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Abstract. These notes contain a short exposition of selected results about para-
bolic equations: Schauder estimates for linear parabolic equations with Hölder
coefficients, some existence, uniqueness and regularity results for viscosity so-
lutions of fully nonlinear parabolic equations (including degenerate ones), the
Harnack inequality for fully nonlinear uniformly parabolic equations.

1 Introduction

The literature about parabolic equations is immense and it is very difficult to
have a complete picture of available results. Very nice books such as [20, 17, 7,
21] are attempt to gather and order the most significant advances in this wide
field. If now one restricts himself to fully nonlinear parabolic equations, the task
is still almost impossible. Indeed, many results proved for parabolic equations
were first proved for elliptic equations and these results are numerous. We recall
that many problems come from geometry; the reader is referred to the survey
paper [19] where Krylov gives historical and bibliographical landmarks.

In these notes, we will focus on three specific topics concerning parabolic
equations: Schauder estimates for linear parabolic equations (following Safonov
[23] and the textbook by Krylov [18]), viscosity solutions for fully nonlinear
parabolic equations (see e.g. [5]) and the Harnack inequality for fully nonlinear
uniformly parabolic equations.

1.1 Main objects and notation

Geometric objects.

We first consider a connected open bounded set Ω ⊂ Rd. We refer to such a set
as a domain. A domain is C2,α if, locally, the boundary of the domain can be
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represented as the graph of a function with two derivatives that are α-Hölder
continuous.

Parabolic equations are considered in cylindrical domain of the form (0, T )×
Ω. The parabolic boundary of (0, T ) × Ω is denoted by ∂p(0, T ) × Ω; we recall
that it is defined as follows

∂p(0, T )× Ω = {0} × Ω ∪ (0, T )× ∂Ω.

The open ball of Rd centered at x of radius ρ is denoted by Bρ(x). If x = 0,
we simply write Bρ. The following elementary cylindrical domains play a central
role in the theory: for all ρ > 0 and x ∈ Rd, we define

Qρ(t, x) = (t− ρ2, t)×Bρ(x).

When we write Qρ, we mean Qρ(0, 0). It is also convenient to write

Qρ(t, x) = (t, x) +Qρ

and
Qρ = ρQ1.

A linear operator.

The general parabolic equation considered in Section 2 involves the following
linear operator

Lu =
∑
i,j

aij(t, x)
∂2u

∂xi∂xj
+
∑
i

bi(t, x)
∂u

∂xi
+ c(t, x)u.

The set of d × d real symmetric matrices is denoted by Sd. The identity
matrix is denoted by I. For A,B ∈ Sd, A ≥ B means that all the eigenvalues
of A−B are non-negative.

Unknown functions u : (0, T )×Ω→ R depend on two (set of) variables: t ∈ R
and x ∈ Rd. It is convenient to use a capital letter X to refer to (t, x) ∈ Rd+1.

The time derivative of u is either denoted by ∂u
∂t or ∂tu or ut. Du denotes

the gradient of the function u with respect to the space variable x. D2u denotes
the Hessian matrix of the function u with respect to x.

The linear operator introduced above can be written as follows

Lu = trace(AD2u) + b ·Du+ cu

where A = (aij)ij .

Hölder spaces and semi-norms.

We say that u ∈ C0,α(Q) for Q ⊂ (0, T ) × Ω if u is α
2 -Hölder continuous

with respect to time t and α-Hölder continuous with respect to space x. The
corresponding semi-norm is denoted by [u]α,Q. See Subsection 1.4 for details.
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1.2 Fully nonlinear parabolic equations

We first emphasize the fact that we will not consider systems of parabolic equa-
tions; in other words, we will focus on scalar parabolic equations. This means
that the unknown function u will always be real valued. We also restrict our-
selves to second order parabolic equations.

We consider parabolic equations posed in a domain Ω ⊂ Rd; hence, unknown
functions u are defined in (0, T ) × Ω with T ∈ [0,∞]. In order to construct
solutions and prove uniqueness for instance, initial and boundary conditions
should be imposed. However, we will very often not specify them.

Fully nonlinear parabolic equations appear in optimal control theory and
geometry. Here are several significant examples.

• The Bellman equation

∂tu+ sup
α∈A

−∑
i,j

aαij(x)
∂2u

∂xi∂xj
+
∑
i

bαi (x)
∂u

∂xi

+ λu = 0.

• The mean curvature equation

∂tu = ∆u =
D2uDu ·Du
|Du|2

.

• The parabolic Monge-Ampère equations proposed by Krylov in [16]

−∂u
∂t

det(D2u) = Hd+1

−det(D2u) +

[
∂u

∂t
+H

]d+1

= 0 (1.1)

−det

(
D2u− ∂u

∂t
I

)
= Hd

where H = H(t, x,Du) is a nonlinear first order term.

• For the study of the Kähler-Ricci flow, one would like to study:

∂u

∂t
= ln(det(D2u)). (1.2)

1.3 Aim of these notes

Our goal is to construct solutions and study their regularity. One would like to
construct classical solutions, that is to say solutions such that the derivatives
appearing in the equation exist in the classical sense and satisfy the equation.
But this is not always possible and it is sometimes (very often?) necessary to
construct weak solutions. They are different notions of weak solutions; we will
focus in these notes on so-called viscosity solutions. The advantage is that it is

3



easy to construct such solutions. One can next try to prove that these solutions
are regular.

Before 1988 (date of publication of [15]), it was popular (necessary) to con-
struct solutions of fully nonlinear elliptic (or parabolic) equations by using the
continuity method. To apply it, it is necessary to get appropriate apriori esti-
mates (on third derivatives for instance, or on the modulus of continuity of the
second ones).

The situation changed dramatically when Jensen [15] managed to apply the
viscosity solution techniques of Crandall-Lions [6] to second order elliptic and
parabolic equations. In particular, he understood how to adapt the so-called
doubling variable techniques to prove uniqueness. Ishii also contributed to this
major breakthrough. The reader is referred to the survey paper [5] for further
details.

Before presenting the viscosity solution techniques and some selected reg-
ularity results for these weak solutions, we will present shortly the classical
Schauder approach to linear parabolic equations.

1.4 Spaces of Hölder functions

Because we study parabolic equations, Hölder continuity of solutions refers to
uniform continuity with respect to

ρ(X,Y ) =
√
|t− s|+ |x− y|

where X = (t, x) and Y = (s, y). In other words, solutions are always twice
more regular with respect to the space variable than with respect to the time
variable.

Remark 1.1 (Important). The reader should keep in mind that, following Krylov
[18], we choose to write u ∈ C0,α for functions that are α-Hölder continuous in
x and α

2 -Hölder continuous in t. This choice is made first to emphasize the link
between regularities with respect to time and space variables, second to simplify
notation.

Let Q ⊂ (0, T )× Ω and α ∈ (0, 1].

• u ∈ C0,α(Q) means that there exists C > 0 s.t. for all (t, x), (s, y) ∈ Q,
we have

|u(t, x)− u(s, y)| ≤ C(|t− s|α2 + |x− y|α).

In other words, u is α
2 -Hölder continuous in t and α-Hölder continuous in

x.

• u ∈ C1,α(Q) means that u is α+1
2 -Hölder continuous in t and Du is α-

Hölder continuous in x.

• u ∈ C2,α(Q) means that ∂u
∂t is α

2 -Hölder continuous in t and D2u is α-
Hölder continuous in x.
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We also consider the following norms and semi-norms.

[u]α,Q = sup
X,Y ∈Q,X 6=Y

|u(X)− u(Y )|
ρ(X,Y )

|u|0,Q = sup
X∈Q

|u(X)|

[u]2+α,Q =

[
∂u

∂t

]
α,Q

+ [D2u]α,Q

|u|2+α,Q = |u|0,Q +

∣∣∣∣∂u∂t
∣∣∣∣
0,Q

+ |Du|0,Q + |D2u|0,Q + [u]2+α,Q.

We will use repeatedly the following elementary proposition.

Proposition 1.2.

[uv]α,Q ≤ |u|0,Q[v]α,Q + |v|0,Q[u]α,Q

and for k = 0, 2,
[u+ v]k+α,Q ≤ [u]k+α,Q + [v]k+α,Q.

The following proposition implies in particular that in order to control the
norm |u|2+α,Q, it is enough to control |u|0,Q and [u]2+α,Q.

Proposition 1.3 (Interpolation inequalities). For all ε > 0, there exists C(ε) >
0 s.t. for all u ∈ C2,α, |

∂u
∂t |0,Q ≤ ε[u]2+α,Q + C(ε)|u|0,Q,

[Du]α,Q ≤ ε[u]2+α,Q + C(ε)|u|0,Q,
[u]α,Q ≤ ε[u]2+α,Q + C(ε)|u|0,Q.

(1.3)

The following proposition is a precise parabolic statement of the following
elliptic fact: in order to control the Hölder modulus of continuity of the gradient
of u, it is enough to make sure that, around each point, the function u can be
perturbed linearly so that the oscillation of u in a ball of radius r > 0 is of order
r1+α.

Proposition 1.4 (An equivalent semi-norm). There exists C ≥ 1 such that for
all u ∈ C2,α(Q),

C−1[u]′2+α,Q ≤ [u]2+α,Q ≤ C[u]′2+α,Q

where
[u]′2+α,Q = sup

X∈Q
sup
ρ>0

ρ−2−α inf
P∈P2

|u− P |0,Qρ(X)∩Q

where

P2 = {αt+ p · x+
1

2
Xx · x+ c : α, c ∈ R, p ∈ Rd, X ∈ Sd}.

The reader is referred to [18] for proofs of the two previous propositions.
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2 Schauder estimates for linear parabolic equa-
tions

In this first Section, we state a fundamental existence and uniqueness result for
linear parabolic equations with Hölder continuous coefficients.

The proof of this theorem is rather long and presenting it completely is out
of the scope of the present lectures notes. Instead, we would like to focus on
two particular aspects: uniqueness and interior estimates.

The uniqueness of the solution is proved by using a maximum principle
(Subsection 2.3), the existence can be obtained through the continuity method.
This method relies on the proof of the “good” a priori estimate (2.1) on any
C2,α solution. This estimate is global in the sense that it deals with what
happens at the interior of (0, T ) × Ω and at its boundary. In Subsection 2.5,
we focus on what happens in the interior of the domain. Precisely, we present
a complete proof of the interior Schauder estimate in the general case. It relies
on Schauder estimates for parabolic equations with constant coefficients. The
derivation of these estimates are presented in Subsection 2.4 by studying first
the heat equation. We present here an argument due to Safonov circa 1984.

2.1 Linear parabolic equations

The standing example of linear parabolic equations with constant coefficients is
the heat equation

∂u

∂t
−∆u = f

where f is a source term. The general form of a linear parabolic equation with
variable coefficients is the following

∂u

∂t
−
∑
i,j

aij(X)
∂2u

∂xi∂xj
−
∑
i

bi(X)
∂u

∂xi
− c(X)u = 0

where
c ≤ 0

and A(X) = (aij(X))i,j is a symmetric matrix satisfying one of the following
assumptions

• (Degenerate ellipticity) For all X, A(X) ≥ 0;

• (Strict ellipticity) There exists λ > 0 s.t. for all X, 1 A(X) ≥ λI;

• (Uniform ellipticity) There exists Λ ≥ λ > 0 s.t. for all X, λIA(X) ≤ ΛI.

We recall that I denotes the identity matrix and if A,B ∈ Sd, A ≥ B means
that all the eigenvalues of A−B are non-negative.

It is convenient to consider the linear differential operator L defined as follows

Lu =
∑
i,j

aij(X)
∂2u

∂xi∂xj
+
∑
i

bi(X)
∂u

∂xi
+ c(X)u.
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2.2 A fundamental existence and uniqueness result

In this Subsection, we state a fundamental existence and uniqueness result for
linear parabolic equation with Hölder continuous coefficients. Such a result
together with its proof can be found in various forms in several classical mono-
graphs such as [20, 18]. We choose here to present the version given in [18].

In the following statement, Rd+1
+ denotes [0,+∞)× Rd.

Theorem 2.1. If Ω is a C2,α domain and the coefficients A, b, c ∈ Cα((0, T )×
Ω) and f ∈ Cα(Rd+1

+ ), g ∈ C2+α((0, T ) × Ω), h ∈ C2,α(Rd), and g and h
are compatible (see Remark 2.3 below), then there exists a unique solution u ∈
C2,α(Q) of 

∂u
∂t −∆u = f in (0, T )× Ω
u = g on (0,+∞)× ∂Ω
u = h on {0} × Ω̄.

In addition,

|u|2+α,(0,T )×Ω ≤ C(|f |α,Rd+1
+

+ |g|2+α,(0,T )×Ω + |h|2+α,Rd) (2.1)

where C = C(d, λ,K, α, ρ0,diam(Ω)) and K = |A|δ,(0,T )×Ω + |b|δ,(0,T )×Ω +
|c|δ,(0,T )×Ω and ρ0 is related to the C2,α regularity of the boundary of Ω.

Remark 2.2. The inequality (2.1) is called the (global) Schauder a priori esti-
mate.

Remark 2.3. The fact that data g and h are compatible has to do with conditions
ensuring that a solution which is regular up to the boundary can be constructed.
Since we will not address these problems, we refer the interested reader to [20, 18]
for a precise definition.

2.3 Maximum and comparison principles

Maximum principles are powerful tools to study elliptic and parabolic equa-
tions. There are numerous statements which are not equivalent. We choose the
following one.

Theorem 2.4 (Maximum principle). Consider a bounded continuous function
u : (0, T )×Ω→ R such that ∂u

∂t exists at each point of (0, T )×Ω and Du,D2u
exist and are continuous in (0, T )× Ω.

If

∂u

∂t
− Lu ≤ 0 in (0, T )× Ω

u ≤ 0 on ∂p(0, T )× Ω

then u ≤ 0 in (0, T )× Ω.

Remark 2.5. The set ∂p(0, T ) × Ω is the parabolic boundary of the cylindrical
domain (0, T )×Ω. Its definition is recalled in the Section devoted to notation.
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Proof. Fix γ > 0 and consider the function v(t, x) = u(t, x) − γ
T−t . Assume

that v is not non-positive. Then its maximum M on (0, T ) × Ω is positive. It
is reached, and it cannot be attained for t = 0 or x ∈ ∂Ω since v ≤ u ≤ 0 on
∂p(0, T ) × Ω. It can neither be attained for t = T since v → −∞ as t → T−.
We conclude that the maximum is attained for some t ∈ (0, T ) and x ∈ Ω. In
particular,

0 =
∂v

∂t
(t, x) =

∂u

∂t
(t, x)− γ

(T − t)2

0 = Dv(t, x) = Du(t, x)

0 ≥ D2v(t, x) = D2u(t, x).

Remark that since A is (uniformly) elliptic, the linear operator satisfies

Lu(t, x) = trace(AD2u) + b ·Du+ cu = trace(AD2u) + cu ≤ trace(AD2u) ≤ 0

since u(t, x) ≥ v(t, x) > 0, c ≤ 0, A ≥ 0 and D2u(t, x) ≤ 0. We now use the fact
that u satisfies ∂u

∂t − Lu ≤ 0 in (0, T )× Ω to get the desired contradiction:

γ

(T − t)2
=
∂u

∂t
(t, x) ≤ Lu(t, x) ≤ 0.

Since γ is arbitrary, the proof is complete.

We now state two corollaries. The first one will be the starting point of the
second section (Section 3). In the framework of linear equation, it is a direct
consequence of the previous result.

Corollary 2.6 (Comparison principle - I). Consider two bounded continuous
functions u and v which are differentiable with respect to time and such that
first and second derivatives with respect to space are continous. If

∂u

∂t
− Lu ≤ f in (0, T )× Ω (2.2)

∂v

∂t
− Lv ≥ f in (0, T )× Ω

and u ≤ v in ∂pQ, then u ≤ v in (0, T )× Ω.

Remark 2.7. Remark that this corollary implies that as soon as u satisfies (2.2),
it lies below any solution of ∂u

∂t − Lu = f . This is the reason why it is referred

to as a subsolution of the equation ∂u
∂t − Lu = f . In the same way, v lies above

any solution and is referred to as a supersolution.

Remark 2.8. In view of the previous remark, we can reformulate the result of
the previous corollary as follows: if a subsolution lies below a supersolution at
the parabolic boundary then it lies below in the whole cylindral domain.

The next result contains a first estimate for solutions of linear parabolic
equations.
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Corollary 2.9 (A first estimate). Consider a bounded continuous solution u
of ∂u

∂t − Lu = f in (0, T ) × Ω. Assume moreover that it is differentiable with
respect to time and continuously twice differentiable with respect to space. Then

|u|0,(0,T )×Ω ≤ T |f |0,(0,T )×Ω + |g|O,∂p(0,T )×Ω.

Sketch of proof. Consider v± = u ± (|g|0,∂p(0,T )×Ω + t|f |0,(0,T )×Ω) and check
that v+ is a supersolution and v− is a subsolution. Then the previous corollary
yields the desired result.

2.4 Schauder estimate for the heat equation

2.4.1 Statement and corollary

The “interior” Schauder estimate for the heat equation takes the following form.

Theorem 2.10. Let α ∈ (0, 1) and consider a C∞ function u : Rd+1 → R with
compact support and define f = ∂u

∂t −∆u. Then there exists a constant C > 0
only depending on dimension and α such that

[u]2+α,Rd+1 ≤ C[f ]α,Rd+1 .

It is then easy to derive a similar “interior” Schauder estimate for linear
uniformly parabolic equation with constant coefficients and no lower order term.

Corollary 2.11. Let α ∈ (0, 1) and assume that A ≡ A0 in Rd+1 and b ≡ 0,
c ≡ 0. Then there exists a constant C > 0 only depending on dimension and α
such that for any C∞ function u with compact support

[u]2+α,Rd+1 ≤ C[f ]α,Rd+1

where f = ∂u
∂t − Lu.

