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Chapter 1

Introduction

In this report, we will give an introduction to the critical properties of the φ4-model. To
do this, we will begin by motivating the study of φ4-theories by examining an example of ap-
plication in Condensed Matter physics of this model to the study of the critical phenomena
relating to spontaneous magnetization, which will be studied with the Ising Model. After this
brief motivation of the study of φ4-theories, we will present a systematic way of approaching
the problem using Perturbation Theory, as we will note that no exact analytical solution has
been found to date.
We will introduce various concepts along the way, such as the Feynman integrals, which natu-
rally arise from the perturbation expansion and which can be represented diagramatically. In
so doing, we will also provide the reader a clear introduction to Feynman diagrams, so that
wherever possible the manuscript is self-contained. For more calculatory results, which don’t
necessarily provide the reader with extra intuition, the reader will be referred to Kleinert’s
book on φ4 theories[2] for a more detailed proof of the results given.
We will quickly realize that with the perturbative approach taken, divergences arising at all
orders in the perturbation expansion will have to be dealt with. This will motivate us to intro-
duce renormalization process as a way of systematically absorbing these divergences in order
to be able to make finite physical predictions. We will indeed present 3 different approaches
to renormalization, which for the avid reader are: the conventional approach, the counter-term
method and finally the more modern and perhaps most efficient of the above, the Bogoliubov-
Parasiuk-Hepp-Zimmermann (BPHZ) method using the Zimmermann Forest Formula.
Finally, we will retrieve the β-function from the renormalization group and we will calculate
the η critical exponent presented in Chapter 2.
This internship was done at the Laboratoire de Physique Théorique et Hautes Énergies (LPTHE),
which is a Joint Research Unit (Unit Mixte de Recherche) of the Université Pierre et Marie
Curie and of the CNRS. It is composed of 19 researchers and 10 professors-researchers. The
scienfitic activity of the laboratory is centered around Quantum Field Theory (QFT), both in
its very theoretical aspects as well as in its applications. It posseses four main fields of research,
namely: mathematical physics, string, brane and field theory, condensed matter and statistical
physics, and particle physics and cosmology.
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Chapter 2

φ4-model as an effective field theory

2.1 Modelization of spin networks

One of the notable applications of field theories is the modelization of spin networks. Con-
sider a spin network in D-dimensional space. We can model this system by considering the
following Hamiltonian:

H = −J
∑
〈i,j〉

~Si · ~Sj , (2.1.1)

where 〈i, j〉 denotes the sum over the closest neighbours, J is a coupling constant and ~Si are
vectors in R3. This is known as the Heisenberg model and it is an incredibly challenging problem
for which no analytic solution is known to date and numerical treatment of the problem can
also be quite delicate. We can take the simplification one step further by only considering the
projection Sz of the spins, which can take values ±1 (which is valid for a system in which there
exists an anisotropy). In this way, the Hamiltonian then becomes:

H = −J
∑
〈i,j〉

Si,zSj,z . (2.1.2)

We call this simplification of the problem the Ising Model. This Hamiltonian clearly exhibits
Z/2Z symmetry. Notice that the ground state is doubly degenerate having two configurations
that minimize the energy: all spins down or all spins up. Remarkably, at low temperatures, the
system exhibits spontaneous magnetization, and the symmetry of the Hamiltonian is broken,
which means that the average magnetization is either positive or negative. This model has an
exact solution in dimension 2, which was found by Onsager in 1944. For higher dimensions,
since no exact solution is known, we will need approximate methods in order to calculate the
thermodynamic properties of this system. In order to define the magnetization 〈M〉, we first
need to introduce the partition function , Z, conventionally used in statistical mechanics:

Z :=
∑

Configs

e−βH, 〈M〉 :=
1

Z
∑

i∈ Network

Sie
−βH (2.1.3)

A depiction of the behaviour of the magnetization as a function of temperature is described
in Figure 2.1a. As we can see, there is a phase transition at the critical temperature Tc as
indicated on the Figure, and we can appreciate that there is spontaneous magnetization of this
system below this critical temperature. This constitutes what we call a second order phase

2



2.1. MODELIZATION OF SPIN NETWORKS 3

(a) Magnetization of the system as a func-
tion of temperature. Tc is the critical tem-
perature, at which the Z/2Z symmetry of the
Hamiltonian is broken.

(b) Correlation function G(x) of the D = 1 Ising model, as we
can see, there is an exponential decay as we get away from the
0th spin.

Figure 2.1: Measurable parameters of the system

transition1, which means that this transition happens continuously. It turns out that in a
neighbourhood of Tc, the system is characterized by a set of critical exponents β, ν, η and ξ and
various quantities in the system depend asymptotically on these exponents. Some examples of
these asymptotic relations are are:

〈M〉 ∼ |T − Tc|β (2.1.4)

G(x) ∼ 1
|x|D−2+η e−|x|/ξ (2.1.5)

ξ ∼ |T − Tc|−ν (2.1.6)

Here, G(x) := 〈M(x)M(0)〉 a correlation function, from which we are able to deduce the typical
length scale of the phase transition ξ at which the spins are correlated (ξ is the correlation
length). Notice that at the critical temperature T = Tc, ξ →∞ and there is an algebraic decay
in the correlation function. This means that there is no characteristic scale for the system at
the critical temperature.

It turns out that these critical exponents are universal quantities which do not depend on
the microscopic features of the system, e.g. the crystal structure in which the spin system is
embedded. Instead they depend on the symmetries of the Hamiltonian at hand. In particular,
this means that there are so-called classes of universality, which means that every Hamiltonian
that can be associated to a particular symmetry group will share critical exponents with other
Hamiltonians belonging to the same class, despite the fact that the actual physical systems
can be very different in general. It is important to note that Tc is not a universal quantity.
This motivates the finding of these critical exponents, which require solving in some way the
Ising Model. Seeing as though we have no analytical way of doing so for dimensions D > 2,
we require a new way to study this problem. In the following, we will aim at calculating the
critical exponent η, however the methods we will use can also be used to compute the other
exponents as well.

1There are also first order transitions



4 CHAPTER 2. φ4-MODEL AS AN EFFECTIVE FIELD THEORY

2.2 From the Ising model to the φ4-model

We motivate the transition from the Ising Model lattice to a field theoretic φ4-model by
considering two things. On one hand, a model exhibiting reasonably accurate behaviour mim-
icking the Ising Model must posses the inherent symmetries present in the Ising Model, i.e.
the Z/2Z symmetry we previously discussed.

On the other hand, it is practical to go back to the D-dimensional Ising Model to under-
stand how exactly we can formulate such a model. Since we are interested only in what happens
at a macroscopic scale, keeping track of small-scale features of the system is redundant. Fur-
thermore, if the length scale at which a correlation between the spins exists is much greater
than the space between each of the spins, this motivates identifying Si in the Ising Hamiltonian
with a continuous scalar field φ(xi). Following Wilson [1], let us consider a generalization of
the Ising model:

Z(K,h; r, λ) =
∏

n∈Network

∫ ∞
−∞

dφn exp

[ ∑
n∈Network

−rφ2
n − λφ4

n +K
∑
i

φn+iφn + hφn

]
(2.2.7)

where we allow the fields φi to vary between ±∞. We can then consider two cases:

1. For λ = r = 0, which we will refer to as the Gaussian model, we have that:∑
〈i,j〉

SiSj ∼
∑
〈i,j〉

φ(xi)φ(xj) =
∑
i,ai

φ(xi)φ(xi + ai) . (2.2.8)

Where ai is simply displacing the ith coordinate over to its closest neighbours. Since we
assume that φ is analytic, we may Taylor expand φ(xi + ai) thus obtaining:∑

i,ai

φ(xi)φ(xi + ai) =
∑
i

∑
ai

φ(xi)

(
φ(xi) + ������

ai · ∇φ(xi) +
a2
i

2
∇2φ(xi) + O(a3

i )

)
.

(2.2.9)
Where the term was cancelled because it does not exhibit Z/2Z symmetry like the original
Hamiltonian, which was one of our requirements. And so, performing the sum over the
closest neighbours and going to the continuum limit, we simply obtain:∑

i

φ2(xi) +
a2

2
∇2φ(xi) + O(a3) ∼

∫
dDx

(
φ2(x)− 1

2
(∇φ(x))2

)
. (2.2.10)

2. For r = −2λ and λ→ +∞, we retrieve the Ising Model.

To see this more clearly, recall that in the Ising Hamiltonian, the intrinsic values of
Si = ±1. In particular, this means that the intrinsic probability density function for the
spins is of the form of two δ-functions centered at ±1 with the appropriate normalization.
Now, consider the more general model we previously introduced and further consider
r = −2λ. We then have that the intrinsic probability function for the variable φ is given
by:

P (φ) = e−λ(φ2−1)2 . (2.2.11)

The behaviour of this function with varying values of λ is plotted in Figure 2.2. As we
can see, as λ→∞ we retrieve the desired result of δ-functions around ±1. Furthermore,
this results in the introduction of the term in φ4 as desired (we notice that the term of the
gradient comes from the interaction between spins that was considered in the Gaussian
model).
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Figure 2.2: Behaviour of Equation 2.2.11 with varying λ

It is noteworthy that this reasoning is not unique. We could’ve also reasoned using a Landau-
Ginzburg approach, in which we could’ve simply justified the extension from Ising to the field
theory by simply keeping all the terms that preserve the Z/2Z symmetry

At this point, to retrieve the φ4 model, it is necessary to shrink our network spacing down
to zero, thus really retrieving a continuous function φ. We shall thus make this procedure more
explicit by giving a very handwavy intuitive explanation: let’s start by going back to the case
where we consider a finite, or at least countable product, which is well defined we shall thus
consider a box with N particles as in Wilson’s generalized Ising Model. We then have:

Z =
∑

configs

e−βH =
∑
S1

· · ·
∑
SN

e−βH(S1,··· ,SN ) ∼
∫

dφ(x1) · · · dφ(xN )e−E[φ] , (2.2.12)

where E[φ] is taken to be dimensionless (we have set kBT = 1). However, because we have
gone to the continuum limit, we have also implicitly made the number of particles N larger,
thus we must take the product over all x’s possible in the space (because our cell-size is going
to zero). Thus we have:

Z =

∫
Dφ e−E[φ(x)] := N

∏
x

∫
dφ(x) e−E[φ(x)] . (2.2.13)

Where N is a constant that will absorb all the infinities coming out of the infinite non-countable
product of the measures. We have thus defined the partition function in the continuum case,
we may thus write it as:

Z =

∫
Dφ(x) e−E[φ(x)], E[φ] =

∫
dDx

(
1

2
(∇φ(x))2 +

1

2
m2φ2(x) +

λ

4!
φ4(x)

)
. (2.2.14)

Thus, we have arrived at the φ4-model succesfully. Of course, there are other applications of
this model in other areas of physics, but this at least motivates our continued study of this
model in subsequent chapters. Notice, however, that the φ 7→ −φ map still leaves the energy
functional invariant, which is closely related to the Z/2Z original symmetry that the Ising
model exhibited. More generally, we may consider φ as a field having N components, i.e.
φ = (φ1, · · · , φN ). In this case, the φ4 model will have O(N) symmetry and this more general
model has extensive applications. This corresponds to systems exhibiting different universality
classes, which depend only on their symmetries. For example:
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1. N = 0 Self-avoiding walks: polymers [15],

2. N = 1 Ising universality class: liquid-vapour transitions and uniaxial magnets,

3. N = 2 XY universality class: superfluid λ-transition of He [16],

4. N = 3 Heisenberg universality class: isotropic ferromagnets,

5. N = 4 Finite temperature QCD with two light flavours [17]

However, our modest goal will be to focus only on the N = 1 Ising universality class case.



