only does s determine η, but the opposite is almost true. Indeed, it is true
by a generalized version of the fundamental theorem of calculus that η determines s up to
multiplication of a fixed element of G. For this reason, we may refer to both s and η as gauges
on M .

Definition C.1.6. To make the proper distinction between a gauge s corresponding to section
over a local trivialization and its associated form η, we will call this η an infinitesimal gauge.

The advantage of these infinitesimal gauges is that they do not depend on the base point.
The geometrical interpretation of this η is that to every tangent vector v ∈ TxM , we assign an
infinitesimal motion “ id + εη(v) ∈ G ” of M whose effect on x itself is to move it to x+ εv.

By varying the gauge s (or equivalently, varying the trivialization ψ), we change the in-
finitesimal gauge as well. In particular it is interesting to see how this infinitesimal gauge
transforms. Let thus s1, s2 be two sections over U ⊂ M and consider the associated gauge
transformation from one to the other given by k : U → H. Then by virtue of proposition C.1.3
the following is true:

η2 = Ad(k−1)η1 + k∗ωH (C.1.7)

Definition C.1.7. We call such a variation of the infinitesimal gauge θ an infinitesimal
change of gauge and the two infinitesimal gauges are said to be infinitesimally gauge
equivalent. Sometimes, we drop the “infinitesimal” in front of the terms hereby defined.

Throughout this chapter, we have been hinting at how we could generalize the above con-
cepts in the case of the (now infamous) Cartan geometries. We will explore this beautiful
generalization of Klein’s ideas which was done by Cartan in the 1920’s in an effort to reformu-
late the theory of gravitation under more mathematically sound concepts in the next section.

C.2 Cartan Geometries

Cartan generalized the ideas that Klein proposed during the celebrated Erlangen Programm
of the 1870’s to further formalize differential geometry [6]. In thus doing he introduced the idea
of Cartan geometries, which generalize Klein geometries in the same sense that Riemannian
geometry generalizes Euclidean geometry. Later on, a student of Cartan, Charles Ehresmann
introduced the idea of the Ehresmann connection [7] we saw in the previous chapter in order to
set Cartan’s ideas under a more rigorous footing. However, there is some dissatisfaction among
mathematicians as far this definition of a connection is concerned.

There are two main reasons for this. First, in some way, the Ehresmann connection is
so general that it includes perhaps much more than what is actually interesting [8]. This has
perhaps already been remarked by the reader during the previous section on Klein geometries, in
which we naturally saw aspects of physics naturally arise in the particular case of homogeneous
spaces. Second, although Ehresmann’s formulation is certainly a lot more general, it sweeps
under the rug the similarity that connections have to the Maurer-Cartan form on a Lie group.
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This similarity is at the base of the intuition that helped Cartan generalize Klein geometries to
a bigger class of geometries. This extra generality of the Ehresmann connection can thus have
as a consequence to be an unnecessary obstacle to one’s understanding of the subject the first
time one learns it.

On the other hand, Ehresmann connections appear nonetheless as important components of
the Cartan connection we will introduce in this chapter as well as being the rigorous foundation
of covariant differentiation, so both concepts are definitely intertwined and decoupling them
can be difficult, if not impossible. In some way, as Sharpe [1] so accurately put it, “the relation
between Ehresmann connections and Cartan connections is somewhat analogous to the one
between rings of algebraic integers and arbitrary commutative rings in that each degree of
generality illuminates each other.”

C.2.1 General Definitions

As we have previously discussed in the last section, Cartan geometries generalize the idea
of Klein geometries. It follows that the definition is akin to looking at geometries that are
“infinitesimally Klein”, but globally different. We make this notion precise in the following
definition:

Definition C.2.1. A Cartan geometry, ξ = (P, ω), on M modelled on (g, h) with group H
is the given of:

1. A smooth manifold M

2. A principal right H-bundle P over M

3. A g-valued 1-form ω on P satisfying the following conditions:

(a) For each p ∈ P , the linear map ωp : TpP → g is an isomorphism;

(b) (Rh)∗ω = Ad(h−1)ω, ∀h ∈ H;

(c) ω(σ(B)) = B, ∀B ∈ h.

We may sometimes refer to this construction by abuse of notation as a Cartan geometry M .
Additionally, motivated by our previous discussions on Klein geometries we define the following:

1. The curvature form is the g-valued 2-form given by Ω = dω + 1
2 [ω, ω].

2. Furthermore, if proj : g → g/h is the canonical projection, then proj(Ω) is called the
torsion form.

3. If Ω takes values on h only, we say that the geometry is torsion free.

4. The geometry is said to be complete if all the vector fields X such that ω(X) is a
constant are such that all the integral curves of the vector field are complete (i.e. are
defined over an infinite interval (−∞,∞)).

5. The geometry is effective, primitive or reductive respectively if the model Klein
geometry (G,H) is effective, primite or reductive.

Remark C.2.1. The above conditions on the connection ω have a straightforward interpretation.
We may perceive a Cartan connection as simply “rolling” a Klein geometry on a smooth
manifold M . This view is compatible to the point of view given in remark C.1.8. A good
illustration of this is given in figure C.2.
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Figure C.2: A sphere rolling along the central line of a helicoid without slipping or twisting.
This is a good picture for one’s understanding of a Cartan geometry. In this case, the Klein
geometry we are rolling along the manifold is simply (SO(3), SO(2)), which amounts to roll a
sphere on the manifold.

1. That the connection is an isomorphism at each tangent space basically imposes a con-
dition of no twisting and no slipping of the Klein geometry. This is simply because
the configuration state of the so-called internal space (which corresponds to the Klein
geometry) is uniquely determined by parallel transport, because of the presence of this
isomorphism. Thus, no “twisting” or “slipping” of the geometry can occur;

2. (Rh)∗ω = Ad(h−1)ω, ∀h ∈ H. This condition is one of equivariance. Intuitively, it may
be understood as simply the fact that the configurations of the internal space have no
significance or importance;

3. ω(σ(B)) = B, ∀B ∈ h. This condition is actually equivalent to saying that the con-
nection restricts to the Maurer-Cartan form on the vertical spaces. This is in some way
simply stating that the Klein geometry structure does not vary as we roll it around the
manifold M .

Remark C.2.2. In defining the Cartan geometry, we were very careful to define the curvature to
go along with it. Indeed, this was Cartan’s coup to generalizing the ideas of Klein. One should
really understand this curvature form to characterize how much “lumpiness” the geometry
exhibits.

Next as is customary, we want a way of comparing constructions. We thus introduce the
notion of morphism for Cartan geometries.

Definition C.2.2. Let (P1, ω1) and (P2, ω2) be two Cartan geometries on M1 and M2 respec-
tively modelled on the pair (g, h) with group H. Let f : M1 → M2 be an immersion covered
by the H-bundle map f̃ : P1 → P2 with the property that f̃∗ω2 = ω1. Then f is called a
local isomorphism of geometries, or a local geometric isomorphism. Furthermore, if
f is a diffeomorphism, then it is called an isomorphism of geometries, or a geometric
isomorphism.

We notice that this definition is very similar to the context in which we built the theory
of principal bundles. In fact, the remarkable difference is that now the connection form is
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g-valued instead of h-valued. We have the following results that ensure that most of the results
we previously found still hold in the case of Cartan geometries. In fact, as we will later see,
this is little to no surprise as one can retrieve a Cartan geometry from the right principal
bundle equiped with the right Ehresmann connection. Because of the similarity between Klein
geometries and Cartan geometries, we quickly give some facts about Cartan geometries in the
following lemma.

Lemma C.2.1. Let (P, ω) be a Cartan geometry on M modelled on (g, h) with group H. The
following results are true:

1. Assume ψ : P → H is a smooth map. Define f : P → P by taking f(p) = Rψ(p)p. Then,
f∗Ω = Ad(ψ(p))Ω;

2. The curvature form Ω may be regarded as a 2-form on π∗TM ;

3. Let V be a vector subspace of the Lie algebra h. ω−1(V ) is an integrable distribution of
P if and only if V is a subalgebra of h;

4. If ξ is torsion free and V ⊂ g such that h ∈ V , then ω−1(V ) is an integrable distribution
of P if and only if V is a subalgebra of g.

C.2.2 Gauges in Cartan Geometries

The concept of gauge seen in the case of Klein geometries can be naturally extended to
Cartan geometries, the idea of this section is to see exactly how these notions generalize. In
particular, we may consider what tensors, as defined in B.1.2 look like in a particular gauge.
In the end, the notion of choosing a gauge is essential if we wish to express things in terms
of indices and coordinates, which is often the case in physics. For this, we have the following
definitions and facts:

Definition C.2.3. Let ξ be a Cartan geometry. A Cartan gauge with this model on a smooth
manifold M is a pair (U, η) where U ∈ M is an open set and η is a g-valued 1-form satisfying
a regularity condition that:

η̄ : TxU g g/h
η proj

is a linear isomorphism for each x ∈ U (one usually assumes that U is a coordinate neighbour-
hood of M but this is strictly speaking not necessary).

Definition C.2.4. Let (U, η) be a gauge of a Cartan geometry (P, ω) corresponding to a section
s : U → P (i.e. s∗ω = η). If f : P → V is a tensor of type (V, ρ), then φ = s∗f = f ◦s : U → V
is the expression of the tensor in the gauge (U, η).

The following lemma justifies our definition of a tensor and reconciles it with the usual
notion of a tensor in physics, which is an object which (very) loosely speaking “transforms in
a certain way”.

Lemma C.2.2. Let φ : U → V be the expression of a tensor f of type (V, ρ) in a Cartan
gauge (U, η1). We fix another gauge η2, where k : U → H is the corresponding change of gauge
between η1 and η2 (as prescribed in equation C.1.7). Then ρ(k−1)φ : U → V is the expression
of the same tensor in the new gauge η2.
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C.2.3 Tangent Bundle of a Cartan Geometry

The result of proposition C.1.2 we uncovered in the case of Klein geometries still holds in
the case of Cartan geometries. This means in particular that just as in the Klein case, the
tangent bundle can be expressed as a vector bundle associated to the principal H-bundle via
the representation Adg/h : H → End(g/h).

Theorem C.2.3. Let (P, ω) be a Cartan geometry, then there is a canonical isomorphism
TM ∼= P ×H g/h. Moreover, for each p ∈ P such that π(p) = x, there is a canonical isomor-
phism ϕp : TxM → g/h such that ϕph = Ad(h−1)ϕp.

This theorem has an important consequence we will use later on when we look at what
connections and in particular what the covariant derivative looks like in the case of Cartan
geometries.

Corollary 3. Let (P, ω) be a Cartan geometry. The vector fields X on M are in bijective corre-
spondence with the functions f : P → g/h transforming according to the adjoint representation
(i.e. f(ph) = Adg/h(h

−1)f(p)). The correspondence is given explicitly by:

X 7→ [fX : p 7→ ϕp(Xπ(p))] (C.2.8)

Along the same motivation to explore the representation theory of H later on, we introduce
some terminology used in the literature. To give some motivation for the following definition, it
is enough to consider any of the examples of applications. For instance, we may be interested in
looking at wavefunctions (which may, for example, be part of a gauge theory). However, these
objects take an element from the base manifold x ∈ M and give us a vector valued quantity.
We thus want a way of formally describe these spaces which can naturally be associated to the
principal bundle in order to later make use of the machinery of representation theory. Having
said this, we define the following:

Definition C.2.5. Let (P, ω) be a Cartan geometry. A vector bundle E with base P is called
a geometric vector bundle if it is given the form E = P ×H V for some representation
ρ : H → GL(V ).

C.2.4 Bianchi identity

Taking into consideration lemma B.3.1 as well as its derived corollary 2, the Bianchi identity
on a Cartan geometry is simply a formal consequence of those to facts, indeed we have:

Theorem C.2.4 (Bianchi identity). dΩ = [Ω, ω].

Proof. The reader is welcome to check this is nothing other than a consequence of d2 = 0,
Ω = dω + 1

2 [ω, ω] and using the lemma and corollary above. �

Remark C.2.3. Actually, by continuing to take exterior derivatives of the definition of curvature,
one obtains a chain of identities by successive differentiation. The next identity after Bianchi
is simply given by [Ω,Ω] + [[Ω, ω], ω] = 1

2 [Ω, [ω, ω]]. The reader is welcome to check this as an
exercise.

