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Abstract

In this paper, we attempt to reproduce the results obtained by Sovacool et al. in their recent
paper that focuses on the differences in carbon emissions reduction between countries pursuing
renewable electricity versus nuclear power. We have found several flaws in the models and the
statistical analysis performed theirein, notably the correlations performed between the fractions
of renewable power and of nuclear power and greenhouse gas emissions per capita and the lack of
consideration for natural bias between the variables examined.

1 Introduction

Lowering Greenhouse Gases (GHG) emissions, foremost amongst which are carbon dioxide emis-
sions, has been established as a priority in order to mitigate the effects of anthropogenic climate
change. While it is clear that abandoning fossil fuels is imperative, there is still some debate about
the details of the transition to decarbonized sources of energy. As it was reported in Chapter 2 of
the 2018 IPCC report [21], the role of nuclear energy increases along most pathways to decarbona-
tion, although the variance in the share of nuclear energy is quite large across the spectrum of the
different models and paths considered in the literature [18, 20]. For instance, there are scenarios of
100% renewable energy which have been considered by some authors [9, 16], although the validity of
the assumptions of these high-renewable models have been contested [8]. By contrast, there are also
examples where the role of nuclear power is greatly increased, such as in [4, 5, 15,25].

In the context of this debate, Sovacool et al. performed a study concluding that “the implication for
electricity planning is that diverse renewables are generally proving in the real world to be significantly
more effective than nuclear power at reducing climate disruption” [23]. Fell et al. have since published
a response [11], criticizing the methodology and other aspects of their paper. In particular, the authors
find that “nuclear power and renewable energy are both associated with lower per capita CO2 emissions
with effects of similar magnitude and statistical significance.”

Similarly, Wagner [24] has recently obtained results in direct contradiction to the conclusions drawn
by Sovacool et al. This paper provides supplementary criticism for the validity of the conclusions of [23]
and concludes that “both, nuclear and renewable power allow a reduction of national CO2 emission
levels. [...] The analysis of the databases employed in this study did not yield evidence for any
further hidden variables, national CO2 emission might possibly depend on. Specifically, no evidence
for “crowding-out” can be detected.”

Sovacool et al.’s paper relies on the statistical analysis of historical data available for different
variables across a variety of countries. In particular, it relies on establishing correlations amongst the
share of nuclear energy (henceforth denoted N) versus renewable energy (henceforth denoted R) as a
fraction of the electrical mix and CO2eq emissions per capita, while taking Gross Domestic Product
(GDP) per capita as a confounding variable.
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After attempting to reproduce the results of Sovacool et al. [23], we have found that the analysis
performed is considerably flawed both because there were mistakes in the statistical analysis, but also
because there were inconsistencies in the logic of the authors, in particular concerning:

• the “crowding out” hypothesis, i.e. that renewables and nuclear power are structurally incom-
patible, so there is an anticorrelation between them;

• the rejection of the “climate mitigation” hypothesis, which states that “the relative scale of na-
tional attachments to nuclear electricity production will vary negatively with carbon emissions.”

Both of these elements involved regressions of non-carbonated sources of electricity with GHG emis-
sions, despite the fact that decarbonated energy sources are not good predictors of GHG emissions.

The rest of this paper is separated as follows. First, we will give a more detailed account of each
of the arguments above. Then, we will give some complementary technical details regarding the data
set and our analysis of the complementary data provided by the authors.

2 Criticism

2.1 Fossil fuels as the real predictor and the “crowding out” hypothesis

Both renewable and nuclear energy emit little to no GHGs, but energy stemmming from fossil
fuels does. With respect to the GHG emissions per capita, the only relevant variable is the fraction of
fossil fuels in the electricity production of each country (which we will denote F ). It follows that the
fraction of nuclear energy or renewables in the electrical mix is not a good predictor of GHG emissions,
independent of statistical treatment of the data. As shown by our in depth analysis in the appendix,
the rejection of the authors of the “climate mitigation” hypothesis arises from an inadequate statistical
analysis (cf. section 2.2) and from the following fact.