Chapter 3

Perturbative methods

In the last chapter, we gave a physical motivation to study the φ4-model. In order to do
so, it will be necessary to introduce some terminology and give some definitions. Let us write
the energy functional in Equation 2.2.14 as:

E[φ] = E0[φ] + V [φ] (3.0.1)

Where we define:

E0[φ] =

∫
dDx

1

2
(∇φ(x))2 +

1

2
m2φ2(x) , (3.0.2)

V [φ] =
λ

4!

∫
dDxφ4(x) . (3.0.3)

We call E0[φ] the free field theory (or Gaussian model) and we call V [φ] the interaction term.
In the following, all the quantities with a subscript 0 will refer to the free field theory and all
others without subscript or with a different subscript will be terms due to the interaction.

Let us start by defining the n-point correlation function:

G(n)(x1, · · · ,xn) := 〈φ(x1) · · ·φ(xn)〉 =
1

Z

∫
Dφφ(x1) · · ·φ(xn) e−E[φ] (3.0.4)

We could similarly define G
(n)
0 by simply taking E0[φ] as the functional in the exponential term.

From this expression, it can be quite challenging to compute the correlation function due to
the term in φ4, for the case of the perturbed functional E[φ]. It is useful at this point to use
the conventional probability theoretic approach and introduce a moment generating functional
Z[j]. In order to get this generating functional, we make E a functional of a new field j which
we will call the current field (this will be equivalent to adding a source to the Lagrangian). The
expression for E[φ, j] is given by:

E[φ, j] := E[φ]−
∫

dDxφ(x)j(x) . (3.0.5)

We can then make Z a functional depending on j(x) by simply replacing the E[φ] in the
expression of Z by a E[φ, j]. In doing so, we obtain the generating function needed for our
problem. The correlation function with n points is thus given by:

G(n)(x1, · · · ,xn) =
1

Z

[
δ

δj(x1)
· · · δ

δj(xn)
Z[j]

]
j=0

, (3.0.6)

7



8 CHAPTER 3. PERTURBATIVE METHODS

where δ
δj(xi)

is the functional derivative with respect to j(xi).

In this chapter, we will provide an introduction to the perturbative study of the φ4-model. We
will show that the Gaussian model is an exactly solvable model and how we can treat the φ4

term using Perturbation Theory. This is similar to Quantum Mechanics, with the exception
that when we are dealing with fields, we deal with an infinite number of degrees of freedom,
namely φ(x) with x ∈ R4.

3.1 Free field theory

With the help of the above, we now proceed to solve the Gaussian model, which we can do
exactly, since the energy functional is quadratic in φ. Let us then simply start by rewriting the
free field action as:

E0[φ] =
1

2

∫
dDx (∇φ(x))2 +m2φ(x)2 (3.1.7)

=
1

2

∫
dDxφ(x)(−∇2 +m2)φ(x) (3.1.8)

=
1

2

∫
dDx1 dDx2 φ(x1)D(x1,x2)φ(x2) (3.1.9)

where D(x1,x2) := δ(D)(x1 − x2)(−∇2 + m2) is a symmetric matrix, we can thus diagonalize
it and express it in terms of its eigenvalues λi. We can then calculate the partition function as
follows for the diagonalized D:

Z0 =

∫
Dφ e−E0[φ] (3.1.10)

= N
∏
x

[∫
dφ(x) exp

(
−1

2

∫
dDx1 dDx2 φ(x1)D(x1,x2)φ(x2)

)]
(3.1.11)

= N
∏
i

∫
dφi e−

1
2
λiφ

2
i =

1√∏
i λi

=
1√

detD
= e−

1
2

Tr(logD) (3.1.12)

Where we define the determinant of the operator acting on the corresponding Hilbert space to
be defined by the identity: detD := eTr(logD) (since the trace can be defined using integration
and D is a compact, self-adjoint operator, which guarantees the existence of logD). Using this
equivalency, we obtain the last equality in the above equation. Like before, we may also define
a generating function for the correlation functions by simply introducing a field of current, we
thus have that the generating function is given by (see Kleinert [2] for proof):

Z0[j] = e
1
2

∫
dDxdDx′ j(x)D−1(x,x′)j(x′) (3.1.13)

Thus we can use this as a generating function for the correlation functions. Explicitly this gives
us that:

G
(n)
0 (x1, · · · ,xn) =

[
δ

δj(x1)
· · · δ

δj(xn)
Z0[j]

]
j=0

(3.1.14)

=

[
δ

δj(x1)
· · · δ

δj(xn)
e

1
2

∫
dDxdDx′ j(x)D−1(x,x′)j(x′)

]
j=0

(3.1.15)

First, we notice that only for even n do we have a correlation function which is not identically
zero. We can perform the n functional derivatives on the exponential, realizing each time we
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will have the derivative of the argument of the exponential times the exponential, when we set
j = 0 at the end, we thus simply retrieve:

G
(n)
0 (x1, · · · ,xn) =

1

2n/2(n/2)!

[
δ

δj(x1)
· · · δ

δj(xn)

(∫
dDx dDx′ j(x)D−1(x,x′)j(x′)

)n/2]
(3.1.16)

In particular, for the 2-point correlation function we have that:

G
(2)
0 (x1,x2) =

1

2

[
δ

δj(x1)

δ

δj(x2)

∫
dDx dDx′ j(x)D−1(x,x′)j(x′)

]
j=0

(3.1.17)

=
1

2
(D−1(x1,x2) +D−1(x2,x1)) (3.1.18)

= D−1(x1,x2) (3.1.19)

Where the last equality yields due to the symmetry in the arguments of the operator D. This
result means that the propagator (i.e. the 2-point correlation function) is the inverse of the
operator D we found previously characterizing the quadratic form we started with.

Theorem 1. (Wick-Isserlis Theorem) Let 〈φ(x1) · · ·φ(xn)〉 denote the nth correlation function
given by the expectation value of the fields at x1 · · ·xn. Then:

〈φ(x1) · · ·φ(x2n)〉 =
∑∏

〈φ(xi)φ(xj)〉 , (3.1.20)

〈φ(x1) · · ·φ(x2n+1))〉 = 0 , (3.1.21)

Where
∑∏

denotes a sum over all distinct ways of partitioning φ(x1) · · ·φ(x2n) into pairs.

Moreover, this sum contains (2n)!
2nn! terms. Taking into account the symmetry in the arguments of

G and the commutativity of multiplication, we get a sum of (2n)!/[2nn!] := (2n− 1)!! different
terms.

Proof. Indeed, by looking at the expression of the kth correlation function found previously in
terms of the generating function, we can see that for any odd number k = 2n+ 1, we will have
that the correlation function will be identically zero. On the other hand, for any even k = 2n,
we have that after performing the functional derivatives we arrive at:

G
(2n)
0 (x1 · · ·x2n) =

1

2nn!

{
δ

δj(x1)
· · · δ

δj(x2n)

[∫
dDx dDx′ j(x)D−1(x,x′)j(x′)

]n}
j=0

.

(3.1.22)
We then proceed by induction on even k = 2n. For n = 1 the statement is trivial, and

G
(2)
0 (x1,x2) = D−1(x1,x2). We then assume that the statement is true for n > 1. We then

have that (for simplicity and to simplify the notation we will note j(xi) := ji and we will note
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the integral I :=
∫

dDx dDx′ j(x)D−1(x,x′)j(x′))

〈φ1 · · ·φ2n+2〉 =
1

2n+1(n+ 1)!

{
δ

δj1
· · · δ

δj2n

(
δ

δj2n+1

δ

δj2n+2
In+1

)}
j=0

=
1

2n+1(n��+1)!

{
δ

δj1
· · · δ

δj2n

(
δ

δj2n+1
����(n+ 1)

δI

δj2n+2
In
)}

j=0

=
1

2n+1n!


δ

δj1
· · · δ

δj2n

 δ2I

δj2n+1δj2n+2︸ ︷︷ ︸
2〈φ2n+1φ2n+2〉

In +
δIn

δj2n+1

δI

δj2n+2



j=0

=
1

2n+1n!

{
2〈φ2n+1φ2n+2〉

δ2nIn

δj1 · · · δj2n
+

δ2n

δj1 · · · δj2n

(
δIn

δj2n+1

δI

δj2n+2

)}
j=0

.

By the induction hypothesis, we can declare the first term to be the sum over all distinct ways
of partitioning φ1 · · ·φ2n into pairs. Thus we have:

〈φ1 · · ·φ2n+2〉 =
∑

i,j∈{1,··· ,2n}

∏
i 6=j
〈φiφj〉〈φ2n+1φ2n+2〉+

1

2n+1n!

{
δ2n

δj1 · · · δj2n

(
δIn

δj2n+1

δI

δj2n+2

)}
j=0

.