The reader might notice that in the case of Cartan geometries, we do not get two Bianchi
identities as we did in the case of the Ehresmann connection, but simply one. In applications, we
retrieve the expressions for the two separate Bianchi identities simply by virtue of representation
theory.
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C.2.5 Curvature Function

While the form Ω provides us with a two form, there is a function that also gives us a
notion of curvature over the principal bundle P . This notion will become useful once we
examine Riemannian geometry as an application of Cartan geometries. Having motivated its
introduction, we have the following definition:

Definition C.2.6. Let Ω be the curvature form on the principal bundle P . The curvature
function K : P → Hom(Λ2(g/h), g) at a point p? ∈ P is defined by:

K(p)(T1, T2) = Ωp(ω
−1(T1), ω−1(T2)) (C.2.9)

Lemma C.2.5. The curvature function is well-defined and satisfies the invariance property:

K(ph)(T1, T2) = Ad(h−1)(K(p)(Ad(h)T1,Ad(h)T2)) (C.2.10)

The following proposition gives us the geometrical interpretation of this curvature function
K

Proposition C.2.1. The curvature function measures the difference between the Lie algebra
bracket and the bracket of corresponding vector fields on P . More precisely we have that:

K(p)(T,R) = [T,R]− ωp([ω−1(T ), ω−1(R)]) (C.2.11)

Notice in particular that this torsion form gives us a nice characterization of torsion free
Cartan geometries. Indeed, the following is true:

Proposition C.2.2. The Cartan geometry is torsion free if and only if the curvature function
K takes values in the subrepresentation Hom(Λ2(g/h), h) ⊂ Hom(Λ2(g/h), g).

C.2.6 Universal Covariant Derivative

The notion of covariant derivative has been useful to us in the past. It is thus little to no
surprise that we want to introduce a similar construction in the case of Cartan geometries. The
reader might note that there is some similarity between the concept of a covariant derivative in
the sense of Ehresmann as we saw in the previous chapter and the definition of the covariant
derivative in the case of Cartan geometries. However, these are not strictly speaking the same
notion, since in the case of a Cartan geometry, the principal bundle P has in a way “knowledge”
of a bigger algebra g. It will thus be no surprise that we use the Cartan connection in the
definition of the universal covariant derivative we will introduce in what will follow.

In order to make this introduction as smooth as possible, we shall introduce some natural
isomorphisms which will help the reader understand exactly what is meant behind the notation
employed.

Lemma C.2.6. Let (V, ρ) be a representation of the Lie algebra g and let (P, ω) be a Cartan
geometry modelled on (g, h). There is a natural isomorphism: ϕ : Ak(P, V ) ∼= A0(P, V ⊗Λkg∗)
given by:

ϕ(β)(ξ1, · · · , ξk) = β(ω−1(ξ1), · · · , ω−1(ξk)) (C.2.12)

Where β ∈ Ak(P, V ) and ξj ∈ g.

We note that this isomorphism is indeed equivariant due to the equivariance of ω. Further-
more, we know that there is the presence of the exterior derivative d : Ak(P, V )→ Ak+1(P, V ).
If we take k = 0 in the natural isomorphism of lemma C.2.6 and compose with the exterior
derivative we get a map:
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Definition C.2.7. The universal covariant derivative is the map given by:

D̃ := ϕ ◦ d : A0(P, V )→ A0(P, V ⊗ g∗) (C.2.13)

Explicitly, for a function f? ∈ A0(P, V ) and an T ∈ g, we have that:

D̃T f = df(ω−1(T )) =: ω−1(T )f (C.2.14)

Notice that D̃ = ιT∗D̃, where the natural isomorphism ι is the same as the one in definition
B.4.4.

In fact, the canonical isomorphism given in lemma C.2.6 gives us a hint that there is yet
another canonical isomorphism under the sheets. Indeed we have:

Proposition C.2.3. Let (V, ρ) be a representation of a Lie algebra g corresponding to the
maximal algebra of the set on which the Cartan geometry (P, ω) is modelled. There is a
canonical isomorphism φ : Ak(P, ρ) ∼= A0(P, ρ ⊗ ΛkAd∗) (by abuse of notation we note the
respective vector spaces by their associated representation homomorphisms).

Proof. Recall the natural isomorphism shown in lemma C.2.6. Further recall that there is a
natural isomorphism V ∗⊗W ∼= Hom(V,W ) for any two vector spaces V and W (provided that
either V or W are finite dimensional). It is thus sufficient to show how the morphism in lemma
C.2.6 behaves under right action of an element h ∈ H. Consider thus p ∈ P , α ∈ Ak(P, ρ) and
ξi ∈ g, then:

R∗hϕ(α)(p)(ξ1, · · · , ξk) = ϕ(α)(ph)(ξ1, · · · , ξk) = αph(ω−1
ph (ξ1), · · · , ω−1

ph (ξk)) (C.2.15)

= ρ(h−1)αp︸ ︷︷ ︸
∵α∈Ak(P,ρ)

(Ad(h)ω−1
p (ξ1), · · · ,Ad(h)ω−1(ξk)︸ ︷︷ ︸

∴∈ΛkAd

) (C.2.16)

It is thus clear that ϕ(α) ∈ A0(P, ρ ⊗ ΛkAd∗) and the isomorphism condition holds due to
lemma C.2.6. �

Remark C.2.4. For the case k = 2, this isomorphism yields exactly φ(Ω) = K, where K is the
curvature function we had defined in section C.2.5.

Lemma C.2.7. For B ∈ h and f ∈ A0(P, ρ), we have ιB∗(D̃f) = −ρ∗(B)f , where ρ∗ is the
derivative at the identity of the representation ρ : H → GL(V ).

Lemma C.2.8. D̃ : A0(P, ρ)→ A0(P, ρ⊗Ad∗).

Remark C.2.5. This last lemma is actually of non-trivial importance for the motivation that we
hereby explain. Indeed, although the representation (V, ρ) might be irreducible, this need not
be the case of the representation (V ⊗g∗, ρ⊗Ad∗). Thus, it may be that the latter decomposes
as a direct sum of irreducible representations yielding the decomposition V ⊗g∗ = W1⊕· · ·⊕Wr.
In that case, the breaking up of this representation will induce the break up of the operator D̃,
the universal covariant derivative, as: D̃ = D̃1 + · · ·+D̃r, where each of the D̃i’s are projections
of D̃ onto each subspace Wi.

This natural decomposition due to representation theory yields in turn all the important
derivation operators we are usually interested in. What this all means is that thanks to the
abstract machinery we have developed until now and a little bit of representation theory, we
can naturally obtain the natural differential operators to treat our problem with.
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Remark C.2.6. Because of the natural identification between A0(P, ρ) ∼= A0(M,P ×H (V, ρ))
given in theorem B.2.1, the universal covariant derivative may also be interpreted as a linear

first-order differential operator ˜̃D = D̃ : A0(M,P ×H (V, ρ)) → A0(M, (V ⊗ g∗, ρ ⊗ Ad∗)) (cf.
lemma C.2.8) where we write the first equality by abuse of notation, since strictly speaking
these are not the same operators. Note that this operator does not give the derivative of a
section of P ×H (V, ρ) with respect to the direction of some tangent vector on M , but rather
with respect to the direction of some vector on P . In other words, it is not enough to give the
to give two nearby points of M to describe how a vector changes; we must instead give two
frames of M .

Furthermore, because of remark C.2.5, if the representation V ⊗ g∗ decomposes as a sum
of irreducible components, then the bundle F := P ×H (V ⊗ g∗, ρ⊗Ad∗) decomposes as a sum
F = F1⊕· · ·⊕Fr, where the Fi = P ×HWi and the induced D̃i’s can be regarded as first-order
linear differential operators on each Fi such that D̃i : Ak(M,Wi)→ Ak(M,Fi).

C.2.7 Covariant Derivative in the Reductive Case

The existence of the covariant derivative we all know and love (the one that generalizes the
directional derivative in Euclidean space) actually requires that the Cartan geometry at hand
be reductive. In other words, reductive geometries have, in this way, a much richer structure
than non-reductive geometries. We recall what it means for a Cartan geometry to be reductive:

Definition C.2.8. A Cartan geometry modelled on (g, h) with group H is reductive if there
is an H-module decomposition g = h⊕ p.

Remark C.2.7. Notice that the term reductive in the sense in which we are now employing
clashes somewhat to the term employed in the classical theory of Lie algebras, which calls a
Lie algebra reductive if it is the sum of a semi-simple and abelian ideal. This is not exactly
what is meant in this definition, however, the two are closely related [9].

Because of this natural decomposition, we may express any form as one having a component
in h and a component in p and by virtue of the logic exposed in remarks C.2.5 and C.2.6, we
have that the covariant derivative will split into two different pieces as well, namely D̃h and
D̃p. Notice, however, that thanks to lemma C.2.7, we know how D̃h = −ρ. We can see that the
behaviour in the vertical vectors is not very interesting and is, in some way, trivial. On the other
hand, we have that the behaviour on the horizontal vectors carries all the vital information,
but this is nothing other than D̃p. In some way, we have come full circle back to a definition
similar to the one of the covariant derivative akin to the one that we gave in the case of the
Ehresmann principal bundle, or at the very least, we will use the same ideas to construct the
usual covariant derivative we know and love.

Remark C.2.8. Although the idea is the same, the case of Ehresmann is much more general,
since the existence of the covariant derivative does not require any extra conditions, whereas
in the case of Cartan geometries, we can only define the construction in the particular case of
the geometry being reductive.

Just as before we define things on the bundle and then using theorem B.2.1, we define what
it means to derive a section of the associated bundle.

Definition C.2.9. In a reductive geometry, the operator D̃p is called (the bundle version
of) the covariant derivative. A function f : P → V is called covariant constant or
parallel if D̃pf = 0. If (V, ρ) is a representation of H and P ×H V is its associated bundle, for
X ∈ Γ(TM) we may define (base version of) the covariant derivative DX : Γ(E)→ Γ(E)
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by taking the composition of the bundle version of the covariant derivative with the ψ morphism
of theorem B.2.1, akin to what we did in the case of Ehresmann connections (cf. definition
B.4.4).

Remark C.2.9. This covariant derivative is also a Koszul connection (cf. definition A.4.4), since
it is nothing but a particular case of what we saw in the Ehresmann exterior connection.

Now that we have a definition for the covariant derivative, we wish to be able to calculate it.
In particular, this means understanding how the covariant derivative behaves under a particular
choice of gauge. For this, we have the following proposition:

Proposition C.2.4. Let (U, θ) be a gauge for a reductive Cartan geometry, X ∈ TU and φ
be the expression of a tensor of type (V, ρ) in the gauge (U, θ). Then:

DXφ = dφ(X)− ρ∗(θh(X))ψ (C.2.17)

where θh is the projection onto h of the gauge and ψ is the isomorphism of theorem B.2.1.



Appendix D

Bundle View of Wave-functions

Another application of what we have seen so far is a correct mathematical description of
non-relativistic wave-functions. However, if we want to treat this problem, it is necessary to
have a perhaps pedantic approach to the topic.

D.1 Naive Approach and its Problems

Normally, physicists tend to define a wave-function as simply being a function ψ : Rn → C
obeying some regularity condition, which most of the time is taken to be that the function be
square integrable. This then leads to conclude that the wave functions ψ ∈ L2(Rn,C) where
we equip L2 with its canonical inner product, namely:

〈ψ|φ〉 :=

∫
Rn

dµ ψφ (D.1.1)

where dµ is the Lebesgue measure on Rn. This choice is backed by physical arguments, which
state that we should only consider normalized wave packets.

The particular choice of L2 may seem somewhat arbitrary but can be motivated, among
others by the fact that L2 has a complete structure, which is nice if you are studying quantum
mechanics in the usual sense, where the notion of a basis for the wave-function space comes
over and over in different problems. Physicist thus like to think of these wave-functions as
living in an abstract Hilbert space, which is most of the time –misleadingly and incorrectly–
identified with L2. To see why this identification is incorrect, we need to consider some of the
structure that the space of these wave-functions actually require in order for normal quantum
mechanical concepts to be consistent and then notice that L2 doesn’t really comply with all of
these requirements.

Let us start by looking at the identification in a little bit more detail. Quantum Mechanics
deals with operators, which act on these wave-functions, or more specifically which act on the
Hilbert space (which we will for now suppose is L2). It is then customary to define some
particular self-adjoint operators with respect to the canonical inner product defined above.
These operators are:

Pi : L2(Rn,C)→ L2(Rn,C) and Qi : L2(Rn,C)→ L2(Rn,C) (D.1.2)

The self-adjoint condition is simply that (Qi)† = Qi and P †i = Pi. Furthermore, we impose on
these operators the following so-called canonical commutation relations:

[Qi, Pj ] = iδij , [Qi, Qj ] = [Pi, Pj ] = 0. (D.1.3)

75
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The standard approach is then to identify these operators as being defined by (in Cartesian
coordinates): (Qiψ)(x) = xiψ(x) and (Piψ)(x) = (−i∂iψ)(x). This is motivated by the analysis
of the representation theory of the Heisenberg Lie Algebra constituted by the operators Qi and
Pj .