Sketch of proof. The proof consists in performing an appropriate change of co-
ordinates. Precisely, we choose P ∈ Sd such that A0 = P 2 and consider
v(t, x) = u(t, Px). Then check that ∆v = trace(A0D

2u) = Lu and use Theo-
rem 2.10.

2.4.2 Two useful facts

Before proving Theorem 2.10, we recall two facts about the heat equation. We
recall first that a solution u ∈ C∞ of

∂u

∂t
−∆u = f,

with compact support included in (0,+∞)× Rd, can be represented as

u(t, x) =

∫ t

0

∫
Rd
G(s, y)f(t− s, x− y)dsdy
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where

G(t, x) =
1

(4πt)d/2
e−
|x|2
4t .

We write in short hand
u = G ? f,

keeping in mind that G should be extended by 0 for t < 0 in order to make this
rigorous. This formula can be justified using Fourier analysis for instance.

Fact 1. For any 0 ≤ ρ ≤ R,

|G ? 1QR(Z0)|0,Qρ(Z0) ≤ CR2

where 1QR(Z0)(Z) = 1 if Z ∈ QR(Z0) and 0 if not.

Fact 2. There exists a constant C > 0 such that any solution of ∂h
∂t = ∆h in

QR(0) satisfies ∣∣∣∣ ∂n∂tnDαh(0)

∣∣∣∣ ≤ C |h|0,QR(0)

R2n+|α|

where α = (α1, . . . , αn), |α| =
∑
i αi and Dαh = ∂α1

∂x
α1
1

. . . ∂
αd

∂x
αd
d

h.

This second fact can be proved by using Bernstein’s techniques. See [18,
Chapter 8, p. 116].

2.4.3 Proof of the Schauder estimate

The following proof is due to Safonov circa 1984. It is presented in [18]. Krylov
says in [19] that “[he] believes this proof should be part of a general knowledge
for mathematicians even remotely concerned with the theory of PDEs”.

Recall that the C2,α regularity can be established “pointwise”. Indeed, in
view of Proposition 1.4, it is enough to be able to find a polynomial P which is
linear in time and quadratic in space such that the oscillation of the difference
between u and P decreases as ρ2+α in a box of size ρ. The natural candidate
for P is the “second order” Taylor polynomial of the function itself. The idea
of Safonov is to perturb this natural candidate in order to reduce to the case
where f ≡ 0.

Proof of Theorem 2.10. Without loss of generality, we can assume that the com-
pact support of u is included in (0,+∞)× Rd.

Take X0 ∈ Rd+1, ρ > 0 and K ≥ 1 to be specified later. Let Q denote
Q(K+1)ρ(X0) and take ζ ∈ C∞(Rd+1) with compact support and such that
ζ ≡ 1 in Q.

We consider the “second order” Taylor polynomial associated with a function
w at a point X = (t, x)

TXw(s, y) = w(X) +wt(X)(s− t) +Dw(X) · (y−s) +
1

2
D2w(X)(y−x) · (y−x).
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We now consider
g = (ζTX0u)t −∆(ζTX0u).

In view of properties of ζ,
g ≡ f(X0) in Q.

Keeping this piece of information in mind, we can write for X ∈ Q,

u− TX0
u = u− ζTX0

u = G ? (f − g)

= h+ r

with
h = G ? ((f − g)1Qc) and r = G ? ((f − f(X0))1Q)

where Qc = Rd+1 \Q. Remark in particular that

ht −∆h = 0 in Q.

Now we estimate

|u− TX0
u− TX0

h|0,Qρ(X0) ≤ |h− TX0
h|0,Qρ(X0) + |r|0,Qρ(X0) (2.3)

and we study the two terms of the right hand side.
We use Fact 1 to get first

|r|0,Qρ(X0) ≤ [f ]α,Q(K + 1)αρα|G ? 1Q|0,Qρ(X0)

≤ C(K + 1)2+αρ2+α[f ]α,Q. (2.4)

We now write for X ∈ Qρ(X0),

h(X) = h(X0)+ht(θ, x)(t− t0)+Dh(X0) · (x−x0)+
1

2
D2h(Θ)(x−x0) · (x−x0)

for some θ ∈ (t0, t) and Θ = (t0, y0) ∈ Qρ(X0). Hence, we have

h(X)− TX0h(X) = (ht(θ, x)− ht(X0))(t− t0)

+
1

2
(D2h(Θ)−D2h(X0))(x− x0) · (x− x0)

from which we deduce

|h(X)− TX0
h(X)| ≤ ρ2|ht(θ, x)− ht(X0)|+ ρ2|D2h(Θ)−D2h(X0)|. (2.5)

We now use Fact 2 in order to get

|h− TX0
h|0,Qρ(X0) ≤ ρ2

(
ρ2

∣∣∣∣ ∂2

∂t2
h

∣∣∣∣
0,Qρ(X0)

+ ρ

∣∣∣∣ ∂∂tDh
∣∣∣∣
0,Qρ(X0)

)
+ Cρ3|D3h|0,Qρ(X0)

≤ C(ρ4(Kρ)−4 + ρ3(Kρ)−3 + ρ3(Kρ)−3)|h|0,Q
≤ C(K−4 + 2K−3)|h|0,Q
≤ CK−3|h|0,Q
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by choosing K ≥ 1. We next estimate |h|0,Q as follows

|h|0,Q ≤ |u− TX0u− r|0,Q ≤ |u− TX0u|0,Q + |r|0,Q
≤ C(K + 1)2+αρ2+α([u]2+α,Q + |[f ]α,Q)

where we used (2.5) for u instead of h and we used (2.4). Then, we have

|h− TX0
h|0,Qρ(X0) ≤ C

(K + 1)2+α

K3
ρ2+α([u]2+α,Q + [f ]α,Q). (2.6)

Combining (2.3), (2.4) and (2.6), we finally get

ρ−(2+α)|u− TX0
u− TX0

h|0,Qρ(X0) ≤ C(K + 1)2+α[f ]α,Q

+ C
(K + 1)2+α

K3
([u]2+α,Q + [f ]α,Q).

In view of Proposition 1.4, it is enough to choose K ≥ 1 large enough so that

C
(K + 1)2+α

K3
≤ 1

2

to conclude the proof of the theorem.

2.5 Schauder estimate in the case of variable coefficients

Theorem 2.12. Consider a function u ∈ C2,α((0, T )×Rd) for some α ∈ (0, 1).
Then there exists C = C(d, α) such that

[u]2+α,(0,T )×Rd ≤ C
(
[f ]α,(0,T )×Rd + |u|0,(0,T )×Rd

)
where f = ∂u

∂t − Lu.

Remark 2.13 (Notation). In the remaining of this subsection, it is convenient
to write semi-norms as [·]k+α instead of [·]k+α,(0,T )×Rd , k = 0, 2. In the same
way, | · |0 stands for | · |0,(0,T )×Rd .

Remark 2.14. Recall that by Corollary 2.9, one has

|u|0 ≤ T |ut − Lu|0 + |u(0, ·)|0,Rd .

Before giving a rigorous proof, we would like first to explain the main idea.

Main idea of the proof of Theorem 2.12. Assume first that there are no lower
order terms (c ≡ 0 and b ≡ 0).

In a neighbourhood of X0 ∈ Rd+1, the coefficients of the linear operator L
are frozen: the linear operator with constant coefficients is denoted by L0. If X
is close to X0, then L is not very far from L0 and this can be measured precisely
thanks to the Hölder continuity of coefficients.

Use first Corollary 2.11:

[u]2+α ≤ C[ut − L0u]α ≤ C[ut − Lu]α + C[Lu− L0u]α.

Now control [Lu− L0u]α thanks to [u]2+α and conclude.
Next, lower order terms are treated by using interpolation inequalities.
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Let us now make this precise and rigorous.

Proof of Theorem 2.12. We first assume that b ≡ 0 and c ≡ 0. Let f denote
∂u
∂t − Lu.

Let ε ∈ (0, T/2) and γ ≤ ε/2 be a positive real number to be fixed later and
consider X1 and X2 such that

[ut]α,(ε,T−ε)×Rd ≤ 2ρ(X1, X2)−α|ut(X1)− ut(X2)|

where we recall that ρ(X1, X2) =
√
|t1 − t2|+ |x1− x2| if Xi = (ti, xi), i = 1, 2.

If ρ(X1, X2) ≥ γ, then we use interpolation inequalities (1.3) in order to get

[ut]α,(ε,T−ε)×Rd ≤ 2γ−α|ut|0

≤ 1

4
[u]2+α + C(γ)|u|0.

If ρ(X1, X2) < γ, we consider ζ ∈ C∞(Rd+1) with compact support such
that ζ(X) = 1 if ρ(X, 0) ≤ 1 and ζ(X) = 0 if ρ(X, 0) ≥ 2. We next define
ξ(t, x) = ζ(γ−2(t − t1), γ−1(x − x1)). In particular, ξ(X) = 1 if ρ(X,X1) ≤ γ
and ξ(X) = 0 if ρ(X,X1) ≥ 2γ.

Now we use Corollary 2.11 in order to get

[ut]α,(ε,T−ε)×Rd ≤ 2ρ(X1, X2)−α|ut(X1)− ut(X2)|
≤ 2[(uξ)]2+α

≤ 2C[(uξ)t − L(X1)(uξ)]α

≤ 2C[(uξ)t − L(uξ)]α + 2C[(L(X1)− L)(uξ)]α. (2.7)

We estimate successively the two terms of the right hand side of the last line.
First, we write

(uξ)t − L(uξ) = ξf + u(ξt − Lξ)− 2ADu ·Dξ

since L(uξ) = uLξ + ξLu + 2ADu ·Dξ. Using interpolation inequalities (1.3),
this implies

[(uξ)t − L(uξ)]α ≤ C(γ)([f ]α + [u]α + [Du]α)

≤ γα[u]2+α + C(γ)([f ]α + |u|0). (2.8)

We next write

(L(X1)− L)(uξ) = trace[(A(X1)−A(X))D2(uξ)]

and for X such that ρ(X1, X) ≤ 2γ, we thus get thanks to interpolation in-
equalities (1.3)

[(L(X1)− L)(uξ)]α ≤ Cγα[D2(uξ)]α + C|D2(uξ)|0
≤ Cγα[u]2+α + C(γ)|u|0. (2.9)

13



Combining (2.7), (2.8) and (2.9), we finally get in the case where ρ(X1, X2) ≤ γ,

[ut]α,(ε,T−ε)×Rd ≤ Cγα[u]2+α + C(γ)([f ]α + |u|0).

We conclude that we have in both cases

[ut]α,(ε,T−ε)×Rd ≤ (Cγα + 1/4)[u]2+α + C(γ)([f ]α + |u|0).

We can argue in a similar way to get

[D2u]α,(ε,T−ε)×Rd ≤ (Cγα + 1/4)[u]2+α + C(γ)([f ]α + |u|0).

Adding these two inequalities yield

[u]2+α,(ε,T−ε)×Rd ≤ (Cγα + 1/2)[u]2+α + C(γ)([f ]α + |u|0).

Now choose γ such that Cγα ≤ 1/4 and get

[u]2+α,(ε,T−ε)×Rd ≤
3

4
[u]2+α + C([f ]α + |u|0).

Taking the supremum over ε ∈ (0, T/2) allows us to conclude in the case where
b ≡ 0 and c ≡ 0.

If now b 6= 0 and c 6= 0, we apply the previous result and get

[u]2+α ≤ C([f + b ·Du+ cu]α + |u|0).

Use now interpolation inequalities once again to conclude.

3 Viscosity solutions: a short overview

Viscosity solutions were first introduced by Crandall and Lions [6]. This notion
of weak solution enabled to characterize the value function of an optimal control
problem as the unique solution of the corresponding first order Hamilton-Jacobi
equation. An example of such an equation is the following one

∂u

∂t
+

1

2
|Du|2 + V (x) = 0 (3.1)

for some continuous function V . The viscosity solution theory is also by now a
fundamental tool for the study of nonlinear elliptic and parabolic equations.

3.1 Definition and stability of viscosity solutions

3.1.1 Degenerate ellipticity

We recall that linear parabolic equations in non-divergence form have the fol-
lowing general form

∂u

∂t
− Lu = f
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with
Lu = trace(AD2u) + b ·Du+ cu

with A ≥ 0 (in the sense of symmetric matrices).
We now consider very general nonlinear parabolic equation of the form

∂u

∂t
+ F (t, x,Du,D2u) = 0 (3.2)

where we assume that the nonlinearity F : (0, T )×Ω×Rd×Sd → R is continuous
and satisfies the following condition

A ≤ B ⇒ F (t, x, p, A) ≥ F (t, x, p,B). (3.3)

In other words, the nonlinearity F is non-increasing with respect to the matrix
variable. We say that F is degenerate elliptic.

Remark 3.1. In the case of parabolic Monge-Ampère equations such as (1.1) or
(1.2), the nonlinearity is well-defined and degenerate elliptic only on a subset of
Sd; precisely, it is only defined either on the subset S+

d of semi-definite symmetric
matrices or on the subset S++

d of definite symmetric matrices. Hence, solutions
should be convex or strictly convex.

3.1.2 Semi-continuity

Consider an open set Q ⊂ Rd+1. We recall that u is lower semi-continuous at
(t, x) if, for all sequences (sn, yn)→ (t, x),

u(t, x) ≤ lim inf
n→∞

u(sn, yn).

In the same way, one can define upper semi-continuous functions. Very often,
the previous inequality is written

u(t, x) ≤ lim inf
(s,y)→(t,x)

u(s, y).

If u is bounded from below in a neighbourhood of Q, one can define the lower
semi-continuous envelope of u in Q as the largest lower semi-continuous function
lying below u. It is denoted by u∗. Similarly, the upper semi-continuous envelope
u∗ of a locally bounded from above function u can be defined.

3.1.3 Definition(s)

In this paragraph, we give the definition of a viscosity solution of the fully
nonlinear parabolic equation (3.2). We give a first definition in terms of test
functions. We then introduce the notion of subdifferentials and superdifferen-
tials with which an equivalent definition can be given (see Remark 3.8 below).

In order to motivate the definition of a viscosity solution, we first derive
necessary conditions for smooth solutions of (3.2).
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Consider an open set Q ⊂ Rd+1 and a function u : Q→ R which is C1 with
respect to t and C2 with respect to x. Consider also a function φ with the same
regularity and assume that u ≤ φ in a neighbourhood of (t, x) ∈ Q and u = φ
at (t, x). Then

∂φ

∂t
(t, x) =

∂u

∂t
(t, x)

Dφ(t, x) = Du(t, x)

D2φ(t, x) ≥ D2u(t, x).

Using the degenerate ellipticity of the nonlinearity F , we conclude that

∂φ

∂t
(t, x) + F (t, x,Dφ(t, x), D2φ(t, x))

≤ ∂u

∂t
(t, x) + F (t, x,Du(t, x), D2u(t, x)) = 0.

A similar argument can be used to prove that if u ≥ φ in a neighbourdhood of
(t, x) with u(t, x) = φ(t, x) then the reserve inequality holds true. These facts
motivate the following definitions.

Definition 3.2 (Test functions). A test function on the set Q is a function
φ : Q→ R which is C1 with respect to t and C2 with respect to x.

Given a function u : Q→ R, we say that the test function φ touches u from
above (resp. below) at (t, x) if u ≤ φ (resp. u ≥ φ) in a neighbourhood of (t, x)
and u(t, x) = φ(t, x).

Remark 3.3. If u − φ reaches a local maximum (resp. minimum) at (t0, x0),
then φ+ [u(t0, x0)− φ(t0, x0)] touches u from above (resp. below).

Definition 3.4 (Viscosity solutions). Consider a function u : Q→ R for some
open set Q.

• u is a subsolution of (3.2) if u is upper semi-continuous and if, for all
(t, x) ∈ Q and all test functions φ touching u from above at (t, x),

∂φ

∂t
(t, x) + F (t, x,Dφ(t, x), D2φ(t, x)) ≤ 0.

• u is a supersolution of (3.2) if u is lower semi-continuous and if, for all
(t, x) ∈ Q and all test functions φ touching u from below at (t, x),

∂φ

∂t
(t, x) + F (t, x,Dφ(t, x), D2φ(t, x)) ≥ 0.

• u is a solution of (3.2) if it is both a sub- and a supersolution.

Remark 3.5. Remark that a viscosity solution of (3.2) is a continuous function.
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When proving uniqueness of viscosity solutions, it is convenient to work with
the following objects.

Definition 3.6 (Second order sub-/super-differentials). The following set

P±(u)(t, x) = {(α, p,X) ∈ R× Rd × Sd :

(α, p,X) = (∂tφ(t, x), Dφ(t, x), D2φ(t, x))

s.t. φ touches u from above (resp. below) at (t, x)}

is the super-(resp. sub-)differential of the function u at the point (t, x).

Remark 3.7. Here is an equivalent definition: (α, p,X) ∈ P+u(t, x) if and only
if

u(s, y) ≥ u(t, x)+α(s−t)+p ·(y−x)+
1

2
X(x−y) ·(x−y)+o

(
|s− t|+ |y − x|2

)
for (s, y) in a neighbourhood of (t, x). A similar characterization holds for P−.

Remark 3.8. The definition of a viscosity solution can be given using sub- and
super-differentials of u. Indeed, as far as subsolutions are concerned, in view of
Definitions 3.4 and 3.6, u is a viscosity subsolution of (3.2) in the open set Q if
and only if for all (t, x) ∈ Q and all (α, p,X) ∈ P+u(t, x),

α+ F (t, x, p,X) ≤ 0.

When proving uniqueness, the following limiting versions of the previous
objects are used.

Definition 3.9 (Limiting super-/sub-differentials).

P±(u)(t, x) = {(α, p,X) ∈ R× Rd × Sd : ∃(tn, xn)→ (t, x) s.t.

(αn, pn, Xn)→ (α, p,X), u(tn, xn)→ u(t, x),

(αn, pn, Xn) ∈ P±u(tn, xn)}

Remark 3.10. Since F is assumed to be continuous, the reader can remark that
u is a viscosity subsolution of (3.2) in Q if and only if for all (t, x) ∈ Q and all

(α, p,X) ∈ P+
u(t, x),

α+ F (t, x, p,X) ≤ 0.