The fraction of electricity produced with renewable, nuclear and fossil fuels satisfies the tautological
relation:

R+N + F = 1 . (2.1)

This relation implies that these three variables are necessarily correlated with one another. In light of
this reasoning, no matter the statistical treatment of the data the predictive power of R or N for the
GHG emissions can only stem from that of F (cf. proposition A.1 and section A.4). In particular, the
analysis of the authors of [23] on the effect of renewables and nuclear energy as well as their rejection
of the “climate mitigation” hypothesis reflects nothing other than relation 2.1.

Moreover, the reasoning behind the “crowding out” hypothesis is flawed. Indeed, the authors of [23]
motivate the proposal of the “crowding out” hypothesis as follows. Intermittent renewables require
a decentralized electrical infrastructure as soon as they occupy a significant fraction of the electricity
produced. By contrast, the optimal electrical infrastructure of non-intermittent power sources, such
as fossil fuels, hydroelectricity and nuclear power is centralized [3]. The authors then suggest that,
for these reasons, there should be an anticorrelation between R and N , which is the statement of the
so-called “crowding out” hypothesis. They back this statement by verifying that R and N are indeed
anticorrelated and use this to justify their statements.

However, this explanation is inconsistent with the data studied, since most of the electric produc-
tion considered to be “renewable” from 1990 to 2015 was hydroelectricity – with intermittent power
sources such as wind and solar contributing only negligible amounts to the statistic according to the
BP Statistical Review of World Energy (2019) [1]. Furthermore, given any three positive random
variables satisfying relation 2.1, one can always find at least two pairs of variables that are negatively
correlated (cf. proposition A.1). It is thus little to no surprise to find that R and N are negatively
correlated, but this has nothing to do with the causality relation of the “crowding out” hypothesis
suggested by Sovacool et al. It is simply the consequence of the simple mathematical relation between
the variables studied. This statement is backed by our in-depth analysis in the appendix of this paper.
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2.2 Flaws in the statistical analysis and the rejection of the “climate mitigation”
hypothesis

Sovacool et al. propose two timeframes (1990-2004 and 2000-2014) along which the data is split
and averaged and justify this by claiming this is “an optimal use of the data”, because “renewable
energy figures were only recorded since the nineties.” However, the averaging procedure of the authors
is not justified from a time series analysis (TSA) perspective nor does it exploit the data in any
sense of optimality (from a statistical standpoint). Furthermore, that this averaging procedure does
not affect the conclusions of the paper should’ve at the very least been shown by the authors by
demonstrating the stability of this procedure, i.e. whether a change in the time step and number
of timeframes considered changes the conclusions of the regression analysis or not. However, this
was never made explicit in the paper. In general, disregarding TSA considerations may lead to
modifications in the results of any subsequent analysis , as many potential time series complications
could arise, in particular non-stationarity [6, 14, 22]. Note also that such concerns could have been
easily foreseen, as it is not surprising that the data studied is non-stationary, since many countries
underwent rapid industrialization during the studied time period. This a priori arbitrary treatment
of the data questions the integrity of the data set used for the subsequent analysis, and by extension,
the entire analysis itself and its conclusions.

However, even if the averaging procedure of the authors turns out to be stable and assuming there
are no TSA complications in the study of this data set, there are many inconsistencies and flaws in the
subsequent statistical analysis performed in [23]. These will be treated in more detail in the appendix,
but a non-exhaustive list includes:

• Given the nature of the conclusions and the context of Sovacool et al.’s study, the forward
selection performed is inadequate (cf. section A.4): a more appropriate approach would be to
consider bidirectional selection, as it also excludes independent variables which do not play a
significant role in the predictive power of the model [19].