D.1.1 Target Problems

Already at this stage, there are some problems that come in. Indeed, by defining these
operators on our space, we have already contradicted the fact that we are dealing with functions
in L2(Rn,C). This is because we would like our test functions ψ to be closed under operator
transformations, but on the other hand, clearly xiψ is not necessarily in L2(Rn,C) since its
norm may no longer be a finite quantity and ∂iψ is clearly also not necessarily in L2(Rn,C),
since ψ need not be differentiable almost everywhere in order to be square integrable.

While these are most of the time considered to be mathematical pedantries by physicists,
it is important to consider these facts with care if one is to elaborate an appropriate point
of view of things. These functional analysis problems of domains and targets may be solved
by considering the Gelfand triple. To introduce this notion, we need to take a brief detour to
functional analysis. For a more in depth discussion about some of the facts hereby stipulated,
the reader is welcome to consult section A.5 for some basic facts on functional analysis.

Definition D.1.1. A rigged Hilbert space is a pair (H,Φ), with H a Hilbert space and Φ
a dense subspace of H such that Φ is given a topological vector space structure for which the
inclusion map i : Φ→ H is continuous.

Recall from the Riesz representation theorem (cf. theorem A.5.4) that we may identify the
Hilbert space with its continuous dual, i.e. H ∼= H∗. We may thus define a map:

i∗ : H H∗ Φ∗Ξ

This duality pairing is compatible with the inner product on H, meaning that the inner product
on Φ is nothing other than the restriction of the inner product in H. Notice that we have
H ⊂ Φ∗.

Remark D.1.1. Despite the fact that Φ ∼= Φ∗, if Φ is a Hilbert subspace, then the isomorphism
is not the same as the map given by:

i∗i : Φ H H∗ Φ∗∼

Definition D.1.2. The triple (Φ,H,Φ∗) is called a Gelfand triple.

Thus if we take for example Φ to be the space of Schwartz test functions (for which the
corresponding H = L2), then we may properly define the commutation relations as well as
the self-adjointedness of the operators Pj and Qi on these test functions without having target
problems. We can simply then lift all the operators defined on Φ to Φ∗, thus solving our
target problems. In this case, we say that the space Φ∗ is called the space of tempered
distributions.

Although these target issues are a problem in within themselves, the issue here concerns, in
some way, more functional analysis than it does geometry. Having pointed out how it is possible
to deal with these target problems, we will not focus on them in the rest of our discussion in
order not to obscure the discussion too much. However, we remark that it is possible to regard
both issues simultaneously.
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D.1.2 Coordinate Dependence

In order to see where things go further wrong, we consider a typical calculation performed in
any introductory Quantum Mechanics course. We may, for example, check that the definition of
these operators indeed satisfies the commutation relations and that they are indeed self-adjoint
with respect to the canonical inner product in L2.

We look at the particular case of the self-adjointedness of the operator Pj .

〈φ|Pjψ〉 =

∫
Rn

dnx φ(x)(−i∂jψ(x)) =

∫
Rn

dnx (i∂jφ(x))ψ(x)︸ ︷︷ ︸
Integration by parts

=

∫
Rn

dnx (−i∂jφ(x))ψ(x) = 〈Pjφ|ψ〉. (D.1.4)

(D.1.5)

We thus retrieve the usual result obtained classically. However, this is very explicitly coordinate
dependent. To show this, we perform the same calculation in polar coordinates (let us take the
particular case n = 2, for the sake of argument. Then we have that:

〈φ|Pjψ〉 =

∫
R2

dr dθ rφ(r, θ)(−i∂jψ(r, θ))

=

∫
R2

dr dθ [−i∂j(rφ)]ψ︸ ︷︷ ︸
Integration by parts

(D.1.6)

We can clearly see at this point where the problem is. Indeed, in the case where j = r, the
operator Pr is no longer self-adjoint ! We complete the calculation in order to get a result that
we will later use when we provide a fix for the problem:

〈φ|Pjψ〉 =

{
〈Pjφ|ψ〉 for j = θ;

〈Pjφ|ψ〉+ i
∫
R2 dr dθ φψ for j = r.

(D.1.7)

Many times, people then thus claim that the canonical commutation relations only hold for
Cartesian coordinates. This cop-out explanation, however, is not only wrong but also com-
pletely unphysical. After all, why should Cartesian coordinates play a particular role in physics
at all?

Now that we have seen a manifestation of the problem, we understand that the key has to
lie within differential geometry to fix it, since we wish to formulate the theory in a coordinate
independent way. In the next section, we will see how to fix this problem and how principal
bundles naturally enter the game.

D.2 Bundle Approach and Solutions

Since we reached a contradiction, we have to ask ourselves where everything went wrong.
Actually, it turns out that what is wrong with the physicist’s picture is simply the fact that we
have regarded the wave-function as a function from the base manifold (in this case Rn) onto
the complex numbers. Let us instead consider Rn as the base manifold of a vector fibre bundle
whose typical fibre will simply be C. A wave-function under this light amounts to nothing
other than a section over this fibre bundle. We then recover the picture of the wave function
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being a function, but only in a local sense (more accurately, under a local trivialization of the
vector bundle), since the bundle need not necessarily be trivial. In what will follow, we shall
thus consider a total space E with base M = Rn and typical fibre C.

We can then see this vector bundle as simply being the associated bundle of a principal
bundle. However, at this point, it is not exactly clear which is the specific principal bundle
which we should attribute to this construction. On the other hand, we know what we want:
invariance under change of coordinates. This strongly hints at the fact that we should be
looking at the principal bundle prescribed by the frame bundle. Indeed, this is simply because
coordinate transformations simply amounts to changing frames over the manifold. Change
coordinates on the base manifold are thus induced by the changes of basis in the frames. Thus,
we consider E as being the associated bundle to the frame bundle F (M).

Why does this help us? Well, we know that if we have the frame bundle, we can establish an
Ehresmann connection on this bundle. Then, we can define a covariant derivative on sections
of any associated bundle, as we saw in chapter B. Indeed, recall that by theorem B.2.1, we can
regard such sections as equivariant functions from the frame bundle F (M) onto the fibre C. So
now we are looking at a wave-function ψ not as a section of the associated bundle, but rather
as a C-valued function, Ψ, not from M , but from the full F (M). It turns out this subtlety will
be crucial to solving the problem. We can then look at this covariant derivative on the sections
as simply being the exterior covariant derivative defined on F (M) (cf. definition B.4.4).

d∇Ψ = dΨ +$ ZΨ = dΨ +$Ψ (D.2.8)

where the last equality holds due to the fact that Ψ is nothing other than a function so the
wedge operation is trivial and where $ is the Ehresmann connection on the principal bundle
F (M). Furthermore, recall that in the product ωΨ, we actually have the ω act on Ψ from the
left, as we saw in remark B.4.7.

However, notice that now, when we push this all back down with a choice of section over
P , this will naturally include some correction factors to the original simple derivatives we had
considered in the case where we looked at simple functions alone. Furthermore, we can now
see that the inclusion of the extra term is imperative in order to obtain a geometric quantity.

It is helpful at this point to state how these abstract geometric constructions get pulled
back down to the base. Indeed, let us consider a choice of section s over a local chart U ⊂M .
The function Ψ : F (M) → C can then be pulled back to U via this section. Let us then
write ψ = s∗Ψ for the pullback of Ψ via this section. The Ehresmann connection can also be
pulled back down to U via the section s. We can thus write the expression of this pullback as
ω = s∗$. Finally, the exterior covariant derivative of Ψ can also be pulled back down via the
section simply by considering s∗(d∇Ψ) and we will write it as ∇ψ = s∗(d∇Ψ). In particular it
is helpful to consider what the expression of this ∇ looks like:

s∗(d∇Ψ) = s∗(dΨ +$ ZΨ) = d(s∗Ψ) + s∗($) Z s∗(Ψ) = dψ + ω Z ψ (D.2.9)

For some local coordinates {xα}α∈I , this is nothing other than: ∇α = ∂α + ωα, which we will
call from here on a covariant derivative over the open set U . With these concepts properly
defined, we are now ready to tackle the redefinition of the momentum operator.

D.2.1 Redefining the Momentum Operator

Because of the discussion above, we see that we want in some way define the momentum
operator in terms of this exterior covariant derivative we had defined back in definition B.4.4.
On the other hand, this requires the knowledge of the principal connection, for which we have
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a priori no knowledge. To build the actual expression of it, it will be necessary to inspire us
from the nitty-gritty details of the calculations we performed on the self-adjointedness of the
operator Pα in order to find a compatible definition for the local expression of the connection
pulled back under a certain section.

With the above in mind, we can redefine the momentum operator in an arbitrary coordinate
system {xα}α∈I defined over Rn, whose Jacobian is given by J to be:

Pα = −i∇α = −i(∂α + ωα) (D.2.10)

To give us an idea of what the expression of this ωα should be, we can repeat the calculation
for the self-adjointedness of Pα in this setting. We thus obtain that:

〈φ |Pαψ〉 =

∫
Rn

dµ φPαψ =

∫
Rn

dµ φ(−i∇αψ)

=

∫
Rn

dnx (det J) φ[−i(∂α + ωα)]ψ

=

∫
Rn

dnx (det J) φ(−i∂αψ) +

∫
Rn

dnx (det J) φωαψ

= 〈Pαφ |ψ〉 − i
∫
Rn

dnx det J ωαφ ψ − i
∫
Rn

dnx (det J)ωα φψ

+i

∫
Rn

dnx ∂α(det J) φψ

= 〈Pαφ |ψ〉 − i
∫
Rn

dnx det J

[
ωα + ωα −

∂α(det J)

det J

]
︸ ︷︷ ︸

We want this to vanish

φψ (D.2.11)

And so, by setting the last bracket to zero, we obtain a condition on our ωα, we have that:

ωα + ωα = 2<(ωα) = ∂α(ln detJ) (D.2.12)

Thus as we have seen, with an appropriate choice of these ω’s, we can get rid of the problem
of the coordinate dependence of the self-adjointedness.

Remark D.2.1. Notice that the specification of the real part of a holomorphic function deter-
mines the holomorphic function up to a purely imaginary constant that we may take to be
zero and so this condition on the real part of the ωα actually determine them up to a purely
imaginary constant.

D.2.2 Generalization to Curved Spaces

We have considered the case of Rn and so far have had some success in generalizing it.
However, now that we had the idea of looking at wave functions as simply being sections of
an associated bundle to the frame bundle, we may generalize this construction to indeed any
Riemannian manifold M . For this, we have to give ourselves a (Riemannian) metric on M , but
on the other hand this is always possible to do as we saw in section B.5 when we talked about
reductions and topological obstructions to such constructions.

Giving us this, we then consider the associated bundle E = F (M)×GLn(R)C whose sections
we may consider to be the our wave functions, just as before. The metric comes in when
defining the inner product we need to define. Indeed, now we will have that the integration in
Rn that previously took place with respect to the Lebesgue measure (which recall is actually
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the Haar measure for Rn, which itself simply stems from the group structure of Rn by looking
at the volume form induced by the Maurer-Cartan form on Rn, cf. section C.1.3), we integrate
with respect to the volume form naturally induced by the metric g on M . If we wish to make
an analogy with the case of Rn and for some covering charts {(Ui, xαi )}i∈I :∫

Rn
dµ 7−→

∑
i∈I

∫
U

√
det g dx1

i ∧ · · · ∧ dxni =:

∫
M

dnx
√

det g (D.2.13)

At this point, it is worth remarking that what we have done in the calculation D.2.11 has not
really used the fact that we are on Rn, it is possible to use this calculation as a stencil for an
analogous calculation with the above change in measure and situation. In the end, the result
is simply that the expression of the connection term in the covariant derivative in this case is
simply given by:

2<(ωα) = ∂α(ln
√

det g) (D.2.14)

D.2.3 Conservation of Commutation Relations

At this point one might worry that this definition will ruin the commutation relations we
imposed on the operators. In principle, we have to check all possible combinations for the
commutation relations. We will hereby illustrate only two cases:

Proposition D.2.1. The commutation relations [Qα, Pβ] = iδαbeta and [Pα, Pβ] = 0 still hold.
The rest of the commutation relations are left to the reader to check as an exercise (although
it is straight forward to see that there will be no problems).