An analogous remark can be made for supersolutions.

3.1.4 First properties

In this section, we state without proofs some important properties of sub- and
supersolutions. Proofs in the elliptic case can be found in [5] for instance. These
proofs can be readily adapted to the parabolic framework.

Proposition 3.11 (Stability properties). • Let (uα)α be a family of subso-
lutions of (3.2) in Q such that the upper semi-continuous envelope u of
supα uα is finite in Q. Then u is also a subsolution of (3.2) in Q.
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• If (un)n is a sequence of subsolutions of (3.2), then the upper relaxed-limit
u of the sequence defined as follows

ū(t, x) = lim sup
(s,y)→(t,x),n→∞

un(s, y) (3.4)

is everywhere finite in Q, then it is a subsolution of (3.2) in Q.

Remark 3.12. An analogous proposition can be stated for supersolutions.

3.2 The Perron process

In this subsection, we would like to give an idea of the general process that
allows one to construct solutions for fully nonlinear parabolic equations.

3.2.1 General idea

The Perron process is well known in harmonic analysis and potential analysis.
It has been adapted to the case of fully nonlinear elliptic equations in non-
divergence form by Ishii [12].

The general idea is the following one: assume that one can construct a
subsolution u− and a supersolution u+ to a nonlinear parabolic equation of the
form (3.2) such that u− ≤ u+. Using Proposition 3.11, we can construct a
maximal subsolution u lying between u− and u+. Then a general argument
allows one to prove that the lower semi-continuous envelope of the maximal
subsolution u is in fact a supersolution.

Remark 3.13. Before making the previous argument a little bit more precise, we
would like to point out that the function u constructed by this general method
is not a solution in the sense of Definition 3.4. It is a so-called discontinuous
(viscosity) solution of (3.2). We decided to stick to continuous viscosity solu-
tion in these lecture notes and to state the result of the Perron process as in
Lemma 3.15 below. See also Paragraph 3.2.3.

Example 3.14. In many important cases, u± are chosen in the following form:
u0(x) ± Ct where u0 is the smooth initial datum and C is a large constant,
precisely:

C ≥ sup
x∈Rd

|F (0, x,Du0(x), D2u0(x))|.

If non-smooth/unbounded initial data are to be considered, discontinuous sta-
bility arguments can be used next.

3.2.2 Maximal subsolution and bump construction

We now give more details about the general process to construct a “solution”.
We consider a cylindrical domain Q = (0, T )× Ω for some domain Ω ⊂ Rd.

Lemma 3.15. Assume that u± is a super-(resp. sub-) solution of (3.2) in Q.
Then there exists a function u : Q → R such that u− ≤ u ≤ u+ and u∗ is a
subsolution of (3.2) and u∗ is a supersolution of (3.2).
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Proof. Consider

S = {v : Q→ R s.t. u− ≤ v ≤ u+ and v∗ subsolution of (3.2)}.

By Proposition 3.11, we know that the upper semi-continuous envelope u∗ of
the function

u = sup
v∈S

v

is a subsolution of (3.2).
We next prove that the lower semi-continuous envelope u∗ of u is a superso-

lution of (3.2) in Q. Arguing by contradiction, one can assume that there exists
(α, p,X) ∈ P−u∗(t, x) such that

α+ F (t, x, p,X) =: −θ < 0. (3.5)

Remark that at (t, x), we have necessarily

u∗(t, x) < u+(t, x).

Indeed, if this is not the case, then (α, p,X) ∈ P−u+(t, x) and (3.5) cannot be
true since u+ is a supersolution of (3.2). Up to modifying the constant θ, we
can also assume that

u∗(t, x)− u+(t, x) ≤ −θ < 0. (3.6)

Without loss of generality, we can also assume that (t, x) = (0, 0) and u∗(t, x) =
0. Let us consider the following “paraboloid”

P (s, y) = τs+ p · y +
1

2
Xy · y + δ − γ

(
1

2
|y|2 + |s|

)
with δ and γ to be chosen later. Compute next

∂P

∂s
(s, y) + F (s, y,DP (s, y), D2P (s, y))

= τ − γ s
|s|

+ F (s, y, p+Xy − γy,X − γI)

(if s = 0, s
|s| should be replaced with any real number σ ∈ [−1, 1]). Hence, for

r and γ small enough, we have

∂P

∂s
+ F (s, y,DQ,D2Q) ≤ −θ

2
< 0

for all (s, y) ∈ Vr. Moreover, since (τ, p,X) ∈ P−u∗(t, x), we have

u∗(s, y) ≥ τs+ p · y +
1

2
Xy · y + o(|y|2 + |s|)

≥ P (s, y)− δ + γ

(
1

2
|y|2 + |s|

)
+ o(|y|2 + |s|).
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Choose now δ = γr
4 and consider (s, y) ∈ Vr \ Vr/2:

u∗(s, y) ≥ P (s, y)− γr

4
+
γr

2
+ o(r) = P (s, y) +

γr

4
+ o(r).

Consequently, for r small enough,

u(s, y)− P (s, y) ≥ γr

8
> 0 in Vr \ Vr/2,

P (s, y) < u+(s, y) in Vr

where we used (3.6) to get the second inequality.
We next consider

U(s, y) =

{
max{u(s, y), P (s, y)} if (s, y) ∈ Vr,
u(s, y) if not.

On one hand, we remark that the function U∗ is still a subsolution of (3.2) and
U ≥ u ≥ u− and U ≤ u+. Consequently, U ∈ S and in particular, U ≤ u. On
the other hand, supR+×Rd{U − u} ≥ δ; indeed, consider (tn, xn) → (0, 0) such
that u(tn, xn)→ u∗(0, 0) = 0 and write

lim
n→∞

U(tn, xn)− u(tn, xn) ≥ lim
n→∞

P (tn, xn)− u(tn, xn) = δ > 0.

This contradicts the fact that U ≤ u. The proof of the lemma is now complete.

3.2.3 Continuous solutions from comparison principle

As mentioned above, the maximal subsolution u∗ is not necessarily continuous;
hence, its lower semi-continuous envelope u∗ does not coincide necessarily with
it. In particular, we cannot say that u is a solution in the sense of Definition 3.4
(cf. Remark 3.13 above).

We would get a (continuous viscosity) solution if u∗ = u∗. On one hand,
u∗ is upper semi-continuous by construction and on the other hand u∗ ≤ u∗ by
definition of the semi-continuous envelopes. Hence, u is a solution of (3.2) if
and only if u∗ ≤ u∗ in Q. Since u∗ is a subsolution of (3.2) in Q and u∗ is a
supersolution of (3.2) in Q, it is thus enough that Equation (3.2) satisfies a com-
parison principle and that the barriers u± satisfy some appropriate inequality
on the parabolic boundary. More precisely, we would like on one hand that

Comparison principle. If u is a subsolution of (3.2) in Q and v is a super-
solution of (3.2) in Q and u ≤ v on the parabolic boundary ∂pQ, then u ≤ v in
Q.

and on the other hand, we would like that u∗ ≤ u∗ on ∂pQ. This boundary
condition would be true if

(u+)∗ ≤ (u−)∗ on ∂pQ.

We emphasize that the lower and upper semi-continuous envelopes appearing
in the previous inequality are performed with respect to time and space.
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Example 3.16. If for instance Q = (0, T )× Rd, then barriers should satisfy

(u+)∗(0, x) ≤ (u−)∗(0, x) for x ∈ Rd.

This condition is fullfilled for such a Q if u± = u0 ± Ct (see Example 3.14).

In the next subsection, we will present general techniques for proving com-
parison principles. The reader should be aware of the fact that, in many practical
cases, general theorems from the viscosity solution theory do not apply to the
equation under study. In those cases, one has to adapt the arguments presented
below in order to take into account the specific difficulties implied by the specific
equation. The reader is referred to [5] for a large review of available tools.

3.3 Introduction to comparison principles

In this subsection, we present classical techniques to prove comparison principles
in some typical cases.

3.3.1 First order equations

In this paragraph, we first study first order Hamilton-Jacobi equations of the
following form

∂u

∂t
+H(x,Du) = 0. (3.7)

As we will see, a comparison principle holds true if H satisfies the following
structure condition: for all x, y, p ∈ Rd,

|H(x, p)−H(y, p)| ≤ C|x− y|. (3.8)

In order to avoid technicalities and illustrate main difficulties, we assume that
x 7→ H(x, p) is Zd-periodic; hence, solutions should also be Zd-periodic for
Zd-periodic initial data.

Theorem 3.17 (Comparison principle - II). Consider a continuous Zd-periodic
function u0. If u is a Zd-periodic subsolution of (3.7) in (0, T ) × Rd and v is
a Zd-periodic supersolution of (3.7) in (0, T )× Rd such that u(0, x) ≤ u0(x) ≤
v(0, x) for all x ∈ Rd, then u ≤ v in (0, T )× Rd.

Proof. The beginning of the proof is the same as in the proof of Theorem 2.4:
we assume that

M = sup
t∈(0,T ),x∈Rd

{
u(t, x)− v(t, x)− γ

T − t

}
> 0.

Here, we cannot use the equation directly, since it is not clear wether u −
v satisfies a nonlinear parabolic equation or not (recall that the equation is
nonlinear). Hence, we should try to duplicate the (time and space) variables.
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Doubling variable technique.

Consider

Mε = sup
t,s∈(0,T ),x,y∈Rd

{
u(t, x)− v(s, y)− (t− s)2

2ε
− |x− y|

2

2ε
− η

T − t

}
.

Remark that Mε ≥ M > 0. This supremum is reached since u is upper semi-
continuous and v is lower semi-continuous and both functions are Zd-periodic.
Let (tε, sε, xε, yε) denote a maximizer. Then we have

(tε − sε)2

2ε
+
|xε − yε|2

2ε
≤ u(tε, xε)− v(sε, yε) ≤ |u+|0 + |v−|0

where we recall that |w|0 = sup(t,x)∈(0,T )×Rd |w(t, x)|. In particular, up to ex-

tracting subsequences, tε → t, sε → t and xε → x, yε → y and tε − sε = O(
√
ε)

and xε − yε −O(
√
ε).

Assume first that t = 0. Then

0 < M ≤ lim sup
ε→0

Mε ≤ lim sup
ε

u(tε, xε)−lim inf
ε

v(sε, yε) ≤ u(0, x)−v(0, x) ≤ 0.

This is not possible. Hence t > 0.
Since t > 0, for ε small enough, tε > 0 and sε > 0. Now remark that the

function φu

(t, x) 7→ v(sε, yε) +
(t− sε)2

2ε
+
|x− yε|2

2ε
+

η

T − t
is a test function such that u−φu reaches a maximum at (tε, xε). Hence (recall
Remark 3.3),

η

(T − tε)2
+
tε − sε
ε

+H(xε, pε) ≤ 0

with pε = xε−yε
ε . Similarly, the function φv

(s, y) 7→ u(tε, xε)−
(s− tε)2

2ε
− |y − xε|

2

2ε
− η

T − tε
is a test function such that v − φv reaches a minimum at (sε, yε); hence

tε − sε
ε

+H(yε, pε) ≤ 0

with the same pε! Substracting the two viscosity inequalities yields

η

(T − tε)2
≤ H(yε, pε)−H(xε, pε).

In view of (3.8), we conclude that

η

T 2
≤ C|xε − yε| = O(

√
ε).

Letting ε→ 0 yields the desired contradiction.
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Remark 3.18. Condition (3.8) is satified by (3.1) if the potential V is Lipschitz
continuous. On the contrary, if H(x, p) = c(x)|p|, then the Hamilton-Jacobi
equation is the so-called eikonal equation and it does not satisfy (3.8) even if c
is globally Lipschitz. Such an Hamiltonian satisfies

|H(x, p)−H(y, )| ≤ C(1 + |p|)|x− y|. (3.9)

For such equations, the penalization should be studied in greater details in order
to prove that

|xε − yε|2

2ε
→ 0 as ε→ 0.

With this piece of information in hand, the reader can check that the same
contradiction can be obtained for Lipschitz c’s. See for instance [2] for details.

Since we will use once again this additional fact about penalization, we state
it now in a lemma.

Lemma 3.19. Consider ũ(t, x) = u(t, x)− η(T − t)−1. Assume that

Mε = sup
x,y∈Rd
t,s∈(0,T )

ũ(t, x)− v(s, y)− |x− y|
2

2ε
− |t− s|

2

2ε

is reached at (xε, yε, tε, sε). Assume moreover that (xε, yε, tε, sε) → (x, y, t, s)
as ε→ 0. Then

|xε − yε|2

ε
→ 0 as ε→ 0.

Remark 3.20. The reader can check that the previous lemma still holds true if
v(s, y) is replaced with v(t, y) and if the term ε−1|t− s|2 is removed.

Proof. Remark first that ε 7→Mε is non-decreasing and Mε ≥M := supRd(ũ−
v). Hence, as ε→ 0, Mε converges to some limit l ≥M . Moreover,

M2ε ≥ ũ(tε, xε)− v(sε, yε)−
|xε − yε|2

4ε
− |tε − sε|

2

4ε

≥Mε +
|xε − yε|2

4ε
+
|tε − sε|2

4ε
.

Hence,
|xε − yε|2

4ε
+
|tε − sε|2

4ε
≤M2ε −Mε → l − l = 0.

3.3.2 Second order equations with no x dependance

In this subsection we consider the following equation

∂u

∂t
+H(x,Du)−∆u = 0 (3.10)
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still assuming that x 7→ H(x, p) is Zd-periodic and satisfies (3.8). The classical
parabolic theory implies that there exists smooth solutions for such an equation.
However, we illustrate viscosity solution techniques on this (too) simple example.

Theorem 3.21 (Comparison principle - III). Consider a continuous Zd-periodic
function u0. If u is a Zd-periodic subsolution of (3.10) in (0, T )× Rd and v is
a Zd-periodic supersolution of (3.7) in (0, T )× Rd such that u(0, x) ≤ u0(x) ≤
v(0, x) for all x ∈ Rd, then u ≤ v in (0, T )× Rd.

Remark 3.22. A less trivial example would be

∂u

∂t
+H(x,Du)− trace(A0D

2u) = 0

for some degenerate matrix A0 ∈ Sd, A0 ≥ 0. We prefer to keep it simple and
study (3.10).

First attempt of proof. We follow the proof of Theorem 3.17. If one uses the
two test functions φu and φv to get viscosity inequalities, this yields

1

(T − tε)2
+
tε − sε
ε

+H(xε, pε) ≤ trace(ε−1I),

tε − sε
ε

+H(yε, pε) ≥ − trace(ε−1I).

Substracting these two inequalities, we get

1

T 2
≤ O(

√
ε) +

2d

ε

and it is not possible to get a contradiction by letting ε→ 0.

In the previous proof, we lost a very important piece of information about
second order derivatives; indeed, assume that u and v are smooth. As far as
first order equations are concerned, using the first order optimality condition

Du(tε, xε)− pε = 0 and −Dv(sε, yε) + pε = 0

is enough. But for second order equations, one has to use second order optimal-
ity condition (

Du(tε, xε) 0
0 −Dv(sε, yε)

)
≤
(
ε−1I −ε−1I
−ε−1I ε−1I

)
.

It turns out that for semi-continuous functions, the previous inequality still
holds true up to an arbitrarily small error in the right hand side.

Uniqueness of viscosity solutions for second order equations where first ob-
tained by Lions [22] by using probabilistic methods. The analytical break-
through was achieved by Jensen [15]. Ishii’s contribution was also essential [13].
In particular, he introduced the matrix inequalities contained in the following
lemma. See [5] for a detailed historical survey.

We give a first version of Jensen-Ishii’s lemma for the specific test function
(2ε)−1|x− y|2.
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Lemma 3.23 (Jensen-Ishii’s lemma - I). Let U and V be two open sets of
Rd and I an open interval of R. Consider also a bounded subsolution u of
(3.2) in I × U and a bounded supersolution v of (3.2) in I × V . Assume that

u(t, x) − v(t, y) − |x−y|
2

2ε reaches a local maximum at (t0, x0, y0) ∈ I × U × V .
Letting p denote ε−1(x0 − y0), there exists τ ∈ R and X,Y ∈ Sd such that

(τ, p,X) ∈ P+
u(t0, x0), (τ, p, Y ) ∈ P−v(t0, y0)

−2

ε

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ 3

ε

(
I −I
−I I

)
. (3.11)

Remark 3.24. As a matter of fact, it is not necessary to assume that u and v
are sub- and supersolution of an equation of the form (3.2). We chose to present
first the result in this way to avoid technicalities. Later on, we will need the
standard version of this lemma, so we will state it. See Lemma 3.30 below.

Remark 3.25. Such a result holds true for more general test functions φ(t, x, y)
than (2ε)−1|x− y|2. However, this special test function is a very important one
and many interesting results can be proven with it. We will give a more general
version of this important result, see Lemma 3.30.

Remark 3.26. The attentive reader can check that the matrix inequality (3.11)
implies in particular X ≤ Y .

Remark 3.27. This lemma can be used as a black box and one does so very
often. But we mentioned above that some times, one has to work more to get a
uniqueness result for some specific equation. In this case, it could be necessary
to consider more general test functions, or even to open the black box and go
through the proof to adapt it in a proper way.

With such a lemma in hand, we can now prove Theorem 3.21.

Proof of Theorem 3.21. We argue as in the proof of Theorem 3.17 but we do
not duplicate the time variable since it is embedded in Lemma 3.23. Instead,
we consider

Mε = sup
x,y∈Rd
t∈(0,T )

{
u(t, x)− v(t, y)− |x− y|

2

2ε
− η

T − t

}
,

let (tε, xε, yε) denote a maximiser and apply Lemma 3.23 with ũ(t, x) = u(t, x)−
η

T−t and v and we get τ,X, Y such that

(τ +
η

(T − t)2
, pε, X) ∈ P+

u(tε, xε), (τ, pε, Y ) ∈ P−v(tε, yε), X ≤ Y

(see Remark 3.26 above). Hence, we write the two viscosity inequalities

γ

(T − t)2
+ τ +H(xε, pε) ≤ traceX

τ +H(yε, pε) ≥ traceY ≥ traceX
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and we substract them in order to get the desired contradiction
γ

T 2
≤ O(

√
ε).

