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INTERMEDIATE JACOBIANS AND RATIONALITY
OVER ARBITRARY FIELDS

by Olivier BENOIST and Olivier WITTENBERG

Abstract. – We prove that a three-dimensional smooth complete intersection of two quadrics
over a field k is k-rational if and only if it contains a line defined over k. To do so, we develop a theory
of intermediate Jacobians for geometrically rational threefolds over arbitrary, not necessarily perfect,
fields. As a consequence, we obtain the first examples of smooth projective varieties over a field k which
have a k-point, and are rational over a purely inseparable field extension of k, but not over k.

Résumé. – Nous démontrons qu’une intersection complète lisse de deux quadriques de dimen-
sion 3 sur un corps k est k-rationnelle si et seulement si elle contient une droite définie sur k. À cet
effet, nous développons une théorie des jacobiennes intermédiaires pour les variétés géométriquement
rationnelles de dimension 3 sur des corps quelconques, non nécessairement parfaits. Comme consé-
quence, nous obtenons les premiers exemples de variétés projectives lisses sur un corps k qui ont un
k-point, et sont rationnelles sur une extension de corps purement inséparable de k, mais pas sur k.

Introduction

Let k be a field. A variety X of dimension n over k is said to be k-rational (resp. k-unira-
tional, resp. separably k-unirational) if there exists a birational map (resp. a dominant rational
map, resp. a dominant and separable rational map) An

k
99K X .

This article is devoted to studying the k-rationality of threefolds over k. Our main result
answers positively a conjecture of Kuznetsov and Prokhorov.

Theorem A (Theorem 4.7). – Let X � P5
k

be a smooth complete intersection of two
quadrics. Then X is k-rational if and only if it contains a line defined over k.

The question of the validity of Theorem A goes back to Auel, Bernardara and Bolognesi
[5, Question 5.3.2 (3)], who raised it when k is a rational function field in one variable over
an algebraically closed field.
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1030 O. BENOIST AND O. WITTENBERG

Using the fact that varieties X as in Theorem A are separably k-unirational if and only
if they have a k-point (see Theorem 4.8), we obtain new counterexamples to the Lüroth
problem over non-closed fields.

Theorem B (Theorem 4.14). – For any algebraically closed field �, there exists a three-
dimensional smooth complete intersection of two quadrics X � P5

�..t//
which is separably

�..t//-unirational, �..t
1
2 //-rational, but not �..t//-rational.

When � has characteristic 2, Theorem B yields the first examples of smooth projective
varieties over a field k which have a k-point and are rational over the perfect closure of k,
but which are not k-rational (see Remarks 4.15 (iii) and (iv)).

Theorem A may be compared to the classical fact that a smooth quadric over k is
k-rational if and only if it has a k-point. However, although it is easy to check that a smooth
projective k-rational variety has a k-point, the fact that a k-rational three-dimensional
smooth complete intersection of two quadrics X necessarily contains a k-line is highly
non-trivial. To prove it, we rely on obstructions to the k-rationality of X arising from a
study of its intermediate Jacobian.

Such obstructions go back to the seminal work of Clemens and Griffiths [15]: if a smooth
projective threefold over C is C-rational, then its intermediate Jacobian is isomorphic, as a
principally polarized abelian variety over C, to the Jacobian of a (not necessarily connected)
smooth projective curve. This implication was used in [15] to show that smooth cubic three-
folds over C are never C-rational, and was later applied to show the irrationality of several
other classes of complex threefolds (see for instance [6]). The work of Clemens and Grif-
fiths was extended by Murre [71] to algebraically closed fields of any characteristic different
from 2.

More recently, we implemented the arguments of Clemens and Griffiths over arbitrary
perfect fields k [7]. By exploiting the fact that the intermediate Jacobian may be isomorphic
to the Jacobian of a smooth projective curve over k while not being so over k, we produced
new examples of varieties over k that are k-rational but not k-rational.

Hassett and Tschinkel [46] subsequently noticed that over a non-closed field k, the
intermediate Jacobian carries further obstructions to k-rationality: if X is a smooth projec-
tive k-rational threefold, then not only is its intermediate Jacobian isomorphic to the
Jacobian Pic0.C / of a smooth projective curve C over k, but in addition, assuming for
simplicity that C is geometrically connected of genus � 2, the Pic0.C /-torsors associated
with Aut.k=k/-invariant algebraic equivalence classes of codimension 2 cycles on X are
of the form Pic˛.C / for some ˛ 2 Z. When X is a smooth three-dimensional complete
intersection of two quadrics, they used these obstructions in combination with the natural
identification of the variety of lines ofX with a torsor under the intermediate Jacobian ofX ,
and with the work of Wang [82], to prove Theorem A when k D R [46, Theorem 36] (and
later [45] over subfields of C).

The aim of the present article is to extend these arguments to arbitrary fields.

Applications to k-rationality criteria for other classes of k-rational threefolds appear in
the work of Kuznetsov and Prokhorov [61].
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INTERMEDIATE JACOBIANS AND RATIONALITY OVER ARBITRARY FIELDS 1031

So far, we have been imprecise about what we call the intermediate Jacobian of a smooth
projective threefold X over k.

If k D C, one can use Griffiths’ intermediate Jacobian J 3X constructed by transcendental
means. This is the original path taken by Clemens and Griffiths [15]. The algebraic part of
Griffiths’ intermediate Jacobian has been shown to descend to subfields k � C by Achter,
Casalaina-Martin and Vial [3, Theorem B]; the resulting k-structure on J 3X is the one used
in [45].

Over algebraically closed fields k of arbitrary characteristic, a different construction of an
intermediate Jacobian Ab2.X/, based on codimension 2 cycles, was provided by Murre [72,
Theorem A p. 226] (see also [54]). This cycle-theoretic approach to intermediate Jacobians
had already been applied by him to rationality problems (see [71]).

Over a perfect field k, the universal property satisfied by Murre’s intermediate Jaco-
bian Ab2.Xk/ induces a Galois descent datum on Ab2.Xk/, thus yielding a k-form Ab2.X/
of Ab2.Xk/ [3, Theorem 4.4]. It is this intermediate Jacobian Ab2.X/, which coincides
with J 3X when k � C, that we used in [7].

Over an imperfect field k, one runs into the difficulty that Murre’s definition of Ab2.Xk/
does not give rise to a k=k-descent datum on Ab2.Xk/. Achter, Casalaina-Martin and Vial
still prove, in [4], the existence of an algebraic representative Ab2.X/ for algebraically trivial
codimension 2 cycles on X (see §1.2 of op. cit. for the definition). However, when k is
imperfect, it is not known whether Ab2.X/k is isomorphic to Ab2.Xk/. For this reason, we
do not know how to construct on Ab2.X/ the principal polarization that is so crucial to the
Clemens-Griffiths method.

To overcome this difficulty and prove Theorem A in full generality, we provide, over an
arbitrary field k, an entirely new construction of an intermediate Jacobian.

Our point of view is inspired by Grothendieck’s definition of the Picard scheme (for which
see [33], [12, Chapter 8], [56]). With any smooth projective k-rational threefold X over k,
we associate a functor CH2

X=k;fppf W .Sch=k/op ! .Ab/ endowed with a natural bijection

CH2.Xk/
�
�! CH2

X=k;fppf.k/ (see Definition 2.9 and (3.1)). The functor CH2
X=k;fppf is an

analogue, for codimension 2 cycles, of the Picard functor PicX=k;fppf.

Too naive attempts to define the functor CH2
X=k;fppf on the category of k-schemes, such as

the formula “T 7! CH2.XT /”, fail as Chow groups of possibly singular schemes are not even
contravariant with respect to arbitrary morphisms: one would need to use a contravariant
variant of Chow groups (see Remark 3.2 (ii)). To solve this issue, we view Chow groups of
codimension � 2 as subquotients of K-theory by means of the Chern character, and we
define CH2

X=k;fppf as an appropriate subquotient of (the fppf sheafification of) the functor
T 7! K0.XT /. That this procedure gives rise to the correct functor, even integrally, is a
consequence of the Riemann-Roch theorem without denominators [53].

We show that CH2
X=k;fppf is represented by a smooth k-group scheme CH2

X=k

(Theorem 3.1 (i)). Our functorial approach is crucial for this, as it allows us to argue by
fppf descent from a possibly inseparable finite extension l of k such that X is l-rational. By
construction, there is a natural isomorphism CH2

Xl=l
' .CH2

X=k/l for all field extensions l
of k.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1032 O. BENOIST AND O. WITTENBERG

The k-group scheme that we use as a substitute for the intermediate Jacobian ofX is then
the identity component .CH2

X=k/
0 of CH2

X=k , which is an abelian variety (Theorem 3.1 (ii)).
We hope that this functorial perspective on intermediate Jacobians may have other applica-
tions (to intermediate Jacobians in families, to deformations of algebraic cycles).

Establishing an identification .CH2
X=k/

0

k
' Ab2.Xk/ (Theorem 3.1 (vi)) and using the

principal polarization on Ab2.Xk/ constructed in [7], we endow .CH2
X=k/

0 with a canonical
principal polarization, which paves the way for applications to rationality questions. Let us
now state the most general obstruction to the k-rationality of a smooth projective threefold
that we obtain by analyzing CH2

X=k .

Theorem C (Theorem 3.1 (vii)). – Let X be a smooth projective k-rational threefold
overk. Then there exists a smooth projective curveB overk such that thek-group schemeCH2

X=k

can be realized as a direct factor of PicB=k in a way that respects the canonical principal polar-
izations.

In Theorem 3.11, we deduce from Theorem C more concrete obstructions to the
k-rationality of X , pertaining to the Néron-Severi group NS2.Xk/ of algebraic equivalence
classes of codimension 2 cycles onXk , to the principally polarized abelian variety .CH2

X=k/
0,

and to the .CH2
X=k/

0-torsors that are of the form .CH2
X=k/

˛ for some ˛2
�
CH2

X=k =.CH
2
X=k/

0
�
.k/D

NS2.Xk/
Aut.k=k/.

The principle of the proof of Theorem C goes back to Clemens and Griffiths. Since X is
k-rational, it can be obtained from P3

k
by a composition of blow-ups of regular curves and

of closed points, followed by a contraction. The curve B whose existence is predicted by
Theorem C is roughly the union of the blown-up curves. This works perfectly well if k is
perfect. If k is imperfect, however, some of the blown-up curves may be regular but not
smooth over k. It is nevertheless very important, in view of the application to Theorem A,
that the curve B appearing in the statement of Theorem C be smooth over k. To prove
Theorem C as stated, one thus has to show that the contributions of these non-smooth
regular curves are canceled out by the final contraction. This non-trivial fact relies on a
complete understanding of which Jacobians of proper reduced curves over k split as the
product of an affine group scheme and of an abelian variety over k (Theorem 1.7).