Proof. Let us thus consider, then, a smooth section ψ ∈ Γ(E). Recall also that the action of
∇α on any f ∈ C∞(M) is simply given by the normal derivative on the function, since all
differentiation notions coincide on the scalar functions. Then, we have the following:

[Qα, Pβ]ψ = qα(−i∇βψ) + i∇β(qαψ)

= ���
���qα(−i∇βψ) + i(∇βqα)ψ +���

��i(∇βψ)qα

= i(∇βqα)ψ = i (∂βq
α)︸ ︷︷ ︸

∵ qα∈C∞(M)

ψ = iδαβψ (D.2.15)

The key of this calculation yielding the right result was really to use the momentum operator as
a covariant derivative. As we have seen in section B.4.2, the action of the covariant derivative
is fully prescribed by the representation theory of different objects. In particular it is this
dependence which allows us to state that the covariant derivative acts differently on scalar
functions than on sections of the bundle. For scalar functions, since they transform with the
trivial representation, the effect of the covariant derivative is simply reduced to the action of
a normal derivative on the object as was shown in proposition B.4.3. This is, in fact, what
played the key role in the calculation above as pointed out in the underbrace.

Another interesting commutation relation that we could consider is the momentum one.
That is: [Pα, Pβ] = 0. This still holds in the most general case. Indeed, we then simply have
the following:

[Pα, Pβ]ψ = (−i)2[∇α,∇β]ψ = −(∇α∇β −∇β∇α)ψ (D.2.16)

We examine the case of ∇α∇βψ and then consider that because of the symmetry in the indices,
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we need only swap α→ β in order to obtain the result for ∇β∇α. Thus:

∇α∇β = ∇α(∂βψ) +∇α(ωβψ)

= (∂α + ωα)(∂βψ) + (∇αωβ)︸ ︷︷ ︸
∂αωβ

ψ + ωβ∇αψ

= ∂α∂βψ + ωα∂βψ + (∂αωβ)ψ + ωβ∂αψ + ωβωαψ (D.2.17)

We may thus summarize this by looking at the expression of both ∇α∇βψ and ∇β∇αψ in
parallel:

∇α∇βψ = ���
�∂α∂βψ +���

�ωα∂βψ + (∂αωβ)ψ +���
�ωβ∂αψ +���

�ωβωαψ

∇β∇αψ = ���
�∂β∂αψ +���

�ωβ∂αψ + (∂βωα)ψ +���
�ωα∂βψ +���

�ωαωβψ (D.2.18)

We thus have that the only term surviving is:

[∇α,∇β]ψ = (∂αωβ − ∂βωα)ψ (D.2.19)

which the näıve reader might be tempted at this point to relate to curvature or something
similar because of the symbolic similarity of this expression to the one of the electromagnetic
tensor. However, these terms also vanish. Indeed, consider the real part of ωα, <(ωα). If we
can show the relation is zero for the real part, then necessarily, it must be also zero for the
imaginary part as well. Thus, we focus on the definition of <(ωα) given by equation D.2.14
and it becomes clear that:

< [∂αωβ − ∂βωα] =
1

4
[∂α∂β(ln det g)− ∂β∂α(ln det g)] = 0 (D.2.20)

Thus finally showing that [Pα, Pβ] = 0 as desired. �

And so, we see that only by considering this construction of associated bundles and principal
bundles over manifolds can we really get the preservation of the commutation relation and the
coordinate invariance to marry each other. This mathematical subtlety might be considered
by some as irrelevant or simply pedantic. However, it is a powerful tool that allows us to do
quantum mechanical, non-relativisitic, calculations on any manifold and not just in flat space.
It is actually relevant to note than in order to make our picture of quantum mechanics work
with curved space, we had to go so far back as to completely giving up the notion that the
wave function is a function, instead, it should be regarded instead as simply being a section
over an associated bundle as we have hereby shown.

Remark D.2.2. A proper axiomatic treatment of quantum mechanics would a priori be neces-
sary to properly treat everything consistently. In this case, we would have to specify exactly
what we mean mathematically by a “state” of a system, a “measurement” and so forth and so
on. This can be done, and indeed we quickly realize that if we want a consistent treatment of
the topic, we need to, for example, completely give up the notion of a state of the system being
described as an element of the Hilbert space. Although this is (incorrectly) widely alluded to in
common literature, it is a mistake. In fact, a state of a system should be regarded as a positive
trace-class linear operator ρ : H → H such that Tr ρ = 1. This is one of the many subtleties
that a correct formulation would entail.
On the other hand, a proper axiomatic treatment of quantum mechanics as a whole – while
possible – is not in the general interest of this discussion and it is out of its scope. With this
said, the above chapter was intended to give the reader some intuition as to how geometrical
concepts help generalize some aspects of physics in a natural way, avoiding mistakes that might
have been otherwise committed by a simple-minded generalization.



Appendix E

More About Spin

E.1 The Construction of Spin

This section will thus be consecrated to attempt to give some intuition and explain the
geometrical concept to the best of the author’s ability, as well as to give a formal construction
of spinors we will later use in the rest of this discussion. We start by considering a Lie Group
such that the following short exact sequence holds:

1 Z2 Spin(n) SO(n) 1
η

In the above, we could also consider orthogonal groups of different signature. While this seems
a little bit ad hoc at first, it is important to realize that there is a geometrical motivation for
the existence of this Lie group Spin(n). In particular, notice that by the virtue of the short
exact sequence, we have that ker η = Z2, which means that this map η is “2-to-1”, i.e. it takes
two elements to the same element in SO(n).

For the sake of illustration, consider n = 3. It is clear that we can specify any 3D rotation as
simply being a 2D rotation leaving an axis invariant. However, to specify the axis of rotation,
we could either give a vector in the direction of the axis, or its negative. In both cases, we
recover the same element of SO(3). This is exactly what this short exact sequence is trying
to capture, the spin group is the group which makes a clear distinction between these two
elements, in the mathematical jargon, we often refer to this as a double cover.

We recall that the orthogonal group is defined as being the set of matrices fixing a quadratic
form Q over a certain vector space V . In what will follow, we will focus on the development
of the spinorial representations of SO(n,C), knowing that most of the results hold in the case
of R, with some caveats coming about due to questions of signature. The main geometrical
intuition behind the concepts can be understood and is perhaps better explained by considering
an algebraically closed field such as C.

E.1.1 A Detour Through Clifford Algebras

We will not try to immediately construct a double cover for SO(V,Q). Instead, given a
vector space V equipped with a quadratic form Q, we will construct a Clifford algebra, which
will later turn out to contain a subgroup in its multiplicative group, which will turn out to the
the double cover of SO(V,Q) and in some cases of O(V,Q).

The first step is to construct the Clifford algebra associated to the quadratic form Q, which
can easily be constructed starting from the tensor algebra T (V ) quotiented by a two-sided

82
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ideal:
C`(V,Q) := T (V )/〈v ⊗ v −Q(v)1〉 (E.1.1)

In other words, the Clifford algebra C`(V ) is nothing other than the freest algebra subject to
the relation:

v2 = Q(v)1 ∀v ∈ V (E.1.2)

where now the product is the Clifford multiplication and 1 denotes the multiplicative identity of
C (or R, depending on wheter the vector space V is real or complex). We will note this Clifford
product u · v. We notice that since the characteristic of the field C is not 2, the quadratic form
induces a symmetric bilinear form given by polarization, i.e. :

〈u|v〉 :=
1

2
(Q(u+ v)−Q(u)−Q(v)) (E.1.3)

In particular we see that this relation implies:

(u+ v)2 = u2 + v2 + uv + vu = Q(u) +Q(v) + {u, v} = Q(u+ v)

⇐⇒ {u, v} = 2〈u|v〉 (E.1.4)

where {u, v} denotes the anticommutator.

Lemma E.1.1. If {ei}i∈I form a basis for V , then the products ei1 · ei2 · · · eik for i1 < · · · < ik
and and e∅ = 1 form a basis for C`(V ). In particular, the dimension of the algebra is 2dimV .

We will give a proof of this in section E.2.1. Since the ideal 〈v ⊗ v − Q(v)1〉 is generated
by elements of even degree, C`(V,Q) is Z2-graded. That is, we may split the Clifford algebra
into two parts, namely:

C`(V,Q) = C`even(V,Q)⊕ C`odd(V,Q) := C`+(V,Q)⊕ C`−(V,Q) (E.1.5)

By virtue of the previous lemma, the dimension of C`± is 2dimV−1. Furthermore, C`(V,Q)
being an associative algebra, it determines a Lie algebra via Clifford multiplication. We can
indeed define the Lie bracket as simply being:

[a, b] = a · b− b · a (E.1.6)

For the rest of this report, we will assume that Q is non-degenerate (which will be the case for
the physical cases we will be interested in). The spin representations of so(V,Q) can be found
in two steps from this point forward:

1. Embedding so(V,Q) inside the Lie algebra of C`+;

2. Identifying the Clifford algebras with one or two copies of matrix algebras.

Embedding so(V,Q) Inside the Lie Algebra of C`+

We start by recalling the definition of the Lie algebra so(V,Q):

so(V,Q) := {X ∈ End(V ) : 〈Xv|w〉+ 〈v|Xw〉 = 0 ∀v, w ∈ V } (E.1.7)

It turns out that there exists an isomorphism between ϕ : Λ2V → so(V,Q). This isomorphism
will help us relate so(V,Q) to the Clifford algebra we defined before. It is given by:

a ∧ b 7→ ϕa∧b where ϕa∧b(v) = 2 (〈b|v〉a− 〈a|v〉b) (E.1.8)
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It is possible to check [9] that the following then holds:

[ϕa∧b, ϕc∧d](v) = 2〈b|c〉ϕa∧d(v)− 2〈b|d〉ϕa∧c(v)− 2〈a|d〉ϕc∧b(v) + 2〈a|c〉ϕd∧b(v) (E.1.9)

which implies that via the isomorphism, the Lie bracket on Λ2V should take values:

[a ∧ b, c ∧ d] = 2〈b|c〉a ∧ d− 2〈b|d〉a ∧ c− 2〈a|d〉c ∧ b+ 2〈a|c〉d ∧ b (E.1.10)

On the Clifford algebra side, we have:

[a · b, c · d] = a · b · c · d− c · d · a · b
= 2〈b|c〉a · d− 2〈b|d〉a · c− 2〈a|d〉c · b+ 2〈a|c〉d · b (E.1.11)

We may then construct a map χ : Λ2V → C`(V,Q) defined by:

χ(a ∧ b) =
1

2
(a · b− b · a) = a · b− 〈a|b〉 (E.1.12)

which is bilinear and is alternating since χ(a ∧ a) = 0, so that it defines a linear map on Λ2V .
With the morphism ϕ−1 : so(V,Q) → Λ2V and the map χ : Λ2V → C`(V,Q) , we obtain

finally a morphism of Lie algebras, which constitutes the embedding we wanted, namely: χ◦ϕ−1.
Thus, we have successfully shown that the Lie algebra so(V,Q) is indeed embedded in the
Clifford algebra as per our construction.

Remark E.1.1. Actually, this isomorphism χ can be extended to an isomorphism of vector
spaces χ :

∧
V → C`(V,Q) and can also be shown for any field of characteristic car(K) 6= 0. In

that case, we consider an orthonormal basis and send

e1 ∧ · · · ∧ ek 7→ e1 · · · ek (E.1.13)

It is then possible to show that this map is natural in the sense of category theory if car(K) 6= 2,
since it doesn’t depend on the orthonormal basis chosen. On the other hand, it may also be
generalized to any basis in the case where car(K) = 0, by considering antisymmetrization. This
will be seen in more detail in section E.2.

Remark E.1.2. An important fact is that, with the morphisms above, it is possible to check
that the standard action of so(V,Q) on the vector space V (that we will denote with X ? v for
X ∈ so(V,Q) and v ∈ V ) is compatible with the Clifford commutator, i.e. that:

X ? v = [X, v] ∈ V ⊂ C`(V,Q) (E.1.14)

what this means is that the Clifford commutator is in some way equivalent to infinitesimal
rotations.

Pin and Spin Groups

The Clifford algebra is generated by elements of the vector space V . We claim that on
C`(Q) there is a conjugation morphism, ∗, which is exactly analogous to the conjugation
present for the complex numbers. This is because C itself can be regarded as a Clifford algebra
constructed over a 1-dimensional real vector space with −Q as a quadratic form, where Q is
the standard quadratic form on R and the conjugation present in the complex field stems from
the Clifford conjugation, which we will now define. Since the Clifford algebra is generated by
elements of V , we give ourselves v1, · · · , vr ∈ V and define:

∗ : (v1 · v2 · · · vr) 7−→ (v1 · v2 · · · vr)∗ := (−1)r(vr · vr−1 · · · v1) (E.1.15)
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This morphism may be decomposed as ∗ = α ◦ τ , where we define α and τ to be the main
involution and the reversing maps respectively. Explicitly:

α(v1 · · · vr) := (−1)rv1 · · · vr and τ(v1 · · · vr) := vr · · · v1 (E.1.16)

With these homomorphisms, we are ready to define the Pin group, for which there turns out
to be a 2-to-1 map to the full orthogonal group. In all generality, however, Pin does not
correspond to the double covering group of the orthogonal group (although this is the case for
definite signature in dimension greater than 2).