In other words, the strength of the conclusions drawn by the authors and their policy recommen-
dations can not be backed by the analysis performed in the paper, since one can not draw strong
conclusions about the relative importance of the variables in the model using forwards selection.
If the objective was to draw these conclusions, bidirectional selection is more appropriate.

• The poor study of the data set before the start of the regression analysis (for instance, there
was no check for heteroskedascity), which inevitably led to a suboptimal model, i.e. one with
too many variables (or inappropriate ones) – some of which turn out not to be significative –
without an increase in goodness of fit, or predictive power (cf. section A.4);

• The failure to take into account concentration along the fraction of nuclear power axis of the
data set (most countries have no nuclear power, hence most of the data set lies exactly at zero
with respect to this variable, which is a huge bias of the statistics regarding this variable), which
biases the regressions performed (cf. section A.3).

• The interpretation of correlation coefficients as importance measures of the random variables
used in the regression analysis (which are correlated) is not justified. While for independent
random variables the regression coefficients may be relatively good metrics of importance, this
is no longer the case as soon as the variables become correlated. Indeed, even standardizing the
correlated set of regression variables, one can obtain results which are misleading. The data set
considered presents exactly this problem [23]: we have already pointed out relations between
the regression variables considered, which induce correlations between them. If a metric of
importance is to be considered, there are appropriate statistical tools to treat the question of the
importance of regressed variables in the multicollinear case. We refer the reader to [10,12,13,17]
and to the appendix of this article (section A.2) for a more in depth description of these methods.
The latter have been implemented in R as the packages relaimpo [12] and sensitivity [10].
An in depth analysis of the data using these tools would be enlightening in future works in this
direction.

3



2.3 Other elements previously highlighted by other authors

As previously noted, Sovacool et al.’s paper [23] has been discussed by different authors [11, 24].
Let us briefly state some of the main arguments these authors have made regarding this matter.

Fell et al. [11] noted that, among other points,

• Sovacool et al.’s paper [23] does not find a positive correlation between N and emissions, but
instead finds a negative correlation, which is non-significant. However, due to the small sample
size (30) of nuclear countries, that this turns out not to be significant is not surprising;

• The crowding out hypothesis does not say anything about the ability of nuclear power to avoid
emissions;

• The cross-sectional approach of Sovacool et al. with respect to the time frames is also criticized,
Fell et al. note that cross-sectional analyses with low sample sizes are sensitive to outliers and
sampling choices. Moreover, the choice to study a lagged effect without statistical motivation is
criticized by the authors;

• The paper’s analysis includes the complete set of countries with low GDP per capita. These
countries have low emissions per capita and little to no nuclear power. This choice “appears
to establish a weaker correlation between nuclear and low per capita emissions, but likely re-
veals only that many poorer nations have lower emissions per capita due to greater reliance on
agriculture and informal economic activities.”

Similarly, Wagner [24] attempted to reproduce the results of Sovacool et al. on different data sets,
namely a compilation of datasets of 26 European countries (we refer the reader to [24, Appendix B]
for the detailed sources and reliability controls performed on these databases) and two world-wide
databases extracted from the IEA data bank [2]. In his paper, Wagner points out that

• By redoing the study on different publicly avalaible data sets, one fails to reproduce the results
of Sovacool et al. Most notably, the fraction of nuclear power in the energy mix correlates
negatively with GES emissions and “the analysis of both European and more global data shows
that both renewable and nuclear technologies allow a reduction of CO2 emissions with comparable
efficacy”;

• “No evidence was found that countries using nuclear power systematically employ more fossil
fuels preferentially coal to the extent that the emission-free nature of nuclear energy is not only
offset thereby but even overcompensated.”;

• N and R are anti-correlated, but when performing the study over the smaller set of European
countries statistical criteria do not attribute significance to the correlation. As previously noted,
given the small sample of countries this lack of significance is not in itself surprising;

• Finally, “the regression of the total CO2 emissions with [the total amount of energy produced, the
amount of renewable energy and the amount of nuclear energy (in absolute value)] as independent
variables does not provide any new or deeper insight; specifically, it does not [suggest] inner
relationships and correlations with cultural and sociological factors as searched for in [23]”.