The text is organized as follows. Sections 1 and 2 gather preliminaries, concerning respec-
tively group schemes and K-theory. Section 2 contains in particular the definition of the
above-mentioned functor CH2

X=k;fppf associated with a smooth projective k-rational three-
fold X over k (Definition 2.9). In Section 3, we prove that this functor is representable and
study the k-group scheme CH2

X=k that represents it (Theorem 3.1). A number of obstruc-
tions to the k-rationality of X are then derived (Theorem 3.1 (vii) and Theorem 3.11).
Section 4 is devoted to applications to three-dimensional smooth complete intersections of
two quadrics: we compute CH2

X=k entirely (Theorem 4.5), deduce the irrationality criterion
that is our main theorem (Theorem 4.7), and apply the criterion to examples over Laurent
series fields (Theorem 4.14).
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Notation and conventions

We fix a field k and an algebraic closure k of k. Let kp be the perfect closure of k in k
and �k WD Gal.k=kp/ D Aut.k=k/ be the absolute Galois group of kp. If X and T are
two k-schemes, we set XT WD X �k T . A variety over k is a separated scheme of finite type
over k; a curve is a variety of pure dimension 1. If G is a group scheme locally of finite type
over k, we denote byG0 its identity component. IfX is a smooth proper variety over k, we let
CHc.Xk/alg � CHc.Xk/ be the subgroup of algebraically trivial codimension c cycle classes
and define NSc.Xk/ WD CHc.Xk/=CHc.Xk/alg.

We use qcqs as a shorthand for quasi-compact and quasi-separated. We denote by .Sch=k/
the category of qcqs k-schemes and by .Ab/ the category of abelian groups. IfX is a commu-
tative k-group scheme, we let ˆX W .Sch=k/op ! .Ab/ be the functor given by ˆX .T / D
Homk.T;X/. The functorˆ W X 7! ˆX , from the category of commutative k-group schemes
to the category of functors .Sch=k/op ! .Ab/, is fully faithful, by Yoneda’s lemma and
since all schemes are covered by affine (hence qcqs) open subschemes. We say that a functor
.Sch=k/op ! .Ab/ is representable if it is isomorphic to ˆX for some commutative k-group
schemeX , which need not be qcqs. The functor Z W .Sch=k/op ! .Ab/ sending T 2 .Sch=k/
to the group Z.T / of locally constant maps T ! Z is represented by the constant k-group
scheme Z.

We refer to [38, VII, Définition 1.4] for the definition of a regular immersion of schemes
that we use, based on the Koszul complex. A closed immersion of regular schemes is always
regular. A morphism of schemes f W X ! Y is said to be a local complete intersection or lci if
it can be factored, locally on X , as the composition of a regular immersion and of a smooth
morphism [38, VIII, Définition 1.1].

If ` is a prime number and M is a Z-module, we let M f`g � M be the `-primary torsion
subgroup of M , and T`.M/ WD Hom.Q`=Z`;M/ and V`.M/ WD T`.M/Œ1=`� be the `-adic
Tate modules of M . If G is a commutative k-group scheme, we set T`G WD T`.G.k// and
V`G WD V`.G.k//.

1. Group schemes

We first collect miscellaneous information concerning group schemes. The main new
result of this section is Theorem 1.7.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1034 O. BENOIST AND O. WITTENBERG

1.1. Chevalley’s theorem

If G is a connected smooth group scheme over k, there is a unique short exact sequence

(1.1) 0! L.Gkp/! Gkp ! A.Gkp/! 0

of group schemes over kp, whereL.Gkp/ is smooth, connected and affine and whereA.Gkp/ is
an abelian variety. This statement was proved by Chevalley [14], see [18, Theorem 1.1] for a
modern proof.

1.2. Principal polarizations

Recall that a principal polarization on an abelian variety A over kp is an ample
class � 2 NS.Ak/

�k whose associated isogeny Ak ! OAk is an isomorphism, that a prin-
cipally polarized abelian variety A over kp is a product of indecomposable principally
polarized abelian varieties over kp and that the factors of this decomposition are unique as
subvarieties of A (see [7, §2.1]).

We define a polarization (resp. a principal polarization) of a smooth commutative group
scheme G over k to be a polarization (resp. a principal polarization) of the abelian
variety A.G0

kp
/ over kp. If G is endowed with a polarization � , we say that a smooth

subgroup scheme H � G is a polarized direct factor of G if there exists a subgroup
scheme H 0 � G such that the canonical morphism � W H �H 0

�
�! G is an isomorphism

and such that ��� D ��� jA.H0
kp
/
C � 0�� jA.H 00

kp
/
, where � and � 0 denote the projections

of A.H 0
kp
/ � A.H 00

kp
/ onto A.H 0

kp
/ and A.H 00

kp
/. If in addition � is a principal polarization,

then so are ��� jA.H0
kp
/

and � 0�� jA.H 00
kp
/
; in this case, we also speak of a principally polarized

direct factor.

1.3. Locally constant functions

For a variety X over k, consider the functor

ZX=k W .Sch=k/op
! .Ab/

T 7! Z.XT /.

Equivalently ZX=k is the push-forward of the constant sheaf Z by the structural mor-
phism X ! Spec.k/ (and hence is an fpqc sheaf). Let �0.X=k/ denote the étale k-scheme
of connected components of X , defined in [26, §I.4, Définition 6.6]. The Weil restriction of
scalars Res�0.X=k/=kZ exists as a k-scheme by [12, 7.6/4].

Proposition 1.1. – Let X be a variety over k. Then the functor ZX=k is canonically
represented by the Weil restriction of scalars Res�0.X=k/=kZ.

Proof. – Recall that there is a canonical faithfully flat morphism qX WX! �0.X=k/ whose
fibers are geometrically connected [26, §I.4, Propositions 6.5 and 6.7]. For any T 2 .Sch=k/,
the resulting morphismXT ! �0.X=k/T is surjective, has connected fibers, and is open [35,
Théorème 2.4.6]; therefore qX induces a bijection between the sets of connected components
of XT and of �0.X=k/T . As a consequence, the homomorphism Z.�0.X=k/T / ! Z.XT /
is an isomorphism, and hence so is the morphism of functors Res�0.X=k/=kZ ! ZX=k that
it induces when T varies.
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INTERMEDIATE JACOBIANS AND RATIONALITY OVER ARBITRARY FIELDS 1035

Remarks 1.2. – (i) We will usually denote by ZX=k , rather than by Res�0.X=k/=kZ, the
group scheme that ZX=k represents.

(ii) Proposition 1.1 shows that a morphism p W X 0 ! X of varieties over k that induces
a bijection between the sets of connected components of Xk and of X 0

k
gives rise to an

isomorphism ZX=k ��! ZX 0=k .

1.4. Picard schemes

The absolute Picard functor of a proper variety X over k is

PicX=k W .Sch=k/op
! .Ab/

T 7! Pic.XT /:

Beware that our notation differs slightly from that of [56, §9.2].

If � 2 fZar; Ket; fppfg, we denote the sheafification of PicX=k for the corresponding
(Zariski, étale or fppf) topology by PicX=k;� . The functors PicX=k;Ket and PicX=k;fppf are
equal [12, 8.1 p. 203] and are represented by a group scheme locally of finite type over k
[12, 8.2/3] which we denote by PicX=k : the Picard scheme of X . These two functors contain
PicX=k;Zar and T 7! Pic.XT /=Pic.T / as subfunctors if H 0.X;OX / D k, and they coincide
with them if in addition X.k/ ¤ ; (see [56, Theorem 9.2.5] and [34, Proposition 7.8.6]), for
instance if X is connected and reduced and k D k.

1.4.1. Picard schemes of blow-ups. – In §1.4.1, we consider the following situation. We fix
a regular closed immersion i W Y ! X of qcqs schemes of pure codimension c � 2, we let
p W X 0 ! X be the blow-up ofX along Y with exceptional divisor Y 0, and we let p0 W Y 0 ! Y

and i 0 W Y 0 ! X 0 be the natural morphisms. The morphism p0 W Y 0 ! Y is a projective
bundle of relative dimension c � 1 � 1 (see [79, §1.2]). In this setting, we study the group
morphism

Pic.X/ � Z.Y /! Pic.X 0/

.L;  / 7! p�L˝OX 0
�
�

X
n2Z

n
h
p�1. �1.n//

i�
:

(1.2)

Proposition 1.3. – Under the hypotheses of §1.4.1, the map (1.2) is bijective.

Proof. – By absolute noetherian approximation [80, Theorem C.9] and the limit
arguments of [36, §8], we may assume that X is noetherian. If N 2 Pic.X 0/, the func-
tion  W Y ! Z such that N jX 0y ' OX 0y . .y// for all y 2 Y is locally constant. (Indeed,

for n� 0, the OY -module p0�..N jY 0/.n// is locally free and its formation commutes with
base change, by [44, III, Theorems 8.8 and 12.11].) Since OX 0.�Y 0/jX 0y ' OX 0y .1/ for

all y 2 Y (see [79, §1.2]), it follows that N ˝ OX 0.
P
n2Z nŒp

�1. �1.n//�/ is trivial on
the fibers of p, and that  is the unique function with this property. It remains to show
that p� W Pic.X/ ! Pic.X 0/ is injective with image the subgroup of isomorphism classes of
line bundles that are trivial on the fibers of p. The injectivity follows from [79, Lemme 2.3
(a)], and the description of the image from Lemma 1.4 (iii) below.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1036 O. BENOIST AND O. WITTENBERG

Lemma 1.4. – Under the hypotheses of §1.4.1, assume that X is noetherian and
let N be a line bundle on X 0 such that N jX 0y ' OX 0y for all y 2 Y . For any integer n,

set N .n/ D N ˝OX 0.�nY 0/. Then:

(i) For all j � 1 and n � 0, the sheaf Rjp�.N .n// vanishes.

(ii) For all n � 0, the natural morphism p�p�.N .n//! N .n/ is surjective.

(iii) The sheaf p�N is invertible and p�p�N ! N is an isomorphism.

Proof. – By [44, III, Theorem 8.8 (c)], assertion (i) holds for n � 0. To prove (i) for all
n � 0 by descending induction on n, we consider for j � 1 the exact sequence

Rjp�N .n/! Rjp�N .n � 1/! Rjp�.N .n � 1/jY 0/

and note that Rjp0�.N .n � 1/jY 0/ D 0 for n � 1 by cohomology and base change [44, III,
Theorem 12.11].

Assertion (ii) holds for all n � 0 by [44, III, Theorem 8.8 (a)]. To prove (ii) for all n � 0
by descending induction on n, we consider the natural commutative diagram with exact rows

p�p�N .n/ //

��

p�p�N .n � 1/ //

��

p�p�.N .n � 1/jY 0/

��

// 0

0 // N .n/ // N .n � 1/ // N .n � 1/jY 0
// 0;

in which the exactness of the upper row follows from the vanishing of R1p�.N .n// proved
in (i), and note that p�p�.N .n � 1/jY 0/ ! N .n � 1/jY 0 is surjective for n � 1 in view of
Nakayama’s lemma, since its restriction to the fibers of p is surjective by cohomology and
base change [44, III, Theorem 12.11].