Definition E.1.1. We define Pin(V,Q) as the group constitued by the following elements of
the Clifford algebra:

Pin(V,Q) = {x ∈ C`(V,Q) | x · x∗ = 1 and x · V · x∗ ⊂ V } (E.1.17)

Similarly, with this definition, we can also define the Spin(V,Q) group as follows:

Spin(V,Q) = {x ∈ C`+(V,Q) | x · x∗ = 1 and x · V · x∗ ⊂ V } (E.1.18)

Remark E.1.3. This definition might appear to some as being somewhat convoluted and con-
fusing at first. By examining it a little bit closer, we quickly realize that it is not really that
much of a mystery. Since the Clifford algebra is generated by V , we can write x = v1 · · · v2n

for a generic element x ∈ C`(V,Q). The first condition is simply asking that the elements x
be invertible, with inverse x∗. The second condition imposes that x · v · x∗ for any v ∈ V be a
linear homomorphism, which makes complete sense. Our last remark is that we may write the
Pin group to be the invertible elements of C`(V,Q) and Spin = Pin ∩ C`+.

Proposition E.1.1. For x ∈ Spin(V,Q), η(x) ∈ SO(Q). The map η : Spin(V,Q)→ SO(V,Q)
is a homomorphism, making Spin(V,Q) a connected two-sheet covering of SO(Q). Moreover,
ker η = {±1}.

Proof. We will not give a full proof of this proposition. This can be found in [9]. Instead, we
will focus on the main geometrical arguments which can be of importance to the understanding
of the reader of what exactly the Clifford algebra is and why how exactly it relates to the
orthogonal group. Let us start by considering the Pin group and define a similar morphism,
that we will by abuse of notation denote also with η : Pin(V,Q) → O(V,Q), which will be
defined in the following way:

η(x)(v) = α(x) · v · x∗ (E.1.19)

We must show that this morphism does indeed take values in O(V,Q). To do this, it is enough
to show that the morphism preserves the quadratic form Q. Notice that, for any element v ∈ V ,
we have Q(v) = v2 = −v · v∗. By taking the evaluating the quadratic form on a transformed
element η(x)(v), we get the desired result:

Q(η(x)(v)) = (η(x)(v))2 = −(η(x)(v)) · (η(x)(v))∗

= −(α(x) · v · x∗) · (α(x) · v · x∗)∗

= −α(x) · v · x∗ · x︸ ︷︷ ︸
=1

·v∗ · α(x∗)

= −α(x) · v · v∗︸ ︷︷ ︸
=−Q(v)

·α(x∗)

= Q(v)α(x) · α(x∗) = Q(v)α(x · x∗) = Q(v) (E.1.20)
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We must now prove that the map is surjective, for which we will use the Cartan-Dieudonné
theorem, i.e. that the orthogonal group is generated by reflections [28]. Assuming this, let us
consider to what kind of linear transformation an element w ∈ V gets mapped under η (we
must take ‖w‖ = 1 since w · w∗ = 1.) Let v ∈ V , then:

η(w)(v) = α(w) · v · w∗ = w · v · w = 2〈v|w〉w + v · w2 = v + 2〈v|w〉w (E.1.21)

In particular, if v = λw + µw⊥, we can easily see that:

η(w)(v) = −λw + µw⊥ (E.1.22)

Which allows us to instantly recognize that this is nothing other than reflection with respect to
the orthogonal hyperplane to w. This means that via the mapping η, we have a correspondence
of reflections and vectors in the space. It is in this sense that the reader should understand
the Pin group. Once this conceptual difficulty has been breached, these groups become much
more tractable.

Indeed, via the Cartan-Dieudonné theorem, for every element R ∈ O(V,Q) such that R =
Rw1 · · ·Rwr , where Rwi is the reflection with respect to the plane orthogonal to the vector wi, we
get two corresponding elements in Spin which correspond to R, namely: ±w1 · · ·wr. With this,
we can describe the Spin group by examining the corresponding subgroup SO(V,Q) ⊂ O(V,Q).
In particular, we may write any element of SO(V,Q) as an even product of reflections. Thus
yielding the desired correspondence:

Spin(V,Q) = Pin(V,Q) ∩ C`+(V,Q) = η−1(SO(V,Q)) (E.1.23)

�

In the case of the construction of the real representations of Spinn(R) of positive definite
signature, very little changes in the construction. In that case, we use the real Clifford algebra
C`(Rn, Q) associated to the quadratic form Q = −Qs where Qs is the standard quadratic form
on Rn and follow an analogous treatment.

On the other hand, we also know that over the field of real numbers, all quadratic forms
are equivalent up to their signature. This means that we may associate to the group SO(p, q)
a corresponding double cover Spin+(p, q) which lives in the Clifford algebra determined by
C`(p,q)(R). In particular, as physicists, we are interested in the case where p = 1 and q = 3,
which corresponds to the Lorentz group. While the construction does not vary greatly from
the one presented above, it is important to note that an important difference is that SO(3, 1)
is no longer a compact group, which gives rise to some difficulties, but we may still use most
of the results previously presented.

E.1.2 Matrix Representations

At this point, we have provided an abstract picture of the Spin group. We would now like
to complete the second step we talked about in our discussion of Clifford algebras and actually
embed these in a matrix algebra the reader is perhaps more familiar with. In doing so, we will
finally be able to determine the space in which the Dirac spinors actually live.

The Case of 3D Rotations and Reversals

It is perhaps useful to start with a simple example, which we will later generalize to higher
dimensions. This is so that the reader understands the geometric origin of the construction of
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the Clifford modules. Let us start by considering the case where dim V = 3, on which we can
consider a quadratic form (over C) which we shall take to be:

Q =

1 0 0
0 1 0
0 0 1

 (E.1.24)

The quotient of the orthogonal group by its center, PSOn(C), may be realized as the group of
motions in the projective space P(V ) which map the quadratic hypersuface corresponding to
xixi = 0 onto itself, i.e. which leaves the isotropic spaces of the quadratic form Q invariant.
This is simply because of the fact that rotations preserve the norm of the vector induced by
the quadratic form Q. In our case of dim V = 3, the orthogonal group PSO3(C) is nothing
but the group of motions over P(V ) carrying the conic:

C =
{

[x : y : z] ∈ P(V ) | x2 + y2 + z2 = 0
}

(E.1.25)

into itself. On the projective plane, it is possible to construct an bijective correspondence
between any line on P(V ) and the conic C. Explicitly, without loss of generality, we may do
this by choosing a projective frame which arranges us. We start by choosing a point on the
conic to have coordinates [1 : i : 0] and choosing two other points which don’t lie on the conic
such that the set of three points is not colinear. We choose the homogeneous coordinates of
these two points to be [0 : 1 : 0] and [0 : 0 : 1] respectively. In so doing, we have that the
equation of the line joining this two points is given by x = 0. It is then easy to see that the
homography we are looking for is nothing other than the map determined by the intersection
of the line passing through [1 : i : 0] a point [0 : ξ : ζ] on the line and an additional point on the
conic C. In the case where the this line is tangent to the conic, we choose the point [1 : i : 0]
to be the one specified by the mapping. This map is an isomorphism is due to the fact that
there exists a bijective correspondence between the pencil passing through [1 : i : 0] and the
line x = 0, in a similar way, there is also a bijective correspondence between this pencil and the
conic C. Performing an explicit calculation, we can express any point in the conic as a point in
the line by the equation:

x = ξ2 − ζ2 ξ2 =
1

2
(x− iy)

y = i(ξ2 + ζ2) ζ2 = −1

2
(x+ iy)

z = −2ξζ ξζ = −1

2
z (E.1.26)

Furthermore, the ratio ξ/ζ undergoes a homographic transformation under any rotation or
reversal. This is simply because we can see ξ/ζ as a parameter of a generator of the isotropic
cone. Since rotations and reversals preserve the cross-ratio of any four such generators, it follows
that ξ/ζ must undergo a homographic transformation. The opposite is also true, that is, given a
homographic transformation of the line x = 0, we can find the associated rotation to it. Indeed,
consider a vector v ∈ V , then we can find two orthogonal isotropic directions corresponding to
this vector v, which we will denote w1 and w2, which, in the projective plane, lie in the conic C.
We may associate to the latter points on the line x = 0 via our construction above. Applying a
homographic transformation to these points, which will yield two different points on the conic
w′1, w

′
2, which are orthogonal to the vector v′ which corresponds to the mapping of the vector

v 7→ v′ under the rotation or reversal corresponding to the homographic transformation. The
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latter may be found so we indeed have a bijection between the homographic transformations
of [0 : ξ : ζ] and the rotations and reversals on V .

Remark that these [0 : ξ : ζ]’s are exactly the spinors we were looking for. Indeed, the
fact that that we may associate a homography to each rotation and reversal is exactly what
we set out to do when we were trying to find. The group associated to these homographic
transformations is PGL2(C), which gives us the well-known isomorphism so3(C) ∼= sl2(C).

All of this is consistent with the fact that the equations of the correspondence between the
isotropic vector [x : y : z] and the coordinates on the line x = 0, [0 : ξ : ζ], may be put under
the form: (

z x− iy
x+ iy −z

)(
ξ
ζ

)
= 0 (E.1.27)

where we recognize the X’s to be generated by the Pauli matrices. We may then extend this
into a bijection between traceless unitary matrices and vectors (x, y, z) via the at this point
obvious mapping:

(x, y, z) 7−→ X :=

(
z x− iy

x+ iy −z

)
(E.1.28)

It is then possible to check explicitly that these matrices satisfy X2 = (x2+y2+z2) id2×2, which
means that they obey the Clifford relations. By the universal property of Clifford algebras, we
have successfully found a matrix representation of the algebra we were looking for, since the
latter is generated by vectors in V .

It is helpful to conclude this section with a couple of remarks will be of help in the gener-
alization that is to come.

Remark E.1.4. We have seen that isotropic spaces played a fundamental role in our determi-
nation of what the spinor spaces look like. This holds in higher dimensions as well. This is
because the isotropic space will always determine a conic hypersurface in the projective space
P(V ) which is the stabilized by the orthogonal group. We can treat in a similar way the cases
of dimensions 5,6 and 7 [9]. We will treat the case of dimension 4 in section 4.1.3. The main
take away and hint from this treatment is that we should consider the spinor space to be of the
form S =

∧
W , where W is one of the maximally isotropic subspaces of the quadratic form Q.

Remark E.1.5. The same ideas of projective geometry can be used in order to find all the
generators of Pythagoran triples over Q if we consider the conic x2 + y2 − z2 = 0 instead.

The General Case

As mentionned above, the isotropic subspaces of the quadratic form Q are fundamental to
finding the matrix representations of the Clifford algebra, and by extension, of the spin rep-
resentations themselves. With the help of our previous example and with our newly acquired
geometrical intuition, we now focus on the decomposition of V into maximally isotropic sub-
spaces. To see exactly how our space V decomposes into maximally isotropic subspaces, the
following handwavy argument might help the reader get a sense of what is going on. For the
sake of illustration, let us place ourselves in 3D and in 4D. Since on C all quadratic forms are
equivalent, we may choose the following expressions for the quadratic forms:

Q3D =

0 0 1
0 1 0
1 0 0

 and Q4D =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (E.1.29)
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From this identification, we can clearly see the isotropic subspaces of the quadratic forms.
Indeed, in the 3D case, we can see that Q(e1) = Q(e3) = 0 for the quadratic form Q and where
{ei}i∈I is the standard basis of Cn. Similarly, in the case of 4D, we can easily see that the
subspace spanned by e1 and e2 will form one maximally isotropic subspace and analogously, so
will be the subspace spanned by e3 and e4.

With this illustration in mind, it becomes then clear that:

1. For dimV = 2k, we get the splitting of the vector space V into two maximally isotropic
subspaces, i.e. V = W ⊕W ′;

2. For dimV = 2k + 1, we have that V breaks into two maximally isotropic subspaces of
dimension k and a space U of dimension 1, i.e. V = W ⊕ U ⊕W ′.