(3.1.23)
We then focus our attention on the second term and we use the generalized Leibniz property
(which is of course exhibited by the functional derivative):

δ2n

δj1 · · · δj2n

(
δIn

δj2n+1

δI

δj2n+2

)
=

∑
S∈P{1,··· ,2n}

(
δ|S|∏
i∈S δji

δIn

δj2n+1

)(
δ2n−|S|∏
i/∈S δji

δI

δj2n+2

)
. (3.1.24)

From this, we can see that the term on the right will vanish if |S| 6= 2n − 1, thus we impose
the condition that |S| = 2n− 1. We thus obtain (using the induction hypothesis):

δ2n

δj1 · · · δj2n

(
δIn

δj2n+1

δI

δj2n+2

)
=

∑
S∈P{1,··· ,2n}
|S|=2n−1

(
δ2n−1∏
i∈S δji

δIn

δj2n+1

)
︸ ︷︷ ︸∑∏

〈φiφl〉

(
δ∏

k/∈S δjk

δI

δj2n+2

)
︸ ︷︷ ︸

2〈φkφ2n+2〉

. (3.1.25)

Finally, going back to the original equation we obtain the desired result:

〈φ1 · · ·φ2n+2〉 =
∑
i,j∈{1,

∏
··· ,2n}

〈φiφj〉〈φ2n+1φ2n+2〉+
∑
i,j∈{1,

∏
··· ,2n+1}

〈φiφj〉+
∑

i,j∈{1,···

∏
2n,2n+2}

〈φiφj〉 .

(3.1.26)
Thus, recognizing this is a sum over all pairings and thus finishing the induction process, we
finally have our desired result namely:

〈φ(x1) · · ·φ(x2n)〉 =
∑∏

〈φ(xi)φ(xj)〉 . (3.1.27)

Thus, we can express all correlation functions in terms of the 2-point correlation func-
tion. Furthermore, given the translational invariance of the problem, we have that the 2-point
correlation function is independent of global position, thus we can write:

G
(2)
0 (x,x′) = G

(2)
0 (x′,x) = G0(x− x′) (3.1.28)
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3.2 Perturbative expansion

We start by defining a useful normalization of the peturbed partition function Z. Indeed,
following Kleinert [2], it is convenient to normalize Z with Z0 and setting Z0 to unity:

Z =
1

Z0

∫
Dφ e−E[φ] (3.2.29)

On the other hand, we have already calculated the unperturbed partitition function in Equation
3.1.12 to be e−

1
2

Tr(log(D)). Thus by placing this quantity in the numerator, we can redefine our
measure such that: ∫

Dφ(x)′ :=

∫
Dφ e

1
2

Tr(log(D)) (3.2.30)

We recall that our perturbed Z[j] was written in terms of an exponential of an integral over
a term dependent on φ4. However, due to our inability to treat this problem analytically and
the fact we are capable of only dealing with the Gaussian integral, we will take a perturbative
approach. We start off by writing Z[j] in a series expansion in terms of λ. More precisely we
have that:

Z[j] = Z0[j] +

∞∑
p=1

λp

p!

[
dp

dλp
Z[j]

]
λ=0

, (3.2.31)

Which corresponds to an expansion of the exponential term in φ4. Writing the expression for
Z[j] and simplifying we obtain:

Z[j] = Z0[j] +
∞∑
p=1

λp

p!

[
dp

dλp

∫
Dφ ′e−E0[φ,j]+

∫
dDx λ

4!
φ(x)

]
λ=0

= Z0[j] +
∞∑
p=1

λp

(4!)pp!

∫
Dφ ′

∫
dDz1 · · · dDzp φ

4(z1) · · ·φ4(zp)e
−E[φ,j]︸ ︷︷ ︸

:=Zp

.

With this expression for the partition function, it is then possible to find the approximation
of the n-point correlation function perturbatively as:

G(n)(x1, · · · ,xn) = Z−1

[
δn

δj(x1) · · · δj(xn)
Z[j]

]
j=0

= Z−1

 δn

δj(x1) · · · δj(xn)

Z0[j] +

∞∑
p=1

Zp[j]


j=0

(3.2.32)

= Z−1

G(n)
0 (x1, · · · ,xn) +

∞∑
p=1

(−λ)p

(4!)pp!

∫
dDz1 · · · dDzp

∫
Dφ ′ φ(x1) · · ·φ(xn)φ4(z1) · · ·φ4(zp) eE0[φ,j]︸ ︷︷ ︸
G

(n)
p (x1,··· ,xn)


j=0

.

(3.2.33)

Note that the G
(n)
p ’s are defined without taking into account the final division by Z. Finally,

we may express G
(n)
p (x1, · · · ,xn) in terms of the correlation functions of the free field theory.

Indeed we have that:

G(n)
p (x1, · · · ,xn) =

(−λ)p

(4!)pp!

∫
dDz1 · · · dDzpG

(n+4p)
0 (z1, z1, z1, z1, · · · , zp, zp, zp, zp,x1, · · · ,xn) .

(3.2.34)
This last expression may be Wick expanded according to Wick’s theorem previously proved,
hence understanding the two point correlation function is fundamental.



12 CHAPTER 3. PERTURBATIVE METHODS

3.3 Feynman diagrams

As we have seen, while we have been able to retrieve the perturbation expansion it is
composed of some quite tedious expressions. To somehow remediate to this, we will introduce
the graphical representation of these integrals. It is useful to start by recalling the expression

of the G
(n)
p ’s and then proceed to its Wick expansion. We have:

G(n)
p (x1, · · · ,xn) =

(−λ)p

(4!)pp!

∫
dDz1 · · · dDzp 〈φ(z1)4 · · ·φ(zp)

4φ(x1) · · ·φ(xn)〉(3.3.35)

=
(−λ)p

(4!)pp!

∑∏
〈φπiφπj 〉 . (3.3.36)

As seen previously, the Wick expansion gives rise to exactly (4p + n − 1)!! terms, each term
is a product of 1

2(4p+ n) free correlation functions. Here, the πi’s denote all different distinct
permutations of the z’s and x’s that arise from Wick expanding the expression. Because of the
integrations on the zi’s, some of the terms will be equivalent. We are thus interested in finding
how many and which terms are independent from each other. In order to understand how to
do this, it is easier to illustrate an example and then proceed to generalize to higher orders.

Consider for example, finding the independent products for G
(2)
1 as well as their multiplicity.

At the first order, the naive Wick expansion will have 15 terms that are a priori not equal.
However, only two are independent after integration, since the integrals are all equivalent up
to their labelling, because of this we shall just write φ when referring to φ(zi) for some i, we
will note φi the field φ(xi).

1. In the first case, we can have a product of the form 〈φφ1〉〈φφ2〉〈φφ〉.

2. In the second case, instead of coupling a field φi to some φ the only way to make it
different from the product of the previous form is to couple φ1 and φ2 together. Thus
the second possible independent form of product is 〈φ1φ2〉〈φφ〉〈φφ〉. It is clear that these
two possibilities are exhaustive because of the equivalence of the zi’s.

At this point, it is natural to introduce the Feynman rules to represent all of this mathematical
notation graphically. We shall note:

G
(2)
0 (x,x′) = 〈φ(x)φ(x′)〉 := �x x′ , −λ

∫
dDz := �z (3.3.37)

This allows us to simply represent all the possible diagrams up to first order (which we have
already found with the logic we have used above). The two diagrams are:

�
x1 x2 and �

x1 x2

(3.3.38)

The first remark we can make is that the first diagram is connected, while the other one isn’t,
this will turn out to be important as we will find that all disconnected diagrams cancel out.
However, we have yet to find the multiplicity of these integrals. It is a good pedagogical
exercise to find the multiplicity of at least one diagram by hand. Let us take for example the
disconnected graph above. We first start by realizing that what characterizes this diagram is
that it is disjoint, and the vertex x1 must be linked to x2. So we are left with the integration
vertex � . There are four edges to this vertex, so choose any edge of the vertex. We have 3
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choices of edges to connect it to, once this choice is made, we have no more freedom and the two
other edges interconnect, thus retrieving the original graph. This means that the multiplicity
of the graph is 3, since this way of counting is equivalent to ways of rearranging the φ’s in
〈φ1φ2〉〈φφ〉〈φφ〉. Similarly, for the connected graph, to which we shall refer to as the tadpole.
We start off by considering the connections possible from the initial vertex x1: there are 4
edges avalaible at the middle vertex, so we have 4 choices. Then, we must choose an additional
edge from the middle vertex to connect to the x2 vertex, which gives us 3 choices. Thus the
multiplicity of the graph is 3 × 4 = 12. Finally, having this multiplicity, we can include the

numerical prefactor in Equation 3.3.36 for G
(n)
p and give a weight WG to each diagram, namely:

WG =
MG

4!pp!
(3.3.39)

Thus, we have reduced the problem of computing the G
(n)
p function to finding all the inde-

pendent diagram and computing their respective multiplicities. In what will follow, we will
give out the weight factors without further explanation, however Kleinert [2] gives a thorough
explanation of how to compute this multiplicity in general. It is then possible to simply express
the 2-point correlations function up to first order as:

G
(2)
1 (x1,x2) =

1

2� +
1

8� (3.3.40)

3.4 Diagrammatic expansion

As we have seen, it is thus possible to give a diagrammatical representation to the per-
turbation series obtained in powers of λ. It turns out that all of the non-connected diagrams
cancel out with the expansion of the denominator of Equation 3.0.6. Indeed, we may verify
this up to first order with the n = 2:

G(2)(x1,x2) =
1

1 + 1
8� + O(λ2)


	 +

1

2
 +
1

8�+ O(λ2)



=

1− 1

8� + O(λ2)


 +

1

2� +
1

8�+ O(λ2)


=� +

1

2� + O(λ2)

Thus we can see that the non-connected diagrams do indeed cancel each other out (and it turns
out this holds for all orders). On the other hand, they can be important when computing Z,
which can be used to calculate the Helmholtz free energy of the system F . For our purposes,
however, we can then allow ourselves to calculate the corrections up to second order by simply
looking at the connected diagrams. For this, it is simply necessary to find all the connected
graphs with two vertices and to calculate their weights as stipulated above. We can see that,



14 CHAPTER 3. PERTURBATIVE METHODS

diagramatically and at relatively low orders, climbing in order is not too complicated. Doing
so, we simply obtain:

G(x1,x2) =� +
1

2� +
1

4� +
1

4� +
1

6�+ O(λ3) (3.4.41)

Here, it is useful to introduce the notion of one particle irreducible (1PI) diagrams.