To prove (iii), we work Zariski-locally around a point y 2 X . In view of (ii) for n D 0, we
can assume after shrinking X the existence of a section � 2 H 0.X 0;N / that does not vanish
identically on X 0y . Since N jX 0y ' OX 0y and X 0y is a projective space, the section � vanishes

nowhere on X 0y and, after shrinking X again, it induces an isomorphism � W OX 0 ��! N .
Assertion (iii) now follows from the fact that the natural morphism OX ! p�OX 0 is an
isomorphism [38, VII, Lemme 3.5].

Corollary 1.5. – Under the hypotheses of §1.4.1, ifX is moreover a proper variety overk,
the formula (1.2) induces an isomorphism of functors

(1.3) PicX=k �ZY=k ��! PicX 0=k .

Proof. – Since the formation of the blow-up of a regular closed immersion commutes
with flat base change (see [38, VII, Propositions 1.5 et 1.8 i)]), we can apply Proposition 1.3
to the morphisms iT W YT ! XT for T 2 .Sch=k/.
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1.4.2. Picard schemes of curves. – IfC is a proper curve over k, thenPicC=k is smooth over k

by [12, 8.4/2]. Moreover, letting D WD gC red
kp

be the normalization of the reduction of Ckp ,

which is a smooth proper curve over kp, the pull-back morphism Pic0Ckp=kp
! Pic0D=kp

induces an isomorphism

(1.4) A.Pic0Ckp=kp
/
�
�! Pic0D=kp

;

as [12, 9.2/11] shows. The principal polarization of Pic0D=kp
given by the theta divisor thus

induces a canonical principal polarization on PicC=k in the sense of §1.2. If C is irreducible,
then so is D [35, Proposition 2.4.5] and the principally polarized abelian variety Pic0D=kp

over kp is thus indecomposable if it is non-zero (see [7, §2.1]).
In preparation for the proof of Proposition 1.6 and, later, for the statement of Corol-

lary 1.8, let us recall that if V is a variety over k and V 0 denotes the normalization of V red,
then V is geometrically unibranch if and only if the natural morphism V 0 ! V is a universal
homeomorphism [35, Proposition 2.4.5, (6.15.1), end of (6.15.3)]. In particular, normal vari-
eties are geometrically unibranch. We also recall that the property of being geometrically
unibranch is invariant under extension of scalars [35, Proposition 6.15.7].

Proposition 1.6. – Let C be a proper curve over k and let C 0 WD gC red be the normaliza-
tion of its reduction. Then there is a short exact sequence

0! Pic0C=k ! PicC=k ! ZC 0=k ! 0.(1.5)

Proof. – Both ZC 0=k and PicC=k =Pic0C=k are étale group schemes over k. They are thus iso-
morphic if and only if so are their base changesG WD ZC 0

kp
=kp andH WD PicCkp=kp =Pic

0
Ckp=kp

to kp. Letting D WD gC red
kp

be the normalization of the reduction of Ckp , which is a smooth
proper curve over kp, one has G D ZD=kp by Remark 1.2 (ii) (indeed the map D ! C 0

kp
is

a universal homeomorphism since C 0
kp

is geometrically unibranch), and HDPicD=kp=Pic
0
D=kp

by [12, 9.2/11]. ThatG ' H now follows from the fact thatG.k/ andH.k/ are both isomor-
phic, as �k-modules, to Z.Dk/.

1.5. When do Jacobians split?

We now provide, in Theorem 1.7, a criterion for the Jacobian of a proper reduced curve to
be the product of an abelian variety and of an affine group scheme. We will use Theorem 1.7
in Lemma 3.8, which plays a key role in the proof of Theorem C.

1.5.1. Statement. – Let us introduce some notation. Whenever D is a smooth proper inte-
gral curve over k, the genus of D is the dimension of the abelian variety Pic0D=k . We note
that D has genus 0 if and only if the irreducible components of Dk (which are all isomor-
phic) are rational. Given a proper reduced curve C over k, we denote by Crat (resp. Cirrat) the
union of those irreducible components B of C such that the normalization of .Bkp/

red has
genus 0 (resp. has genus � 1). We view Crat and Cirrat as reduced closed subschemes of C .
We define a strict cycle of components of Ck to be a sequence of pairwise distinct irreducible
components B1; : : : ; Bn of Ck for some integer n � 2, such that there exist pairwise distinct
points x1; : : : ; xn of Ck with xi 2 Bi \ BiC1 for all i 2 f1; : : : ; n � 1g and xn 2 Bn \ B1.
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Finally, we recall that a reduced curve over k is seminormal if it is étale locally isomorphic to
the union of the coordinate axes in an affine space over k [59, Chapter I, 7.2.2].

Theorem 1.7. – Let C be a proper reduced curve over k. The group scheme Pic0C=k is the
product of an abelian variety and of an affine group scheme over k if and only if the following
conditions all hold:

(i) the scheme .Cirrat/k is reduced and seminormal and its irreducible components are smooth;

(ii) any strict cycle of components of Ck is contained in .Crat/k;

(iii) for every connected component B of Crat, either the scheme B \ Cirrat is étale over k, or
it is of the form Spec.k0/ for some field k0 and the restriction map H 0.B;OB/ ! k0 is
bijective.

In this case, the natural map PicC=k ! PicCrat=k �PicCirrat=k is an isomorphism and
Pic0Crat=k

is affine while Pic0Cirrat=k
is an abelian variety.

Condition (iii) holds if .Crat\Cirrat/k is reduced, and it implies, in turn, thatCrat\Cirrat is
reduced. The reverse implications are true if k is perfect.

When C is integral and geometrically locally irreducible, for instance when C is integral
and geometrically unibranch, Theorem 1.7 takes on a particularly simple form, which we
now state. We recall that normal varieties are geometrically unibranch (see §1.4.2 for more
reminders on this property). In the sequel, we shall only apply Theorem 1.7 to normal curves,
through Corollary 1.8.

Corollary 1.8. – Let C be a proper integral curve over k. Assume that the connected
components of Ck are irreducible; such is the case, for instance, if C is geometrically unibranch.
Then the group schemePic0C=k is the product of an abelian variety and of an affine group scheme
over k if and only if at least one of the following two conditions holds:

(i) C is smooth over k (in which case Pic0C=k is an abelian variety);

(ii) the normalization D of .Ckp/
red has genus 0 (in which case Pic0C=k is affine).

Proof. – Our assumptions imply that Crat D ; or Cirrat D ;, that there is no strict cycle
of components of Ck and that C is smooth over k if and only if Ck is reduced with smooth
irreducible components. Thus, the conditions of Theorem 1.7 are all met if and only if at least
one of (i) and (ii) holds.

Remark 1.9. – Corollary 1.8 applies to integral curves that may not be geometrically
reduced. It would however fail in general for irreducible but non-reduced curves, as the
following example shows. LetE be an elliptic curve over k, and letL be an ample line bundle
on E. Define C WD ProjE .OE ˚ L/, where sections of L square to 0. The natural closed
immersion i W E D C red ! C then induces an isomorphism i� W Pic0C=k

�
�! Pic0E=k ' E.

Indeed, in view of (1.4), it suffices to show that the kernel of .i�/kp has trivial tangent space at
the identity, which follows from the fact that the pull-back i� W H 1.C;OC / ��! H 1.E;OE / is
an isomorphism. We note that C is geometrically unibranch since C red is normal.
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1.5.2. A few general lemmas. – We establish a series of lemmas on which the proof of
Theorem 1.7 will rely. The first one is due to Tanaka, see [78, Lemma 3.3].

Lemma 1.10. – Let F be a field extension of k. If F=k is not separable, there exist finite
purely inseparable field extensions k � k0 � k00 and a k0-linear embedding k00 ,! F ˝k k

0 such
that F ˝k k0 is a field and k00 ¤ k0.

Proof. – Let k00 be a minimal finite purely inseparable field extension of k such that F˝k k00

fails to be reduced. Let p denote the characteristic of k. As k00=k is finite, purely insepa-
rable and non-trivial, there exists a subextension k0=k such that Œk00 W k0� D p. Fix x 2 k0

such that k00 D k0.x1=p/. By the minimality of k00, the finite connected non-zero F -algebra
F 0 D F ˝k k

0 is reduced, hence is a field. On the other hand, as F ˝k k00 D F 0Œt �=.tp � x/ is
not reduced, we see that x must be a p-th power in F 0, so that k00 embeds k0-linearly
into F 0.

Lemma 1.11. – Let f W G ! G0 be a surjective morphism between connected smooth
group schemes over k such that the kernel of A.fkp/ W A.Gkp/! A.G0

kp
/ is smooth and

connected. IfG is isomorphic to the product of an abelian variety and of an affine group scheme
over k, then so is G0.

Proof. – SupposeG D L�AwithL affine andA an abelian variety. LetK D Ker.f /. Let
p W G ! A be the projection, let i W A! G be the inclusion, and letp.K/ denote the scheme-
theoretic image of K by p; it is a subgroup scheme of A [43, VIA, Proposition 6.4]. We note
that A.Gkp/ D Akp and that p.K/kp � Ker.A.fkp//. The morphism Ker.A.fkp// ! G0

kp

induced by f ı i factors through L.G0
kp
/ and hence vanishes since Ker.A.fkp// is an abelian

variety and L.G0
kp
/ is affine. Therefore the morphism p.K/ ! G0 induced by f ı i also

vanishes. We deduce that i.p.K// � K, hence K D .K \L/ � i.p.K//. On the other hand,
the closed immersionG=K ! G0 induced by f is an isomorphism as it is surjective andG0 is
reduced. It follows that G0 D .L=.K \ L// � .A=p.K//, and the lemma is proved.

Lemma 1.12. – Let C be a proper reduced curve over k and B be a geometrically
connected reduced closed subscheme of C of pure dimension 1. View the union of the irre-
ducible components of C not contained in B as a reduced closed subscheme B 0 of C . If the
natural morphism B \ B 0 ! Spec.H 0.B 0;OB0// is étale and if any strict cycle of compo-
nents of Ck is contained in B 0

k
, then the natural morphism PicC=k ! PicB=k �PicB0=k is an

isomorphism.

Proof. – If i W BT ,! CT , i 0 W B 0T ,! CT , i 00 W BT \ B 0T ,! CT denote the inclusions,
the short exact sequence 1! Gm ! i�Gm � i

0
�Gm ! i 00�Gm ! 1 of sheaves for the Zariski

topology on CT induces, for any T 2 .Sch=k/, an exact sequence of groups

1! Gm.CT /! Gm.BT / �Gm.B
0
T /! Gm.BT \ B

0
T /(1.6)

! Pic.CT /! Pic.BT / � Pic.B 0T /! Pic.BT \ B 0T /.