3 Conclusion

The analysis of Sovacool et al. does not back their concluding statements. As demonstrated in
this paper and its appendix, all the conclusions of their paper do not follow from the data or from
proper statistical treatment of it. In particular, the failure to recognize that the predictive power
of their model came from the fraction of fossil fuels in the electrical mix, and to take into account
the basic relation between the fraction of renewables and nuclear in the electrical mix is fatal to their
conclusions. Additionally, there are many mistakes in the regression analysis performed and important
considerations were not addressed in [23], thus also undermining the validity of their results.
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A Statistical analysis

A.1 Correlation of fractions of the same whole are inherently biased

Let R, N and F be positive random variables (which can be interpreted as fractions), such that
the following relation holds

R+N + F = 1 . (A.2)

Linear regression consists in minimizing

E
[
(aN + b−R)2

]
. (A.3)

The minimizer is unique and is exactly equal to the orthogonal projection of R onto the hyperplane
spanned by N and the constant random variable 1 in the Hilbert space where these random variables
are defined (in the case of this paper, L2([0, 1])), which is simply

Cov(N,R)

Var(N)
N + E[R]− Cov(N,R)

Var(N)
E[N ] , (A.4)

from which we deduce that a = Cov(N,R)
Var(N) . However, the relation between the three variables above

immediately implies the following proposition.

Proposition A.1. Suppose thatN , R and F are three random variables on [0, 1] such thatN+R+F = 1.
Then at least two out of the three off-diagonal entries of the covariance matrix are negative, i.e. at
least two out of Cov(N,R),Cov(N,F ) and Cov(F,R) are negative. Furthermore, the condition to
have Cov(N,R) > 0 is that Var(F ) > Var(N) + Var(R).

Proof. Suppose otherwise that Cov(N,R) > 0. Take the relation and take the covariance of both sides
of equation 2.1 with respect to N , R and F respectively to obtain

Cov(N,R) + Cov(N,F ) = −Var(N) (A.5)

Cov(R,N) + Cov(R,F ) = −Var(R) (A.6)

Cov(F,N) + Cov(F,R) = −Var(F ) . (A.7)

By the positivity of the variance, as soon as one of the covariances is positive, the other two are
immediately negative. Inverting the above relation, one can write:

Cov(N,R) =
1

2
(Var(F )−Var(N)−Var(R)) (A.8)

which is positive if the condition of the proposition is satisfied. Note also that we retrieve the rela-
tionship Var(R+N) = Var(F ) entailed by relation 2.1.

This means that, given any situation, one can expect to find negative correlation of fractions of
the same whole more than two thirds of the time.

A.2 Some remarks on regression analysis

We will now demonstrate why the use of regression coefficients as an importance metric is mis-
leading for regression variables which are correlated. To do this, let us consider a probability space
(Ω,F ,P), a random variable Y ∈ L2(Ω) which we wish to regress by using the set of random variables
{X1, · · · , Xn} ⊂ L2(Ω), which we will assume to be linearly independent, but not necessary indepen-
dent (or orthogonal: if L2(Ω) is a centered gaussian space these concepts coincide). As previously
noted, linear regression in this context is nothing other than the orthogonal projection of Y onto the
hyperplane spanned by the so-called explanatory variables X1, · · · , Xn. We can write

Y = ProjSpan (X1,··· ,Xn)(Y ) + ε , (A.9)
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where ProjH(Y ) denotes the projection of Y onto the vector spaceH and ε is the orthogonal component
of Y to Span(X1, · · · , Xn). We may express ProjSpan(X1,··· ,Xn)(Y ) in the coordinates of the basis
X1, · · · , Xn. This yields the classical regression analysis equation

Y =
n∑

k=1

βkXk + ε . (A.10)

If the Xk are orthogonal in L2(Ω), the βk can be simply expressed in terms of the inner product of Y
with Xk,

βk =
〈Y,Xk〉
〈Xk, Xk〉

. (A.11)

However, if the Xk are not orthogonal (and therefore not independent), the coefficients can be found
by virtue of orthogonalizing the (Xk)k basis to perform the projection and finally changing back the
result to (Xk)k coordinates.