Definition 3.4.1. A graph G is said to be one particle irreducible if it does not separate into
two different pieces if you cut one edge. Furthermore, if we take away the external edges, we
say we amputate the external edges (or legs) of the diagram.

We thus notice that in the expansion above, only the fourth diagram is not a 1PI diagram.
Similarly, we could compute the 4-point correlation function by considering the diagrams with
4 external vertices which are connected and their multiplicities to obtain:

G(x1,x2,x3,x4) =� +
1

2

(
� + Perms

)
+

1

2

� + Perms

+ O(λ3) .

(3.4.42)

3.4.1 Fourier transformation

It is often easier to calculate the integrals that we are interested in by first taking the
Fourier transform and then performing the integration. We will use for our convention that
the Fourier transform and its inverse are given by:

F (k) =

∫
dDx e−ik·xF (x) (3.4.43)

F (x) =
1

(2π)D

∫
dDkeik·xF (k) (3.4.44)

We are now interested in finding the expression for G
(2)
0 (k) = G0(k) in Fourier space. To do

this, we start by considering the transformation of the two point correlation function in real
space namely:

G(k,k′) =

∫
dDx ′dDx e−i(k·x+k′·x′)G0(x,x′)

=

∫
dDx ′ e−i(k+k′)·x′

∫
dDx e−ik·(x−x

′)G0(x− x′)

G(k,k′) = (2π)Dδ(D)(k + k′)G0(k) (3.4.45)

Thus we can express the correlation function again by simply taking the inverse Fourier trans-
form to obtain:

G0(x− x′) =
1

(2π)D

∫
dDk eik·(x−x

′)G0(k) (3.4.46)

Furthermore, recall that we had defined the operator D(x,x′) = δ(D)(x−x′)(−∇2 +m2) while
we were talking about Free Field Theories. It turns out that the propagator is the inverse of
this operator, thus we have the identity:∫

dDx ′D(x,x′)G0(x′,x′′) = δ(D)(x− x′′) (3.4.47)
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Inserting the expression of Equation 3.4.46 into Equation 3.4.47 we simply find that:

δ(D)(x− x′′) =

∫
dDx′ δ(D)(x− x′)(−∇2 +m2)

∫
dDk

(2π)D
eik·(x

′−x′′)G0(k)

=

∫
dDk

(2π)D
(k2 +m2)G0(k) eik·(x

′−x′′)

Thus we obtain the expression for the propagator in Fourier space, namely:

G0(k) =
1

k2 +m2
(3.4.48)

In a similar way, we can take the Fourier transformation of each of the diagrams we found
previously (keeping in mind they represent integrals), in this way, we discover a duality in the
sense of the Fourier transform that is present within the graphs. The end result is that the
duality consists in turning an integral which was originally over the vertices of the diagrams
into an integration over the edges. With this duality, it is then possible to give the Feynman
rules that can be associated to the diagrams. We note however, that due to the presence of
the δ(D)(k + k′) in Equation 3.4.45, the flow of momentum k must be conserved at all vertices.
Keeping the last remark in mind, we thus retrieve the following rules:

G0(k) =

∫
dDk

(2π)D
1

k2 +m2
:= �

k
, −λ := � (3.4.49)

We note however that we retrieve exactly the same diagrams at all orders, the only thing that
we change are the Feynman rules.

3.5 Self-energy

Using the notion of 1PI diagrams, it is possible to simplify the expression of G(k). This is
motivated by the fact that many diagrams can be seen as a product (in Fourier space) of 1PI
diagrams. For example:

� =� ×�×� × ×! (3.5.50)

We clearly see that the fundamental piece of this diagram is". Intuitively using this simple
example, it is possible to extrapolate and further simplify the expression of G(k), we consider
noting all 1PI diagrams with a Σ(k) :=# . We thus have that:

Σ(k) =
1

2
$+

1

4%+
1

6&+ · · · (3.5.51)
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Notice that here, we have only considered amputated diagrams. Given this definition of Σ,
which we will call the self-energy, we have:

G(k) =' +( +)+ · · · (3.5.52)

=*
(

1 + + + ,+ · · ·

)
(3.5.53)

= G0(k)
∞∑
n=0

(Σ(k)G0(k))n (3.5.54)

=- × 1

1− .
(3.5.55)

=
G0(k)

1− Σ(k)G0(k)
. (3.5.56)

We notice that by introducing this self-energy, we have reduced the problem of the computation
of Feynman integrals that arise from the perturbative expansion down to identifying the 1PI
diagrams and computing their corresponding integrals. This can be done consistently up to
O(λn) in Perturbation Theory using Equation 3.5.56 by computing this self-energy up to O(λn).
In our case, we have that, up to O(λ3):

Σ(k) = Σ(1)(k) + Σ(2)(k) + O(λ3) (3.5.57)

Σ(1) =
1

2
/ (3.5.58)

Σ(2) =
1

40+
1

61 (3.5.59)

However, it turns out that even with naive dimensional analysis, we can guess that for D = 4,
there will be a quadratic divergence in the ultraviolet regime, e.g. when k→ +∞.

3.6 Vertex Functions

In the spirit of generalization, there is no reason to limit ourselves to the concept of self-
energy that we encountered in the calculation of the 2-point correlation function G(k). Indeed,
we may define an analogous concept for the n-point correlation function. We may thus define
the vertex function. For our purposes, it is sufficient to explicit this concept for the 4-point
correlation function only, however, a further extension of the generalization is presented by
Kleinert [2].

Definition 3.6.1. The n-th vertex function Γ(n)(k1, · · · ,kn) is the weighted (by the multiplic-
ity factors of the diagrams) sum of all the amputated diagrams that are 1PI having n external
vertices. We may graphically represent Γ(n) by: 2 .
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In Fourier space, we may indeed write the connected part of the n-point correlation function
as:

G(n)(k1, · · · ,kn) = − (2π)Dδ(D)

(
n∑
i=1

ki

)
︸ ︷︷ ︸

Translation invariance

Amputated︷ ︸︸ ︷
n∏
j=1

G0(kj) Γ(n)(k1, · · · ,kn)︸ ︷︷ ︸
Vertex function

(3.6.60)

In the same way we explicited Σ(k) previously, we will explicit Γ(4). From a graphical point of
view, we may thus write:

Γ(4)(k1, · · · ,k4) =3 (3.6.61)

In our perturbative approach, our goal is thus to calculate Γ(4) consistently up to different

orders. We will note Γ
(n)
i the terms up to O(λi) in the expression of Γ(n). In this fashion, we

obtain:

Γ
(4)
1 = −4 = +λ (3.6.62)

Γ
(4)
2 = −1

2

(
5+ Perms

)
(3.6.63)

Notice here that the translational invariance is indeed translated into the conservation of incom-
ing momenta from the 4 incoming vertices. This invariance characterized by k1+k2+k3+k4 = 0
allows us to define the Mandelstam variables in Fourier Space as:

s := (k1 + k2)2 = (k3 + k4)2 (3.6.64)

t := (k1 + k3)2 = (k2 + k4)2 (3.6.65)

u := (k1 + k4)2 = (k2 + k3)2 (3.6.66)

We note that up to order O(λ2), we have a symmetry between all permutations of the diagrams
in Equation 3.6.63, which means that we can change the prefactor of 1

2 to 3
2 and only compute

one integral. Once again, however, it turns out that this integral diverges (although this time
logarithmically) in D = 4.

3.7 Feynman Integral Regularization

We have seen thus far how to describe the perturbation series obtained for the n-point
correlation function G of a φ4-theory. However, we have not yet spoken about how to actually
calculate these integrals. We start off by recalling and proving a number of mathematical facts.

Definition 3.7.1. The Gamma function Γ(z) is an extension of the factorial function with the
property: Γ(z + 1) = zΓ(z). For <(z) ≥ 0 it is defined by the improper integral:

Γ(z) :=

∫ ∞
0

dt tz−1e−t (3.7.67)

and 1/Γ(z) is an entire function.

Definition 3.7.2. The Beta function B(α, γ) is defined as, and characterized by:

B(α, γ) :=
Γ(α)Γ(γ)

Γ(α+ γ)
=

∫ ∞
0

dy yα−1(1 + y)−α−γ (3.7.68)
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Lemma 2. The surface of a unit D-sphere is given by

SD =
2πD/2

Γ(D/2)
. (3.7.69)

Furthermore, we may extend this result analytically for non-integer D since 1/Γ(z) is entire.

Proof. Consider the Gaussian integral in D-dimensions given by:∫ ( D∏
i=1

dxi

)
e−

∑D
i=1 x

2
i =

D∏
i=1

(∫
dx e−x

2

)
= πD/2 . (3.7.70)

We can also calculate it by considering hyperspherical coordinates. In this case, by performing
the change in variables, the Jacobian will be equal to SDr

D−1. Thus we have that:∫ D∏
i=1

dxi e−
∑D
i=1 x

2
i =

∫ ∞
0

SDr
D−1dr e−r

2
=

∫ ∞
0

SD(r2)
D−1
2 e−r

2

=
1

2
SDΓ(D/2) = πD/2 .

Thus we finally obtain the desired result:

SD =
2πD/2

Γ(D/2)
. (3.7.71)

3.7.1 Calculation of Σ(1)(k)

With these mathematical facts in our tool belt, we start off by considering the massive
tadpole diagram6 integral, which is the first non-trivial integral we need to calculate in
our perturbation expansion. Expressing the7 integral explicitly we have:

8 =

∫
dDk

(2π)D
1

k2 +m2
(3.7.72)

We then proceed to compute the integral by exploiting its symmetry and switching to hyper-
spherical coordinates:

9 = −λ SD
(2π)D

∫ ∞
0

dk
kD−1

k2 +m2
(3.7.73)

= −λ SD
2(2π)D

(m2)D/2−1

∫ ∞
0

dy
yD/2−1

1 + y
, y =

p2

m2
(3.7.74)

= −λ(m2)D/2−1

(4π)D/2
Γ(1−D/2)

Γ(D/2)
(3.7.75)

Since the Γ-function has poles at all negative integers, we notice in particular that in D = 4 this
integral diverges. We thus need to find a way of regularizing this integral. There are multiple
ways of doing this, amongst others:

1. The introduction of a hard cut-off Λ: this is notably applied in condensed matter appli-
cations. In general, however, this hard cut-off will not preserve the symmetries of the
system, so another method is usually preferred.
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2. Analytic regularization: we replace the propagator by (k2+m2)−z for z ∈ C with real part
big enough such that the integral converges and we then extend the result analytically to
the case z = 1.