The natural morphism B \ B 0 ! Spec.H 0.B 0;OB0// is an étale morphism between finite
k-schemes that induces an injection on k-points, in view of the assumption about strict cycles
of components. (Note that Spec.H 0.B 0;OB0//.k/ is the set of connected components ofB 0

k
.)
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It is therefore an open and closed immersion [41, I, Théorème 5.1]. In particular, the resulting
restriction map

Gm
�

Spec.H 0.B 0;OB0// �k T
�
! Gm

�
BT \ B

0
T

�
is onto, and hence so is the restriction map Gm.B

0
T /!Gm.BT \B

0
T /. Noting that PicB\B0=kD0,

the conclusion of the lemma now results from the exact sequence of fppf sheaves obtained
by sheafifying (1.6) with respect to T .

Lemma 1.13. – Let k0 be a finite purely inseparable extension of k. Let C be a proper
integral curve over k0. We view C as a curve over k. If Pic0C=k is the product of an abelian
variety and of an affine group scheme over k, then k0 D k or C D Crat.

Proof. – For all T 2 .Sch=k/, pull-back induces an equivalence between the categories
of étale T -schemes and of étale Tk0 -schemes [41, IX, Théorème 4.10]. It follows at once that
the natural morphism

Resk0=k.PicC=k0/! Resk0=k.PicC=k0;Ket/

of functors .Sch=k/op ! .Ab/ becomes an isomorphism after étale sheafification. On the
other hand, by the very definition of the absolute Picard functor (see §1.4) and of Weil
restriction of scalars, one has PicC=k D Resk0=k.PicC=k0/. By these two remarks, we get,
after sheafification, an isomorphism PicC=k D Resk0=k.PicC=k0/, which restricts to an
isomorphism Pic0C=k D Resk0=k.Pic0C=k0/ in view of [19, Proposition A.5.9]. Let us write
Pic0C=k D L�A with L affine and A an abelian variety. Applying [37, XVII, Appendice III,
Proposition 5.1] with U D L (or [19, Proposition A.7.8]) now shows that if k0 ¤ k, then
Pic0C=k D L, so that A..Pic0C=k/kp/ D 0 and C D Crat.

Lemma 1.14. – Let D be the disjoint union of smooth proper geometrically integral
curves D1; : : : ;Dn over k. Let C be a proper curve over k such that H 0.C;OC / D k and
C.k/ ¤ ;. Let � W D ! C be a morphism. If �� W PicC=k ! PicD=k admits a section, then
there exist morphisms �i W C ! PicDi=k for i 2 f1; : : : ; ng such that �i ı �jDi

is the canonical
morphism for all i while �i ı �jDj

is constant for all j ¤ i .

Proof. – We let �i WDi!C be the restriction of �, fix a section � WPicD=k!PicC=k of �� and,
noting that PicD=k D

Qn
iD1 PicDi=k , let �i W PicDi=k ! PicC=k be the restriction of � , so

that ��i ı �j Dıij . Let �i W Di! PicDi=k be the canonical morphism.

Then ��j maps �i ı�i 2PicC=k.Di / to �i 2 PicDi=k.Di / if j D i , to 0 2 PicDj =k.Di / other-
wise. As H 0.C;OC / D H 0.Di ;ODi / D k and C.k/ ¤ ;, there are a canonical bijection
Pic.CT /=Pic.T / ��! PicC=k.T / and a canonical injection Pic..Di /T /=Pic.T / ,! PicDi=k.T /
for all T . We deduce, for each i , the existence of ˛i 2 Pic.C �k Di / such that
.�j � 1/

�˛i 2 Pic.Dj �k Di / is the class of the diagonal for j D i and comes by pull-
back from Pic.Di / for all j ¤ i . Switching the factors, the class ˛i gives rise to the desired
element �i 2 PicDi=k.C /.

Lemma 1.15. – Let C be a proper curve over k. Let � W C 0 ! C be the normalization
of C red. The pull-back morphism �� W Pic0C=k ! Pic0C 0=k is surjective.
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Proof. – We may assume that the field k is separably closed. We then claim that the
map �� W PicC=k.k/ ! PicC 0=k.k/ is onto. As PicC 0=k is smooth over k, it will follow
that the morphism �� W PicC=k ! PicC 0=k is dominant, by [12, 2.2/13], so that the
morphism �� W Pic0C=k ! Pic0C 0=k is dominant, by Proposition 1.6, and hence surjective,
by [43, VIA, Corollaire 6.2 (i)]. To prove the claim, we may assume that C is reduced,
by [12, 9.2/5]. Letting C 0 � C be a dense open normal subset, we then remark that
�� W Pic.C /! Pic.C 0/ is onto since any divisor on C 0 is linearly equivalent to a divisor sup-
ported on ��1.C 0/. As k is separably closed, it follows that �� W PicC=k;Ket.k/! PicC 0=k;Ket.k/ is
onto as well, as desired.

1.5.3. Proof of Theorem 1.7. – As the formation of Crat and Cirrat is compatible with sepa-
rable extensions of scalars and as the assertions of the last sentence of the theorem are of a
geometric nature, we may, and will henceforth, assume that k is separably closed. For later
use, we note that thanks to this assumption, if condition (i) of Theorem 1.7 holds, then
the irreducible components of Cirrat, viewed as reduced schemes, are geometrically reduced
(being both reduced and generically geometrically reduced) and therefore smooth over k,
and the non-smooth locus of Cirrat over k consists of k-points (as the intersection of any
two irreducible components of Cirrat is étale).

Step 1. – We assume that (i)–(iii) hold and deduce the remaining assertions.

From (1.4) applied to Crat, we deduce that the group scheme .Pic0Crat=k
/kp is affine; hence

Pic0Crat=k
is also affine. To prove that Pic0Cirrat=k

is an abelian variety and that the natural
map PicC=k ! PicCrat=k �PicCirrat=k is an isomorphism, we argue by induction on the
number of irreducible components of Cirrat. When Cirrat D ;, there is nothing to prove.
Otherwise, let us choose an irreducible component B of Cirrat and denote by B 0 (resp. B 0irrat)
the union of the irreducible components of C (resp. of Cirrat) that are distinct from B. We
view B, B 0 and B 0irrat as reduced closed subschemes of C . The equalities C D B [ B 0 D

Crat [ Cirrat D B [ Crat [ B
0
irrat and B 0 D Crat [ B

0
irrat induce a commutative square

PicC=k

��

// PicB=k �PicB0=k
o
��

PicCrat=k �PicCirrat=k
// PicB=k �PicCrat=k �PicB0irrat=k

(1.7)

whose right vertical arrow is an isomorphism by the induction hypothesis. To conclude the
proof, we need only verify that Lemma 1.12 can be applied, on the one hand, toC ,B andB 0,
and on the other hand, toCirrat,B andB 0irrat. Indeed, it will follow that the horizontal arrows
of (1.7) are isomorphisms, which implies, on the one hand, that the left vertical arrow of this
square is an isomorphism, and on the other hand, that Pic0Cirrat=k

is an abelian variety, since
so are Pic0B0irrat=k

(by the induction hypothesis) and Pic0B=k (asB is smooth over k [12, 9.2/3]).

To this end, letting F stand either for B 0 or for B 0irrat, we fix x 2 B \F , and denote by E
the connected component of x in F and by C1; : : : ; Cm the irreducible components of Cirrat

containing x, numbered so that B D C1. The finite k-algebra H 0.E;OE /, being non-zero,
connected and reduced, is a field; it embeds into the residue field k.x/ of x. We now have to
prove that the natural morphism B \E ! Spec.H 0.E;OE // is étale at x.
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If k.x/ ¤ k, then m D 1 and therefore Crat \ Cirrat is not étale over k at x. We deduce
from (iii) that E coincides with the connected component of x in Crat, that B \E is reduced
at x and that H 0.E;OE / D k.x/; hence the desired result.

If k.x/ D k, then H 0.E;OE / D k and it suffices to see that B \ E is reduced at x.
In the Zariski tangent space TxC of C at x, we have TxE D V C TxC2 C � � � C TxCm
where V D TxCrat if x 2 Crat and F D B 0, and V D 0 otherwise. It follows from (iii)
that Crat \ Cirrat is reduced, so that V \ .TxC1 C � � � C TxCm/ D 0, and from (i) that the
lines TxC1; : : : ; TxCm are in direct sum. Hence Tx.B \E/ D TxC1\TxE D 0, and B \E is
indeed reduced at x. Step 1 is complete.

We now assume that Pic0C=k is the product of an abelian variety and of an affine group
scheme over k, and prove (i)–(iii) in four more steps. By Lemma 1.11, we may assume thatC is
connected. In addition, we may assume that Cirrat ¤ ;. Let C1; : : : ; Cn be the irreducible
components ofCirrat, viewed as reduced schemes. LetDi be the normalization ofCi , letD be
the disjoint union of the Di and let �i W Di ! C and � W D ! C be the natural morphisms.

Step 2. – We prove that C1; : : : ; Cn and Cirrat are geometrically reduced over k.
AsCirrat D C1[� � �[Cn, it suffices to check that theCi are geometrically reduced. Assume

that some B 2 fC1; : : : ; Cng is not geometrically reduced. By Lemma 1.10 applied to k.B/,
there exist subfields k � k0 � k00 � kp, with k00 ¤ k0 and k00=k finite, such thatBk0 is integral
and such that if B 0 denotes its normalization, the natural morphism B 0 ! Spec.k0/ factors
through Spec.k00/. Let ! W C 0 ! Ck0 be the normalization of .Ck0/red. By Lemma 1.15, the
pull-back map !� W Pic0Ck0=k0 ! Pic0C 0=k0 is surjective, and (1.4) shows that A.!�

kp
/ is an

isomorphism. As B 0 is a connected component of C 0, we deduce, thanks to Lemma 1.11,
that Pic0B0=k0 is the product of an abelian variety and of an affine group scheme over k0.
Lemma 1.13 implies that k00 D k0 or B 0 D B 0rat, a contradiction.

Step 3. – Assuming that D is smooth over k, we construct �i W C ! Pic1Di=k such that
�i ı �i is a closed immersion while �i .Crat [

S
j¤i Cj / is finite, for all i .

It suffices to check that the hypotheses of Lemma 1.14 are satisfied. Indeed, the canonical
morphism Di ! Pic1Di=k is a closed immersion if Di is a smooth proper integral curve of
genus � 1 over k [69, Propositions 6.1 and 2.3], and �i .Crat/ is finite since any morphism
from a rational curve to an abelian variety is constant.

We recall that Cirrat ¤ ;. As C is proper, connected and reduced, the restriction
map H 0.C;OC / ! H 0.C1;OC1/ has to be injective; as C1 is geometrically integral,
we deduce that H 0.C;OC / D k. In addition, as k is separably closed, we have C1.k/ ¤ ;
[12, 2.2/13], hence C.k/ ¤ ;.

As D is smooth, the group scheme Pic0D=k is an abelian variety and the morphism
�� W Pic0C=k ! Pic0D=k induces an isomorphism A..Pic0C=k/kp/

�
�! .Pic0D=k/kp (see (1.4)).