With this said, as depicted in figure 1 it is easy to geometrically see why the regression coefficients
βk stemming from correlated variables might be misleading.

Figure 1: Two correlated random variables X1 and X2 spanning a plane H in L2(Ω). The projection
of Y onto the plane H has strictly larger R2 than the that of the projection of Y onto either X1 or X2

alone. However, when expressed in (X1, X2) coordinates, the expression of ProjH(Y ) is misleading,
since the coordinates of this projection are large due to the fact the variables X1 and X2 are almost
collinear (in fact they are larger than those of the projection of Y onto X1 or X2 individually).

From figure 1 we see that any metric of “importance” considered for correlated variables should
avoid using a coordinate dependent framework. Instead, a coordinate-free approach should be consid-
ered. Such a coordinate-free coefficient of importance of the variable Xk could be a (weighted) average
over all subsets A ⊂ {X1, · · · , Xn}\{Xk} of ∆R2

A, the improvement in R2 (or, up to a sign, difference
in variance unexplained) when including the variable Xk in a linear model spanned by the variables
in A. Geometrically, going back to figure 1, this is similar (up to a sign and normalization) to taking
the average over all such subsets A of the difference in distance between hyperplane Span(A ∪ {Xk})
to Y and the hyperplane Span(A) to Y . This measure of importance is not coordinate dependent, as
the measure depends only on the vector spaces spanned by the different variables. As a side note, we
remark that this interpretation provides the link between the different formulæ typically used for the
so-called LMG. On one hand, notice there are exactly

(
n−1
j

)
hyperplanes spanned by j vectors chosen

from a set of n− 1 vectors. It follows that the average of ∆R2
A over all possible linear models A not

including Xk can be written as

LMG(Xk) :=
1

n

n−1∑
j=0

∑
Aj

∆R2
Aj(

n−1
j

) , (A.12)

where the second sum is carried over the subsets Aj ⊂ {X1, · · · , Xn}\{Xk} having cardinality j. This
is the formula for LMG first discovered by Christensen [7]. On the other hand, it is also easy to see
that this average can also be written down as

LMG(Xk) :=
1

n!

∑
A⊂{X1,··· ,Xn}\{Xk}

(#A)!(n−#A− 1)!∆R2
A , (A.13)
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yielding the classical result of the equivalence between all the formulæ from the literature [12].
This is exactly the the approach taken in [10,12,13,17], which we suggest should be used to further

verify the validity of the conclusions of [23]. These methods should be understood as weighting the
contribution of X2 in reducing the residual variance to linear models spanned by the Xk’s. Going back
to figure 1, it is clear that including X2 yields non-trivial information, as it considerably increases the
variance explained by the linear model, but that this importance is not less than that of X1. This is
not as easily seen when considering the (X1, X2) coordinates of ProjH(Y ), but is clear when looking
at the geometric layout of the vectors Y , X1 and X2. As previously stated, these methods have been
implemented in R as relaimpo and sensitivity. Preliminary results suggest that this metric of
importance for correlated variables yields different results than that of [23]. It would also be of similar
interest to attempt to reproduce the results of Fell et al. [11] and Wagner [24] using this metric.