The proof is now complete.

3.3.3 Second order equations with x dependance

In this paragraph, we prove a comparison principle for the following degenerate
elliptic equation

∂u

∂t
+H(x,Du)− trace(σ(x)σT (x)D2u) = 0 (3.12)

under the following assumptions

• x 7→ H(x, p) is Zd-periodic and satisfies (3.9);

• σ : Rd →Md,m(R) is Lipschitz continuous and Zd-periodic, m ≤ d.

Here, Md,m(R) denotes the set of real d ×m-matrices. We make precise that
σT denotes the transpose matrix of the d×m-matrix σ.

The following theorem is, to some respects, the nonlinear counterpart of the
first comparison principle we proved in Section 2 (see Corollary 2.6). Apart from
the nonlinearity of the equation, another significant difference with Corollary 2.6
is that Equation (3.12) is degenerate elliptic and not uniformly elliptic.

Theorem 3.28 (Comparison principle - IV). Consider a continuous Zd-periodic
function u0. If u is a Zd-periodic subsolution of (3.10) in (0, T )× Rd and v is
a Zd-periodic supersolution of (3.7) in (0, T )× Rd such that u(0, x) ≤ u0(x) ≤
v(0, x) for all x ∈ Rd, then u ≤ v in (0, T )× Rd.

Proof. We argue as in the proof of Theorem 3.21. The main difference lies after
writing viscosity inequalities thanks to Jensen-Ishii’s lemma. Indeed, one gets
η

T 2
≤−H(xε, pε) +H(yε, pε) + trace(σ(xε)σ

T (xε)X)− trace(σ(yε)σ
T (yε)Y )

≤C
(

1 +
|xε − yε|

ε

)
|xε − yε|

+ trace(σ(xε)σ
T (xε)X)− trace(σ(yε)σ

T (yε)Y ).

The first term can be handled thanks to Lemma 3.19. But one cannot just use
X ≤ Y obtained from the matrix inequality (3.11) to handle the second one.
Instead, consider an orthonormal basis (ei)i of Rm and write

trace(σ(xε)σ
T (xε)X)− trace(σ(yε)σ

T (yε)Y )

= trace(σT (xε)Xσ(xε))− trace(σT (yε)Y σ(yε))

=

m∑
i=1

(Xσ(xε)ei · σ(xε)ei − Y σ(yε)ei · σ(yε)ei)

≤3

ε

m∑
i=1

|σ(xε)ei − σ(yε)ei|2;
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we applied (3.11) to vectors of the form (σ(xε)ei, σ(yε)ei) ∈ Rd ×Rd to get the
last line. We can now use the fact that σ is Lipschitz continuous and get

trace(σ(xε)σ
T (xε)X)− (σ(yε)σ

T (yε)Y ) ≤ C |xε − yε|
2

ε
.

We thus finally get
η

T 2
≤ C|xε − yε|+ C

|xε − yε|2

ε
.

We can now get the contradiction η < 0 by using Lemma 3.19 and letting ε→ 0.
The proof is now complete.

3.4 Hölder continuity through the Ishii-Lions method

In this subsection, we want to present a technique introduced by Ishii and Lions
in [14] in order to prove Hölder continuity of solutions of very general fully
nonlinear elliptic and parabolic equations. On one hand, it is much simpler
than the proof we will present in the next section; on the other hand, it cannot
be used to prove further regularity such as Hölder continuity of the gradient.

The fundamental assumptions is that the equation is uniformly elliptic (see
below for a definition). For pedagogical purposes, we do not want to prove a
theorem for the most general case. Instead, we will look at (3.12) for Sd-valued
σ’s and special H’s

∂u

∂t
+ c(x)|Du| − trace(σ(x)σ(x)D2u) = 0 (3.13)

Assumptions (A).

• c is bounded and Lipschitz continuous in Q;

• σ : Q→ Sd is bounded and Lipschitz continuous in x and constant in t;

• There exists λ > 0 such that for all X = (t, x) ∈ Q,

A(x) := σ(x)σ(x) ≥ λI.

Under these assumptions, the equation is uniformly elliptic, i.e. there exist two
positive numbers 0 < λ ≤ Λ, called ellipticity constants, such that

∀X = (t, x) ∈ Q, λI ≤ A(x) ≤ ΛI. (3.14)

Theorem 3.29. Under Assumptions (A) on H and σ, any viscosity solution u
of (3.13) in an open set Q ⊂ Rd+1 is Hölder continuous in time and space.

When proving Theorem 3.29, we will need to use Jensen-Ishii’s lemma for a
test function which is more general than (2ε)−1|x − y|2. Such a result can be
found in [5].
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Lemma 3.30 (Jensen-Ishii’s lemma - II). Let U and V be two open sets of
Rd and I an open interval of R. Consider also a bounded subsolution u of
(3.2) in I × U and a bounded supersolution v of (3.2) in I × V . Assume that
u(t, x)− v(t, y)− φ(x− y) reaches a local maximum at (t0, x0, y0) ∈ I ×U × V .
Letting p denote Dφ(x0−y0), for all β > 0 such that βZ < I, there exists τ ∈ R
and X,Y ∈ Sd such that

(τ, p,X) ∈ P+
u(t0, x0), (τ, p, Y ) ∈ P−v(t0, y0)

− 2

β

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤
(
Zβ −Zβ
−Zβ Zβ

)
(3.15)

where Z = D2φ(x0 − y0) and Zβ = (I − βZ)−1Z.

We can now turn to the proof of Theorem 3.29.

Proof of Theorem 3.29. We first prove that u is Hölder continuous with respect
to x. Without loss of generality, we can assume that Q is bounded. We would
like to prove that for all X0 = (t0, x0) ∈ Q and (t, x), (t, y) ∈ Q,

u(t, x)− u(t, y) ≤ L1|x− y|α + L2|x− x0|2 + L2(t− t0)2

for L1 = L1(X0) and L2 = L2(X0) large enough. We thus consider

M = sup
(t,x),(t,y)∈Q

{u(t, x)− u(t, y)− φ(x− y)− Γ(t, x)}

with φ(z) = L1|z|α and Γ(t, x) = L2|x − x0|2 + L2(t − t0)2 and we argue by
contradiction: we assume that for all α ∈ (0, 1), L1 > 0, L2 > 0, we have M > 0.

Since Q is bounded, M is reached at a point denoted by (t̄, x̄, ȳ). The fact
that M > 0 implies first that x̄ 6= ȳ. It also implies |x̄− ȳ| ≤

(
2|u|0,Q
L1

) 1
α

=: A < d(X0, ∂Q),

|X̄ −X0| <
√

2|u|0,Q
L2

=: R2 ≤ d(X0,∂Q)
2

(3.16)

if L1 and L2 are chosen so that

L1 >
2|u|0,Q

(d(X0, ∂Q))α
, L2 ≥

8|u|0,Q
(d(X0, ∂Q))2

.

In particular we have x̄, ȳ ∈ Ω. We next apply Jensen-Ishii’s Lemma 3.30 to
ũ(t, x) = u(t, x) − Γ(t, x) and v(s, y). Then there exists τ ∈ R and X,Y ∈ Sd
such that

(τ + 2L2(t̄− t0), p̄+ 2L2(x̄−x0), X + 2L2I) ∈ P+
u(t̄, x̄), (τ, p̄, Y ) ∈ P−u(t̄, ȳ)

where p̄ = Dφ(x̄− ȳ) and Z = D2φ(x̄− ȳ) and (3.15) holds true. In particular,
X ≤ Y . We can now write the two viscosity inequalities

2L2(t̄− t0) + τ +H(x̄, p̄+ 2L2(x̄− x0)) ≤ trace(A(x̄)(X + 2L2I))

τ +H(ȳ, p̄) ≥ trace(A(ȳ)Y )
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and combine them with (3.16) and (3.14) to get

− CL2 ≤ 2L2(t̄− t0) ≤ c(ȳ)|p̄| − c(x̄)|p̄+ 2L2(x̄− x0)|
+ CL2 + trace(A(x̄)X)− trace(A(ȳ)Y ). (3.17)

We next estimate successively the difference of first order terms and the differ-
ence of second order terms. As far as first order terms are concerned, we use
that c is bounded and Lipschitz continuous and (3.16) to get

c(ȳ)|p̄| − c(x̄)|p̄+ 2L2(x̄− x0)| ≤ C|x̄− ȳ||p̄|+ CL2|x̄− x0|
≤ C|x̄− ȳ||p̄|+ CL2. (3.18)

As far as second order terms are concerned, we use (3.14) to get

trace(A(x̄)X)− trace(A(ȳ)Y ) ≤ trace(A(x̄)(X − Y )) + trace((A(x̄)−A(ȳ))Y )

≤ λ trace(X − Y )

+
∑
i

(σ(x̄)Y σ(x̄)ei · ei − σ(ȳ)Y σ(ȳ)ei · ei)

≤ λ trace(X − Y ) + C‖Y ‖|x̄− ȳ|.

We should next estimate |p̄|, trace(X − Y ) and ‖Y ‖. In order to do so, we
compute Dφ and D2φ. It is convenient to introduce the following notation

a = x̄− ȳ, â =
a

|a|
, ε = |a|

p̄ = Dφ(a) = L1α|a|α−2a (3.19)

Z = D2φ(a) = L1α(|a|α−2I + (α− 2)|a|α−4a⊗ a)

= γ−1(I − (2− α)â⊗ â). (3.20)

with γ = (L1α)−1ε2−α. The reader can remark that if one chooses β = γ/2,
then

Zβ = (I − βZ)−1Z =
2

γ

(
I − 2

2− α
3− α

â⊗ â
)
. (3.21)

Since Y is such that − 1
β I ≤ −Y ≤ Z

β , we conclude that

‖Y ‖ ≤ 2

γ
.

We next remark that (3.15) and (3.21) imply that all the eigenvalues of X − Y
are non-positive and that one of them is less than

4Zβ â · â = − 8

γ

1− α
3− α

.

Hence

trace(X − Y ) ≤ − 8

γ

1− α
3− α

.
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Finally, second order terms are estimated as follows

trace(A(x̄)X)− trace(A(ȳ)Y ) ≤ −C
γ

+ C
ε

γ
≤ − C

2γ
(3.22)

(choosing L1 large enough so that ε ≤ 1/2). Combining now (3.17), (3.18) and
(3.22) and recalling the definition of γ and ε, we finally get

−CL2 ≤ Cεα −
CL1

ε2−α ≤
C

L1
− CL

2
α
1 .

Since L2 is fixed, it is now enough to choose L1 large enough to get the desired
contradiction. The proof is now complete.

4 Harnack inequality

In this section, we consider the following special case of (3.2)

∂u

∂t
+ F (x,D2u) = f (4.1)

for some uniformly elliptic nonlinearity F (see below for a definition) and some
continuous function f . The goal of this section is to present and prove the
Harnack inequality (Theorem 4.35). This result states that the supremum of a
non-negative solution of (4.1) can be controlled from above by its infimum times
a universal constant plus the Ld+1-norm of the right hand side f . The estimates
that will be obtained do not depend on the regularity of F with respect to x.

We will see that it is easy to derive the Hölder continuity of solutions from
the Harnack inequality, together with an estimate of the Hölder semi-norm.

The Harnack inequality is a consequence of both the Lε-estimate (Theo-
rem 4.15) and of the local maximum principle (Proposition 4.34). Since this
local maximum principle is a consequence of the Lε-estimate, the heart of the
proof of the Harnack inequality thus lies in proving that a (small power of)
non-negative supersolution is integrable, see Theorem 4.15 below.

The proof of the Lε estimate relies on various measure estimates of the
solution. These estimates are obtained through the use of a maximum principle
due to Krylov in the parabolic case.

The proof of the Lε estimate also involves many different sets, cylinders
and cubes. The authors are aware of the fact that it is difficult to follow the
corresponding notation. Some pictures are provided and the authors hope they
are helpful with this respect.

Pucci’s operators.

Given ellipticity constants 0 < λ ≤ Λ, we consider

P+(M) = sup
λI≤A≤ΛI

{− trace(AM)},

P−(M) = inf
λI≤A≤ΛI

{− trace(AM)}.

30



Some model fully nonlinear parabolic equations are

∂u

∂t
+ P+(D2u) = f, (4.2)

∂u

∂t
+ P−(D2u) = f. (4.3)

Remark that those nonlinear operators only depend on ellipticity constants λ,Λ
and dimension d. They are said universal. Similarly, constants are said universal
if they only depend on λ,Λ and d.

Uniform ellipticity.

Throughout the remaining of this section, we make the following assumptions
on F : for all X,Y ∈ Sd and x ∈ Ω,

P−(X − Y ) ≤ F (x,X)− F (x, Y ) ≤ P+(X − Y ).

This condition is known as the uniform ellipticity of F . Remark that this
condition implies in particular that F is degenerate elliptic in the sense of Para-
graph 3.1.1 (see Condition 3.3).

4.1 A maximum principle

In order to state and prove the maximum principle, it is necessary to define
first the parabolic equivalent of the convex envelope of a function, which we will
refer to as the monotone envelope.

4.1.1 Monotone envelope of a function

Definition 4.1 (Monotone envelope). If Ω is a convex set of Rd and (a, b) is an
open interval, then the monotone envelope of a lower semi-continous function
u : (a, b)×Ω→ R is the largest function v : (a, b)×Ω→ R lying below u which
is non-increasing with respect to t and convex with respect to x. It is denoted
by Γ(u).

Combining the usual definition of the convex envelope of a function with
the non-increasing envelope of a function of one real variable, we obtain a first
representation formula for Γ(u).

Lemma 4.2 (Representation formula - I).

Γ(u)(t, x) = sup{ξ · x+ h : ξ · x+ h ≤ u(s, x) for all s ∈ (a, t], x ∈ Ω}.

The set where Γ(u) coincides with u is called the contact set ; it is denoted
by Cu. The following lemma comes from convex analysis, see e.g. [10].

Lemma 4.3. Consider a point (t, x) in the contact set Cu of u. Then ξ ·x+h =
Γ(u)(t, x) if and only if ξ lies in the convex subdifferential ∂u(t, x) of u(t, ·) at
x and −h equals the convex conjugate u∗(t, x) of u(t, ·) at x.
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Recall that a convex function is locally Lipschitz continuous and in partic-
ular a.e. differentiable, for a.e. contact points, (ξ, h) = (Du(t, x), u(t, x) − x ·
Du(t, x)). This is the reason why we next consider for (t, x) ∈ (a, b) × Ω the
following function

G(u)(t, x) = (Du(t, x), u(t, x)− x ·Du(t, x)).

The proof of the following elementary lemma is left to the reader.

Lemma 4.4. If u is C1,1 with respect to x and Lipschitz continuous with respect
to t, then the function G : (a, b) × Ω → Rd+1 is Lipschitz continuous in (t, x)
and for a.e. (t, x) ∈ (a, b)× Ω,

detDt,xG(u) = ut detD2u.

We now give a second representation formula for Γ(u) which will help us next
to describe viscosity subdifferentials of the monotone envelope (see Lemma 4.6
below).

Lemma 4.5 (Representation formula - II).

Γ(u)(t, x) = inf

{ d+1∑
i=1

λiu(si, xi) :

d+1∑
i=1

λixi = x, si ∈ [a, t],

d+1∑
i=1

λi = 1, λi ∈ [0, 1]

}
. (4.4)

In particular, if

Γ(u)(t0, x0) =

d+1∑
i=1

λiu(t0i , x
0
i ),

then

• for all i = 1, . . . , d+ 1, Γ(u)(ti, xi) = u(ti, xi);

• Γ(u) is constant with respect to t and linear with respect to x in the convex
set co{(t, x0

i ), (t
0
i , x

0
i ), i = 1, . . . d+ 1}.

Proof. Let Γ̃(u) denote the function defined by the right hand side of (4.4).
First, we observe that Γ̃(u) lies below u and is non-increasing with respect to
t and convex with respect to x. Consider now another function v lying below
u which is non-increasing with respect to t and convex with respect to x. We
then have

u(t, x) ≥ Γ̃(u)(t, x) ≥ Γ̃(v)(t, x) ≥ v(t, x).

The proof is now complete.
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We next introduce the notion of harmonic sum of matrices. For A1, A2 ∈ Sd
such that A1 +A2 ≥ 0, we consider

(A1�A2)ζ · ζ = inf
ζ1+ζ2=ζ

{A1ζ1 · ζ1 +A2ζ2 · ζ2}.

The reader can check that if A1 and A2 are not singular, A1�A2 = (A−1
1 +

A−1
2 )−1. We can now state and prove

Lemma 4.6. Let (α, p,X) ∈ P−Γ(u)(t0, x0) and

Γ(u)(t0, x0) =

d+1∑
i=1

λiu(t0i , x
0
i ). (4.5)

Then for all ε > 0 such that I + εX > 0, there exist (αi, Xi) ∈ (−∞, 0] × Sd,
i = 1, . . . , d+ 1, such that

(αi, p,Xi) ∈ P
−
u(t0i , x

0
i )∑d+1

i=1 λiαi = α
Xε ≤ λ−1

1 X1� · · ·�λ−1
d+1Xd+1

(4.6)

where Xε = X�ε−1I = (I + εX)−1X.

Proof. We first define for two arbitrary functions v, w : Rd → R,

v
x

� w(x) = inf
y∈Rd

v(x− y) + w(y).

For a given function v : [0,+∞)×Rd → R, we also consider the non-increasing
envelope M [v] of v:

M [v](t, x) = inf
s∈[0,t]

v(s, x).

We now can write
Γ(u)(t, x) =

x

�
1≤i≤d+1

M [ui](t, x)

where

ui(t, x) = λiu

(
t,
x

λi

)
.