At this point, it is useful to treat the even and the odd case separately. In fact, the difference
between these groups and algebras is so profound, that they have completely different Dynkin
diagrams (cf. section A.2.1 for an in depth discussion of Dynkin diagrams). We start by stating
our first non-trivial lemma:

Lemma E.1.2. In accordance to the above, we have two cases:

1. Let dimV = 2k, then the decomposition V = W ⊕W ′ determines an isomorphism of
algebras C`(V,Q) ∼= End(S), where S :=

∧
W = Λ0W ⊕ Λ1W ⊕ · · · ⊕ ΛkW .

2. Let dimV = 2k + 1, the decomposition V = W ⊕ U ⊕W ′ determines an isomorphism of
algebras C`(V,Q) ∼= End(S).

Proof. We won’t detail much of the proof here, however, more details can be found in [9]. It
can be helpful to give the reader an intuition as to what is going on. What we need to do is find
a linear action of V on

∧
W such that the Clifford relations remain preserved. The mappings

defined by this action ∗ then constitute a subset of End(
∧
W ), which will then factorize through

the Clifford algebra because of its universal property, since ∗ respects the Clifford relations.
Diagramatically, the universal property for this particular case is:

V C`(V,Q)

End(
∧
W )

i

∗
Φ

where Φ is the isomorphism seeked in the lemma. In this way, we thus obtain the result we
seek.

The next natural step is to give such an action ∗. By the decomposition V = W ⊕W ′, we
may write any vector v = w + w′, where w ∈W and w′ ∈W ′. For any ψ ∈

∧
W the action of

V on
∧
W we seek and which respects the Clifford relations is given by:

v ∗ ψ =
√

2 (w ∧ ψ + ιw′ψ) (E.1.30)

Here, ιw′ denotes the interior multiplication. For the reader unfamiliar with this operation, it
is an antiderivation which can be taken as an analogous operation acting in the opposite way
as d, in the sense that:

ιX : ΛkW → Λk−1W (E.1.31)
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Explicitly, we have that ιX(ω)(X1, · · · , Xp−1) = ω(X,X1, · · · , Xp−1). Furthermore, if β is a
p-form and γ is a q-form, then we have:

ιX(β ∧ γ) = (ιXβ) ∧ γ + (−1)pβ ∧ (ιXγ) (E.1.32)

It is in fact this antiderivation propery which makes the whole thing work. In the odd case,
it is also necessary to specify what the action of the unit vector u ∈ U is on the spinor ψ. In
order for this map to be an algebra homomorphism, it is necessary to impose:

u ∗ ψ =

{
+id if ψ ∈ ΛevenW

−id if ψ ∈ ΛoddW
(E.1.33)

One can then check that this action respects the Clifford relations and check what happens on
a basis of V in order to see that the map is indeed an isomorphism. �

It turns out that these spaces End(
∧
V ) are the irreducible spinorial representations of

so2k+1(C). However, in the even case, the representation provided by S splits into two parts,
one with forms of even degree and the other one with odd degree. We thus have the following
theorem:

Theorem E.1.3. Let S+ := ΛevenW and S− := ΛoddW , then the following holds:

1. If dimV = 2k, the representations S+ and S− are the irreducible spinorial representations
of so2k(C);

2. If dimV = 2k + 1, the representation S is a spinorial irreducible representation of
so2k+1(C)

This construction at first glance seems very abstract and not very useful, in the next section
the construction will be clarified by example. The main takeaway from the above is that we have
realized the Clifford algebra as a matrix algebra by explicitly constructing a representation. At
this point, however a couple of remarks are in order:

Remark E.1.6. For the groups in low dimension, we have accidental isomorphisms which help
us identify this matrix algebra in an easy way, this will be illustrated in what will follow in
more detail.

Remark E.1.7. While handy, the realization of the Clifford algebra inside a matrix algebra is
not necessary to get most basic results. While it certainly makes calculations more explicit, we
have seen that we can show most results at the level of the Clifford algebra level. Furthermore,
staying at the Clifford algebra level has the advantage to keep the geometrical intuition on our
side. This geometrical intuition can easily be lost if we only consider the matrix structure of the
representation. Sometimes, the understanding of these spin representations will be unavoidable,
such as when we derive the Dirac equation as we will do in section 4.1.2.

Remark E.1.8. The elements of S are where the Dirac spinors live (more precisely, they are
sections of associated bundle of representation S to a Spin principal bundle).

E.1.3 Accidental Isomorphisms

Illustration of Spin(3) ∼= SU(2)

The discussion we had about matrix representations of the Spin groups could’ve come across
as too abstract to the reader. In order to clarify some aspects of it, it is perhaps helpful to look
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at a simple example of the realization of the matrix representation of the Clifford algebra, i.e.
End(

∧
W ).

We start by recognizing that in the case of Spin(3), our 3-dimensional space V decomposes
as : V = W ⊕ U ⊕W ′ as per our previous discussion. In dimension 3, dimW = dimW ′ =
dimU = 1. This means that

∧
W = Λ0W ⊕ Λ1W = C ⊕W ∼= C2. The matrix algebra is

then End(C2) ∼= C2 ⊗ C2, which indeed corresponds to the 2 × 2 matrices. So far, at least
dimensionally, everything is consistent with what we know. The next step is to assign to every
vector (x, y, z) ∈ V an element of End(

∧
W ) such that the Clifford relations are satisfied. We

do this by considering the action we mentioned in the proof of lemma E.1.2.
For any vector v ∈ V , we have that we can write v = a1w + a2w

′ + a3u with ai ∈ C. It
follows that we need only check the action of v on a basis of

∧
V , which in this case is simply

given by two vectors {e, w}. It follows that:

v ∗ e ∼ a1w ∧ e+���ιa2w′e + a3e = a3e+ a1w (E.1.34)

v ∗ w ∼ ((((
(a1w ∧ w + ιa2w′w − a3w = a2e− a3w (E.1.35)

Now, we realize that with respect to the standard basis, we may take w = 1
2

(
1 i 0

)
, w′ =

1
2

(
1 −i 0

)
and u =

(
0 0 1

)
since we have that 〈w|w〉 = 0 with respect to the standard

quadratic form on C3. It follows then that W = Cw. This means that we have that if the
vector v = xx̂+yŷ+zẑ, under a change of basis from x̂, ŷ, ẑ 7→ w,w′, u, we have that the vector
v has components:

v =

1/2 1/2 0
i/2 −i/2 0
0 0 1

−1xy
z

 =

x− iyx+ iy
z

 =

a1

a2

a3

 (E.1.36)

which means that the endomorphism associated to the action of v on
∧
W can be written as a

matrix as:

v∗ =

(
z x− iy

x+ iy −z

)
(E.1.37)

As previously illustrated, this is indeed a matrix representation of the Clifford algebra and thus
by extension of so(3).

Accidental Isomorphism Classification

It is often useful to identify the spin groups to some classical semisimple Lie groups. To do
the classification of these so-called accidental or exceptional isomorphisms, we will use Dynkin
diagrams, which provide a straightforward graphical way of visualizing these isomorphisms (cf.
section A.2.1).

Let us start with the two main cases that will concern us, namely the case of Spin(3) and
Spin(4). The Lie algebras are given by so(3) and so(4) accordingly. It is trivial to see then,
according to the classification of semisimple Lie algebras, that:

Spin(3) ∼= SU(2) and Spin(4) ∼= SU(2)× SU(2) (E.1.38)

We may see these isomorphisms as coming from the correspondeing Dynkin diagram structure
of the groups considered. For the first case, we have that is the Dynkin diagram corresponding
to both Spin(3) and SU(2) and similarly, for Spin(4) and SU(2) × SU(2) the corresponding

diagrams are:
α β ∼= α ×

β
. With the help of Dynkin diagrams, it is easy to see that
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Table E.1: Some accidental isomorphisms of the real Lie algebras of some rotation groups.

Euclidean signature Minkowskian Signature Other Signature

so(2) ∼= u(1) so(1, 1) ∼= R
so(3) ∼= sp(1) so(2, 1) ∼= sl(2,R)

so(4) ∼= sp(1)⊕ sp(1) so(3, 1) ∼= sl(2,C) so(2, 2) ∼= sl(2,R)⊕ sl(2,R)

so(5) ∼= sp(2) so(4, 1) ∼= sp(1, 1) so(3, 2) ∼= sp(4,R)

the problem of finding these isomorphisms is reduced to nothing other than a graph theory
problem (and a pretty simple one at that). We can now immediately see that the following
isomorphisms exist:

A1
∼= C1

∼= B1 or sl2(C) ∼= sp1(C) ∼= so3(C) (E.1.39)

B2
∼= C2 or so5(C) ∼= sp2(C) (E.1.40)

D2
∼= A1 ×A1 or so4(C) ∼= sl2(C)⊕ sl2(C) (E.1.41)

A3
∼= D3 or sl4(C) ∼= so6(C) (E.1.42)

A4
∼= E4 or sl5(C) ∼= e4(C) (E.1.43)

D5
∼= E5 or so10(C) ∼= e5(C) (E.1.44)

The associated Dynkin diagrams relating to the isomorphisms above are shown in figure E.1.
Notice that we have done this in the case of the base field being complex. A similar analysis

Figure E.1: The Dynkin diagrams of the accidental isomorphisms.

is possible can be performed in the case of the base field being R, up to the consideration of
different signatures. This means that we will have extra isomorphisms to consider. We give
some accidental isomorphisms relating to the Spin groups in table E.1.
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E.2 Applications in Computations in Physics

Now that we have explored the construction of spin and understand a bit better its relation
with Clifford algebras and rotations, we are ready to see how we can apply all these concepts
in physics. In this section we will attack some of the common computations one is forced to do
in Quantum Field Theory. We will proceed in three steps. First, we show some typical results
about γ-matrices, which can be obtained trivially without the need for any explicit compu-
tations. Second, we will discuss a bit about taking traces of γ-matrices and the geometrical
meaning of the trace. Third, we will give combinatorial arguments and some results obtained
for these traces by considering our geometrical picture.

E.2.1 Some Standard Results

The embedding of so(V,Q) inside the Clifford algebra shown previously shown implies
most of the typical results that can be shown via nasty computations if one picks a given
representation of so(V,Q). The advantage of the methods hereby introduced lie in the fact
that we understand these objects geometrically, which helps ease or completely skip the actual
computations, while providing us with a deeper intuition of what is actually going on.

Dimension of the Clifford Algebra

The first result which we can obtain trivially is the dimension of the Clifford algebra. In
our previous discussion, we mentionned that the dimension of the Clifford algebra is 2dimV .
We also know that the Clifford algebra is generated by elements v ∈ V . In particular, we may
pick an orthonormal basis for V , which we will suggestively note {γµ}µ∈I . In this case, we have
that any element in the Clifford algebra can be written in terms of the following spanning set:

1, γµ, γµ1γµ2 , · · · , γµ1 · · · γµdimV (E.2.45)

where we have taken µ1 < µ2 < · · · < µdimV ∈ I. There are multiple ways of checking linear
independence, for example, notice simply that if Q = 0, then C`(V,Q) =

∧
V , whose dimension

is also 2dimV . We can then consider a filtration of the Clifford algebra by subpsaces Fk consisting
of those elements which may be written as sums of at most k products of elements in V . This
filtration is inherited from the natural one present in T (V ). It follows that

⊕
k Fk+1/Fk ∼=

∧
V

and thus the dimensions of the two spaces must be the same.

Generators of so(V,Q)

We have already shown another classical result in our previous discussion. However, it
is perhaps helpful to explicit it again using the suggestive notation {γµ}µ∈I , which we just
employed for the dimensional result. We previously embedded so(V,Q) inside the Clifford
algebra. Using what we previously found about this embedding, we have the standard result
that the generators of so(V,Q) can be mapped via the morphisms previously explicited to an
element of the Clifford algebra, namely: ϕγµ∧γν 7→ γµ ∧ γν 7→ 1

2 [γµ, γν ]. If follows that the
generators of so(V,Q) are:

σµν =
1

2
[γµ, γν ] (E.2.46)

for µ < ν and where the Lie bracket here now denotes the Clifford commutator. However, we
now see that this is nothing other than an easy consequence of what we had previously seen
and that this result is totally independent from the Dirac equation itself and indeed of any
matrix representation of the Clifford algebra itself.
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Remark E.2.1. We can say a bit more about the morphisms we explicited earlier; for χ : Λ2V →
C`(V,Q) explicited in equation E.1.12, we have that:

Im(χ) = C`2(V,Q) ∩ ker(Tr) (E.2.47)

where Tr denotes the trace (the trace of an element of C`(V,Q) is the trace of left Clifford
multiplication by that element on C`(V,Q)).