3. Dimensional regularization: we place ourselves in dimension D = 4 − 2ε and introduce
a scale of renormalization µ2ε in the measure of the integral. This will lead to the
appeareance of poles, which can then be removed from the Laurent series of the Feynamn
Integrals to eliminate their divergent part as ε→ 0.

We will, however, focus only on the last technique, dimensional regularization. We place
ourselves in dimension D = 4 − 2ε. We can write the measure in the integral as: d4k =
µ2εd4−2εk. Furthermore, we generalize the integral we are considering (this will be useful for
the computation of other diagrams later on) to:∫

dDk

(k2 +m2)α
=

(m2)D/2−α

(4π)D/2
Γ(α−D/2)

Γ(α)
. (3.7.76)

We note that from this formula, we conclude that the non-massive (m = 0) tadpole integral is
identically zero ∀α. Next, we consider the first correction to the self-energy:

Σ(1)(k) = −λ
2
µ2ε

∫
dDk

(2π)D
1

k2 +m2
(3.7.77)

= −λ
2
µ2ε (m2)1−ε

(4π)2−ε
Γ(ε− 1)

Γ(1)
(3.7.78)

= −1

2

λ

16π2︸ ︷︷ ︸
:=λ̄

(
4πµ2

m2

)ε
Γ(1 + ε)

ε(1− ε)
m2 . (3.7.79)

At this point, it is necessary to specify a couple of technicalities. We will place ourselves in
the modified minimal substraction (MS) renormalization scheme. That is, we will simply take
µ̄ = 4πµ2e−γE for our renormalization scale, whereas µ is typically used in the conventional
minimal substraction (MS) scheme. Where γE is simply the Euler-Mascheroni constant. Under
this convention, we can express Σ(1)(k) as:

Σ(1)(k) =
m2

2
λ̄
( µ̄
m

)2ε eγEΓ(1 + ε)

ε(1− ε)
. (3.7.80)

To proceed further, we consider the Laurent series expansion of the Γ-function, that is:

Γ(1 + ε) = exp

(
−γEε+

∞∑
n=2

ζ(n)
εn

n!

)
, (3.7.81)

where ζ(s) is the Riemann Zeta function. Up to O(ε0), the correction is:

Σ(1)(k) =
m2

2
λ̄

(
1

ε
+ 1− log

(
m2

µ̄2

)
+ O(ε)

)
. (3.7.82)

This expression explicits the pole present as ε→ 0 in the ultraviolet regime.
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3.7.2 Calculation of Γ
(4)
2 ({k})

In this case, we can calculate it by simply considering Equation 3.6.63. Expliciting the
integral we have:

Γ
(4)
2 =

3

2: (3.7.83)

= (−λ)2

∫
dDq

(2π)D
1

q2 +m2

1

(k + q)2 +m2
. (3.7.84)

At this point we use dimensional regularization as in the calculation of Σ(1) by performing
the integral in dimension D = 4 − 2ε. Furthermore, to simplify, we will use the infrared
rearrangement (IRR) (which means we aim to calculate the integral in the UV regime, i.e.
m→ 0). The result of the full calculation with m 6= 0 is explicited by Kleinert [2] and will be
given later on, but for the purpose of illustrating how to compute these integrals, using IRR is
enough and less tedious. Taking the above into consideration, the integral then becomes

Γ
(4)
2 =

3

2
λ2µ2ε

∫
dDq

(2π)D
1

q2(k + q)2
. (3.7.85)

It is helpful to generalize the integral first before evaluating it (also for the evaluation of other
integrals later on). We thus consider the integral:∫

dDq

(2π)D
1

q2α(k + q)2β
=

(k2)D/2−α−β

(4π)D/2
G(α, β) (3.7.86)

G(α, β) :=
a(α)a(β)

a(α+ β −D/2)
(3.7.87)

a(α) :=
Γ(D/2− α)

Γ(α)
. (3.7.88)

We can then express using these definition the expression of the Γ
(4)
2 up to O(1/ε).

Γ
(4)
2 =

3

2
λ2µ2ε

∫
dDq

(2π)D
1

q2(k + q)2
(3.7.89)

=
3

2
λ2µ2ε (k2)−ε

(4π)2−ε G(1, 1) (3.7.90)

=
3

2

(
λ2

16π2

)(
4πµ2

k2

)ε
Γ(1− ε)Γ(1− ε)Γ(ε)

Γ(2− 2ε)
(3.7.91)

=
3

2

(
λ2

16π2

)(
4πµ2

k2

)ε
Γ(1− ε)Γ(1− ε)Γ(1 + ε)

ε(1− 2ε)Γ(1− 2ε)︸ ︷︷ ︸
Using Γ(1+z)=zΓ(z)

(3.7.92)

=
3

2

(
λ2

16π2

)
1

ε

(
4πµ2

k2

)ε
Γ(1− ε)Γ(1− ε)Γ(1 + ε)

(1− 2ε)Γ(1− 2ε)︸ ︷︷ ︸
1 up to O(ε0)

(3.7.93)

=
3λ̄2

2ε
+ O(ε0) . (3.7.94)
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3.7.3 Calculation of Σ(2)(k)

At this point with the results we have obtained, we can calculate the second order correction
to the self-energy by considering the second order diagrams. Indeed diagramatically we had
found an expression for Σ(2)(k) in Equation 3.5.59. We start off by considering:

; = (−λ)2

∫
dDq

(2π)D
1

q2 +m2

∫
dDp

(2π)D
1

(p2 +m2)2
. (3.7.95)

We notice that this Feynman integral is separable into two different integrals. We then place
ourselves in the usual D = 4− 2ε scheme and change the measure accordingly thus obtaining:

< = (−λ)2(µ2ε)2

∫
dDq

(2π)D
1

q2 +m2︸ ︷︷ ︸
One loop integral

∫
dDp

(2π)D
1

(p2 +m2)2︸ ︷︷ ︸
One loop integral

. (3.7.96)

A helpful formula to consider here is:∫
dDk

(2π)D
1

(k2 +m2)α
=

(m2)D/2−α

(4π)D/2
Γ(α−D/2)

Γ(α)
. (3.7.97)

With this under our toolbelt, the computation of = becomes trivial, indeed we see:

> = (−λµ2ε)2 (m2)

(4π)D
Γ(1−D/2)Γ(2−D/2)︸ ︷︷ ︸

UV Divergences

(3.7.98)

= −m2λ̄2

(
µ̄2

m2

)2ε

e2γEε
Γ(1 + ε)2

ε2(1− ε)
(3.7.99)

= −m2λ̄2

(
1

ε2
+

1

ε
− 2

ε
Lm + 2Lm (Lm − 1) + ζ(2) + 1 + O(ε)

)
, (3.7.100)

where Lm = log
(
m2

µ̄2

)
. We notice a couple of things. First, this diagram has only a dependence

on m2, this means that as we will see later, it will only contribute to the renormalization of
the mass. Second, the non-polynomial mass dependent singularity in log(m)/ε and the second
order pole come from divergent subdiagrams. Furthermore, in the MS-scheme, all singular
terms should not depend on mass and should be local in momentum. We must have that all of
the singularities of O(log(m)/ε) must cancel out when we sum for each order (this result has
been proved to all orders) for the self-energy.
Next, we consider the sunset integral. This integral is a lot more challenging than the previous
one. Indeed, where in the previous case we could split the at first glance two-loop integral into
one-loop integrals, in this case, this is not possible.

? = (−λ)2(µ2ε)2

∫
dDp1

(2π)D

∫
dDp2

(2π)D
1

(p2
1 +m2)(p2

2 +m2)((k + p1 + p2)2 +m2)

(3.7.101)
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Massaging a bit this term, we can make a couple of remarks:

@ = (−λ)2(µ2ε)2

∫
dDp1

(2π)D
1

(p2
1 +m2)

∫
dDp2

(2π)D
1

(p2
2 +m2)((k + p1 + p2)2 +m2)︸ ︷︷ ︸

One loop, massive propagator︸ ︷︷ ︸
One loop, massive propagator

(3.7.102)
Here we can see that in both cases, we are dealing with one loop integrals and both are of the
massive propagator type. However, we notice that there is an overlap in the evaluation of the

integrals, which is why this the sunset is considerably more challenging thanA. We thus

have an overlapping singularity. Kleinert [2] gives a clear proof of the result of the computation
of this integral, which we will not show for the sake of brevity. The result is:

B = −m2λ̄2

(
3

2ε2
+

3

ε

(
3

2
− Lm

)
+ O(ε)

)
− k2λ̄2

(
1

4ε
+ O(1)

)
(3.7.103)

Putting both of the results together we obtain the second order correction:

Σ(2)(k) =
1

4C+
1

6D (3.7.104)

= −m2λ̄2

(
1

2ε2
+

1

ε
+ O(1)

)
− k2λ̄2

(
1

24ε
+ O(1)

)
(3.7.105)

We notice that all non-polynomial mass-dependent singular terms have consistently cancelled
out. Now that we have these calculatory results, we can move on to the next step, which is
the renormalization of the parameters of the theory, which will allow us to get rid and give a
meaning to these divergences.



Chapter 4

Renormalization

In the last chapter, we looked at the perturbative methods used in order to estimate the
correlation functions G. In so doing, we found that most of the integrals coming out of the
perturbative expansion actually diverge. This motivates finding a way to get rid of these
divergences in a process we will call renormalization. The idea is to redefine the parameters of
the φ4-model, i.e. m,λ as well as the field itself φ in order to obtain finite values that can be
associated to physical predictions.