Consider also t0i ∈ [0, t0] such that

M [ui](t0, x
0
i ) = ui(t

0
i , x

0
i ) = λiu

(
t0i ,

x0
i

λi

)
.

Lemma 4.6 is a consequence of the two following ones.

Lemma 4.7. Consider (α, p,X) ∈ P−V (t0, x0) where

V (t, x) =
x

�
1≤i≤d+1

vi(t, x)

V (t0, x0) =

d+1∑
i=1

vi(t0, x
0
i ).
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Then for all ε > 0 such that I + εX > 0, there exist (βi, Yi) ∈ R× Sd such that
we have

(βi, p, Yi) ∈ P
−
vi(t0, x

0
i )

d+1∑
i=1

βi = α

Xε ≤ �d+1
i=1 Yi.

Proof. We consider a test function φ touching V from below at (t0, x0) such
that

(α, p,X) = (∂tφ,Dφ,D
2φ)(t0, x0).

We write for (t, xi) in a neighborhood of (t0, x
0
i ),

φ(t,

d+1∑
i=1

xi)− φ(t0,

d+1∑
i=1

x0
i ) ≤

d+1∑
i=1

vi(t, xi)−
d+1∑
i=1

vi(t0, x
0
i ).

Following [1, 11], we conclude through Jensen-Ishii’s lemma for d+ 1 functions
and general test functions (see Lemma 5.6 in Appendix) that for all ε > 0 such
that I + dεX > 0, there exist (βi, Yi) ∈ R× Sd, i = 1, . . . , d+ 1 such that

(βi, p, Yi) ∈ P
−
vi(t0, x

0
i )

d+1∑
i=1

βi = α

and X . . . X
...

. . .
...

X . . . X


ε

≤


Y1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 Yd+1


where, for any matrix A, Aε = (I + εA)−1A. A small computation (presented
e.g. in [11, p.796]) yields that the previous matrix inequality is equivalent to
the following one

Xdεζ · ζ ≤
d+1∑
i=1

Yiζi · ζi

where ζ =
∑d+1
i=1 ζi. Taking the infimum over decompositions of ζ, we get the

desired matrix inequality.

Lemma 4.8. Consider s1 ∈ [0, s0] such that

M [v](s0, y0) = v(s1, y0).

Then for all (β, q, Y ) ∈ P−M [v](s0, y0),

(β, q, Y ) ∈ P−v(s1, y0) and β ≤ 0.
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Proof. We consider the test function φ associated with (β, q, Y ) and we write
for h and δ small enough

φ(s0 + h, y0 + δ)− φ(s0, y0) ≤M [v](s0 + h, y0 + δ)−M [v](s0, y0)

≤ v(s1 + h, y0 + δ)− v(s1, y0).

This implies (β, q, Y ) ∈ P−v(s1, y0). Moreover, choosing δ = 0, we get

φ(s0 + h, y0) ≤ φ(s0, y0)

and β ≤ 0 follows.

The proof is now complete.

4.1.2 Statement

The following result is the first key result in the theory of regularity of fully
nonlinear parabolic equations. It is the parabolic counterpart of the famous
Alexandroff estimate, also called Alexandroff-Bakelman-Pucci (ABP) estimate,
see [3] for more details about this elliptic estimate. The following one was first
proved for linear equations by Krylov [16] and then extended by Tso [24]. The
following result appears in [25].

Theorem 4.9 (Maximum principle). Consider a supersolution of (4.2) in Qρ =
Qρ(0, 0) such that u ≥ 0 on ∂p(Qρ). Then

sup
Qρ

u− ≤ Cρ
d
d+1

(∫
u=Γ(u)

(f+)d+1

) 1
d+1

(4.7)

where C is universal and Γ(u) is the monotone envelope of min(0, u) extended
by 0 to Q2ρ.

Remark 4.10. This is a maximum principle since, if f ≤ 0, then u cannot take
negative values.

Proof. We prove the result for ρ = 1 and the general one is obtained by consid-
ering v(t, x) = u(ρ2t, ρx). Moreover, replacing u with min(0, u) and extending
it by 0 in Q2 \Q1, we can assume that u = 0 on ∂pQ1 and u ≡ 0 in Q2 \Q1.

We are going to prove the three following lemmas. Recall thatG(u) is defined
page 32.

Lemma 4.11. The function Γ(u) is C1,1 with respect to x and Lipschitz con-
tinuous with respect to t in Q1. In particular, GΓ(u) := G(Γ(u)) is Lipschitz
continuous with respect to (t, x).

The second part of the statement of the previous lemma is a consequence of
Lemma 4.4 above. We will prove the previous lemma together with the following
one.
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Lemma 4.12. The partial derivatives (∂tΓ(u), D2Γ(u)) satisfy for a.e. (t, x) ∈
Q1 ∩ Cu,

−∂tΓ(u) + λ∆(Γ(u)) ≤ f+(x)

where Cu = {u = Γ(u)}.

The key lemma is the following one.

Lemma 4.13. If M denotes supQ1
u−, then

{(ξ, h) ∈ Rd+1 : |ξ| ≤M/2 ≤ −h ≤M} ⊂ GΓ(u)(Q1 ∩ Cu)

where Cu = {u = Γ(u)}.

Before proving these lemmas, let us derive the conclusion of the theorem.
Using successively Lemma 4.13, the area formula for Lipschitz maps (thanks to
Lemma 4.11) and Lemma 4.4, we get

CMd+1 = |{(ξ, h) ∈ Rd+1 : |ξ| ≤M/2 ≤ −h ≤M}|
≤ |GΓ(u)(Q1 ∩ Cu)|

≤
∫
Q1∩Cu

|detGΓ(u)|

≤
∫
Q1∩Cu

−∂tΓ(u) det(D2Γ(u)).

Now using the geometric-arithmetic mean inequality and Lemma 4.12, we get

CMd+1 ≤ λ−d
∫
Q1∩Cu

−∂tΓ(u) det(λD2Γ(u))

≤ 1

λd(d+ 1)d+1

∫
Q1∩Cu

(−∂tΓ(u) + λ∆(Γ(u))d+1

≤ C
∫
Q1∩Cu

(f+)d+1

where C’s are universal.

We now turn to the proofs of Lemmas 4.11, 4.12 and 4.13.

Proof of Lemmas 4.11 and 4.12. In order to prove that Γ(u) is Lipschitz con-
tinuous with respect to t and C1,1 with respect to x, it is enough to prove that
there exists C > 0 such that

∀(t, x) ∈ Q2, ∀(α, p,X) ∈ P−Γ(u)(t, x),

{
−α ≤ C
X ≤ CI. (4.8)

Indeed, since Γ(u) is non-increasing with respect to t and convex with respect
to x, (4.8) yields that Γ(u) is Lipschitz continuous with respect to t and C1,1

with respect to x. See Lemma 5.8 in Appendix for more details.
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In order to prove (4.8), we first consider (α, p,X) ∈ P−Γ(u)(t, x) such that
X ≥ 0. Recall (cf. Lemma 4.6 above) that α ≤ 0. We then distinguish two
cases.

Assume first that Γ(u)(t, x) = u(t, x). In this case, (α, p,X) ∈ P−u(t, x)
and since u is a supersolution of (4.2), we have

α− λ trace(X) = α+ P+(X) ≥ f(x) ≥ −C

where C = |f |0;Q1
. Hence, we get (4.8) since X ≥ 0 implies that X ≤ trace(X)I.

We also remark that the same conclusion holds true if (α, p,X) ∈ P−Γ(u)(t, x)
such that X ≥ 0.

Assume now that Γ(u)(t, x) < u(t, x). In this case, there exist λi ∈ [0, 1],
i = 1, . . . , d + 1, and xi ∈ Q2, i = 1, . . . , d + 1, such that (4.5) holds true with
(t0, x0) and (t0i , x

0
i ) replaced with (t, x) and (ti, xi). If (ti, xi) ∈ Q2 \ Q1 for

two different i’s, then Lemma 4.5 implies that M = 0 which is false. Similarly,
ti > −1 for all i. Hence, there is at most one index i such that (ti, xi) ∈ Q2 \Q1

and in this case (ti, xi) ∈ ∂pQ2 and ti > −1. In particular, |xi| = 2. We thus
distinguish two subcases.

Assume first that (td+1, xd+1) ∈ ∂pQ2 with td+1 > −1 and (ti, xi) ∈ Q1 for
i = 1, . . . , d. In particular |xd+1| = 2 and since x ∈ Q1, we have λd+1 ≤ 2

3 . This
implies that there exists λi such that λi ≥ (3d)−1. We thus can assume without
loss of generality that λ1 ≥ (3d)−1. Then from Lemma 4.6, we know that for
all ε > 0 such that I + εX > 0, there exist (αi, Xi) ∈ R × Sd, i = 1, . . . , d + 1
such that (4.6) holds true. In particular,

Xε ≤
1

λ 1
X1 ≤ 3dX1.

Since (α1, p,X1) ∈ P−u(t1, x1) and Γ(u)(t1, x1) = u(t1, x1), we know from the
discussion above that X1 ≤ CI. Hence for all ε small enough,

Xε ≤ 3dCI.

Letting ε→ 0 allows us to conclude that X ≤ 3dCI in the first subcase. As far
as α is concerned, we remark that αd+1 = 0 and −αi ≤ C for all i = 1, . . . , d+1
so that

−α =

d+1∑
i=1

λi(−αi) ≤ C.

Assume now that all the points (ti, xi), i = 1, . . . , d+ 1, are in Q1. In this case,
we have for all i that −αi ≤ C and Xi ≤ CI which implies

−α =

d+1∑
i=1

λi(−αi) ≤ C,

Xε ≤ �d+1
i=1 λ

−1
i CI = CI.
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We thus proved (4.8) in all cases where X ≥ 0. Consider now a general
subdifferential (α, p,X) ∈ P−Γ(u)(t, x). We know from Lemma 5.9 in Appendix
that there exists a sequence (αn, pn, Xn) such that

(αn, pn, Xn) ∈ P−Γ(u)(tn, xn)

(tn, xn, αn, pn)→ (t, x, α, p)

X ≤ Xn + on(1), Xn ≥ 0.

From the previous discussion, we know that

α = αn + on(1) ≤ (C + 1)

X ≤ Xn + on(1) ≤ (C + 1)I

for all n. The proof is now complete.

Proof of Lemma 4.13. The supersolution u ≤ 0 is lower semi-continuous and
the minimum −M < 0 in Q2 is thus reached at some (t0, x0) ∈ Q1 (since u ≡ 0
outside Q1). Now pick (ξ, h) such that

|ξ| ≤M/2 ≤ −h ≤M.

We consider P (y) = ξ · y + h. We remark that P (y) < 0 for y ∈ Q1, hence
P (y) < u(0, y) in Q1. Moreover, since |x0| < 1,

P (x0)− u(t0, x0) = ξ · x0 + h+M > h− |ξ|+M ≥ 0

hence supy∈Q2
(P (y)− u(t0, y)) ≥ 0. We thus choose

t1 = sup{t ≥ 0 : ∀s ∈ [0, t], sup
Q2

(P (y)− u(s, y)) < 0}.

We have 0 ≤ t1 ≤ t0 and

0 = sup
Q2

(P (y)− u(t1, y)) = P (y1)− u(t1, y1).

In particular, ξ = Du(t1, y1) and h = u(t1, x1) − ξ · x1, that is to say, (ξ, h) =
G(u)(t1, y1) with (t1, y1) ∈ Cu.

4.2 The Lε-estimate

This subsection is devoted to the important “Lε estimate” given in Theo-
rem 4.15. This estimate is sometimes referred to as the weak Harnack inequality.

Theorem 4.15 claims that the Lε-“norm” in a neighbourhood K̃1 of (0, 0) of
a non-negative (super-)solution u of the model equation (4.2) can be controlled
by its infimum over a neighbourhood K̃2 of (1, 0) plus the Ld+1-norm of f .

Remark 4.14. Since ε can be smaller than 1, the integral of uε is in fact not the
(ε-power of) a norm.
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K1K̃1

K̃2

Figure 1: The two neighbourhoods K̃1 and K̃2.

We introduce the two neighbourhoods mentioned above (see Figure 1).

K̃1 = (0, R2/2)× (−R,R)d,

K̃2 = (1−R2, 1)× (−R,R)d.

Theorem 4.15 (Lε estimate). There exist universal positive constants R, C
and ε, such that for all non-negative supersolution u of

∂u

∂t
+ P+(D2u) ≥ f in (0, 1)×B 1

R
(0),

the following holds true(∫
K̃1

uε
) 1
ε

≤ C(inf
K̃2

u+ ‖f‖Ld+1((0,1)×B 1
R

(0))). (4.9)

The proof of this theorem is difficult and lengthy; this is the reason why we
explain the main steps of the proof now.

First, one should observe that it is possible to assume without loss of general-
ity that infK̃2

u ≤ 1 and ‖f‖Ld+1((0,1)×B 1
R

(0)) ≤ ε0 (for some universal constant

ε0 to be determined) and to prove∫
K̃1

uε(t, x)dx ≤ C

where ε > 0 and C > 0 are universal. We recall that a constant is said to be
universal if it only depends on ellipticity constants λ and Λ and dimension d.
Getting such an estimate is equivalent to prove that

|{u > t} ∩ K̃1| ≤ Ct−ε

(see page 52 for more details). To get such a decay estimate, it is enough to
prove that

|{u > Nk} ∩ K̃1| ≤ CN−kε

for some universal constant N > 1. This inequality is proved by induction
thanks to a covering lemma (see Lemma 4.27 below). This amounts to cut the
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set {u > Nk} ∩ K̃1 in small pieces (the dyadic cubes) and make sure that the
pieces where u is very large (u ≥ t, t� 1) have small measures.

This will be a consequence of a series of measure estimates obtained from
a basic one. The proof of the basic measure estimate is a consequence of the
maximum principle proved above and the construction of an appropriate barrier
we will present soon. But we should first introduce the parabolic cubes we will
use in the decomposition. We also present the choice of parameters we will
make.

4.2.1 Parabolic cubes and choice of parameters

We consider the following subsets of Q1(1, 0).

K1 = (0, R2)× (−R,R)d,

K2 = (R2, 10R2)× (−3R, 3R)d,

K3 = (R2, 1)× (−3R, 3R)d.

The constant R will be chosen as follows

R = min

(
1

3
√
d
, 3− 2

√
2,

1√
10(m+ 1)

)
(4.10)

where m will be chosen in a universal way in the proof of the Lε estimate.

4.2.2 A useful barrier

The following lemma will be used to derive the basic measure estimate. This
estimate is the cornerstone of the proof of the Lε estimate.

Lemma 4.16. For all R ∈ (0,min((3
√
d)−1, (10)−1/2)), there exists a nonneg-

ative Lipschitz function φ : Q1(1, 0) → R, C2 with respect to x where it is
positive, such that

∂φ

∂t
+ P+(D2φ) ≤ g

for some continuous bounded function g : Q1(1, 0)→ R and such that

supp g ⊂ K1

φ ≥ 2 in K3

φ = 0 in ∂pQ1(1, 0).

Remark 4.17. Recall the definitions of K1, K2 and K3 (see Figure 2).

The proof of the lemma above consists in constructing the function φ more
or less explicitly. It is an elementary computation. However, it is an important
feature of non divergence type equations that this type of computations can be
made. Consider in contrast the situation of parabolic equations with measurable
coefficients in divergence form. For that type of equations, a result like the one
of Lemma 4.16 would be significantly harder to obtain.
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K1 = (0, R2)× (−R,R)d,

K2 = (R2, 10R2)× (−3R, 3R)d,

K3 = (R2, 1)× (−3R, 3R)d.

t

x ∈ B1

Q1(1, 0)K1

K2

K3

Figure 2: The sets K1, K2 and K3.

Proof. We will construct a function ϕ which solves the equation

ϕt + P+(D2ϕ) ≤ 0 (4.11)

in the whole cylinder Q1(1, 0), such that ϕ is positive and unbounded near (0, 0)
but ϕ = 0 in ∂pQ1(1, 0) away from (0, 0), and moreover ϕ > 0 in K2. Note that
if the equation were linear, ϕ could be its heat kernel in the cylinder. Once we
have this function ϕ, we obtain φ simply by taking

φ(t, x) = 2
ϕ(t, x)

minK2 ϕ
for (t, x) ∈ \K1,

and making φ equal any other smooth function in K1 which is zero on {t = 0}.
We now construct this function ϕ. We will provide two different formulas

for ϕ(t, x). The first one will hold for t ∈ (0, T ) for some T ∈ (0, 1). Then the
second formula provides a continuation of the definition of ϕ on [T, 1].

For some constant p > 0 and a function Φ : Rd → R, we will construct the
function ϕ in (0, T ) with the special form

ϕ(t, x) = t−pΦ

(
x√
t

)
.

Let us start from understanding what conditions Φ must satisfy in order for
ϕ to be a subsolution to the equation (4.11).

0 ≥ ϕt + P+(D2ϕ) = t−1−p
(
− pΦ

(
x√
t

)
− 1

2

x√
t
· ∇Φ

(
x√
t

)
+ P+(D2Φ)

(
x√
t

))
.

Therefore, we need to find a function Φ : Rd → R and some exponent p such
that

−pΦ(x)− 1

2
x · ∇Φ(x) + P+(D2Φ)(x) ≤ 0. (4.12)

For some large exponent q, we choose Φ like this

Φ(x) =


something smooth and bounded between 1 and 2 if |x| ≤ 3

√
d,

(6
√
d)q(2q − 1)−1

(
|x|−q − (6

√
d)−q

)
if 3
√
d ≤ |x| ≤ 6

√
d,

0 if |x| ≥ 6
√
d.
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For 3
√
d < |x| < 6

√
d, we compute explicitly the second and third terms in

(4.12),

−1

2
x · ∇Φ(x) = (6

√
d)q(2q − 1)−1 q

2
|x|−q

P+(D2Φ)(x) = (6
√
d)q(2q − 1)−1q(Λ(d− 1)− λ(q + 1))|x|−q−2.

By choosing q large enough so that λ(q + 1) > Λ(d− 1) + 18d, we get that

−1

2
x · ∇Φ(x) + P+Φ(x) ≤ 0.