Remark E.2.2. We can also see this trace operation as simply being the projection of any
element of C`(V,Q) onto C, recalling that we may decompose: C`(V,Q) = C ⊕ V ⊕ C`2(V ) ⊕
· · · ⊕ C`n(V ). Both definitions are totally consistent with one another and the point of view
taken is left up to case-by-case convinience of use.

E.2.2 Geometrical Picture of γ-Matrices

In Quantum Field Theory, calculations often imply the computation of traces of products
of γ-matrices. In our case, we have seen that it is possible to regard these γ-matrices as honest
to goodness vectors (in the mathematical sense, i.e. elements of Cn or Rn equipped with some
quadratic form η), which live in a Clifford algebra. This point of view allows us to give a
geometrical interpretation to computations we encounter and to gain some insight about some
of the formulas typically given in QFT.

In order to gain some insight on what products of γ matrices represent, it is useful to go back
to the sketch of proof on the dimension of C`(V,Q) we previously gave, in which we proceeded
to identify the Clifford algebra with the exterior one. We do this because the homogeneous
elements of the exterior algebra can really be understood as vectors, surfaces, volumes, etc. We
can do the same in the case of the Clifford algebra, up to some small subtlety. To illustrate
this, consider the product:

v · w =
1

2
(vw + wv)︸ ︷︷ ︸
〈v|w〉

+
1

2
(vw − wv)︸ ︷︷ ︸
χ(v∧w)

(E.2.48)

We see that we have a component in C and another one which can be readily identified with
v ∧ w. In the particular case where 〈v|w〉 = 0, we have that v · w can really be interpreted as
the oriented surface element spanned by v and w. This implies that if we return back to our
orthonormal basis {γµ}µ∈I , we have that γµ1 · · · γµn 7→ γµ1 ∧ · · · ∧ γµn , which means that we
may identify the product of n γ-matrices with the volume element spanned by these vectors γµi .
This geometrical interpretation of the wedge product as oriented volume elements is illustrated
in figure E.2. In order to generalize this illustration to products of more than 2 γ-matrices,
we must first give the explicit extension of the χ morphism mentioned in remark E.1.1. We
proceed by antisymmetrization:

χ : v1 ∧ · · · ∧ vk 7−→
1

k!

∑
σ∈Sn

sgn(σ) vσ(1) · · · vσ(n) (E.2.49)

With this morphism of vector spaces, in what will follow, we will systematically omit to write
it explicitly by abuse of notation.

At this point, we may be tempted to decompose the product v1 · · · vk in the Clifford algebra
as we did before. Due to the Z2 gradation of the Clifford algebra, we have that it is necessary
to consider two cases, one for when k ∈ 2Z and the other one when k ∈ 2Z + 1. So, we have
the following proposition.
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Figure E.2: The geometrical interpretation of the homogeneous elements of the exterior algebra
(i.e. elements in ΛkV ). For k = 0 we have a signed point, k = 1 corresponds to a directed
line segment, k = 2 is an orientated surface element and k = 3 corresponds to an orientated
volume element.

Proposition E.2.1. Let dimV = n, then we have the following decomposition of the Clifford
algebra:

C`+(V,Q) = C⊕ Λ2V ⊕ · · · ⊕ Λ2bn2 cV (E.2.50)

C`−(V,Q) = V ⊕ Λ3V ⊕ · · · ⊕ Λ2dn2 e−1V (E.2.51)

This means that any homogeneous element x = v1 · · · vk can be decomposed as above.

Proof. The statement follows from the Z2-gradation of Clifford algebras and the identification
we previously performed between C` and the exterior algebra. Consider an orthonormal basis.
Then we can indeed see that the spanning elements will indeed decompose as above, that is
that:

ei1 · · · eik 7→ ei1 ∧ · · · ∧ eik (E.2.52)

via this isomorphisms of vector spaces, we may always find such a decomposition. �

The above proposition motivates the following definition, which become one of the point of
views that we will have for the trace.

Definition E.2.1. We call the trace of the product v1 · · · vk and denote it Tr(v1 · · · vk) the
projection onto C of the decomposition of v1 · · · vk provided by proposition E.2.1.

Remark E.2.3. This way of defining the trace is complitely consistent with its usual definition
as a linear functional on End(C`(V,Q)) ∼= End(

∧
V ) as vector spaces. This is because for any

k > 0, we always have that:
Tr(v1 ∧ · · · ∧ vk) = 0 (E.2.53)
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by the antisymmetry of ∧ and the cyclicity of the usual trace. In this sense, because of
proposition E.2.1 it is clear to see that the two definitions are exactly equivalent. It is important
to note that, since in physics we normally use a matrix representation, this implies rescaling of
the trace in the way we have defined it over the Clifford product. This can be easily seen by
considering the fact that for us Tr(1) = 1 as the trace is seen as a simple projection operator.
However, 1 7→ idD under any realization of the Clifford algebra as a matrix representation of
dimension D. In this case, the consistent operator Tr as seen as a linear functional over such
a matrix representation yields the result Tr(idD) = D. Once this scaling factor is fixed by the
multiplicative identity of the Clifford algebra, it is determined for all other elements.

Remark E.2.4. It is trivially true that Tr(v) = 0 in this case, again because of Z2-gradation.

Proposition E.2.1 can be a little bit unsatisfying. After all, we did not give the explicit
decomposition of a generic product in terms of its composing vectors. In what will follow,
we will approach this problem and give the combinatorial term-by-term expression for the
decomposition. We will then tackle the problem of finding the combinatorial decomposition of
the trace, which we will then be able to easily generalize to the other parts of the decomposition.

E.2.3 Traces of γ-Matrices

In order to tackle the problem of the decomposition of the trace, we develop a graphi-
cal method, which will greatly ease the calculation. It is first useful to prove the following
proposition:

Proposition E.2.2 (Wick’s theorem for traces). Let v1 · · · vk ∈ V and k ∈ 2Z (the odd case
being trivial). Consider the product of these elements. Then,

Tr(v1 · · · vk) =
∑∏
︸ ︷︷ ︸
Pairings

sgn(σ) 〈vi|vj〉 (E.2.54)

where sgn(σ) is the sign of a permutation σ which assigns to (v1, · · · , vk) its corresponding
pairing in the product.

Proof. We prove the result by induction. Consider the base case k = 2. In that case, we simply
have that:

v1v2 = 〈v1|v2〉︸ ︷︷ ︸
=Tr(v1v2)

+v1 ∧ v2 (E.2.55)

which indeed corresponds to a (trivial) sum of products of parings. Suppose the result is true
for k, we now show that it is also true for k + 2.

We need now only consider Tr(v1 · · · vkvk+1vk+2). The strategy now is to recognize that
due to the cyclicity of the trace, if we can obtain a term by anticommuting things through
which goes like Tr(v2 · · · vk+2v1), this will be identical to our original term. In so doing, the
anticommutation will yield an inner product, together with a product of k vectors, at which
point we can apply the induction hypothesis and we will be done. Symbolically, we first start
by defining a set of permutations:

Ki,j :=

{∏̀
k=0

(i, j − k), ` ∈ {1, · · · , j − i}

}
(E.2.56)



E.2. APPLICATIONS IN COMPUTATIONS IN PHYSICS 97

for i < j. In this case, we may write the terms yielded by this anticommutation by considering:

Tr(v1 · · · vk+2) =
∑

σ∈K1,k+2

2 sgn(σ)〈v1|vσ(2)〉Tr(vσ(3) · · · vσ(k+2)) + (−1)k+1 Tr(v2 · · · vk+2v1)

(E.2.57)
recognizing the term we seeked at the end of the sum and putting it at the other side taking
into account that (−1)k+1 = −1, we simply obtain that:

Tr(v1 · · · vk+2) =
∑

σ∈K1,k+2

sgn(σ)〈v1|vσ(2)〉Tr(vσ(3) · · · vσ(k+2)︸ ︷︷ ︸
k terms

) (E.2.58)

Finally, we notice that we may use the induction hypothesis on this last Tr term since it has k
terms. Thus, this indeed yields a sum over all possible parings, which concludes the proof of
the theorem. �

Having proved this result, it is now convenient to compute the number of terms which we
expect in general in the decomposition of the trace. By proposition E.2.2, this corresponds
to counting how many different products of inner products of pairs of vectors can be chosen
among 2n vectors. This can be found by considering:

# terms =
1

n!︸︷︷︸
Order of
product

irrelevant

n∏
k=1

(
2k

2

)
︸ ︷︷ ︸
Inductively

choose 2
vectors

among 2k

=

(
2n

n

)
︸ ︷︷ ︸

Choose n
vectors

n!︸︷︷︸
Assign

remaining
vectors to

chosen ones

1

(2!)n︸ ︷︷ ︸
Order of

pairs
irrelevant

(E.2.59)

This is totally consistent with a combinatorial analysis of the indices that must be present in
the η’s. Now, the advantage of the geometrical combinatorial decomposition is that it also
hints at a systematic way of generating the terms.

In fact, we can do much better than this as we will see later on. Indeed, we can actually
give an expression for every part of the decomposition of any product v1 · · · vn.

With this said, before we start considering the most general case, let us formulate the
graphical method for the trace. Consider v1 · · · vn, the combinatorial expression we found
earlier gives a strong hint of how to generate these terms automatically. Indeed, for the sake
of illustration suppose we are considering the product of 8 vectors. Then we may generate the
terms in the sum by considering the following equivalent diagrams (we simply choose to label
the vertices in terms of the indices directly, for simplicity):

v1
v2

v3

v4
v5

v6

v7

v8
1

2

3

4
5

6

7

8

This arrangement allows us to generate all pairings possible in a straight forward manner by
simply connecting two paired vertices together. In this way, for example the diagram:

1
2

3

4
5

6

7

8
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Represents the term: 〈v1|v2〉〈v3|v6〉〈v4|v7〉〈v5|v8〉. The only thing we need to determine now
is the sign in front of this term. Using the proof of proposition E.2.2, it is possible to link
the number of transpositions of the form (i, i + k) needed to use in order to generate the
permutation to get the pairing described by the diagram to the number of line crossings present
in the diagram. Notice that these (i, i + k) are nothing other than generators of the set Ki,j

mentioned in the proof of the proposition. Thus, in the case of the diagram above, we should
put a minus sign in front, since it contains 3 crossings. The full diagram can then be interpreted
as reading −〈v1|v2〉〈v3|v6〉〈v4|v7〉〈v5|v8〉.
Remark E.2.5. The crossings should be counted with multiplicity. For example, in the case of
the diagrams:

1
2

3

4
5

6

7

8
1

2

3

4

5

6

we should count 6 crossings instead of just 1 for the first diagram and , similarly, for the second
diagram, 3 crossings instead of 1. The presence of the multiplicity as well as its value becomes
clear by deforming the topology of the circle into a line (while keeping the vertices ordered in
the clockwise or counterclockwise orientation) and then connecting the corresponding vertices
along the same half-plane.

Remark E.2.6. That Tr(γµ1 · · · γµn) = Tr(γµn · · · γµ1) is trivial in this context, as we can clearly
see that the number of crossings as well as the diagrams possible are exactly the same up to
relabelling of the vertices. It thus doesn’t matter if we decide to order our vertices clockwise
or counterclockwise, it is nothing but a matter of preference. In fact, this is true for any cyclic
permutation, which reflects the cyclicity of the trace.

Proposition E.2.3. The number of crossings of edges in the diagrams of the kind specified
above correspond exactly to the number of transpositions of the kind (i, i+k) needed in order to
generate the pairing specified by the diagram. Moreover, the sign associated with the diagram
is (−1)c, where c is the number of crossings, counted with multiplicity.

Proof. We will proceed with reductive induction in order to prove the result.
First, we start by realizing that there is a maximum number of crossings that can occur.

To see the exact number, we may consider lines on the projective plane in order to count the
maximum number of points a set of n lines can intersect. We first draw two secant lines, then
we consider adding a third line. The fourth line can be added in such a way that it is parallel to
the third line (which means these two must intersect at infinity). We may continue to add lines
parallel to the third and fourth lines while keeping track that each time that they will intersect
the 3rd, 4th,· · · lines at infinity by simply adding the n− 3 points to the line of intersection to
the line itself. In this way, we clearly see that the result must be a triangular number, which
is:

sup{crossings} =
n(n− 1)

2
(E.2.60)

With this upper bound, it is enough to prove that if we can reduce k crossings to k−1 crossings
using a well-defined algorithm involving a single permutation of the form (i, i+k), the algorithm
will terminate and we will have proved the result.