4.1 Dimensional analysis

By placing ourselves in the context of having natural units (c = ~ = 1), we can measure
everything in terms of units of energy. Indeed, we can express all quantities of length (L), time
(T ) and mass (M) can be expressed dimensionally using speed ([L]), action ([S]) and energy
([E]) as follows:

[L] = [S][v]/[E], [T ] = [S]/[E], [M ] = [E]/[v]2 . (4.1.1)

However since we have set c = ~ = 1 and the latter have units of speed and action accordingly,
the only dimensional quantity left is energy. Using this, we can express all units in terms of
powers of energy. For example, via the relations in Equation 4.1.1, we find that [L] = −1,
[M ] = 1 and [T ] = −1 in energy units.
Using this system, we aim to calculate the energy dimension of the different parameters in the
φ4-model we have thus far considered explicited by the action functional:

E[φ] =

∫
dDx

1

2
(∂φ)2 +

m2

2
φ2 +

λ

4!
φ4 , (4.1.2)

where E[φ] is dimensionless, since it has the units of an action. We can start by considering
the units of the field φ, by looking at the first term in Equation 4.1.2:

−D + 2 + 2[φ] = 0 ⇐⇒ [φ] =
D − 2

2
. (4.1.3)

From this, we can check that the parameter m has indeed units of mass (or energy) by using
the second term of the action:

−D + 2[m] + 2[φ] = 0 ⇐⇒ [m] = 1 . (4.1.4)

Finally, we can get the dimensions of the coupling constant λ using the last term:

−D + [λ] + 4[φ] = 0 ⇐⇒ [λ] = 4−D . (4.1.5)

23
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From here we can make a couple of remarks. The first is that in dimension D = 4, the coupling
constant λ is dimensionless. In D > 4, it is has the dimensions of the inverse power of a mass
and in D < 4 it has the mass of a mass.

Definition 4.1.1. We can classify theories in terms of the energy dimension associated to the
coupling constant. In particular, if:

• [λ] = 0, the theory is said to be renormalizable, this is the case of this is the case of the
φ4-theory in dimension D = 4.

• [λ] < 0, the theory is said to be non-renormalizable, this is the case of the φ4 in dimension
D > 4.

• [λ] > 0, the theory is said to be superrenormalizable, this is the case of φ4 in dimension
D < 4.

In particular, renormalizable theories are characterized by the fact that they posses a finite
number of divergent structures and superrenormalizable theories only have a finite number
of divergent diagrams. The exact sense of this will become clearer with the next definition.
By contrast, non-renormalizable theories posses an infinite number of divergent structures. In
order to localize the UV-divergence of a diagram, we can simply use power counting as a first
approach.

Definition 4.1.2. The superficial degree of divergence (SDD), ω(G) of a Feynman diagram,
G, having L loops, N external edges, P internal edges and V vertices is given by:

ω(G) = DL− 2P . (4.1.6)

Indeed, for each loop there will be an integration, thus there will be DL powers of momen-
tum the numerator coming from the integrations. On the other hand, we have 2P powers of
momentum in the numerator due to the internal edges, which are related to the propagators.

This expression can further be massaged by taking into account graph theoretical and
topological considerations of the graphs (for example, all vertices must have 4 edges for a φ4-
theory, etc.) This imposes some extra conditions (and so equations for L,P, V and N), which
we can then use to express:

ω(G) = D + (D − 4)V − D − 2

2
N . (4.1.7)

We remark a couple of things:

• Renormalizable case (D = 4): ω(G) does not depend on V and thus for a given number
of external lines, this determines the SDD up to all orders in perturbation theory;

• Non-renormalizable case (D > 4): when V increases, so does the ω(G), which means that
for a fixed number of external lines, we have an increase in the number of divergence
as we climb in powers of λ. This means the number of divergent structures is actually
infinite;

• Superrenormalizable case (D < 4): ω(G) decreases as V increases.

From here on, we will focus on the case of the renormalizable φ4-theory,i.e. D = 4. In this
case, the expression for ω(G) can be simplified to be ω(G) = 4−N . We see that for all orders
in perturbation theory, there are only a finite number of structures that are divergent, namely:
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• N = 0:� , the diagrams of the vacuum (Z), for which ω(G) = 4

• N = 1: 〈φ〉 = 0 by the Z/2Z symmetry, we can extend this to say that for N = 2k + 1
are all identically zero

• N = 2:� and ω(G) = 2

• N = 4:� and ω(G) = 0 which gives a logarthmic divergence.

After N = 4, there are no more divergent structures, which means there are only two we must
focus on, namely G(2) and G(4). It is still unclear how we treat these divergences. There are
multiple approaches that are possible, but we will focus on three only: the so-called conventional
method, which will provide us with the intuition necessary, we will then move on to the counter-
term method, and finally the Zimmermann forest formula (BPHZ Method), which is much more
efficient in practice and more systematic.

4.2 Conventional approach

We start by considering the perturbed propagator, which can be written as:

G(k) =
1

k2 +m2 − Σ(k)
. (4.2.8)

We may parametrize Σ(k) as:

Σ(k) = m2Σm2(k) + k2Σk(k) . (4.2.9)

This way, we have that Σm,Σk are divergent, but dimensionless. Using this parametrization,
it is possible to write:

G(k) =
1

1− Σk

1

k2 +m2
1− Σm2

1− Σk

. (4.2.10)

This way, Σm2 and Σk can diverge, but the parameters and the physical fields have to be finite
in the E[φ] action functional of the start. It is thus helpful at this point to introduce a new
notation to help us differentiate the diverging fields and parameters from the physical ones.
We will note with a subscript B the bare fields and parameters, e.g. φB is the bare field, and
we will index an R subscript for the renormalized quantities, φR is the renormalized field. We
must thus find what the link between the two is. We postulate the following scheme:

φB = Z
1/2
φ φR (4.2.11)

m2
B = Zm2Z−1

φ m2
R (4.2.12)

λB = ZλZ
−2
φ µελR . (4.2.13)

Going back to the expression of the propagator we realize that:

GB(k) = 〈φBφB〉 = Zφ〈φRφR〉 = ZφGR(k) (4.2.14)

=
(1− Σk)−1

k2 +m2
R

Zm2

Zφ

1− Σm2

1− Σk

. (4.2.15)
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From which we extract:

GR(k) =
1

Zφ(1− Σk)

1

k2 +m2
R

Zm2

Zφ

1− Σm2

1− Σk

(4.2.16)

We thus see that to obtain finite results we must impose the conditions:

Zφ(1− Σk) = finite (4.2.17)

Zm2

Zφ

1− Σm2

1− Σk
= finite . (4.2.18)

In our renormalization scheme (modified minimal substraction), we will set these ”finite” quan-
tities to 1. Furthermore, we may express the Z coefficients as a formal Laurent series in ε, in
this way we have that:

Zx = 1 +
L∑
l=1

λl
l∑

j=1

Z
(l,j)
x

εj
. (4.2.19)

In particular, we note that Z
(l,1)
x is the residue of the Laurent series. We note also that the

Zx’s depend only on λ and ε, but not on m and k, they also depend on µ but only through
λ(µ). At this point it becomes helpful to introduce the following definition:

Definition 4.2.1. The operator K acts on a formal Laurent series by picking up the negative
power part of the Laurent series, namely:

K

(∑
n∈Z

cnε
n

)
=
∑
n<0

cnε
n . (4.2.20)

For illustrative purposes, we may consistently calculate the Zφ up to two-loops:

Zφ =
1

1− Σk(k)
=

1

1− Σ
(1)
k (k)− Σ

(2)
k (k)−O(λ3)

. (4.2.21)

At first order, there is no correction in Σk and so Z
(1)
k = 0 ← Z

(1)
φ = 0. Taking into account

the corrections up to second order, we have that using Equation 3.7.105:

Zφ = 1 +K(Σ
(2)
k (k)) + O(λ̄3) (4.2.22)

= 1−
λ̄2
R

24ε
+ O(λ̄3

R) . (4.2.23)

We now do the same thing for Zm2 up to one-loop:

Z
(1)
m2

Z
(1)
φ

1−K(Σ
(1)
m2(k))

1−K(Σ
(1)
k (k))︸ ︷︷ ︸
=0

= 1 ⇐⇒ Z
(1)
m2 = 1 +K(Σ

(1)
m2(k)) , (4.2.24)

which gives us the result consistently up to first order:

Zm2 = 1 +
λ̄

2ε
+ O(λ̄2) . (4.2.25)

Finally, we want to obtain Zλ. Whereas before we used the propagator and the self-energy as
a source of the corrections, we use the vertex function Γ(4). The result is:

Zλ = 1 +
3λ̄R
2ε

+ O(λ̄2) . (4.2.26)
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4.3 Counter-term method (BPH method)

We go back to the original action of the φ4-model (Equation 4.1.2) and retake the same
scheme as for the previous method (Equations 4.2.12, 4.2.13, 4.2.13). By plugging the scheme
into the action we get:

E[φ] =

∫
dDx

(
1

2
Zφ(∂φR)2 + Zm2

1

2
m2
Rφ

2
R + Zλ

λR
4!
µεφ4

R

)
. (4.3.27)

This formula makes a bit clearer the scheme we chose earlier, which could’ve appeared somewhat
obscure at first glance. For reasons that will also become apparent, let us allow ourselves to
rewrite the Zx variables previously defined to be:

Zx = 1 +
∞∑
l=1

l∑
j=1

Z
(l,j)
x λ̄l

εj︸ ︷︷ ︸
δZx

= 1 + δZx . (4.3.28)

In this fashion, we can rewrite the action functional to be:

E[φ] =

∫
dDx

(
1

2
(∂φR)2 +

1

2
m2
Rφ

2
R

)
︸ ︷︷ ︸

Gaussian model E0[φ]

+

∫
dDx

(
δZφ

2
(∂φR)2 +

δZm2m2
R

2
+ (1 + δZλ)

λRµ
ε

4!
φ4
R

)
︸ ︷︷ ︸

Interaction V [φ]

.

(4.3.29)
To simplify the notation, we will drop the R subscript, any variable without a subscript will be
implicitly the renormalized variable. We will still always specify whether the variable is bare.
We now simply apply renormalized perturbation theory (noting that we have 4 different terms
in the interaction term!).

We can now simply give the Feynman Rules associated and repeat the logic we had previ-
ously developped in Chapter 3.