In order for the equation (4.12) to hold in B3
√
d, we just have to choose the

exponent p large enough, since at those points Φ ≥ 1. Furthermore, since Φ ≥ 0
everywhere and Φ = 0 outside B6

√
d, then the inequality (4.12) holds in the full

space Rd in the viscosity sense.
Since Φ is supported in B6

√
d, then ϕ = 0 on (0, T ) × ∂B1, for T =

(36d)−1.Thus, ϕ = 0 on the lateral boundary (0, T )× ∂B1. Moreover,

lim
t→−1

ϕ(t, x) = 0,

uniformly in B1 \Bε for any ε > 0.
We have provided a value of ϕ up to time T ∈ (0, 1). In order to continue

ϕ in [T, 1] we can do the following. Observe that by the construction of Φ, we
have P+(D2ϕ(T, x)) ≤ 0 for x ∈ B1 \ B1/2 and ϕ(x, T ) ≥ T−p for x ∈ B1/2.
Therefore, let

C = sup
x∈B1

P+(D2ϕ(T, x))

ϕ(T, x)
< +∞,

then we define ϕ(t, x) = e−C(t−T )ϕ(T, x) for all t > T , which is clearly a positive
subsolution of (4.11) in (T, 1]×B1 with ϕ = 0 on [T, 1]× ∂B1.

The constructed function ϕ vanishes only on the set {(t, x) : t < T and |x| ≥
6
√
dt}. Since the set K3 = (R2, 1) × (−3R, 3R)d has no intersection with this

set, then
inf
K3

ϕ > 0.

This is all that was needed to conclude the proof.

4.2.3 The basic measure estimate

As in the elliptic case, the basic measure estimate is obtained by combining
the maximum principle of Theorem 4.9 and the barrier function constructed
in Lemma 4.16. For the following proposition, we use the notation from Re-
mark 4.17.

Proposition 4.18 (Basic measure estimate). There exist universal constants
ε0 ∈ (0, 1), M > 1 and µ ∈ (0, 1) such that for any non-negative supersolution
of
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t

x ∈ B1

Q1(1, 0)K1

K2

K3

∂u

∂t
+ P+(D2u) ≥ f in Q1(1, 0),

the following holds true: if{
infK3

u ≤ 1
‖f‖Ld+1(Q1(1,0)) ≤ ε0

then |{u ≤M} ∩K1| ≥ µ|K1|.

Figure 3: Basic measure estimate in Q1(1, 0).

Remark 4.19. Since K2 ⊂ K3 (see Figure 3), the result also holds true if infK3 u
is replaced with infK2 u. This will be used in order to state and prove the
stacked measure estimate.

Remark 4.20. If u is a non-negative supersolution of

∂u

∂t
+ P+(D2u) ≥ f in (0, T )×B1,

for some T ∈ (R2, 1) (see Figure 4), we still get

inf(R2,T )×(−3R,3R)d u ≤ 1
‖f‖Ld+1((0,T )×B1) ≤ ε0

}
⇒ |{u ≤M} ∩K1| ≥ µ|K1|.

The reason is that such a solution could be extended to Q1(1, 0) (for example

x ∈ B1

t

K1

K2

Q1(1, 0)

Figure 4: A supersolution in a smaller cylinder.

giving any boundary condition on (T, 1)×∂B1 and making f quickly become zero
for t > T ), and then Proposition 4.18 can be applied to this extended function.
This remark will be useful when getting the “stacked” measure estimate in the
case where the stack of cubes reaches the final time.

Proof. Consider the function w = u − φ where φ is the barrier function from
Lemma 4.16. Then w satisfies (in the viscosity sense)

∂w

∂t
+ P+(D2w) ≥ ∂u

∂t
+ P+(D2u)− ∂φ

∂t
− P+(D2φ) ≥ f − g.

Remark also that
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• w ≥ u ≥ 0 on ∂pQ1(1, 0);

• infK3 w ≤ infK3 u− 2 ≤ −1 so that supK3
w− ≥ 1;

• {Γ(w) = w} ⊂ {w ≤ 0} ⊂ {u ≤ φ}.

We recall that Γ(w) denotes the monotone envelope of min(w, 0) extended by 0
to Q2(1, 0). We now apply the maximum principle (Theorem 4.9) and we get

1 ≤ sup
K3

w− ≤ sup
Q1

w− ≤ Cmax‖f‖Ld+1(Q1(1,0)) + Cmax

(∫
{u≤φ}

|g|d+1

) 1
d+1

.

Remember now that supp g ⊂ K1 and get

1 ≤ Cmaxε0 + Cmax|{u ≤M} ∩K1|

with M > max(supK1
φ, 1). Choose now ε0 so that Cmaxε0 ≤ 1/2 and get the

result with µ = 1
1+2Cmax|K1| . The proof is now complete.

Corollary 4.21 (Basic measure estimate scaled). For the same constants ε0,
M and µ of Proposition 4.18 and any x0 ∈ Rd, t0 ∈ R and h > 0, consider any
nonnegative supersolution of

∂u

∂t
+ P+(D2u) ≥ f in (t0, x0) + ρQ1(1, 0).

If

‖f‖Ld+1((t0,x0)+ρQ1(0,1)) ≤ ε0
h

Mρd/(d+1)

then

|{u > h}∩{(t0, x0)+ρK1}| > (1−µ)|(t0, x0)+ρK1| ⇒ u >
h

M
in (t0, x0)+ρK3.

Here, we recall that by ρK we mean {(ρ2t, ρx) : (t, x) ∈ K}.

Remark 4.22. As in Remark 4.20, (t0, x0) + ρ(0, 1) × B 1
R

(0) can be replaced

with (t0, x0) + ρ(0, T )×B 1
R

(0) for any T ∈ (0, 1).

Proof. We consider the scaled function

v(t, x) = Mh−1u(t0 + ρ2t, x0 + ρx).

This function solves the equation

∂v

∂t
+ P+(D2v) ≥ f̃ in Q1(1, 0)

where f̃(t, x) = Mh−1ρ2f(t0 + ρ2t, x0 + ρx). Note that

‖f̃‖Ld+1(Q1(1,0)) = Mh−1ρd/(d+1)‖f‖Ld+1((t0,x0)+ρQ1(1,0)) ≤ ε0.

We conclude the proof applying Proposition 4.18 to v.
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4.2.4 Stacks of cubes

Given ρ ∈ (0, 1), we consider for all k ∈ N, k ≥ 1,

K
(k)
2 = (αkR

2, αk+1R
2)× (−3kR, 3kR)d

where αk =
∑k−1
i=0 9i = 9k−1

8 .
The first stack of cubes that we can consider is the following one

∪k≥1K
(k)
2 .

This stack is obviously not contained in Q1(1, 0) since time goes to infinity.
It can spill out of Q1(1, 0) either on the lateral boundary or at the final time
t = 1. We are going to see that at the final time, the “x-section” is contained
in (−3, 3)d.

We consider a scaled version of K1 included in K1 and we stack the corre-
sponding K

(k)
2 ’s. The scaled versions of K1, K2 and K

(k)
2 are

ρK1 = (0, ρ2R2)×BρR(0),

ρK2 = (ρ2R2, 10ρ2R2)×BρR(0),

ρK
(k)
2 = (αkρ

2R2, αk+1ρ
2R2)× (−3kρR, 3kρR)d.

We now consider
L1 = (t0, x0) + ρK1 ⊂ K1

and
L

(k)
2 = (t0, x0) + ρK

(k)
2 .

Lemma 4.23 (Stacks of cubes). Choose R ≤ min(3 − 2
√

2,
√

2
5 ) = 3 − 2

√
2.

For all L1 = (t0, x0) + ρK1 ⊂ K1, we have

K̃2 ⊂
(
∪k≥1L

(k)
2

)
∩ (0, 1)× (−3, 3)d =

(
∪k≥1L

(k)
2

)
∩ {0 < t < 1}.

In particular, if moreover R ≤ (3
√
d)−1,(

∪k≥1L
(k)
2

)
⊂ (0, 1)×B 1

R
(0).

Moreover, the first k∗ = k such that L
(k+1)
2 ∩ {t = 1} = ∅ satisfies

ρ2R2 ≤ 1

αk∗
.

Proof. We first remark that the stack of cubes lies between two “square” parabo-
loids (see Figure 5)

(t0, x0) + S− ⊂ ∪k≥1L
(k)
2 ⊂ (t0, x0) + S+
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(t0, x0)

(t0, x0) + S−

Figure 5: Stacks of cubes.

where
S± = ∪s≥s±{p±(s)} × (−s, s)d

and p±(s±) = ρ2R2 and p±(z) = a±z
2 + b±ρ

2R2 are such that

p+(3kρR) = αkρ
2R2

p−(3kρR) = αk+1ρ
2R2.

This is equivalent to

a+ =
1

8
and a− =

9

8
and b+ = b− = −1

8
and s± =

√
9

8
ρR.

Remark now that

[(t0, x0) + S+] ∩Q1(1, 0) ⊂ [0, 1]× (−R− a−
1
2

+ , R+ a
− 1

2
+ )d.

We thus choose R such that (R+ a
− 1

2
+ ) ≤ 3. This condition is satisfied if

R ≤ 3− 2
√

2.

Remark next that

(t0, x0) + S− ⊃ ∩x∈(−R,R)d [(R2, x) + S−].

Hence
[(t0, x0) + S−] ∩Q1(1, 0) ⊃ K̃2

as soon as
a+(2R)2 ≤ 1− 2R2.

It is enough to have
5

2
R2 = (4a+ + 2)R2 ≤ 1.
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K1

K
(1)
2

K
(2)
2

K
(3)
2

K
(4)
2

Figure 6: Stacks of neighbourhoods K
(k)
2 .

Finally, the integer k∗ satisfies

t0 + αk∗R
2ρ2 ≤ 1 < t0 + αk∗+1R

2ρ2.

4.2.5 The stacked measure estimate

In this paragraph, we apply successively the basic measure estimate obtained
above and get an estimate in the finite stacks of cubes we constructed in the
previous paragraph.

Proposition 4.24 (Stacked measure estimate). For the same universal con-
stants ε0 ∈ (0, 1), M > 1 and µ ∈ (0, 1) from Proposition 4.18, the following
holds true: consider a non-negative supersolution u of

∂u

∂t
+ P+(D2u) ≥ f in (0, 1)×B 1

R
(0)

and a cube L1 = (t0, x0) + ρK1 ⊂ K1. Assume that for some k ≥ 1 and h > 0

‖f‖Ld+1((0,1)×B 1
R

(0)) ≤ ε0
h

Mkρd/(d+1)
.

Then

|{u > h} ∩ L1| > (1− µ)|L1| ⇒ inf
L

(k)
2 ∩{0<t<1}

u >
h

Mk
.

Remark 4.25. Remember that L
(k)
2 = (t0, x0)+ρK

(k)
2 and see Figure 6. Thanks

to Lemma 4.23, we know that L
(k)
2 ∩ {0 < t < 1} ⊂ (0, 1)×B 1

R
(0).
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Proof. We prove the result by induction on k. Corollary 4.21 corresponds to
the case k = 1 if we can verify that

‖f‖Ld+1((t0,x0)+ρQ1(1,0)) ≤ ε0
h

Mρd/(d+1)
.

It is a consequence of the fact that Q1(⊂ (0, 1)×B 1
R

(0).
For k > 1, the inductive hypothesis reads

inf
L

(k−1)
2 ∩{0<t<1}

u >
h

Mk−1
.

If L
(k−1)
2 is not contained in (0, 1)×B 1

R
(0), there is nothing to prove at rank k

since L
(k)
2 ∩ {0 < t < 1} = ∅. We thus assume that L

(k−1)
2 ⊂ (0, 1)×B 1

R
(0).

In particular

|{u > h

Mk−1
} ∩ L(k−1)

2 | = |L(k−1)
2 |. (4.13)

Note that L
(k−1)
2 = (t1, 0) + ρ1K1 and L

(k)
2 = (t1, 0) + ρ1K2 with t1 = t0 +

αk−1R
2ρ2 and ρ1 = 3k−1ρ. In particular (4.13) implies

|{u > h

Mk−1
} ∩ {(t1, 0) + ρ1K1}| > (1− µ)|(t1, 0) + ρ1K1|.

So we apply Corollary 4.21 again to obtain

inf
L

(k)
2 ∩{0<t<1}

u = inf
{(t1,0)+ρ1K2}∩{0<t<1}

u >
h

Mk
.

We can do so since ρ1 ≥ ρ and Lemma 4.23 implies that L
(k)
2 ⊂ (0, 1)× (−3, 3)d.

In particular, the corresponding domain in which the supersolution is considered
is contained in (0, 1)×B 1

R
(0). We used here Remark 4.20 when (t1, 0) + ρ1K2

is not contained in {0 < t < 1}. Thus, we finish the proof by induction.

Before turning to the proof of Theorem 4.15, we observe that the previous
stacked measure estimate implies in particular the following result.

Corollary 4.26 (Straight stacked measure estimate). As-
sume that R ≤ 1√

10(m+1)
. Under the assumptions of Proposi-

tion 4.24 with k = m, for any cube L1 ⊂ K1

|{u > h}∩L1| > (1−µ)|L1| ⇒ u >
h

Mm
in L1

(m) ⊂ Q1(1, 0).

L1 L1

L1
(3)
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Proof. Apply Proposition 4.24 with k = m and remark that L1
(m) ⊂ L(m)

2 . The

fact that L1
(m) ⊂ Q1(1, 0) comes from the fact that 10(m+ 1)R2 ≤ 1.

4.2.6 A stacked covering lemma

When proving the fundamental Lε-estimate (sometimes called the weak Har-
nack inequality) for fully nonlinear elliptic equations, the Calderón-Zygmund
decomposition lemma plays an important role (see [3] for instance). It has to
be adapted to the parabolic framework.

We need first some definitions. A cube Q is a set of the form (t0, x0)+(0, s2)×
(−s, s)d. A dyadic cube K of Q is obtained by repeating a finite number of times
the following iterative process: Q is divided into 2d+2 cubes by considering all
the translations of (0, s2/4) × (0, s)d by vectors of the form (l(s2/4), sk) with
k ∈ Zd and l ∈ Z included in Q. When a cube K1 is split in different cubes
including K2, K1 is called a predecessor of K2.

Given m ∈ N, and a dyadic cube K of Q, the set K̄(m)

is obtained by “stacking” m copies of its predecessor K̄.
More rigorously, if the predecessor K̄ has the form (a, b)×
L, then we define K̄(m) = (b, b + m(b − a)) × L. Figure 7
corresponds to the case m = 3.

K K̄

K̄(3)

Figure 7: A dyadic cube K and stacked predecessors K̄(m).

Lemma 4.27 (Stacked covering lemma). Let m ∈ N. Consider two subsets A
and B of a cube Q. Assume that |A| ≤ δ|Q| for some δ ∈ (0, 1). Assume also
the following: for any dyadic cube K ⊂ Q,

|K ∩A| > δ|A| ⇒ K̄m ⊂ B.

Then |A| ≤ δm+1
m |B|.

Remark 4.28. This lemma is implicitely used in [25] (see e.g. Lemma 3.23 of
this paper) but details of the proof are not given.

The proof uses a Lebesgue’s differentiation theorem with assumptions that
are not completely classical, even if we believe that such a generalization is well-
known. For the sake of completeness, we state and prove it in Appendix (see
Theorem 5.1 and Corollary 5.2).
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Proof of Lemma 4.27. By iterating the process described to define dyadic cubes,
we know that there exists a countable collection of dyadic cubes Ki such that

|Ki ∩A| ≥ δ|Ki| and |K̄i ∩A| ≤ δ|K̄i|

where K̄i is a predecessor of Ki. We claim that thanks to Lebesgue’s differ-
entiation theorem (Corollary 5.2), there exists a set N of null measure such
that

A ⊂ (∪∞i=1Ki) ∪N.

Indeed, consider (t, x) ∈ A \ ∪∞i=1Ki. On one hand, since (t, x) ∈ Q, it belongs
to a sequence of closed dyadic cubes of the form Lj = (tj , xj)+[0, r2

j ]× [−rj , rj ]d
with rj → 0 as j → +∞ such that

|A ∩ Lj | ≤ δ|Lj |

that is to say

−
∫
Lj

1A ≤ δ < 1.

On the other hand, for (t, x) ∈ A \ ∪∞i=1Ki,

0 < 1− δ ≤ 1−−
∫
Lj

1A = −
∫
Lj

|1A − 1A(t, x)|.

We claim that the right hand side of the previous equality goes to 0 as j →∞
as soon as (t, x) /∈ N where N is a set of null measure. Indeed, Corollary 5.2
implies that for (t, x) outside of such a set N ,

−
∫
Lj

|1A − 1A(t, x)| ≤ −
∫
L̃j

|1A − 1A(t, x)| → 0

where L̃j = (t, x) + [0, 4r2
j ]× [−2rj , 2rj ]

d. We conclude that A \ ∪iKi ⊂ N .

We can relabel predecessors K̄i so that they are pairewise disjoint. We thus
have A ⊂ ∪∞i=1Ki ∪N with K̄m

i ⊂ B thanks to the assumption; in particular,

A ⊂ ∪∞i=1Ki ∪N ⊂ ∪∞i=1K̄i ∪ K̄m
i ∪N

with ∪∞i=1K̄
m
i ⊂ B. Classically, we write

|A| ≤
∑
i≥1

|A ∩ K̄i| ≤ δ
∑
i≥1

|K̄i| ≤ δ| ∪∞i=1 K̄i|. (4.14)

In order to conclude the proof of the lemma, it is thus enough to prove that for
a countable collection (K̄i)i of disjoint cubes, we have

| ∪∞i=1 K̄i ∪ K̄m
i | ≤

m

m+ 1
| ∪∞i=1 K̄

m
i |. (4.15)

Indeed, combining (4.14) and (4.15) yields the desired estimate (keeping in mind
that ∪iK̄m

i ⊂ B).
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Estimate (4.15) is not obvious since, even if the K̄i’s are pairwise disjoint,
the stacked cubes K̄m

i can overlap. In order to justify (4.15), we first write

∪∞i=1K̄i ∪ K̄m
i = ∪∞j=1Jj × Lj

where Lj are disjoint cubes of Rd and Jj are open sets of R of the form

J = ∪∞k=1(ak, ak + (m+ 1)hk).