Our assumption on Pic0C=k therefore implies that �� W Pic0C=k ! Pic0D=k admits a section.
Letting C 0 be the normalization of C red, the natural map �� W ZC 0=k ! ZD=k also admits a
section. In addition, the sequence (1.5) splits as k is separably closed and Pic0C=k is smooth,
and the choice of a splitting of (1.5) and of a section of �� W ZC 0=k ! ZD=k determines a
splitting of the sequence (1.5) associated with D. Applying Proposition 1.6 to C and to D,
we now conclude that �� W PicC=k ! PicD=k admits a section. This completes Step 3.
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Step 4. – We prove (i) and (ii) of Theorem 1.7.

Step 2 ensures that ..Ck/
red/irrat D .Cirrat/k and it follows from Lemma 1.11, in view of

[12, 9.2/5], that Pic0
.C
k
/red=k

is the product of an abelian variety and of an affine group scheme

over k. Thus, after replacing C with .Ck/
red, we may, and will until the end of Step 4, assume

that k D k. In this case D is smooth over k and Step 3 becomes applicable.

To complete the proof of (i), it suffices to show that for all i 2 f1; : : : ; ng, the curve Ci is
smooth and the scheme Ci \

�S
j¤i Cj

�
is reduced. We fix i . As �i ı �i is an immersion,

so is �i ; as �i .Di / D Ci is a reduced closed subscheme of C , we deduce that �i restricts to
an isomorphism Di ! Ci , so that Ci is smooth. Now the restriction of �i to the subscheme
Ci\

�S
j¤i Cj

�
is both a closed immersion (since so is �i jCi

) and a morphism whose scheme-
theoretic image is finite and reduced (since so is �i jS

j¤i Cj
), hence this scheme is reduced.

To prove (ii), we pick a strict cycle of components B1; : : : ; Bn of C and pairwise distinct
points xi 2 Bi \ BiC1 for i 2 f1; : : : ; n � 1g and xn 2 Bn \ B1. If one of the Bi were
contained in Cirrat, say B1 D C1, then �1.x1/ and �1.xn/ would have to be distinct, since
�1jC1

is injective, and equal, since �1.B2 [ � � � [ Bn/ is a point (being finite and connected).
This is absurd.

Step 5. – We prove (iii) of Theorem 1.7.

We now know that (i) holds, hence D is smooth over k: we can apply Step 3 again.

Lemma 1.16. – Let i 2 f1; : : : ; ng. For any purely 1-dimensional connected reduced
closed subscheme E of C such that E \ Ci is finite and non-empty, the restriction map
H 0.E;OE /! H 0.E \ Ci ;OE\Ci / is an isomorphism of fields.

Proof. – The morphism �i jE
has finite image (by Step 3), hence it factors through an

affine open Spec.R/ � Pic1Di=k . To see that the map of the lemma is surjective, we note that
its composition withR! H 0.E;OE / is surjective as �i jE\Ci

is a closed immersion. It is also

injective, asH 0.E;OE / is a field (being a non-zero, connected, reduced, finite k-algebra) and
E \ Ci ¤ ;.

To prove (iii), let B be a connected component of Crat such that B \ Cirrat is not étale
over k, say at a point x.

After renumbering, we may assume that the Ci containing x are C1; : : : ; Cm, for some
m 2 f1; : : : ; ng. If x were a k-point, the subspace TxB \ TxCirrat of the Zariski tangent
space TxC would be non-zero. After renumbering C1; : : : ; Cm appropriately and setting
E D B[C2[� � �[Cm, the vector space TxE\TxC1 would be non-zero. The schemeE\C1
would then be non-reduced; this would contradict Lemma 1.16. Thus k.x/ ¤ k and hence
m D 1.

Let E 0 be the connected component of x in Crat [ C2 [ � � � [ Cn.

As the evaluation map H 0.E 0 \ C1;OE 0\C1/ ! k.x/ is surjective, Lemma 1.16 shows
that H 0.E 0;OE 0/ D H 0.E 0 \ C1;OE 0\C1/ D k.x/; hence, by Step 2, there is no k-algebra
morphism H 0.E 0;OE 0/ ! H 0.Cj ;OCj / for any j . Therefore E 0 D B and B \ Cirrat D

E 0 \ C1. This completes Step 5 as well as the proof of Theorem 1.7.
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1.6. Murre’s intermediate Jacobian

If X is a smooth projective variety over k, Murre defines an algebraic representative for
algebraically trivial codimension 2 cycles on Xk to be an abelian variety Ab2.Xk/ over k
endowed with a morphism

(1.8) �2X W CH2.Xk/alg ! Ab2.Xk/.k/

that is initial among regular homomorphisms with values in an abelian variety (see [72,
Definition 1.6.1, §1.8]). It is obviously unique up to a unique isomorphism, Murre has shown
its existence (see [72, Theorem A p. 226] and [54]), and Achter, Casalaina-Martin and Vial
have shown that it descends uniquely to an abelian variety Ab2.Xkp/ over kp in such a
way that (1.8) is �k-equivariant [3, Theorem 4.4]. If X is a smooth projective k-rational
threefold over k, we endow Ab2.Xkp/with the principal polarization �X 2 NS1.Ab2.Xk//

�k

constructed in [7, Property 2.4, Corollary 2.8].

1.7. Representability lemmas

Here are three lemmas to be used later.

Lemma 1.17. – Let F and F 0 be two functors .Sch=k/op ! .Ab/. If F �F 0 is represented
by a group scheme locally of finite type over k, then so is F .

Proof. – Let G be the group scheme represented by F � F 0 and let � W G ! G be the
morphism induced by the endomorphism .x; y/ 7! .0; y/ of F � F 0. Then F is represented
by Ker.�/, which is a group scheme locally of finite type over k.

Lemma 1.18. – Let G be a commutative group scheme locally of finite type over k. Let
� W Z ! G be a morphism of k-group schemes such that �.n/ … G0.k/ if n ¤ 0. Then the
cokernel functor Q W .Sch=k/op ! .Ab/ defined by Q.T / D G.T /=�.Z.T // is represented by
a group scheme locally of finite type over k.

Proof. – Translation by �.n/ for n 2 Z induces an action of the group Z on the set of
connected components of G. Choose one connected component of G in each orbit of this
action. Their disjoint union represents Q.

Lemma 1.19. – Let F W .Sch=k/op ! .Ab/ be a functor and k0 be a finite extension of k.
Let � 2 fKet; fppfg. Assume that k0=k is separable if � D Ket. If F is a sheaf for the topology �
and the functor .Sch=k0/op ! .Ab/ obtained by restricting F is represented by a group scheme
locally of finite type over k0, thenF is represented by a group scheme locally of finite type over k.

Proof. – Let F 0 W .Sch=k0/op ! .Ab/ denote the restriction of F and G0 the k-group
scheme that represents F 0. As F 0 is the restriction of F , there is a canonical descent datum
on F 0 with respect to p W Spec.k0/ ! Spec.k/. This descent datum induces a descent
datum on G0. By [70, Lemma I.8.6], the latter is effective, and G0 descends to a group
schemeG locally of finite type over k. It remains to note that F andˆG W .Sch=k/op ! .Ab/
are two � -sheaves, that p is a � -covering and that there is by construction an isomor-
phism of � -sheaves p�F ' p�ˆG that satisfies the cocycle condition; from this, it follows
that F ' ˆG .
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2. K-theory functors

We now define and study several functors .Sch=k/op ! .Ab/ built from K-theory. Our
goal, met in §2.3.2, is to define, for a smooth projective k-rational threefold X over k, a
functor CH2

X=k;fppf W .Sch=k/op ! .Ab/ that will serve as a substitute for its intermediate
Jacobian.

2.1. K-theory

We follow the conventions of [38, 80].

2.1.1. Definition. – If X is a qcqs scheme, we let K0.X/ be the Grothendieck group of the
triangulated category of perfect complexes ofOX -modules. (This group is denoted by K�.X/

in [38, IV, Définition 2.2] and coincides with the one defined in [80, §3.1], as indicated in [80,
§3.1.1].) We endow K0.X/with the ring structure induced by the tensor product ([38, IV, §2.7
b)], [80, §3.15]).

If X admits an ample family of line bundles [80, §2.1.1] (for instance, if X is quasi-
projective over an affine scheme [80, §2.1.2 (c)]), then K0.X/ is naturally isomorphic
to the Grothendieck group of the exact category of vector bundles on X (combine
[80, Corollary 3.9] and [80, Theorem 1.11.7]).

2.1.2. Functoriality. – Let f W X ! Y be a morphism of qcqs schemes.

The derived pull-back Lf � of perfect complexes along f induces a morphism
f � W K0.Y /! K0.X/ ([38, IV, §2.7 b)], [80, §3.14]).

The derived push-forward Rf� induces a morphism f� W K0.X/! K0.Y / if Rf�
preserves perfect complexes [80, §3.16]. This condition is satisfied if f is a proper and perfect
morphism [65, Proposition 2.1, Example 2.2 (a)], for instance if f is a proper lci morphism
(see [38, VIII, Proposition 1.7]). In this case, the projection formula [38, IV, (2.12.4)] stem-
ming from [38, III, Proposition 3.7] shows that

(2.1) f�.x ˝ f
�y/ D f�x ˝ y

for all x 2 K0.X/ and y 2 K0.Y /.

2.1.3. Rank and determinant. – The rank rk W K0.X/ ! Z.X/ and the determinant
det W K0.X/! Pic.X/ are group homomorphisms that are functorial with respect to pull-
backs and are such that if x 2 K0.X/ is represented by a bounded complex of vector bundles
onX , then rk.x/ is the alternating sum of the ranks of its terms and det.x/ is the alternating
tensor product of the determinants of its terms (see [58, Theorem 2 p. 42]).

We define SK0.X/ to be the kernel of .rk; det/ W K0.X/! Z.X/ � Pic.X/.

2.1.4. Projective bundles and blow-ups. – If X is a qcqs scheme and � W PXE ! X is
the projective bundle associated with a vector bundle E of rank r on X , the morphism
K0.X/

r ! K0.PXE/ given by the formula

(2.2) .x0; : : : ; xr�1/ 7!

r�1X
jD0

��xj ˝ ŒOPXE.�j /�

is an isomorphism of K0.X/-modules ([38, VI, Théorème 1.1], [80, Theorem 4.1]).
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If i W Y ! X is a regular closed immersion of qcqs schemes of pure codimension c � 1,
if p W X 0 ! X is the blow-up of X along Y with exceptional divisor Y 0, and if we denote
by p0 W Y 0 ! Y and i 0 W Y 0 ! X 0 the natural morphisms, Thomason has shown that the
morphism K0.X/ �K0.Y /

c�1 ! K0.X
0/ given by the formula

(2.3) .x; y1; : : : ; yc�1/ 7! p�x C

c�1X
jD1

i 0�p
0�yj ˝ ŒOX 0.jY 0/�

is an isomorphism of K0.X/-modules [79, Théorème 2.1].

2.1.5. Coherent sheaves. – If X is a qcqs scheme, we let G0.X/ be the Grothendieck group
of the triangulated category of pseudo-coherent complexes of OX -modules with bounded
cohomology. (This group is denoted by K�.X/ in [38, IV, Définition 2.2], see [80, §3.3].)