A.3 Covariances and correlations of N , R and F

If we now let N , R and F denote the fraction of nuclear, renewable and other sources of the
electrical production, proposition A.1 applies. Taking a look at the data from the study, figures
figures 2, 3 and 4 show the distributions for each of these variables (the fractions are along the x axis
and the y axis is the count of the histogram). Note that F is dominated by fossil fuel contributions.
The covariances of these variables can be found in table 1 for Timeframe 1 and in table 2 for Timeframe
2.

Upon examining the distribution of F , one sees that it is approximately uniform, which should set
its variance to be close to 1

12 . By contrast, nuclear power tends to play a small role in the electrical
mix of most countries, which tells us that Var(N) should be negligible with respect to Var(R) and
Var(F ), as the observed values of N concentrate around 0. In particular, this immediately implies
that Cov(R,F ) is relatively large in absolute value and negative (independent of interpretation). This
is of capital importance when we examine stepwise selection models, which will yield significance for
R, but which we will see actually stem from the greater predictive power of the variable F of GHG
emissions per capita. In particular, the conclusions of Sovacool et al. about the efficacy of renewables
to decarbonate do not follow from any statistical analysis, as this covariance is only large and negative
because Var(N) is negligible.

Finally, we must compare Var(F ) with Var(R). Here, Var(R) > Var(F ), and so we have the
negative correlation between N and R mentioned in the paper. Looking at the distributions of R and
F , one finds that this is due to the fact that most countries seem to either focus on renewables (mainly
hydroelectric power in the timeframes considered) or not have any at all, whereas the distribution of
other (fossil) sources is more or less uniform. This negative covariance between N and R is thus
explained solely by the latter and the mathematical relation linking the three variables.

The negative nature of the correlations can further be emphasized by examining the rank correla-
tion matrix (here, the Spearman ρ coefficient) between each of the variables. Unsurprisingly, we find
that the variables all have negative rank correlation. The exact values of the Spearman ρ coefficients
between the variables for time frames 1 and 2 are tabulated in tables 3 and 4 respectively.

Figure 2: Number of countries as a function of N .
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Figure 3: Number of countries as a function of R.
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Figure 4: Number of countries as a function of the fraction of F .
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Table 1: Covariances between different variables of timeframe 1 for renewable countries (nuclear
countries included).

Timeframe 1 N R F

N 0.0252887 -0.0161068 -0.00918191
R 0.122027 -0.10592
F 0.115102

Table 2: Covariances between different variables of timeframe 2 for renewable countries (nuclear
countries included).

Timeframe 2 N R F

N 0.0252823 -0.0128735 -0.0124088
R 0.107508 -0.0946345
F 0.107043

Table 3: Spearman ρ between different variables of timeframe 1 for nuclear countries.

Timeframe 1 N R F

N 1 -0.336634 -0.580868
R 1 -0.4639
F 1

8



Table 4: Spearman ρ between different variables of timeframe 2 for nuclear countries.

Timeframe 2 N R F

N 1 -0.23693 -0.682314
R 1 -0.445161
F 1

A.4 Stepwise selection

“Hierachical regression” is more commonly known as stepwise selection in statistics. Stepwise
selection can be done in two different directions: forwards or backwards. In forwards stepwise selection,
one starts with the null model and progressively adds variables while evaluating the significance of
each addition. And so, at step n, if the variable Xn does not yield a significant improvement in the
predictions of the model, this variable is discarded. In backwards stepwise selection, the opposite
is done. That is, we start with a family of variables, and taking out variables by examining which
loss gives the most statistical insignificant detereoration of the model fit. Finally, one can do both
steps simultaneously, that is, go backwards and forwards to provide an extra check that the choice of
variables is optimal .

Beyond this choice of approach, trying to maximize predictive power via improvement of the
goodness of fit (R2) while intending to study causation is wrong. Relying on R2 alone can induce into
error for two main reasons:

• R2 increases monotonously in the number of parameters added into the model.

• The data spans multiple orders of magnitude. This renders small relative variations of the points
at large scales to have a considerable effect on the significance of the increase in R2, despite there
being no real meaning behind this significance.