Remark that
∪∞i=1K̄

m
i = ∪∞j=1J̃j × Lj

where J̃j has the general form

J̃ = ∪∞k=1(ak + hk, ak + (m+ 1)hk).

Hence, the proof is complete once Lemma 4.29 below is proved.

Lemma 4.29. Let (ak)Nk=1 and (hk)Nk=1 be two (possibly infinite) sequences of
real numbers for N ∈ N ∪ {∞} with hk > 0 for k = 1, . . . , N . Then∣∣∪Nk=1(ak, ak + (m+ 1)hk)

∣∣ ≤ m

m+ 1

∣∣∪Nk=1(ak + hk, ak + (m+ 1)hk)
∣∣ .

Proof. We first assume that N is finite. We write ∪Nk=1(ak+hk, ak+(m+1)hk)
as ∪Ll=1Il where Il are disjoint open intervals. We can write them as

Il = ∪Nlk=1(bk + lk, bk + (m+ 1)lk) = ( inf
k=1,...,Nl

(bk + lk), sup
k=1,...,Nl

(bk + (m+ 1)lk)).

Pick kl such that infk=1,...,Nl(bk + lk) = bkl + lkl . In particular,

|Il| = sup
k=1,...,Nl

(bk + (m+ 1)lk))− inf
k=1,...,Nl

(bk + lk)

≥ mlkl .

Then ∣∣∪Nk=1(ak + hk, ak + (m+ 1)hk)
∣∣ ≥ m∑

l

lkl =
m

m+ 1

∑
l

(m+ 1)lkl .

It is now enough to remark that (m + 1)lkl coincide with the length of one of
the intervals {(ak, ak + (m+ 1)hk)}k and they are distinct since so are the Il’s.
The proof is now complete in the case where N is finite.

If now N =∞, we get from the previous case that for any N ∈ N,∣∣∪Nk=1(ak, ak + (m+ 1)hk)
∣∣ ≤ m

m+ 1

∣∣∪Nk=1(ak + hk, ak + (m+ 1)hk)
∣∣

≤ m

m+ 1
|∪∞k=1(ak + hk, ak + (m+ 1)hk)| .

It is now enough to let N →∞ to conclude.
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4.2.7 Proof of the Lε-estimate

The proof of the Lε estimate consists in obtaining a decay in the measure of
the sets {u > Mk} ∩ K̃1 (see Figure 8). As in the elliptic case, the strategy
is to apply the covering Lemma 4.27 iteratively making use of Corollary 4.26.
The main difficulty of the proof (which is not present in the elliptic case) comes
from the fact that if K is a cube contained in K̃1, then nothing prevents K̄(m)

spilling out of K1.

K1K̃1

K̃2

Figure 8: The two neighbourhoods K̃1 and K̃2.

Proof of Theorem 4.15. First, we can assume that

inf
K̃2

u ≤ 1 and ‖f‖Ld+1((0,1)×B 1
R

(0)) ≤ ε0

(where ε0 comes from Proposition 4.24) by considering

vδ(t, x) =
u

infK̃2
u+ ε−1

0 ‖f‖Ld+1((0,1)×B 1
R

(0)) + δ
.

We thus want to prove that there exits a universal constant C > 0 such that∫
K̃1

uε(t, x) dt dx ≤ C. (4.16)

In order to get (4.9), it is enough to find universal constants m, k0 ∈ N and
B > 1 such that for all k ≥ k0,

|{u > Mkm} ∩ (0, R2/2 + C1B
−k)× (−R,R)d| ≤ C(1− µ/2)k (4.17)

where C is universal and M and µ comes from Proposition 4.24. Indeed, first
for t ∈ [Mkm,M (k+1)m), we have

|{u > t} ∩ (0, R2/2 + C1B
−k)× (−R,R)d| ≤ C(1− µ/2)k ≤ Ct−ε

with ε = − ln(1−µ/2)
m lnM > 0. We deduce that for all t > 0, we have

|{u > t} ∩ K̃1| ≤ Ct−ε.
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Now we use the formula∫
K̃1

uε(t, x) dt dx = ε

∫ ∞
0

τε−1|{u > τ} ∩ K̃1|dτ

≤ ε|K̃1|
∫ 1

0

τε−1dτ + ε

∫ ∞
1

τε−1|{u > τ} ∩ K̃1|dτ

and we get (4.16) from (4.17).
We prove (4.17) by induction on k. For k = k0, we simply choose

C ≥ (1− µ/2)−k0 |(0, R2/2 + C1B
−1)× (−R,R)d|.

Now we assume that k ≥ k0, that the result holds true for k and we prove it for
k + 1. In order to do so, we want to apply the covering lemma 4.27 with

A = {u > M (k+1)m} ∩ (0, R2/2 + C1B
−k−1)× (−R,R)d

B = {u > Mkm} ∩ (0, R2/2 + C1B
−k)× (−R,R)d

Q = K1 = (0, R2)× (−R,R)d

for some universal constants B and C1 to be chosen later. We can choose k0

(universal) so that B ⊂ K1. For instance

2C1B
−k0 ≤ R2.

The induction assumption reads

|B| ≤ C(1− µ/2)k.

Lemma 4.30. We have |A| ≤ (1− µ)|Q|.

Proof. Since, infK̃2
u ≤ 1, we have in particular infK3

u ≤ 1. The basic measure
estimate (Proposition 4.18) then implies that

|A| ≤ |{u > M} ∩K1}| ≤ (1− µ)|K1| = (1− µ)|Q|.

Lemma 4.31. Consider any dyadic cube K = (t, x) + ρK1 of Q. If

|K ∩{u > M (k+1)m}∩ (0, R2/2 +C1B
−k−1)× (−R,R)d}| > (1−µ)|K|, (4.18)

then
K̄m ⊂ {u > Mkm} ∩ (0, R2/2 + C1B

−k)× (−R,R)d

where K̄m is defined at the beginning of Paragraph 4.2.6.
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Proof. We remark that the straight stacked measure estimate, Corollary 4.26,
applied with h = M (k+1)m ≥Mm, implies

K̄m ⊂ {u > Mkm}.

We thus have to prove that

K̄m ⊂ [0, R2/2 + C1B
−k]× (−R,R)d. (4.19)

Because of (4.18), we have

K ∩ (0, R2/2 + C1B
−k−1)× (−R,R)d 6= ∅.

Hence

K̄m ⊂ [0, R2/2 + C1B
−k−1 + height(K̄) + height(K̄m)]× (−R,R)d

where height(L) = sup{t : ∃x, (t, x) ∈ L} − inf{t : ∃x, (t, x) ∈ L}. Moreover,

height(K) = R2ρ2

height(K̄) = 4 height(K)

height(K̄m) = m height(K̄).

Hence, (4.19) holds true if

R2/2 + C1B
−k−1 + 4(m+ 1)R2ρ2 ≤ R2/2 + C1B

−k

i.e.

R2ρ2 ≤ C1(B − 1)

4(m+ 1)
B−k−1. (4.20)

In order to estimate R2ρ2 we are going to use the stacked measure estimate
given by Proposition 4.24 together with the fact that K is a cube for which
(4.18) holds.

On one hand, Proposition 4.24 and (4.18) imply that as long as l ≤ (k+1)m,
we have

u > M (k+1)m−l in L
(l)
2 ∩ {0 < t < 1};

in particular,
inf

∪(k+1)m
l=1 L

(l)
2 ∩{0<t<1}

u > 1.

On the other hand, using notation from Lemma 4.23,

inf
∪k∗+1
l=1 L

(l)
2 ∩{0<t<1}

u ≤ inf
K̃2

u ≤ 1

Hence (k + 1)m < k∗ + 1. Moreover, Lemma 4.23 implies

R2ρ2 ≤ (1− t0)(αk∗)
−1 ≤ 9

9(k+1)m
.

Hence, we choose B = 9m and C1 = 36(m+1)
9m−1 .
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We can now apply the covering lemma and conclude that

|A| ≤ δm+ 1

m
|B|.

We choose m large enough (universal) such that

(1− µ)
m+ 1

m
≤ 1− µ/2.

Recalling that we chose µ such that 1
µ = 1 + 2CmaxR

d+2 (where Cmax is the

universal constant appearing in the maximum principle), the previous condition
is equivalent to

m ≥ 4CmaxR
d+2.

Since R ≤ 1, it is enough to choose m ≥ 4Cmax.
Thanks to the induction assumption, we thus finally get

|{u > M (k+1)m} ∩ (0, R2/2 + C1B
−k−1)× (−R,R)d| ≤ C(1− µ/2)k+1.

The proof is now complete.

4.3 Harnack inequality

The main result of this subsection is the following theorem.

Theorem 4.32 (Harnack inequality). For any non-negative function u such
that

∂u
∂t + P+(D2u) ≥ −f
∂u
∂t + P−(D2u) ≤ f

}
(4.21)

in Q1, we have
sup
K̃4

u ≤ C( inf
QR2

u+ ‖f‖Ld+1(Q1))

where K̃4 = (−R2 + 3
8R

4,−R2 + 1
2R

4)×B R2

2
√

2

(0).

Remark 4.33. The case where u solves (4.21) in Qρ instead of Q1 follows by
scaling. Indeed, consider v(t, x) = u(ρ2t, ρx) and change constants accordingly.

We will derive Theorem 4.32 combining Theorem 4.15 with the following
proposition (which in turn also follows from Theorem 4.15).

Proposition 4.34 (Local maximum principle). Consider a function u such that

∂u

∂t
+ P−(D2u) ≤ f in Q1. (4.22)

Then for all p > 0, we have

sup
Q1/2

u ≤ C

((∫
Q1

(u+)p
) 1
p

+ ‖f‖Ld+1(Q1)

)
.
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Proof. First we can assume that u ≥ 0 by remarking that u+ satisfies (4.22)
with f replaced with |f |.

Let Ψ be defined by

Ψ(t, x) = hmax((1− |x|)−2γ , (1 + t)−γ)

where γ will be chosen later. We choose h minimal such that

Ψ ≥ u in Q1.

In other words

h = min
(t,x)∈Q1

u(t, x)

max((1− |x|)−2γ , (1 + t)−γ)
.

We want to estimate h from above. Indeed, we have

sup
Q 1

2

u ≤ Ch

for some constant C depending on γ and Q 1
2
.

In order to do estimate h, we consider a point (t0, x0) realizing the minimum
in the definition of h. We consider

δ2 = min((1− |x0|)2, (1 + t0)).

In particular
u(t0, x0) = hδ−2γ

and Qδ(t0, x0) ⊂ Q1.
We consider next the function v(t, x) = C − u(t, x) where

C = sup
Qβδ(t0,x0)

Ψ

for some parameter β ∈ (0, 1) to be chosen later. Remark first that

hδ−2γ ≤ C ≤ h((1− β)δ)−2γ .

Remark next that v is a supersolution of

∂v

∂t
+ P+(D2v) + |f | ≥ 0 in Q1

and v ≥ 0 in (t0 − (Rβδ)2, t0) × Bβδ(x0) ⊂ Qβδ(t0, x0). From the Lε estimate
(Theorem 4.15 properly scaled and translated), we conclude that∫

L

vε ≤ C(βδ)d+2

(
inf

(t0−βδ,x0)+βδK̃2

v + (βδ)
d
d+1 ‖f‖Ld+1(Q1)

)ε
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where L = (t0 − βδ, x0) + βδK̃1. Moreover,

inf
(t0−βδ,x0)+βδK̃2

v ≤ v(t0, x0)

= C − u(t0, x0)

≤ h
(

(1− β)−2γ − 1

)
δ−2γ .

Hence, we have∫
L

vε ≤ C(βδ)d+2

[
h

(
(1− β)−2γ − 1

)
δ−2γ + (βδ)

d
d+1 ‖f‖d+1

]ε
. (4.23)

We now consider the set

A =

{
(t, x) ∈ L : u(t, x) <

1

2
u(t0, x0) =

1

2
hδ−2γ

}
.

We have ∫
A

vε ≥ |A|
(
hδ−2γ − 1

2
hδ−2γ

)ε
= |A|

(
hδ−2γ

2

)ε
.

We thus get from (4.23) the following estimate

|A| ≤ C|L|
[(

(1− β)−2γ − 1

)ε
+ (δ2γh−1)ε(βδ)

dε
d+1 ‖f‖εd+1

]
.

Finally, we estimate
∫
Q1
uε from below as follows∫

Q1

uε ≥
∫
L\A

uε ≥ (|L| − |A|)2−ε(hδ−2γ)ε.

Hence, choosing γ = d+2
2ε and combining the two previous inequalities, we get

β2+dC1h
ε =|L|2−ε(hδ−2γ)ε ≤

∫
Q1

uε

+ β2+dC2h
ε

(
(1− β)−2γ − 1

)ε
+ β2+d+ dε

d+1C2‖f‖εd+1.

We used δ ≤ 1. Choose now β small enough so that

C2

(
(1− β)−2γ − 1

)ε
≤ C1/2

and conclude in the case p = ε. The general case follows by interpolation.

Theorem 4.32 is a direct consequence of the following one.
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QR

K̃3

(−1, 0)×B 1
R

(0)

Figure 9: The set K̃3.

Theorem 4.35. For any non-negative function u satisfying (4.21) in (−1, 0)×
B 1
R

(0), we have

sup
K̃3

u ≤ C(inf
QR

u+ ‖f‖Ld+1((−1,0)×B 1
R

(0)))

where K̃3 = (−1 + 3
8R

2,−1 +R2/2)×B R
2
√

2
(0) (see Figure 9).

Proof of Theorem 4.35. On the one hand, from Theorem 4.15 (the Lε estimate)
applied to u(t+ 1, x) we know that(∫

(−1,−1+R2/2)×BR/√2

u(x)εdx

)1/ε

≤ C(inf
QR

u+ ‖f‖Ld+1(Q1)). (4.24)

On the other hand, we apply Proposition 4.34 to the scaled function v(t, x) =
u((t+ 1−R2/2)/(R2/2),

√
2x/R) ≥ 0 and p = ε to obtain

sup
Q 1

2

v ≤ C

((∫
Q1

vε
) 1
ε

+ ‖f‖Ld+1(Q1)

)
.

Scaling back to the original variables, we get

sup
K̃3

u ≤ C

(∫
(−1,−1+R2/2)×BR/√2

uε

) 1
ε

+ ‖f‖Ld+1(Q1)

 . (4.25)

Combining (4.24) with (4.25) we get

sup
K̃3

u ≤ C
(

inf
QR

u+ ‖f‖Ld+1(Q1)

)
,

which finishes the proof.

58



4.4 Hölder continuity

An important consequence of Harnack inequality (Theorem 4.32) is the Hölder
continuity of functions satisfying (4.21).

Theorem 4.36. If u satisfies (4.21) in Qρ then u is α-Hölder continuous in
Qρ and

[u]α,Qρ/2 ≤ Cρ
−α
(
|u|0,Qρ + ρ

d
d+1 ‖f‖Ld+1(Qρ)

)
.

Proof. We only deal with ρ = 1. We prove that if u satisfies (4.21) in Q1 then
u is α-Hölder continuous at the origin, i.e.

|u(t, x)− u(0, 0)| ≤ C
(
|u|0,Q1 + ‖f‖Ld+1(Q1)

)
(|x|+

√
t)α. (4.26)

To get such an estimate, it is enough to prove that the oscillation of the function
u in Qρ decays as ρα; more precisely, we consider

Mρ = sup
Qρ

u,

mρ = inf
Qρ
u,

oscQρ u = Mρ −mρ.

Then (4.26) holds true as soon as

oscQρ u ≤ C
(
|u|0,Q1

+ ‖f‖Ld+1(Q1)

)
ρα. (4.27)

Indeed, consider (t, x) ∈ Qρ \ Qρ/2 and estimate |u(t, x) − u(0, 0)| from above

by oscQρ u and ρ/2 from above by |x|∞ +
√
t.

In order to prove (4.27), we consider the two functions u − mρ ≥ 0 and
Mρ−u ≥ 0 in Qρ. They both satisfy (4.21) in Qρ. From the Harnack inequality,
we thus get

sup
ρK̃4

(u−mρ) ≤ C( inf
QR2ρ

(u−mρ) + ρ
d
d+1 ‖f‖d+1)

sup
ρK̃4

(Mρ − u) ≤ C( inf
QR2ρ

(Mρ − u) + ρ
d
d+1 ‖f‖d+1)

where ρK̃4 ⊂ Qρ follows from K̃4 ⊂ (−1, 0) × B1. We next add these two
inequalities which yields

oscQρ u ≤ C(oscQρ u− oscQγρ u+ ρ
d
d+1 ‖f‖d+1)

with C > 1 and where γ denotes R2. Rearranging terms, we get

oscQγρ u ≤
C − 1

C
oscQρ u+ ρ

d
d+1 ‖f‖d+1

where C is universal. Then an elementary iteration lemma allows us to achieve
the proof of the theorem; see Lemma 5.13 in Appendix with h(ρ) = oscQρ u and
δ = (C − 1)/C and β = d/(d+ 1).
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5 Appendix: Technical lemmas

5.1 Lebesgue’s differentiation theorem

The purpose of this Appendix is to prove a version of Lebesgue’s differentiation
theorem with parabolic cylinders. Recall that the usual version of the result
says that if f ∈ L1(Ω, dt ⊗ dx) where Ω is a Borel set of Rd+1, then for a.e.
(t, x) ∈ Ω,

lim
j→∞

−
∫
Gj

|f − f(t, x)| = 0

as long as the sequence of sets Gj satisfies the regularity condition:

Gj ⊂ Bj
|Gj | ≥ c|Bj |

where Bj is a sequence of balls Brj (t, x) with rj → 0.
A sequence of parabolic cylinders Qrj (t, x) cannot satisfy the regularity

condition because of the different scaling between space and time. Indeed
|Qrj (t, x)| = rd+2

j which is an order of magnitude smaller than rd+1
j .