If X is noetherian, the group G0.X/ is naturally isomorphic to the Grothendieck
group of the abelian category of coherent OX -modules [38, IV, §2.4]. In this case, letting
FdG0.X/ � G0.X/ be the subgroup generated by classes of coherent sheaves whose support
has dimension � d [38, X, Définition 1.1.1] defines a filtration F� on G0.X/.

IfX is noetherian and regular, the natural morphism K0.X/! G0.X/ is an isomorphism
[80, Theorem 3.21]. This allows one to speak of the class of a coherentOX -module in K0.X/,
and of the filtration F�K0.X/ of K0.X/ by dimension of the support.

If X is a smooth variety of pure dimension n over k, we use the notation F cK0.X/DFn�cK0.X/

and GrcF K0.X/DF
cK0.X/=F

cC1K0.X/. According to [31, Example 15.1.5], associating
with an integral closed subschemeZ � X of codimension c the class ŒOZ � 2 K0.X/ induces
a surjective morphism

(2.4) 'c W CHc.X/! GrcF K0.X/:

As explained in [31, Example 15.3.6], Jouanolou’s Riemann-Roch theorem without denomi-
nators [53] shows that '0, '1 and '2 are isomorphisms, with inverses given by the rank rk, the
determinant det and the opposite �c2 of the second Chern class. In particular, F 2K0.X/ D

SK0.X/.

Lemma 2.1. – Let f W X ! Y be a morphism of smooth equidimensional varieties over k.
There exists a commutative diagram

(2.5)
CH2.Y /

�

'2
//

f �
��

Gr2F K0.Y /

��

CH2.X/
�

'2
// Gr2F K0.X/

in which the right vertical arrow is induced by f � W K0.Y /! K0.X/.

Proof. – The pull-back f � W K0.Y / ! K0.X/ restricts to f � W SK0.Y / ! SK0.X/,
hence induces f � W F 2K0.Y /! F 2K0.X/. Since the morphisms '2 are bijective with
inverse given by �c2, and since the second Chern class is functorial, we see that
f � W F 2K0.Y /! F 2K0.X/ induces a morphism sf � W Gr2F K0.Y /! Gr2F K0.X/ making
the diagram (2.5) commute.
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2.2. The functor K0;X=k and its sheafifications

2.2.1. Definition. – If X is a proper variety over k, the absolute K0 functor of X is

K0;X=k W .Sch=k/op
! .Ab/

T 7! K0.XT /:

The rank and the determinant (see §2.1.3) give rise to morphisms of functors rk WK0;X=k!ZX=k
and det WK0;X=k!PicX=k . We let SK0;X=k be the kernel of .rk; det/ WK0;X=k!ZX=k � PicX=k .
If � 2fZar; Ket; fppfg, we let K0;X=k;� (resp. SK0;X=k;� ) be the sheafification of K0;X=k (resp.
SK0;X=k) for the corresponding (Zariski, étale, fppf) topology.

Remark 2.2. – We do not know whether K0;X=k;Ket and K0;X=k;fppf coincide.

2.2.2. Functoriality. – Let f W X ! Y be a morphism of proper varieties over k. The pull-
backs .fT /� for T 2 .Sch=k/ induce a natural transformation of functors f � W K0;Y=k ! K0;X=k .

Similarly, if f W X ! Y is a perfect (for instance lci) morphism of proper varieties over k,
the push-forwards .fT /� for T 2 .Sch=k/ (which exist by §2.1.2 since fT is perfect by [38,
III, Corollaire 4.7.2]) induce a natural transformation of functors f� W K0;X=k ! K0;Y=k , by
the base change theorem [64, Theorem 3.10.3] (which can be applied since fT W XT ! YT
and YU ! YT are Tor-independent for all morphisms U ! T in .Sch=k/).

Proposition 2.3. – Let f W X ! Y be a perfect birational morphism between proper
integral varieties over k.

(i) If Y is normal, then f� restricts to a morphism f� W SK0;X=k ! SK0;Y=k .

(ii) If X and Y are regular, then f� ı f � is the identity of K0;Y=k .

Proof of (i). – Let U � Y be the biggest open subset above which f is an isomorphism.
Since Y is normal, the depth of OY;y is � 2 for all y 2 Y n U .

Fix T 2 .Sch=k/ and a class x 2 SK0.XT /. Since .rk.x/; det.x//jUT
is trivial, so is

.rk..fT /�x/; det..fT /�x//jUT
2 Z.UT / � Pic.UT /:

To deduce the triviality of .rk..fT /�x/; det..fT /�x//, it suffices to show the injectivity of the
restriction morphisms Z.YT /! Z.UT / and Pic.YT /! Pic.UT /.

The morphism Z.YT /! Z.UT / is actually bijective by Remark 1.2 (ii) applied to the
injection U ,! Y . To show the injectivity of Pic.YT /! Pic.UT /, we can assume that T is
noetherian by absolute noetherian approximation [80, Theorem C.9] and by the limit
arguments of [36, §8.5]. It then suffices to combine [42, XI, Lemme 3.4] and [35, Proposi-
tion 6.3.1].

Proof of (ii). – Fix T 2 .Sch=k/. Chatzistamatiou and Rülling [13, Theorem 1.1] have
shown that the natural morphism OY ! Rf�OX is a quasi-isomorphism. The base change
theorem [64, Theorem 3.10.3] (which can be applied as YT is flat over Y ) implies that the
natural morphism OYT ! R.fT /�OXT is also a quasi-isomorphism. That .fT /� ı .fT /� is
the identity of K0.YT / then follows from the projection formula (2.1).
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2.2.3. Curves. – We can entirely compute K0;X=k;� if X is a curve.

Proposition 2.4. – If � 2 fZar; Ket; fppfg and ifX is a projective variety of dimension� 1
over k, then .rk; det/ W K0;X=k;� ! ZX=k � PicX=k;� is an isomorphism.

Proof. – It suffices to prove the proposition for � D Zar. The commutation of K0 and
Pic with directed inverse limits of qcqs schemes with affine transition maps (see [80, Propo-
sition 3.20] and [36, §8.5]), applied to the system of affine neighborhoods of a point in a qcqs
k-scheme, shows that it suffices to prove the bijectivity of .rk; det/ WK0.XT /!Z.XT /�Pic.XT /
for any local k-scheme T . By absolute noetherian approximation [80, Theorem C.9], we can
write T as the limit of a directed inverse system .Ti /i2I of noetherian k-schemes with affine
transition maps. Replacing the Ti by their localizations at the images of the closed point
of T , we may assume that they are local. A limit argument as above then shows that we
may assume T to be noetherian. This case follows from Lemma 2.5 below applied to the
connected components of XT .

Lemma 2.5. – Let � W Y ! T be a projective morphism with T local noetherian, Y non-
empty and connected, and fibers of dimension � 1.

Then the morphism .rk; det/ W K0.Y /! Z � Pic.Y / is bijective.

Proof. – The surjectivity of .rk; det/ is obvious and we prove its injectivity.
As explained in §2.1.1, K0.Y / is generated by classes of vector bundles on Y . Lemma 2.6

below and induction on the rank of vector bundles show that it is even generated by classes
of line bundles on Y . Let L and M be two line bundles on Y . Applying Lemma 2.6 twice
with the same l � 0 and with the same very ample line bundle OY .1/ on Y yields exact se-
quences 0! OY .�l/! L˚M! F1 ! 0 and 0! OY .�l/! OY ˚ .L˝M/! F2 ! 0.
Since the line bundles F1 and F2 have the same determinant, they are isomorphic, and we
deduce the identity ŒL� C ŒM� D ŒOY � C ŒL ˝M� 2 K0.Y /. This identity and the fact
that K0.Y / is generated by line bundles implies that x D Œdet.x/�C .rk.x/ � 1/ŒOY � for all
x 2 K0.Y /. This shows at once the required injectivity.

Lemma 2.6. – In the setting of Lemma 2.5, there exists a �-ample line bundleOY .1/ on Y
with the following property. For all vector bundles E of rank� 2 on Y and all l � 0, there exists
a short exact sequence of vector bundles on Y of the form

(2.6) 0! OY .�l/! E ! F ! 0.

Proof. – Let OY .1/ be a �-ample line bundle on Y , let t be the closed point of T , and
let A � Yt be a finite subset meeting all the irreducible components of Yt . If m � 0, then
H 0.Yt ;OYt .m// ! H 0.A;OA.m// is surjective. As a consequence, after replacing OY .1/
with OY .m/, we may assume the existence of a section ˛ 2 H 0.Yt ;OYt .1// that vanishes at
only finitely many points.

The same argument yields, for some m � 0, a section ˇ 2 H 0.Yt ; EYt .m// that vanishes at
only finitely many points. Let B � Yt be a finite subset meeting every irreducible component
of Yt and such that ˛ˇ does not vanish at any point of B. Since H 0.Yt ; EYt .n//! H 0.B; EB.n// is
surjective for n � 0, we can choose n � 0 and a section  2 H 0.Yt ; EYt .n// such that ˛ˇ
and  are linearly dependent at only finitely many points of Yt . Let C � Yt be this finite set
of points.
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Choose any l � max.m; n/ such that H 0.Yt ;OYt .l � n//! H 0.C;OC .l � n// and
H 0.Y; E.l//! H 0.Yt ; EYt .l// are surjective. (Such l exist by Serre vanishing
[32, Théorème 2.2.1]; this is where we use the noetherianity of T .) Then there exists
ı 2 H 0.Yt ;OYt .l � n// such that � WD ˛l�mˇ C ı 2 H 0.Yt ; EYt .l// vanishes nowhere.
Lift � to a section � 2 H 0.Y; E.l//. Since � is proper and T is local, � does not vanish on Y ,
thus giving rise to a short exact sequence of the form (2.6).

Remark 2.7. – If the residue field of T is infinite, the proof of Lemma 2.6 can be simpli-
fied as one can then apply [55, Corollary 3.6] on Yt to construct � .

2.2.4. Projective bundles and blow-ups. – If X is a proper variety over k and if E is a vector
bundle of rank r on X , the formula (2.2) induces an isomorphism of functors

(2.7) Kr
0;X=k

�
�! K0;PXE=k :

In view of the isomorphism rk W K0;Spec.k/=k;Zar
�
�! Z given by Proposition 2.4, we deduce

that K0;Pr�1
k

=k;Zar ' Zr and that .ŒOPr�1
k
.�j /�/0�j�r�1 forms a basis of the Z-module

K0;Pr�1
k

=k;Zar.k/. The family .ŒOPd
k
�/0�d�r�1 is another basis. For r � 2, identifying the

morphism .rk; det/ W K0;Pr�1
k

=k;Zar ! ZPr�1
k

=k � PicPr�1
k

=k;Zar D Z2 yields an isomor-

phism SK0;Pr�1
k

=k;Zar ' Zr�2 and shows that .ŒOPd
k
�/0�d�r�3 is a basis of the Z-module

SK0;Pr�1
k

=k;Zar.k/.