Without loss of generality, we may take out the vertices which are paired adjacently to
one another. This is simply because anticommutation of the adjacent vertices will yield the
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corresponding inner product, while preserving the sign unchanged, e.g. abc = 2〈a|b〉c − bac.
The first step in our algorithm will thus be to take out these adjacently paired vertices, if
they are all adjacently paired, we are done and there is nothing to do and the algorithm has
terminated. This first step thus yields a diagram of n vertices with k crossings without any
adjacently paired vertices.

Next, we pick two vertices which are adjacent to one another whose pairing edges intersect.
Such two adjacent elements must exist, since we have taken out all paired adjacent elements
and this is the only case for which we expect no intersections to occur. Up to relabeling or
rotation of the diagram we may take these two elements to be {1, 2}. Now, take the permutation
(1, 2), which exchanges both of these vertices. Clearly, this eliminates the crossing between the
pairing edges of 1 and 2. Diagramatically:

1 2

3

4
..

i
.

j

...
n 2 1

3

4
..

i
.

j

...
n

so this much is clear. We have only to verify that this only undoes one crossing. However, this
is also clear, since the only crossings influenced by the exchange of 1 with 2 are the crossings
which originally are the intersection of pairing edges which intersect edges 1 → i and 2 → j.
Since we are counting the intersections with multiplicities, it is enough to consider a single one
of these intersections and see that the number of crossings is indeed left invariant. Since 1 and
2 are adjacent vertices, any pairing edge k1 → k2 intersecting the pairing edge of 1 must also
intersect the pairing edge of 2, which implies that the number of crossings generated by edge
k1 → k2 remains invariant under this construct. This is simply because the set {1, 2, i, j} forms
a partition of the vertices of the circle. Any edges contained between i and j which are paired
together will not be cross the pairing edges of 1 and 2. The only possibility for such a pairing
edge k1 → k2 crossing the pairing edge of 1 or of 2 is that the vertex k1 must be between 2 and
i and k2 must be between j and 1. Diagramatically, we have the following situation:

1 2
..

k1

:
i.j

.....
k2

...
n 2 1

..

k1

:
i.j

.....
k2

...
n

Thus, the number of such crossings is conserved and we have not generated any new crossings
with this permutation. Having done this, we go back to the first step and iterate recursively.
Through this algorithm, we get a descending chain which eventually terminates when the
number of crossings is zero, at which point we will have retrieved all the pairs in the original
diagram in the form of adjacent pairs. It follows from this that the sign of the total permutation
is given by the number of crossings in the diagram, since at each step of crossing reduction we
used a single transposition. �

Now that we have established a combinatorial way to get the result for the trace, a couple
of remarks are in order:

Remark E.2.7. Notice that in the odd case, we can perform a very similar study as we have
done before in the case of the trace to find the part of the decomposition fitting into V , with
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the exception that we will have a single vector which is not paired, this is a reflection of the
Z2-grading of the algebra. In fact, this diagramatic technique extends without any difficulty
to this case. An interesting simple case which the reader can check by hand is the case where
we consider the product of 3 vectors, the diagrams are :

1

23

1

23

1

23

which yields the expression:

〈v1|v2〉v3 + 〈v2|v3〉v1 + 〈v1|v3〉v2 (E.2.61)

This result for the odd case will serve as inspiration of how we can generalize what we found
in the case of the trace to higher orders in ∧.

Remark E.2.8. Notice that the upper bound formula we found in the proof of proposition E.2.3
is also a formula which gives us the multiplicity of crossings between multiple lines. This ends
up giving us a straightforward way of computing these multiplicities we previously mentionned
as follows: if there are n lines at a certain crossing, the multiplicity of the crossing is:

n(n− 1)

2
(E.2.62)

E.2.4 Combinatorial Expression of the Full Decomposition

Finally, we are ready to tackle the generalization of what we found for the trace to all of
the other terms. It turns out that everything boils down to computing traces. This is simply
because the trace induces an inner product on End(

∧
V ) (or alternatively induces an inner

product on C`(V,Q)) by simply considering:

〈x, y〉 := Tr(x∗y) (E.2.63)

where x∗ denotes the conjugation morphism we previously defined. This new interpretation of
the trace allows for powerful geometrical arguments, which we will use extensively in the proof
of the following theorem.

Theorem E.2.1. We may extent the graphical method we developped for the trace to find the
combinatorial expression at all orders in ∧. Consider the product v1 · · · vk, the following rules
yield the term going with vi1 ∧ · · · ∧ viq provided that it is not zero:

1. Compute the sum:

s ≡
⌊q

2

⌋
+

bq/2c∑
j=1

i2j − i2j−1 mod 2 ; (E.2.64)

2. The combinatorial expression of the term vi1 ∧ · · · ∧ viq is simply given by:

(−1)sTr (v1 · · · v̂ip · · · vk) vi1 ∧ · · · ∧ viq (E.2.65)

where v̂ip denotes that we have excluded from the product all vip’s. To compute this trace,
it is sufficient to exclude the ip vertices in the graphical method developped for the trace
and express the sum of all corresponding diagrams.



E.2. APPLICATIONS IN COMPUTATIONS IN PHYSICS 101

Proof. Without loss of generality, we will consider only normalized vectors in our product, as
the only consequence of not doing so will be an overall constant out front. As we explained
before, the Tr operator induces an inner product of C`(V,Q) as a vector space, which itself is an
isomorphic to

∧
V as vector spaces. In particular, this means that we may define the concept

of projection using this inner product as we did above. In so doing, to find the expression of
the term vi1 ∧ · · · ∧ viq (provided that this expression, is not zero, in which case the result of
the theorem is trivial), it is sufficient to consider its normalized projection. This means that
we can express this term as simply being:

Tr
[
(v1 · · · vk)∗(vi1 ∧ · · · ∧ viq)

]
Tr
[
(vi1 ∧ · · · ∧ viq)∗(vi1 ∧ · · · ∧ viq)

] vi1 ∧ · · · ∧ viq (E.2.66)

Our normalization condition implies simply that the denominator can be taken to be 1. We
are thus only left with the numerator of the expression being of importance. While performing
a direct inductive proof on the expression given above would be ideal, this procedure can be
quite tedious and won’t give us much geometrical perspective on the problem. Instead, we
start by simplifying the problem a bit. We claim that, in fact:

Tr
[
(v1 · · · vk)∗(vi1 ∧ · · · ∧ viq)

]
=

=:N︷ ︸︸ ︷
1

q!

∑
σ∈Sq

sgn(σ) Tr
[
(v1 · · · vσ(i1) · · · vσ(iq) · · · vk)

∗(vi1 ∧ · · · ∧ viq)
]

(E.2.67)
This statement is obvious if we consider that we may always permute the elements spanning
the volume form with any permutation in Sq provided we take the sign of the permutation
into account. This is just simply invariance under exchange of the vectors that describe a
hyperparallepiped, up to its orientation. Symbolically,

vi1 ∧ · · · ∧ viq = sgn(σ) vσ(i1) ∧ · · · ∧ vσ(iq) ∀σ ∈ Sq (E.2.68)

Using this identity in the expression of N , we obtain simply that symbolically, all the elements
of the sum look the same symbolically. Thus up to relabeling, all the terms are identical and
we may sum up the series. With this reasoning, we get:

N =
1

q!

∑
σ∈Sq

sgn(σ)2 Tr
[
(v1 · · · vσ(i1) · · · vσ(iq) · · · vk)

∗(vσ(i1) ∧ · · · ∧ vσ(iq))
]

(E.2.69)

=
1

��q!
��q! Tr

[
(v1 · · · vk)∗(vi1 ∧ · · · ∧ viq)

]
(E.2.70)

thus proving our claim that equation E.2.66 holds. Thus, it is sufficient to find the term within

1

q!

∑
σ∈Sq

v1 · · · vσ(i1) · · · vσ(iq) · · · vk (E.2.71)

proportional to vi1 ∧ · · · ∧ viq . With this said, the idea now is to put all the vσ(ip)’s on the same
side by anticommutation. About this anticommutation, it is helpful to make some remarks
before we dwell into the procedure:

1. The terms containing inner products of the form 〈vip |a〉 produced by the anticommutation
of terms can be discarded in this particular context since the it is impossible that one of
these terms is proportional to vi1 ∧ · · · ∧ viq (since the vector vip is already in the inner
product);
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2. Discarding these terms, we also notice that anticommuting through an even number of
terms at once does not change the overall sign of the product, on the other hand for an
odd number of terms, we get a (−1) for every anticommutation.

With these considerations, we have that after anticommuting all the terms through and dis-
carding the inner product part for the reasons above, we obtain:

1

q!

∑
σ∈Sq

sgn(σ) v1 · · · vσ(i1) · · · vσ(iq) · · · vk 7−→ (−1)s
1

q!

∑
σ∈Sq

sgn(σ) v1 · · · vk · vσ(i1) · · · vσ(iq)

(E.2.72)
where this s has to count the number of anticommutations done by an odd number of terms.
This turns out to be of the form:

(i2 − i1 + 1)︸ ︷︷ ︸
Commuting i1

to i2

+ (i4 − i3 + 1)︸ ︷︷ ︸
Commuting i1,i2

and i3 to i4

+ (i6 − i5 + 1 + · · · )︸ ︷︷ ︸
etc.

(E.2.73)

So we see that we may express this as:

s =

b q2c∑
j=1

i2j − i2j−1 + 1 =
⌊q

2

⌋
+

b q2c∑
j=1

i2j − i2j−1 (E.2.74)

Notice that this works even in the odd case because at no point have we used the fact that k
should be in 2Z, so this algorithm is fully general. Furthermore, to ease the computation, we
make take this sum mod 2, since in the end we care only about the parity of the result. Finally,
we notice a couple of things :

(−1)s

No terms con-
taining vσ(ip)︷ ︸︸ ︷

v1 · · · v̂σ(ip) · · · vk ·
1

q!

∑
σ∈Sq

sgn(σ) vσ(i1) · · · vσ(iq)︸ ︷︷ ︸
Volume form

(E.2.75)

Finally, we recognize that for both odd and even products, the product of k− q ∈ 2Z elements
with which we are left decomposes by virtue of proposition E.2.1 into Tr⊕

∧
. The only term

which concerns us the the part of the product which contains the trace of these elements, the
rest of the terms in

∧
will not contribute. In order to see this, we use once again the trick of

using the Tr as a projector, indeed, we can see that the elements going like v1∧· · ·∧ v̂ip∧· · ·∧vk
containing k − q − ` terms yield identically zero:

Tr[(vi1 ∧ · · · ∧ viq︸ ︷︷ ︸
q elements

)∗(v1 ∧ · · · ∧ v̂ip ∧ · · · ∧ vk︸ ︷︷ ︸
k−q−` elements

)∗(vi1 ∧ · · · ∧ viq︸ ︷︷ ︸
q elements

)] (E.2.76)

We recall that we assume that vi1 ∧ · · · ∧ viq is not zero, which implies this set of q vectors
is linearly independent. Now, we have three cases to consider. First, the case where the set
{v1, · · · , vk} of k vectors is linearly independent. In this case, the trace above is clearly zero,
since we have that we are projecting an element of lower degree of the Grassmannian onto
the full volume element. Second, the case where the set {v1, · · · , vk} \ {vi1 , · · · viq} is linearly
independent but {v1, · · · , vk} is linearly dependent and {vi1 , · · · viq} is not a full basis for the
space, in this case, the trace also yields zero, since we are projecting different elements of
the Grassmannian onto each other. Finally, we need only check the case where we have that
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both {vi1 , · · · viq} and {v1, · · · , vk} \ {vi1 , · · · viq} as being bases of the same space. In this
case, we have a change of basis map we may specify with a matrix A. It holds then that
Tr((basis 1)∗(basis 2)∗(basis 1)) = det(A) Tr(basis 1) = 0. In every case, we see that we get
zero contribution from the wedge terms, which finishes the proof of the theorem. �

Finally, we give some examples for the method. Suppose, for example we want to compute
the term going like v3 ∧ v5 ∧ v7 ∧ v8 in a product of 10 elements vi. We first calculate s mod 2,
which yields:

2 + (8− 7) + (5− 3) = 1 mod 2 (E.2.77)

which yields a total minus sign out front. Then we simply need to compute all diagrams
excluding vectors v3, v5, v7, v8, which can be put under the form:

1

2

4

6

9

10
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[18] C. Lorcé, “Gauge-Covariant Canonical Formalism Revisited With Application to the
Proton Spin Decomposition,” Phys. Rev. D 88, 044037, (2013).

[19] É. Cartan, “Sur une gnralisation de la notion de courbure de Riemann et les espaces
torsion,” C. R. Acad. Sci. (Paris) 174, 593-595 (1922).
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