Adapted statistical tools should have been used, such as the adjusted R2 of the fit which takes into
account the number of parameters in the model. As for the second point it is more delicate to address
so we will do it stepwise, by attempting to reproduce and correct at each step the steps taken in [23].
The data set studied will be that of timeframe 1.

A.4.1 GDP and GHG emissions per capita

Plotting the GDP per capita and the CO2eq emissions per capita (henceforth denoted GDP and
CO2 respectively, for simplicity) for the countries considered in [23] yields the results in figures 5 and
6.

Figure 5: CO2 as a function of GDP in time frame 1 for all countries.
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Figure 6: CO2 as a function of GDP in time frame 2 for all countries.
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Following Sovacool et al. the regression model looks like:

CO2 = β0 + β1GDP (A.14)

However, after performing a regression analysis in this model, we notice that β0 is not significative (al-
though we do retrieve their result an R2 of 0.48 for this model). Applying the principles of bidirectional
selection, we exclude β0 and examine instead:

CO2 = β0GDP (A.15)

For timeframe 1, the estimates for the parameters of the model given by the regression are given in
table 5. and an adjusted R2 of 0.64, a result which already rivals the (non-adjusted) R2 they obtain

Table 5: Regression results for model A.15

Estimate Standard Error t-Statistic P -Value

β0 0.0000931758 8.90× 10−6 10.4719 1.99× 10−18

at the end of their forwards selection (0.66).

Remark A.1. The reported P -values are grossly underestimated, since the underlying distribution of
the residuals is not exactly normal as shown by the Kolmogorov-Smirnov test. A more reliable statistic
in this setting is the t-statistic and the standard error. We report nonetheless the P -value for the sake
of completeness.

However, this data set can spans multiple orders of magnitude and is very clearly heteroskedastic
in both timeframes, which means that the typical assumptions behind linear regression are not at all
satisfied. Failing to take this into account in a linear regression – and particularly one where the data
covers such large magnitudes – is catastrophic, as one can have significant increases in R2 without
this reflecting anything other than a couple of points with high GDP getting closer to the regression
plane.

Heteroskedastic data spanning many orders of magnitude is often a sign of an underlying Pareto
distribution (or power law). This hypothesis can be checked by looking at the data on a log-log plot
(cf. figures 7 and 8). By inspection we can see that this hypothesis seems to be confirmed.

The simplest model we can postulate is given by

logCO2 = β0 + β1 log GDP . (A.16)

This simple model has an adjusted R2 of rougly 0.69 and the following regression table for timeframe
1. The full regression results of this model can be found in table 6
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Figure 7: CO2 as a function of log(GDP ) in time frame 1 for all countries.
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Figure 8: CO2 as a function of log(GDP ) in time frame 2 for all countries.
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Table 6: Regression results for model A.16

Estimate Standard Error t-Statistic P -Value

β0 -5.2705 0.389961 -13.5154 1.99× 10−25

β1 0.781987 0.0493198 15.8554 1.31× 10−30

This shows that poor a priori inspection of the data from the part of the authors of [23] ultimately
led to a suboptimal model. In particular, we notice that this adjusted R2 is already higher than any
of the R2 values obtained by the authors at the end of their forwards selection (0.66), despite being
penalized for taking into account the number of variables in the model and only having two predictors.

Since the goal of this paper is an attempt to reproduce the results of Sovacool et al. we will keep
model of equation A.15 in what will follow, despite the fact that going forwards we should consider
accounting for the confounding variable with a power law and not just a linear model.