Let X be a proper variety over k and i W Y ! X a regular closed immersion of pure
codimension c � 1. Define p W X 0 ! X to be the blow-up of X along Y with exceptional
divisor Y 0, and p0 W Y 0 ! Y and i 0 W Y 0 ! X 0 to be the natural morphisms. Then the formula
(2.3) induces an isomorphism of functors

(2.8) K0;X=k �Kc�1
0;Y=k

�
�! K0;X 0=k ;

in view of the functorialities described in §2.2.2.

2.3. The functor CH2
X=k;fppf

We introduce, for a smooth proper geometrically connected threefold X over k with
geometrically trivial Chow group of zero-cycles, the functor CH2

X=k;fppf. It will play for
codimension 2 cycles the same role as the Picard functor PicX=k;fppf does for codimension 1
cycles.

2.3.1. The class of a point. – We first exhibit a canonical class �X 2 K0;X=k;fppf.k/.

Proposition 2.8. – Let X be a smooth proper geometrically connected variety over k
whose degree map deg W CH0.Xk/! Z is an isomorphism. Choose � 2 fZar; Ket; fppfg. Assume
that k D k if � D Zar and that k D kp if � D Ket. There exists a unique �X 2 K0;X=k;� .k/

such that for all finite extensions k0 of k and all coherent sheaves F on Xk0 whose support has
dimension 0, one has

(2.9) ŒF � D h0.Xk0 ;F/ � �X 2 K0;X=k;� .k
0/:
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Proof. – Using [12, 2.2/13], choose a finite Galois extension l of k and a point x 2 X.l/.
Let n be the dimension of X . For all field extensions l 0 of l , the definition of the flat pull-
back of a cycle [31, §1.5, §1.7] and the formula [38, X, (1.1.3)] show the commutativity of the
natural diagram

(2.10)
CH0.Xl /

'n
//

��

F0K0.Xl /

��

CH0.Xl 0/
'n
// F0K0.Xl 0/,

where the morphisms 'n are defined in §2.1.5.

Assume first that � D fppf.

Let fx1; : : : ; xmg be the Gal.l=k/-orbit of x. Since deg W CH0.Xk/
�
�! Z is an

isomorphism, there exists a finite extension l 0 of l such that the xi all have the same
class in CH0.Xl 0/. Since Spec.l 0/ ! Spec.l/ is an fppf covering, we deduce from (2.10)
that 'n.Œx�/ 2 K0;X=k;� .l/ is Gal.l=k/-invariant, hence descends to a class �X 2 K0;X=k;� .k/

since Spec.l/ ! Spec.k/ is an étale covering. Applying (2.9) with k0 D l and F D Ox
shows that this is the only possible choice for �X and proves the uniqueness assertion of
Proposition 2.8.

Let us now show that �X satisfies (2.9). Let k0 be a finite extension of k and let F be
a coherent sheaf on Xk0 whose support has dimension 0. Let l 0 be a finite extension of k
containing both k0 and l , with the property that all the points in the support
of Fl 0 have residue field l 0, and are rationally equivalent to x. (Such an l 0 exists since
deg W CH0.Xk/

�
�! Z.) The formula [38, X, (1.1.3)] and the commutativity of (2.10) show

that ŒFl 0 � D h0.Xl 0 ;Fl 0/ � �X 2 K0;X=k;� .l
0/. Since Spec.l 0/! Spec.k0/ is an fppf covering,

identity (2.9) follows.

If � D Ket (resp. � D Zar), all the fppf (resp. fppf or étale) coverings that appear above are
étale (resp. Zariski) coverings, proving the proposition in these cases.

2.3.2. Codimension 2 cycles on a threefold. – Let us fix in §2.3.2 a smooth proper geomet-
rically connected threefold X over k whose degree map deg W CH0.X�/ ! Z is an isomor-
phism for all algebraically closed field extensions k � � (an assumption that is satisfied if
X is k-rational).

Choose � 2 fZar; Ket; fppfg, and assume that k D k if � D Zar and that k D kp if
� D Ket, so that Spec.l/! Spec.k/ is a � -covering for any finite extension l of k. Let
�X 2 K0;X=k;� .k/ be the class defined in Proposition 2.8. If x 2 X.l/ for some finite exten-
sion l of k, then .rk; det/.ŒOx �/ D .0;OX / (see §2.1.5). In view of (2.9), one therefore has
�X 2 SK0;X=k;� .k/ � SK0;X=k;� .l/.

We still denote by �X the morphism of � -sheaves �X W Z! SK0;X=k;� such that �X .1/ D �X .
We view �X as a morphism of presheaves of abelian groups.

Definition 2.9. – We let CH2
X=k;� W .Sch=k/op ! .Ab/ be the (presheaf) cokernel

of �X W Z! SK0;X=k;� . When CH2
X=k;fppf is representable, we let CH2

X=k be the group
scheme over k that represents it.

4 e SÉRIE – TOME 56 – 2023 – No 4



INTERMEDIATE JACOBIANS AND RATIONALITY OVER ARBITRARY FIELDS 1051

Remark 2.10. – Let k0=k be a field extension. There is an obvious identification
K0;Xk0=k

0.T / D K0;X=k.T / for all T 2 .Sch=k0/. We thus obtain natural isomorphisms
K0;Xk0=k

0;� .T / D K0;X=k;� .T /, SK0;Xk0=k
0;� .T / D SK0;X=k;� .T / and CH2

Xk0=k
0;� .T / D

CH2
X=k;� .T / for all T 2 .Sch=k0/ and � 2 fZar; Ket; fppfg. In particular, if CH2

X=k;fppf is
representable, so is CH2

Xk0=k
0;fppf, and CH2

Xk0=k
0 D .CH2

X=k/k0 .

The following proposition justifies these definitions.

Proposition 2.11. – Associating with the class ŒZ� 2 CH2.Xk/ of a codimension 2
integral closed subvariety Z � Xk the class ŒOZ � 2 K0.Xk/ of its structure sheaf induces a
�k-equivariant isomorphism

(2.11) CH2.Xk/
�
�! CH2

X
k
=k;Zar

.k/ D CH2
X=k;Zar.k/.

Proof. – In view of (2.9), one has a natural isomorphism

(2.12) SK0.Xk/=F0K0.Xk/
�
�! CH2

X
k
=k;Zar

.k/.

Precomposing (2.12) with '2 W CH2.Xk/
�
�! Gr2F K0.Xk/ D SK0.Xk/=F0K0.Xk/ (see

§2.1.5) yields the isomorphism (2.11). It is �k-equivariant by construction.

The next lemma will be used in the proof of Theorem 3.1 (iv). For the definition of ˛jXt
2CH2.Xt /

in its statement, see [31, Example 5.2.1].

Lemma 2.12. – Let T be a smooth connected variety over k.

(i) For all ˛ 2 CH2.XT /, there exists a class ˇ 2 SK0.XT / with the property that for all
t 2 T .k/, the image of ˛jXt by (2.11) is induced by ˇjXt .

(ii) For all ˇ 2 SK0.XT /, there exists a class ˛ 2 CH2.XT / with the property that for all
t 2 T .k/, the image of ˛jXt by (2.11) is induced by ˇjXt .

Proof of (i). – We can assume that ˛ is the class of an integral subvariety Z � XT of
codimension 2. Define ˇ WD ŒOZ � 2 SK0.XT /. By the Riemann-Roch theorem without
denominators, one has ˛ D �c2.ˇ/ (see §2.1.5). For t 2 T .k/, one has ˛jXt

D �c2.ˇjXt
/.

Applying the Riemann-Roch theorem without denominators again shows that the image
of ˛jXt

by (2.11) is the class induced by ˇjXt
.

Proof of (ii). – Define ˛ D �c2.ˇ/ 2 CH2.XT / and argue as in (i).

3. Geometrically rational threefolds

In Section 3, we prove the representability of the functor CH2
X=k;fppf defined in §2.3.2

if X is a smooth projective k-rational threefold, and study the group scheme CH2
X=k that

represents it.
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3.1. Main statement

Our goal is the following theorem.

Theorem 3.1. – Let X be a smooth projective k-rational threefold over k. Then:

(i) CH2
X=k;fppf is represented by a smooth group scheme CH2

X=k over k.

(ii) .CH2
X=k/

0 is an abelian variety over k.

(iii) CH2
Xkp=kp;fppf D CH2

Xkp=kp;Ket and CH2

X
k
=k;fppf

D CH2

X
k
=k;Zar

.

(iv) The �k-equivariant isomorphism

(3.1)  2X W CH2.Xk/
�
�! CH2

X=k.k/

obtained by combining (iii) and (2.11) restricts to a �k-equivariant bijective regular
homomorphism (in the sense of §1.6)

(3.2)  2X W CH2.Xk/alg
�
�! .CH2

X=k/
0.k/:

(v) The étale group scheme CH2
X=k =.CH

2
X=k/

0 over k is associated with the �k-module
NS2.Xk/, which as a Z-module is free of finite rank.

(vi) The isomorphism (3.2) induces an isomorphism Ab2.Xkp/
�
�! .CH2

Xkp=kp
/0 (where

Ab2.Xkp/ denotes Murre’s intermediate Jacobian, introduced in §1.6).

We endow CH2
X=k with the principal polarization (in the sense of §1.2) induced by the principal

polarization �X of Ab2.Xkp/ (see §1.6).

(vii) If X is k-rational, there exists a smooth projective curve B over k such that CH2
X=k is a

principally polarized direct factor of PicB=k (in the sense of §1.2).

The proof of Theorem 3.1 is given in §3.2. Theorem 3.1 is complemented in §3.3 by a
computation of CH2

X=k for varieties constructed as blow-ups, and in §3.4 by an analysis of
the obstructions to k-rationality arising from Theorem 3.1 (vii).

Remarks 3.2. – (i) Let X be a smooth projective variety over k. As recalled in §1.6,
Achter, Casalaina-Martin and Vial have endowed Ab2.Xk/ with a natural kp-structure.
If X is moreover a k-rational threefold, Theorem 3.1 (vi) further endows Ab2.Xk/ with
a natural k-structure .CH2

X=k/
0. Trying to descend Ab2.Xk/ to k under more general

hypotheses gives an incentive to define CH2
X=k;fppf and to prove its representability in a

greater generality.
(ii) For instance it would be nice to define and study a functor CH2

X=k;fppf for all
smooth proper varieties X over k such that CH0.X/Q is supported in dimension 1 in
the sense of Bloch and Srinivas (see [7, Definition 2.1]). If a good enough theory of motivic
cohomology H�M over a field of characteristic p > 0 were available without having to
invert p in the coefficients, a natural choice would be the fppf sheafification of the functor
T 7! H 4

M.XT ;Z.2//. One could also consider the fppf sheafification of the functor
T 7! H 2.XT ;K2/, where K2 denotes Quillen’s K-theory sheaf [9], or of the functor
T 7! A2.XT /, where A2 denotes Fulton’s cohomological Chow group [31, Definition 17.3].