Fortunately, the classical proof of Lebesgue’s differentiation theorem can be
repeated and works for parabolic cylinders as well, as it is shown below.

Theorem 5.1 (Lebesgue’s differentiation theorem). Consider an integrable
function f ∈ L1(Ω, dt ⊗ dx) where Ω is an open set of Rd+1. Then for a.e.
(t, x) ∈ Ω,

lim
r→0+

−
∫

(t−r2,t)×Br(x)

|f − f(t, x)| = 0

where −
∫
O
g = 1

|O|
∫
O
g for any Borel set O ⊂ Rd+1 and integrable function g.

In the proof, we will in fact use the following corollary.

Corollary 5.2 (Generalized Lebesgue’s differentiation theorem). Let Gj be a
family of sets which is regular in the following sense: there exists a constant
c > 0 and rj → 0 such that

Gj ⊂ (t− r2
j , t)×Brj (x),

|Gj | ≥ crd+2
j .

Then, except for a set of measure zero which is independent of the choice of
{Gj}, we have

lim
j→+∞

−
∫
Gj

|f − f(t, x)| = 0.

Remark 5.3. It is interesting to point out that if the parabolic cylinders were
replaced by other families of sets not satisfying the regularity condition, the
result of Lemma 5.5 may fail. For example if we take

M̃f(t, x) = sup
(a,b)×Br(y)3(t,x)

−
∫

(a,b)×Br(y)∩Ω

|f |
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then Lemma 5.5 would fail for M̃f .

Proof of Corollary 5.2. We obtain Corollary 5.2 as an immediate consequence
of Theorem 5.1 by noting that since Gj ⊂ (t− r2

j , t)×Brj (x).

−
∫
Gj

|f − f(t, x)| ≤ r2|Br|
|Gj |

−
∫

(t−r2,t)×Br(x)

|f − f(t, x)|.

Thus, the result holds at all points where this right hand side goes to zero, which

is a set of full measure by Theorem 5.1 and that r2|Br|
|Gj | ≥ c > 0.

In order to prove Theorem 5.1, we first need a version of Vitali’s covering
lemma.

Lemma 5.4 (Vitali’s covering lemma). Consider a bounded collection of cubes
(Qα)α of the form Qα = (tα−r2

α, tα)×Brα(xα) and a set A such that A ⊂ ∪αQα.
Then there is a finite number of cubes Q1, . . . , QN such that A ⊂ ∪Nj=15Qj where

5Qj = (tα − 25r2
α, tα)×B5rα(xα).

Consider next the maximal function Mf associated with a function f ∈
L1(Ω, dt⊗ dx)

Mf(t, x) = sup
Q3(t,x)

−
∫
Q∩Ω

|f |

where the supremum is taken over cubes Q of the form (s, y) + (−r2, 0)×Br.

Lemma 5.5 (The maximal inequality). Consider f ∈ L1(Ω, dt⊗dx), f positive,
and λ > 0, we have

|{Mf > λ}| ≤ C

λ
‖f‖L1

for some constant C depending only on dimension d.

Proof. For all x ∈ {Mf > λ}, there exists Q 3 x such that

inf
Q
f ≥ λ

2
|Q|.

Hence, the set {Mf > λ} can be covered by cubes Q. From Vitali’s covering
lemma, there exists a finite cover of {Mf > λ} with some 5Q’s:

{Mf > λ} ⊂ ∪Nj=15Qj

with Qj that are disjoint and such that∫
Qj∩Ω

f ≥ λ

2
|Qj ∩ Ω|.
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Hence∫
Ω

f ≥
∫
∪jQj∩Ω

f =
∑
j

∫
Qj∩Ω

f

≥ λ

2
| ∪j Qj ∩ Ω| = λ

2
× 1

5d+2
| ∪j 5Qj ∩ Ω| ≥ λ

C
|{Mf > λ}|

with C = 2× 5d+2.

We can now prove Lebesgue’s differentiation theorem (Theorem 5.1).

Proof of Theorem 5.1. We can assume without loss of generality that the set Ω
is bounded. We first remark that the result is true if f is continuous. If f is not
continuous, we consider a sequence (fn)n of continuous functions such that

‖f − fn‖L1 ≤ C

2n
.

Moreover, up to a subsequence, we can also assume that for a.e. (t, x) ∈ Ω,

fn(t, x)→ f(t, x) as n→∞.

Thanks to the maximal inequality (Lemma 5.5), we have in particular

|{M(f − fn) > λ}| ≤ C

λ2n
.

By Borel-Cantelli’s Lemma, we conclude that for all λ > 0, there exists nλ ∈ N
such that for all n ≥ nλ,

M(f − fn) ≤ λ a.e. in Ω.

We conclude that for a.e. (t, x) ∈ Ω and all k ∈ N, there exists a strictly
increasing sequence nk such that for all r > 0 such that Qr(t, x) ⊂ Ω,

−
∫
Qr(t,x)

|f − fnk | ≤M(f − fnk) ≤ 1

k
.

Moreover, since fn is continuous and Ω is bounded, there exists rk > 0 such
that for r ∈ (0, rk), we have

−
∫
Qr(t,x)

|fnk − fnk(t, x)| ≤ 1

k
.

Moreover, for a.e. (t, x) ∈ Ω,

|fnk(t, x)− f(t, x)| → 0 as k →∞.

These three facts imply that for a.e. (t, x) ∈ Ω, for all ε > 0, there exists rε > 0
such that r ∈ (0, rε),

−
∫
Qr(t,x)

|f − f(t, x)| ≤ ε.

This achieves the proof of the lemma.
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5.2 Jensen-Ishii’s lemma for N functions

When proving Theorem 4.9 (more precisely, Lemma 4.6), we used the following
generalization of Lemmas 3.23 and 3.30 whose proof can be found in [5].

Lemma 5.6 (Jensen-Ishii’s Lemma - III). Let Ui, i = 1, . . . , N be open sets of
Rd and I an open interval of R. Consider also lower semi-continuous functions
ui : I × Ui → R such that for all v = ui, i = 1, . . . , N , (t, x) ∈ I × Ui, there
exists r > 0 such that for all M > 0 there exists C > 0,

(s, y) ∈ Qr(t, x)
(β, q, Y ) ∈ P−v(s, y)

|v(s, y)|+ |q|+ |Y | ≤M

⇒ −β ≤ C.
Let x = (x1, . . . , xN ) and x0 = (x0

1, . . . , x
0
N ). Assume that

∑N
i=1 ui(t, xi)−φ(t, x)

reaches a local minimum at (t0, x0) ∈ I × ΠiUi. If α denotes ∂tφ(t0, x0) and
pi denotes Dxiφ(x0) and A denotes D2φ(t0, x0), then for any β > 0 such that
I + βA > 0, there exist (αi, Xi) ∈ R × Sd, i = 1, . . . , N , such that for all
i = 1, . . . , N ,

(αi, pi, Xi) ∈ P
−
u(t0, x

0
i )

N∑
i=1

αi = α

and

1

β


I 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 I

 ≥

X1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 XN

 ≥ Aβ
where Aβ = (I + βA)−1A.

Remark 5.7. The condition on the functions ui is satisfied as soon as the ui’s
are supersolutions of a parabolic equation. This condition ensures that some
compactness holds true when using the doubling variable technique in the time
variable. See [5, Theorem 8.2,p. 50] for more details.

5.3 Technical lemmas for monotone envelopes

When proving the maximum principle (Theorem 4.9), we used the two following
technical lemmas.

Lemma 5.8. Consider a convex set Ω of Rd and a lower semi-continuous func-
tion v : [a, b] × Ω̄ → R which is non-increasing with respect to t ∈ (a, b) and
convex with respect to x ∈ Ω. Assume that v is bounded from above and that for
all (α, p,X) ∈ P−v(t, x), we have

−α ≤ C and X ≤ CI.
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Then v is Lipschitz continuous with respect t ∈ (a, b) and C1,1 with respect to
x ∈ Ω.

Proof of Lemma 5.8. We assume without loss of generality that Ω is bounded.
In this case, v is bounded from above and from below, hence is bounded. Next,
we also get that v is Lipschitz continuous with respect to x in [a, b]× F for all
closed convex set F ⊂ Ω such that d(F, ∂Ω) > 0.

Step 1.

We first prove that v is Lipschitz continuous with respect to t: for all (t0, x0) ∈
(a, b)× Ω,

M = sup
s,t∈(a,b),x,y∈Ω

{
v(t, x)− v(s, y)− L|t− s| − L

4ε
|x− y|2 − Lε

− L0|x− x0|2 − L0(t− t0)2

}
≤ 0

for L large enough only depending on C and the Lipschitz constant of v with
respect to x around (t0, x0) and for L0 large enough. We argue by contradiction
by assuming that M > 0. Consider (s̄, t̄, x̄, ȳ) where the maximum M is reached.
Remark first that

L0|ȳ − x0|2 + L0(s̄− t0)2 + L|t̄− s̄|+ L

4ε
|x̄− ȳ|2 + Lε ≤ v(t̄, x̄)− v(s̄, ȳ)

≤ 2|v|0,[a,b]×Ω̄.

In particular, we can choose L0 and L large enough so that (s̄, ȳ), (t̄, x̄) ∈ (a, b)×
Ω. Remark next that t̄ 6= s̄. Indeed, if t̄ = s̄, then

0 < M ≤ v(t̄, x̄)− v(t̄, ȳ)− L

4ε
|x̄− ȳ|2 − Lε

and choosing L larger than the Lipschitz constant of v with respect to x yields
a contradiction. Hence the function v is touched from below at (s̄, ȳ) by the test
function

(s, y) 7→ C0 −
L

4ε
|x̄− y|2 − L|t̄− s|

where C0 is a constant depending on (t̄, x̄). In particular,

(L sign(t̄− s̄), L(4ε)−1(x̄− ȳ), L(4ε)−1I) ∈ P−v(s̄, ȳ).

We thus should have L ≤ C. Choosing L > C yields also the desired contradic-
tion.
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Step 2.

In order to prove that for all t ∈ (a, b), u(t, ·) is C1,1 with respect to x, it is
enough to prove that for all (p,X) ∈ D2,−u(t, x) (see below), X ≤ CI. Indeed,
this implies that u(t, ·)+ C

2 | · |
2 is concave [1]. Since u(t, ·) is convex, this implies

that it is C1,1 [4].
(p,X) ∈ D2,−u(t, x) means that there exists ψ ∈ C2(Rd) such that p =

Dψ(x) and X = D2ψ(x) and

ψ(y)− ψ(x) ≤ u(t, y)− u(t, x)

for y ∈ Br(x). We can further assume that the minimum of u(t, ·)− ψ is strict.
We then consider the minimum of u(s, x)−ψ(x) + ε−1(s− t)2 in (t− r, t+ r)×
Br(x). For ε small enough, this minimum is reached in an interior point (tε, xε)
and (tε, xε)→ (t, x) as ε→ 0. Then

(ε−1(sε − t), Dψ(xε), D
2ψ(xε)) ∈ P−u(tε, xε).

Hence, D2ψ(xε) ≤ CI. Letting ε→ 0 yields X ≤ CI. This achieves Step 2.
The proof of the lemma is now complete.

Lemma 5.9. Consider a convex set Ω of Rd and v : (a, b) × Ω → R which is
non-increasing with respect to t ∈ (a, b) and convex with respect to x ∈ Ω. Then
for all (α, p,X) ∈ P−v(t, x), that there exists (αn, pn, Xn) such that

(αn, pn, Xn) ∈ P−v(tn, xn)

(tn, xn, αn, pn)→ (t, x, α, p)

X ≤ Xn + on(1), Xn ≥ 0.

The proof of this lemma relies on Alexandroff theorem in its classical form.
A statement and a proof of this classical theorem can be found for instance in
[8]. We will only use the following consequence of this theorem.

Theorem 5.10. Consider a convex set Ω of Rd and a function v : (a, b)×Ω→ R
which is convex with respect to (t, x) ∈ (a, b) × Ω. Then for almost (t, x) ∈
(a, b)× Ω, there exists (α, p,X) ∈ P− ∩ P+v(t, x), that is to say such that,

v(s, y) = v(t, x)+α(s−t)+p·(y−x)+
1

2
X(y−x)·(y−x)+o(|s−t|+|y−x|2). (5.1)

Jensen’s lemma is also needed (stated here in a “parabolic” version for the
sake of clarity).

Lemma 5.11 (Jensen). Consider a convex set Ω of Rd and a function v :
(a, b)×Ω→ R such that there exists (τ, C) ∈ R2 such that u(t, x) + τt2 +C|x|2
is convex with respect to (t, x) ∈ (a, b)×Ω. If u reaches a strict local maximum
at (t0, x0), then for r > 0 and δ > 0 small enough, the set

K = {(t, x) ∈ (t0 − r, t0 + r)×Br(x0) : ∃(τ, p) ∈ (−δ, δ)×Bδ,
(s, y) 7→ u(s, y)− τs− p · y reaches a local maximum at (t, x)}

has a positive measure.
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See [5] for a proof. We can now turn to the proof of Lemma 5.8. The proof
of Lemma 5.9 below mimics the proof of [1, Lemma 3] in which there is no time
dependence.

Proof of Lemma 5.9. Consider a test function φ such that u−φ reaches a local
maximum at (t, x) and

(α, p,X) = (∂tφ,Dφ,D
2φ)(t, x).

Without loss of generality, we can assume that this maximum is strict; indeed,
replace φ with φ(s, y)−|y−x|2−(s−t)2 for instance. Then consider the function

vε(t, x) = inf
y∈Rd,s≥0

{
v(s, y) +

1

ε
|y − x|2 +

1

ε
(s− t)2

}
.

One can check that vε is still convex with respect to x and non-increasing with
respect to t and that

(t, x) 7→ vε(t, x) +
1

ε
|x|2 +

1

ε
t2

is concave with respect to (t, x). Moreover, vε ≤ v and

lim
ε→0

vε(t, x) = v(t, x).

This implies that there exists (tε, xε) → 0 as ε → 0 such that vε − φ reaches a
local maximum at (tε, xε). Remarking that vε − φ satisfies the assumptions of
Jensen’s Lemma, Lemma 5.11 above, we combine it with Theorem 5.10 and we
conclude that we can find slopes (τn, pn)→ (0, 0) and points (tn, xn)→ (tε, xε)
as n → ∞ where vε − φ satisfies (5.1) and vε − φ − τns − pny reaches a local
maximum at (tn, xn). In other words,

(τn + ∂tφ(tn, xn), pn +Dφ(tn, xn), D2vε(tn, xn)) ∈ P−vε(tn, xn)

with
D2vε(tn, xn) ≥ 0

and
D2φ(tn, xn) ≤ D2vε(tn, xn).

In order to conclude, we use the classical following result from viscosity solution
theory (see [5] for a proof):

Lemma 5.12. Consider (sn, yn) such that

vε(tn, xn) = v(sn, yn) + ε−1|yn − xn|2 + ε−1(tn − sn)2.

Then
|yn − xn|2 + (tn − sn)2 ≤ ε|v+|0,(a,b)×Ω

and
P−uε(tn, xn) ⊂ P−u(sn, yn).

We used in the previous lemma that v is bounded from above since Ω is
bounded. Putting all the previous pieces of information together yields the
desired result.
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5.4 An elementary iteration lemma

The following lemma is classical, see for instance [9, Lemma 8.23].

Lemma 5.13. Consider a non-decreasing function h : (0, 1) → R+ such that
for all ρ ∈ (0, 1),

h(γρ) ≤ δh(ρ) + C0ρ
β

for some δ, γ, β ∈ (0, 1). Then for all ρ ∈ (0, 1),

h(ρ) ≤ Cαρα

for all α = 1
2 min( ln δ

ln γ , β) ∈ (0, 1).

Proof. Consider k ∈ N, k ≥ 1, and get by induction that for all ρ0, ρ1 ∈ (0, 1)
with ρ1 ≤ ρ0,

h(γkρ1) ≤ δkh(ρ1) + C0ρ
β
1

k−1∑
j=0

γβj .

Then write

h(γkρ1) ≤ δkh(ρ0) + C0
ρβ1

1− γβ

≤ (γk)β̃h(ρ0) + C0
ρβ1

1− γβ

≤ (γk)2αh(ρ0) + C0
ρ2α

1

1− γβ

where β̃ = ln δ
ln γ . Now pick ρ ∈ [γk+1ρ1, γ

kρ1) and choose ρ1 =
√
ρ0ρ and get

from the previous inequality the desired result for ρ ∈ (0, ρ0). Choose next
ρ0 = 1

2 and conclude for ρ ∈ (0, 1).
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vex analysis, Grundlehren Text Editions, Springer-Verlag, Berlin, 2001.
Abridged version of ıt Convex analysis and minimization algorithms.
I [Springer, Berlin, 1993; MR1261420 (95m:90001)] and ıt II [ibid.;
MR1295240 (95m:90002)].

[11] C. Imbert, Convexity of solutions and C1,1 estimates for fully nonlinear
elliptic equations, J. Math. Pures Appl. (9), 85 (2006), pp. 791–807.

[12] H. Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J.,
55 (1987), pp. 369–384.

[13] , On uniqueness and existence of viscosity solutions of fully nonlinear
second-order elliptic PDEs, Comm. Pure Appl. Math., 42 (1989), pp. 15–45.

[14] H. Ishii and P.-L. Lions, Viscosity solutions of fully nonlinear second-
order elliptic partial differential equations, J. Differential Equations, 83
(1990), pp. 26–78.

[15] R. Jensen, The maximum principle for viscosity solutions of fully nonlin-
ear second order partial differential equations, Arch. Rational Mech. Anal.,
101 (1988), pp. 1–27.

[16] N. V. Krylov, Sequences of convex functions, and estimates of the max-
imum of the solution of a parabolic equation, Sibirsk. Mat. Ž., 17 (1976),
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