From figures 7 and 8, it seems clear that a saturation phenomenon occurs and that we enter a
different regime as GDP becomes larger. We could think here of postulating a more complicated
non-linear regression model to account for this phenomenon (for instance by imposing a quadratic
regression, or non-parametric smoother model), taking into account that more complex importance
measures for should be then applied [10]. This is, however, beyond the scope of this paper.
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A.4.2 Nuclear, Renewables, GDP and CO2eq emissions

We discard the N variable after performing bidirectional selection, as the variable doesn’t prove
to be significant or to provide considerable improvement to the adjusted R2. Other than the obvious
reason that nuclear power emits little to no GHGs, there are other explanations of why this is not a
significative explanatory variable in our model. The addition of N as a variable only affects 30 of the
data points, many of which lie close to 0% nuclear energy, which doesn’t add much information to the
model (around half of them are below the 20% mark). On timeframe 2, one can speculate that there
are two trendlines, one before the 30% mark, which is increasing, and the other afterwards, which
decreases. Of course, this may purely be an artifact of the data given the low sampling. The data has
been depicted in figures 9 and 10.

Figure 9: CO2 as a function of N for the nuclear countries in time frame 1.
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Figure 10: CO2 as a function of N for the nuclear countries in time frame 2.
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Still following Sovacool et al., let us now look at what happens when we add the variable R into
the model of equation A.15, which becomes:

CO2 = β0GDP + β1R (A.17)

We can look at the regression analysis of this model, whose details are given in table 7.
The adjusted R2 value for this iteration of the model is 0.64, which does not improve the previous

model. Furthermore, β1 is not deemed significatively different from 0, meaning that R plays no role
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Table 7: Regression results for model A.17

Estimate Standard Error t-Statistic P-Value

β0 0.000414812 0.0000307419 13.4934 2.24× 10−25

β1 0.00635995 0.00720374 0.882869 0.379165

in predicting the GHG emissions per capita. This is of course, obvious from the fact that renewable
energy emits little to no GHGs.

By contrast, F mostly carries information about the fraction of fossil fuels in the electrical mix,
since other sources of energy are negligible once we have excluded fossil fuels, renewables and nuclear
power. It follows that a more reasonable model is simply

CO2 = β0 + β1GDP + β2F , (A.18)

As before, the parameter β0 was found to be non-significant. Following the principles of bidirectional
selection, we exclude β0, and instead consider:

CO2 = β1GDP + β2F , (A.19)

whose regression table can be found in table 8. Both variables are significant predictors and the

Table 8: Regression results for model A.19

Estimate Standard Error t-Statistic P -Value

β1 0.000314618 0.000025023 12.5731 2.84× 10−23

β2 0.0447815 0.00485628 9.22136 1.81× 10−15

adjusted R2 of this model is 0.80, and the standard error of the predictors decreased.
Finally, let us show that the predictive power of R in Sovacool et al.’s suboptimal model came

from F . To do this, we compare their model

CO2 = β0 + β1GDP + β2R , (A.20)

to the following (also suboptimal) model

CO2 = β0 + β1GDP + β2F . (A.21)

These models have respective regression tables given in tables 9 and 10. There a couple of things to

Table 9: Regression results for model A.20

Model A.20 Estimate Standard Error t-Statistic P -Value

β0 4.41294 0.47065 9.37627 8.47× 10−16

β1 0.000288171 0.0000268078 10.7495 5.43× 10−19

β2 -0.0468907 0.00785489 -5.96962 2.80× 10−8

Table 10: Regression results for model A.21

Model A.21 Estimate Standard Error t-Statistic P -Value

β0 -0.083787 0.546209 -0.153397 0.878359
β1 0.000316026 0.0000267566 11.8112 1.87× 10−21

β2 0.0457721 0.00809241 5.65617 1.18× 10−7

note. First, the suboptimality of Model A.21 is reflected by the fact that β0 is evidently not significant.
More importantly, β2 is almost exactly the same in absolute value as it was in the previous model.
This, in conjunction with the large anti-correlation between F and R allows us to conclude that the
predictive power of R in Model A.20 was in fact inherited from that of F . Of course, there is a
tautological causal link behind this correlation given that F mostly consists of the fraction of fossil
fuels in the electrical mix.
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