� =
1

k2 +m2
R

, � = −λRµε , (4.3.30)

� = −δZφk2

� = −δZm2m2 , � = −δZλλRµε

︸ ︷︷ ︸
Counter-terms

. (4.3.31)

The role of these counterterms introduced directly into the action functional is to cancel out
and absorb all the divergences. We shall illustrate this with the simple calculation of Σ(1)(k)
in renormalized perturbation theory:

Σ(1)(k) =
1

2
	+
 +� (4.3.32)
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We recall the calculated values of the Feynman diagrams and proceed to perform the calculation:

1

2
� =

m2

2
λ̄

(
1

ε
+ 1− Lm + O(ε)

)
(4.3.33)

 = −m2δZ
(1)
m2 (4.3.34)

� = −k2δZ
(1)
φ . (4.3.35)

Thus plugging this back we have:

Σ(1)(k) = m2

(
λ̄

2ε
− δZ(1)

m2

)
︸ ︷︷ ︸

=0

−k2 δZ
(1)
φ︸ ︷︷ ︸

=0

+
m2

2
λ̄(1− Lm + O(ε)) . (4.3.36)

From this equation, we deduce the δZx’s up to first order consistently in this manner. The
result is:

δZ
(1)
m2 =

λ̄

2ε
⇐⇒ Zm2 = 1 +

λ̄

2ε
+ O(λ̄2) (4.3.37)

δZ
(1)
φ = 0 ⇐⇒ Zφ = 1 + O(λ̄2) . (4.3.38)

We can do a similar calculation with Γ(4) using:

Γ(4)({k}) = −

(
� +

3

2�+� + O(λ̄3)

)
. (4.3.39)

We start by recalling that:

� = −λR (4.3.40)

� = −λRµεδZλ (4.3.41)

� = λRλ̄R(
1

ε
− Lm + O(ε)) . (4.3.42)

With this we can then simply write consistently up to first order:

Γ(4)({k}) = −
(
−λR +

3

2
λRλ̄R

(
1

ε
− Lm

)
− λRδZ(1)

λ + O(ε)

)
(4.3.43)

= −
(

3λRλ̄R
2ε

− λRδZ(1)
λ

)
︸ ︷︷ ︸

=0

+O(ε0) (4.3.44)

⇐⇒ δZ
(1)
λ =

3λ̄R
2ε

. (4.3.45)
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As we had previously found. We can further extend this to second order. The calculation of
Σ(2)(k) can be done diagramatically as previously illustrated using the diagrammatic equation:

Σ(2)(k) =
1

4�+
1

6�+
1

2
�+

1

2
� . (4.3.46)

We immediately see that this method is much more efficient. However, it poses the problem of
generating the right counter-terms, which for low orders is relatively easy intuitively, however,
for higher orders, it is necessary to find a systematic way of generating these terms.

4.4 Zimmermann forest formula (BPHZ method)

In order to find this systematic way of finding the counter-terms, we must first give a couple
of results. In the following, G will denote a Feynman diagram.

Theorem 3. (Weinberg [11]): A graph G converges (absolutely) if its superficial degree of
divergence, ω(G), is negative and if the superficial degrees of divergence of all its subgraphs are
also negative.

Theorem 4. (Collins [3]): For a graph G of superficial degree of divergence ω(G), the counter-
term associated can be expressed as a polynomial in the masses and/or the external momenta.
Moreover, the degree of this polynomial is at most ω(G).

Collins’ theorem ensures that the counter-terms remain local, as they are polynomials of k
and m. Knowing this, we must specify what are the possible subdivergences that can occur in
a given graph. There are two kinds:

• Nested divergences.

• Overlapping divergences. An example of an overlapping divergence arose when we exam-

ined the case of the� diagram.

The renormalization process is a technique which eliminates all the divergences. In particular
the BPH approach we previously saw aims to do so recursively. Zimmermann found a solution
to this recursion with the forest formula which we will now explicit:

RG = (1−K)R′G , (4.4.47)

where R is the Bogoliubov operator, R′ is the incomplete Bogoliubov operator and K is the
operator which extracts the strictly negative part of formal Laurent Series. In this way, we
have that RG is the renormalized graph (which is therefore finite), and R′ takes away all of
the subdivergences of the diagram. For any graph G, KR′G gives the counterterm ZG. The
action of the operator R′ is defined as:

R′G := G+
∑
Γ̄ 6=∅

∏
γ∈Γ̄

−K(R′γ) ∗G/Γ̄ (4.4.48)
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G/Γ̄ is the quotient graph, we may retrieve it graphically by reducing the γ ∈ Γ̄ subgraphs to
a point. Here, the set Γ̄ is defined as:

Γ̄ = {γ ⊆ G | γ is disjoint or nested (not overlapping)} . (4.4.49)

We call Γ̄ a normal forest. By including G, we say that we have a full forest.
In order to better understand what this formula is actually doing, it is good to understand it on
a conceptual level. First, we notice that in the previous counter-term method, we always had
subdivergent diagrams being added in renormalized perturbation theory. The Zimmermann
formula basically allows us to generate all of these diagrams in a systematic way. Indeed, we
can see that the formula for the incomplete Bogoliubov operator aims to find all non-overlapping
divergences. Finally, we can understand the form of the forest formula by simply examining
it: the first term, R′G gets subtracted by the divergent part of the subdiverging graphs, as
well as the divergent part of the entire graph itself, thus only the finite result is left. This is
all best illustrated by some examples. A first somewhat trivial example is to consider 1 loop

diagams,� and�. In this case, the normal forests are all empty, because there are

no subdivergent diagrams. Thus we simply have for these two diagrams that:

R′G = G and RG = G−KG︸ ︷︷ ︸
Expected result

. (4.4.50)

Indeed, since there are no subdivergent diagrams up to first order, we must only take the
divergent part of the Laurent Series away from the original graph to retrieve our renormalized
graph. Two loops is perhaps a better example to consider to get the intuition behind how the

formula works. Let us consider the� diagram. In this case, there are three subdivergent

diagrams, the top half loop, the bottom half-loop and the whole loop. Naming these γi, we
have that the normal forest we consider is:

Γ̄ = {{∅}, {γ1}, {γ2}, {γ3}} . (4.4.51)

Thus we simply have that:

R′
�

 =�− 3K
(
�

) (4.4.52)

KR′
!

 = K

"
− 3K

(
K
(
#

)$)
(4.4.53)

R

%
 =&−K

'
− 3K

(
K
(
(

)))
. (4.4.54)

Next, we can consider the * diagram. In this case, the forest is simply:

Γ̄ =

{∅},
{
+

}
,

,

 . (4.4.55)
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We may thus simply calculate:

R′
-

 =. −K
(
/

)0−K


1

2. (4.4.56)

We immediately notice the power of this method. By simply computing the diagrams needed
and taking their corresponding products and divergent parts, we can imediagely get the re-
sult for the Zx constants consistently up to second order (not forgetting the weights of each
diagram). In this fashion, we obtain:

Zm2 = 1 +
λ̄R
2ε

+ λ̄R

(
1

2ε2
− 1

4ε

)
+ O(λ̄2) (4.4.57)

Zφ = 1−
λ̄2
R

24ε
+ O(λ̄3) . (4.4.58)

To conclude: the BPHZ method works on a diagram-by-diagram basis. For a given graph G,
the divergences are eliminated from G by defining RG, the renormalized diagram. The singular
part of each diagrams allows us to compute the renormalization constants (KR′G). In the next
chapter, we shall give a meaning to the latter by relating them to the so-called renormalization
group functions, which we can eventually relate to critical exponents.



Chapter 5

Renormalization group

In Chapter 4 we focused mainly on the treatment of the divergences that arise in the calcula-
tions of the correlation functions. We thus managed to renormalize the theory and regularize it
in the limit ε→ 0. The two main results from the previous Chapter were thus the introduction
of renormalized (finite) parameters and fields and the introduction of renormalization constants
which are divergent. At this point, we were left with the renormalized correlation functions and
parameters that still depend on an arbitrary mass-scale µ, which was the renormalization scale.
Its physical interpretation is simple: it is roughly the scale of energy at which the described
phenomena are observed. This dependence of µ therefore arises from the fact that physics
is not scale invariant, and we normally observe different kinds of events at different scales of
energy. However, it is important to note that the Gaussian Model in D = 4 for m = 0 is scale
invariant, which means that the interactive term in φ4 is the one that breaks this invariance
under scale. Our objective in this chapter is obtain an expression of the correlation functions
in terms of the parameter µ. This will require introducing renormalization group functions
related to the Zx’s and from which critical exponents can be deduced.

5.1 Callan-Symanzik equations

We can obtain the correlation function with the help of equations that arise from the
renormalization group (which, by the way is not a group in the mathematical sense, the name
is purely historical). These equations take the form of partial differential equations (PDEs)
having coefficients which are parameters of the renormalization group. The derivation of these
equations, called the Callan-Symanzik equations is quite simple. Indeed, let us consider:

GB(k, λ̄B,mB, ε)︸ ︷︷ ︸
Independent of µ

= Zφ(λ̄R(µ)) GR(k, λ̄R(µ),mR(µ), µ, ε)︸ ︷︷ ︸
Dependent of µ

. (5.1.1)

The Callan-Symanzik equations then arise from the simple fact that since the bare parameters
do not depend on µ, the derivative of the left-hand side of the equation must be identically
zero:

µ
d

dµ
GB(k, λ̄B,mB, ε) = 0 . (5.1.2)

This means in particular that the full-derivative of the right hand side of Equation 5.1.1 must
also be identically zero, yielding the Callan-Symanzik equations we desired. A couple of re-
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minders are helpful before expliciting them out. Recall that:

φR(µ) = Z
−1/2
φ (λ̄R(µ))φB (5.1.3)

m2
R(µ) = m2

B

Zφ(λ̄R(µ))

Zm2(λ̄R(µ))
(5.1.4)

λ̄R(µ) = µ2ε
Z2
φ

Zλ
λ̄B . (5.1.5)

Expressing the Callan-Symanzik condition, we have that:

µ
dZφ
dµ

GR + Zφµ
dGR
dµ

= 0 (5.1.6)

By carrying the appropriate differentiations, we get:2µ
d logZφ(λ̄R)

dµ︸ ︷︷ ︸
:=γ(λ̄R)

+µ
∂

∂µ
+ µ

∂λ̄R
∂µ︸ ︷︷ ︸

:=β(λ̄R)

∂

∂λ̄R
+

µ

mR

∂mR

∂µ︸ ︷︷ ︸
:=γm(λ̄)

∂

∂mR

GR = 0 , (5.1.7)

where γ(λ̄R) and γm(λ̄R) are the anomalous dimensions of the field and β(λ̄R) is the β-function
(not to be confused with the mathematical B-function defined in terms of Γ-functions). Finally,
by replacing by these newly defined functions, we finally obtain the Callan-Symanzik equation
in familiar form: (

µ
∂

∂µ
+ β(λ̄R)

∂

∂λ̄R
+ γm(λ̄R)

∂

∂mR
+ 2γ(λ̄R)

)
GR = 0 . (5.1.8)

An important remark is that all of the functions of the renormalization group, β, γ and γm
are all regular as ε → 0. This is crucial for the renormalization process. In order to solve
this PDE, it is customary to use the method of characteristics. However, for our purposes, it
is sufficient to consider the particular case of the critical point. Indeed, at the critical point,
we have mR = 0 ⇐⇒ mR ∼ |T − Tc|, and so at the critical temperature Tc, we must have:
β(λ̄∗R) = 0, which implies physics is invariant of scale.

Definition 5.1.1. The point λ̄∗R, which satisfies:

β(λ̄∗R) = 0 , (5.1.9)

will be called a fixed point of the renormalization group.

With this simplification, the Callan-Symanzik equation simply becomes:

µ
dGR
dµ

= −2γ(λ̄∗R)GR . (5.1.10)

For which we postulate the Ansatz:

GR(k, λ̄R, µ, ε) =
1

k2
G̃R

(
k2

µ̄2
, λ̄R,mR, ε

)
. (5.1.11)

By solving the differential equation we then just simply get:

GR(k, λ̄R,mR, ε) = G̃R(1)
1

k2

(
µ̄2

k2

)−γ(λ̄∗R)

. (5.1.12)
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We can then see that the effective dependence is asymptotically given by:

GR ∼
(

1

k2

)1−γ∗

. (5.1.13)

We remark that our original naive dimensional analysis for the dimensions of the propagator
is now modified by the interaction present in the theory, which is noticeable due to the present
of γ∗ correction in the exponent. We can thus finally come back to our original talk on critical
exponents. Recall that in Chapter 2 we had talked about the asymptotic dependence of the
2-point correlation function to be:

G(k) =
1

k2−η . (5.1.14)

Then, by looking at the previous equation, we simply get that the η correction can be obtained
from the renormalization group and is simply

η = 2γ∗ . (5.1.15)

We can also appreciate why γ is called the anomalous dimension, since as an exponent, it
modifies the expected result that we get from dimensional analysis. We can, in a similar way,
obtain the corresponding Callan-Symanzik equations for the n-point vertex. Indeed:

Γ
(n)
B (k1, · · · ,kn; λ̄B,mB) = Z

−1/2
φ (λ̄R(µ)) Γ

(n)
R (k1, · · · ,kn; λ̄R,mR, µ, ε) . (5.1.16)

Repeating the procedure from before, the corresponding Callan-Symanzik PDE is:(
µ
∂

∂µ
+ β(λ̄R)

∂

∂λ̄
+mRγm(λ̄R)

∂

∂mR
− nγ(λ̄)

)
Γ

(n)
R = 0 . (5.1.17)

5.2 Calculation of the renormalization group functions

The procedure to calculate the critical exponents can be put into 3 simple steps:

1. Calculate the Zx functions

2. Calculate the renormalization group up to some order of ε

3. Examine the asymptotic behaviour of G and other functions using the Callan-Symanzik
equations

Let us calculate the β-function. We have that:

β(λ̄R) = µ
∂λ̄R
∂µ

(5.2.18)

λ̄R(µ) = µ−2ε
Z2
φ(λ̄R(µ))

Zλ(λ̄R(µ))
λ̄B . (5.2.19)
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Therefore, we simply have that:

β(λ̄R) = µ
∂

∂µ

(
µ−2ε

Z2
φ

Zλ
λ̄B

)
(5.2.20)

= −2ελ̄R − λ̄Rµ
∂ log(Z̃λ)

∂µ
(5.2.21)

= −2ελ̄R − λ̄Rβ(λ̄R)
d log(Z̃λ)

dλ̄R
(5.2.22)

=
−2ελ̄R

1 + λ̄R
d log Z̃λ

dλ̄R

. (5.2.23)

Recall that we previously expressed the Zx functions as Zx = 1+δZx, where δZx =
∑∞

l=1

∑l
j=1

Z
(l,j)
x λ̄lR
εj

.
Noting that β must be finite as ε → 0, we can develop β as a formal series in terms of δZλ.
Doing so, we obtain:

β(λ̄R) = −2ελ̄R

∞∑
n=0

(−1)n

[
−λ̄R

d

dλ̄

∞∑
m=1

(−δZ̃λ)m

m

]n
. (5.2.24)

The regularity of β implies that as ε→ 0 imposes: n = 1,m = 1 and j = 1, n = 0. This yields:

β(λ̄R) = −2ελ̄R +
∞∑
l=1

2l Z̃λ
(l,1)︸ ︷︷ ︸

:=βl

λ̄l+1 . (5.2.25)

We remark a couple of things:

• The β-function is exclusively determined by the coefficients of the simple poles. This
behaviour turns out to be the same for γ and γm;

• The terms in O(1/ε2) are identically zero and constrain the Z(l,j)’s. It is actually pos-
sible to show that all of the Z(l,j>1) are determined exclusively by: Z(l,j=1). Intuitively,
this shouldn’t be a surprise, as it is completely explicable with the Zimmermann forest
formula, indeed all higher order poles come from subdivergent diagrams, thus the simple
poles of these building-block diagrams must generate all of the others.

A similar calculation for the γ function will yield:

γ(λ̄R) = −
∞∑
l=1

lZ
(l,1)
φ︸ ︷︷ ︸

:=γl

λ̄lR (5.2.26)

Plugging in the values of the expansion, we obtain:

γ(λ̄R) =
λ̄2
R

12
+ O(λ̄3

R) (5.2.27)

β(λ̄R) = −2ελ̄R + 3λ̄2
R + O(λ̄3

R) . (5.2.28)

For dimension D = 4, this yields β(λ̄R) = 3λ̄2
R + O(λ̄3

R). Because this quantity is positive, this
implies that the renormalized constant λ̄R grows as µ increases (the coupling constant grows
with increasing energy).
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5.3 Fixed points

We find the fixed points of the theory. There is evidently one at λ̄∗ = 0, which is a fixed
point stable in the infrared regime. This λ̄∗ corresponds to exact mean field (gaussian) theory
and is the Gaussian fixed point. On the other hand, going back to dimension D = 4− 2ε and
taking ε > 0, we have that:

β(λ̄) = 3λ̄(λ̄− 2ε

3
) . (5.3.29)

This yields an extra fixed, non-trivial point λ̄∗ = 2ε/3. In this case, the coupling constant
diverges in the infrared regime, as λ̄ → 0. On the other hand, it is stable in the ultraviolet
regime. The existence in D < 4 of this extra non-trivial (Wilson-Fisher) critical point char-
acterizes the critical properties of the φ4-model as being different from the Gaussian theory.
Indeed, recall that the critical exponent η depends on γ(λ̄∗). We can thus calculate the critical
exponent η to be:

η = 2γ(λ̄∗) =
λ̄∗

6
+ O((λ̄∗)2) . (5.3.30)

In the case of the Gaussian theory, η = 0 and it is trivial. However for D = 3 (ε = 1
2), there is

the non-trivial fixed point which is infrared stable and we have:

λ̄∗1
2

=
1

3
⇐⇒ η ∼ 1

2.27
= 0.019 . (5.3.31)

Finally, we remark that the sign of the β-function is crucial. Indeed, for a positive sign like the
one we obtained in the case of the φ4-model, we have that the coupling constant increases with
increasing energy. On the other hand, if we had a situation where the β-function was negative,
we would have the opposite effect and the coupling constant would increase with decreasing
energy. This would imply that at low energies, a perturbative approach might cease to work,
which is an a priori unintuitive result. Thus, the behaviour of the β-function is crucial to the
understanding of the theory we have at hand. Indeed, for example, in the case of Quantum
Electrodynamics, the β-function is positive and we have a situation similar to the one we just
observed, which makes sense because this describes a situation of screening at low energies for
electrodynamics. On the other hand for Quantum Chromodynamics (QCD), the β-function
is negative, which means that in some way we have anti-screening at low energies, which is
one of the reasons why low-energy calculations for QCD are challenging (since the perturbative
approach is no longer valid). To give a sense of comparison, the exact result for the Ising Model
in D = 2 found by Osanger in 1944 yields η = 1

4 . Furthermore, a recent 6-loop φ4 calculation
yielded: η ∼ 0.0362(6), thus at O(λ̄2), our result gives the correct order of magnitude.



Chapter 6

Conclusion

We started off by introducing the φ4-model as a way to study the Ising Model which arose
from studying spin networks in condensed matter physics. We then solved the free field theory
in order to then be able to expand the φ4-model in a perturbation series and calculate different
physical quantities of interest, amongst others the perturbed propagator G (or the 2-point
correlation function), the 4-point correlation function. This was motivated by our interest
in calculating critical exponents and the β-function, which describes the behaviour of the
renormalized coupling constant as a function of the scale in energy. We introduced Feynman
integrals and diagrams as well as expliciting the calculation of the diagrams at low orders. After
noticing the divergences in the perturbation expansion at all orders, we introduced the process
of renormalization and the renormalization group. In so doing, we discovered a non-trivial fixed
point of the theory as well as the importance of the β-function in the behaviour of the theory
in the infrared and the ultraviolet range. We successfully computed the critical exponent η
to be η ∼ 0.019, which yields the same order of magnitude as the recent 6-loop result with
resummation.
On a personal level, this internship has given me the opportunity to learn a lot about QFT and
about the φ4-model which has a variety of applications in physics. In particular it confirmed
that I want to pursue further studies in QFT. In particular, I have become interest in further
studying the perturbative series that are present in physics. Indeed, the mathematical structure
of these perturbative series has proved time and time again to be very rich. For example,
there are interesting algebraic interpretations of the BPHZ method as having a Hopf Algebra
underlying structure and I would like to study it further in the future. Some recent results
were presented at the Multi-loop 2017 Workshop, organized at the UPMC and in which I
participated.
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