(iii) Even with our definition of CH2
X=k;fppf, it would be interesting to show the repre-

sentability of CH2
X=k;fppf under the hypothesis, weaker than k-rationality, thatX is a smooth,
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proper and geometrically connected threefold over k such that deg W CH0.X�/
�
�! Z is an

isomorphism for all algebraically closed field extensions k � �. We note, however, that it is
the proof of representability that we give here, and which is specific to Nk-rational threefolds,
that yields the crucial Theorem 3.1 (vii) and thus provides obstructions to k-rationality.

(iv) We still denote by �X the principal polarization ofCH2
X=k induced by that of Ab2.Xkp/,

as in Theorem 3.1 (vi). For the sake of completeness, we extract a characterization of �X
from the definition of the isomorphism (3.2) and from [7, Property 2.4, Corollary 2.8]. Let
` be a prime number invertible in k. Consider the diagram

.CH2
X=k/

0.k/f`g CH2.Xk/algf`g
 2
X

�
oo �2 // H 3.Xk ;Z`.2//˝Q`=Z`,

where �2 is Bloch’s Abel-Jacobi map (see [10, §2], [7, (2.3)]) and  2X is the map (3.2). Then
c1.�X / 2 H

2..CH2
X=k/

0

k
;Z`.1// D

�V2
H 1..CH2

X=k/
0

k
;Z`/

�
.1/ corresponds, via the identi-

fication

H 1..CH2
X=k/

0

k
;Z`/_

T`.�
2ı. 2

X
/�1/

����������! H 3.Xk ;Z`.2//=.torsion/

(in which _ stands for Hom.�;Z`/), to the opposite of the cup product pairing

2̂

H 3.Xk ;Z`.2//! H 6.Xk ;Z`.4//
�
�! Z`.1/:

3.2. Proof of Theorem 3.1

3.2.1. Resolution of indeterminacies. – Our main tool is a resolution of indeterminacies
result that is due to Abhyankar [1] if k is perfect, and to Cossart and Piltant [22] in general.

Proposition 3.3. – LetX andY be smooth projective threefolds overk. Letf W Y99KX be
a birational map. Then there exists a diagram

(3.3) X
h
 � X 0 D YNC1 ! � � � ! YjC1

pj
�! Yj ! � � � ! Y1 D Y

of regular projective varieties over k such that f D h ıp�1N ı � � � ıp
�1
1 , where pj is the blow-up

of an integral regular closed subscheme Zj � Yj of codimension cj and where h is projective
and birational.

Proof. – This follows from [22], as explained in [7, Proposition 2.11]. The standing
assumption that k is perfect in [7] is irrelevant if one really uses [22, Proposition 4.2] (or [21,
Theorem 5.9]) instead of [1, (9.1.4)] in the proof of [7, Proposition 2.11].

Remark 3.4. – If k is not perfect, the subschemes Zj � Yj may not be smooth over k.
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3.2.2. Representability if X is k-rational. – In §3.2.2, we fix � 2 fZar; Ket; fppfg and assume
that k D k if � D Zar and that k D kp if � D Ket. We also let X be a smooth projec-
tive k-rational threefold. By Proposition 3.3, there exists a diagram (3.3) with Y D P3

k
.

Remark 1.2 (ii), Corollary 1.5 and the isomorphism (2.8) then give canonical decomposi-
tions

ZX 0=k �
 � ZP3

k
=k ,(3.4)

PicX 0=k
�
 � PicP3

k
=k �

Y
cj�2

ZZj =k ,(3.5)

K0;X 0=k
�
 � K0;P3

k
=k �

Y
cjD2

K0;Zj =k �

Y
cjD3

.K0;Zj =k/
2.(3.6)

Identifying .rk; det/ W K0;X 0=k ! ZX 0=k�PicX 0=k in terms of these decompositions and using
the isomorphisms .rk; det/ W K0;Zj =k;�

�
�! ZZj =k �PicZj =k;� given by Proposition 2.4 yields

an isomorphism

(3.7) SK0;X 0=k;�
�
 � SK0;P3

k
=k;� �

Y
cjD2

PicZj =k;� �
Y
cjD3

ZZj =k .

The morphisms pj are lci by [79, §1.2], hence so is the structural morphismX 0 ! Spec.k/
by [38, VIII, Proposition 1.5]. Any closed embedding X 0 ,! PNX of the X -scheme X 0 is a
regular immersion by [38, VIII, Proposition 1.2], which shows that h is lci, hence perfect
[38, VIII, Proposition 1.7]. The functors h� W K0;X=k ! K0;X 0=k and h� W K0;X 0=k ! K0;X=k

satisfy h� ı h� D Id by Proposition 2.3 (ii). Since they restrict to h� W SK0;X=k ! SK0;X 0=k

and to h� W SK0;X 0=k ! SK0;X=k (see Proposition 2.3 (i)), we deduce a natural decomposi-
tion

(3.8) SK0;X=k �Ker
�
h� W SK0;X 0=k ! SK0;X=k

�
�
�! SK0;X 0=k .

The three summands of the right-hand side of (3.7) are represented by group schemes
locally of finite type over k, respectively by §2.2.4, by §1.4 and by Proposition 1.1. It follows
that SK0;X 0=k;� is represented by a group scheme locally of finite type over k. So is SK0;X=k;� ,
by (3.8) and Lemma 1.17.

Let x0 2 X 0.k/ be a general point, and let x 2 X.k/ and y 2 P3.k/ be its images
by h and by p1 ı � � � ı pN . Then h�ŒOx � D ŒOx0 � D p�N ı � � � ı p

�
1 ŒOy � 2 SK0;X 0=k;� .k/.

Consequently, h� ı �X W Z ! SK0;X 0=k;� and p�N ı � � � ı p
�
1 ı �P3

k
W Z ! SK0;X 0=k;� both

send 1 2 Z.k/ to ŒOx0 � 2 SK0;X 0=k;� .k/. For n ¤ 0, the class �P3
k
.n/ does not belong to

the identity component of SK0;P3
k
=k;� , by §2.2.4. We deduce from the above and from (3.7)

that nŒOx0 � … .SK0;X 0=k;� /
0.k/, hence that �X .n/ … .SK0;X=k;� /

0.k/. Lemma 1.18 then shows
that CH2

X=k;� is represented by a group scheme locally of finite type over k.
Applying the above with � D fppf and combining (3.7), (3.8) and the equality

h� ı �X D p
�
N ı � � � ı p

�
1 ı �P3

k
yields isomorphisms

(3.9) CH2
X=k �G

�
�! CH2

X 0=k
�
 � CH2

P3
k
=k
�

Y
cjD2

PicZj =k �
Y
cjD3

ZZj =k

of smooth group schemes over k, where G denotes the group scheme representing the
fppf sheafification of Ker

�
h� W SK0;X 0=k ! SK0;X=k

�
(whose representability follows from
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Lemma 1.17) and where CH2
X 0=k denotes the group scheme representing the presheaf

cokernel Coker
�
h� ı �X W Z! SK0;X 0=k;fppf

�
(whose representability follows from

Lemma 1.18).

3.2.3. Representability if X is k-rational. – In §3.2.3, we prove Theorem 3.1 (i)–(iii) for a
smooth projective k-rational threefold X over k.

Choose � 2 fZar; Ket; fppfg and assume that k D k if � D Zar and that k D kp if � D Ket. Let
l be a finite extension of k such thatX is l-rational. Then SK0;Xl=l;� is represented by a group
scheme locally of finite type over l , by the arguments of §3.2.2 applied to the l-variety Xl .
By Lemma 1.19, it follows that SK0;X=k;� is represented by a group scheme locally of finite
type over k. As explained in §3.2.2, the morphism �X W Z! SK0;X=k;� defined in §2.3.2 has
the property that �X .n/ … .SK0;X=k;� /

0.k/ for all n ¤ 0. It now follows from Lemma 1.18
that CH2

X=k;� is represented by a group scheme locally of finite type over k.

Proof of Theorem 3.1 (i)–(iii). – Applying the above argument to the k-variety X with
� D fppf, to the kp-varietyXkp with � D Ket, and to the k-varietyXk with � D Zar shows that
the three functors CH2

X=k;fppf, CH2
Xkp=kp;Ket and CH2

X
k
=k;Zar

are represented by group schemes

locally of finite type over k, over kp and over k, respectively. In particular, the latter two are
sheaves for the fppf topology, which proves Theorem 3.1 (iii). In addition, the arguments
of §3.2.2 applied to the k-variety Xk show that .CH2

X
k
=k
/0 is a direct factor of a product

of Jacobians of smooth projective curves over k (see (3.9)), hence is an abelian variety; in
particular, it is smooth. As ..CH2

X=k/
0/k D .CH

2

X
k
=k
/0, Theorem 3.1 (i)–(ii) follows.

3.2.4. Relation with Murre’s work. – We now prove Theorem 3.1 (iv)–(vi).

Proof of Theorem 3.1 (iv). – That  2X .CH2.Xk/alg/ � ..CH2
X=k/

0.k//, and that the

resulting morphism  2X W CH2.Xk/alg ! .CH2
X=k/

0.k/ is a regular homomorphism follow
at once from Lemma 2.12 (i). It remains to show that (3.2) is surjective.

Since CH2

X
k
=k

represents CH2

X
k
=k;Zar

by Theorem 3.1 (iii), we can choose a connected

Zariski neighborhood T of the identity in .CH2

X
k
=k
/0 and a class ˇ 2 SK0.XT / inducing

the natural inclusion T ! CH2

X
k
=k

. Lemma 2.12 (ii) then implies that T .k/ is contained in

the image of (3.2). Since .CH2
X=k/

0.k/ is generated by T .k/ as a group, we have proved the
surjectivity of (3.2).

Proof of Theorem 3.1 (v). – That the étale k-group scheme .CH2
X=k/=.CH

2
X=k/

0 corre-
sponds to the �k-module NS2.Xk/ follows at once from (3.1) and (3.2).

Applying the discussion of §3.2.2, and more precisely identity (3.9), to the k-variety Xk ,
shows, in view of the isomorphismCH2

P3
k
=k
' Z (see §2.2.4), that NS2.Xk/ is a freeZ-module

of finite rank, being a direct factor of such a module.

Proof of Theorem 3.1 (vi). – The regular homomorphism (3.2) induces a morphism
�X
k
W Ab2.Xk/! .CH2

X
k
=k
/0. Since (3.2) is �k-equivariant, and in view of the definition

of Ab2.Xkp/ recalled in §1.6, this morphism descends by Galois descent to a morphism
�Xkp
W Ab2.Xkp/! .CH2

Xkp=kp
/0 of abelian varieties over kp. To prove that �Xkp

is an
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isomorphism, it suffices to prove that �X
k

is an isomorphism. From now on, we may thus

assume that k D k.

By Proposition 3.3, there exists a diagram (3.3). Since k D k, all the varieties Zj and Yj
that appear in it are smooth over k. Consider the diagram

(3.10)

Ab2.P3
k
/ �

Q
cjD2

Pic0Zj =k
� //

.�P3
k

;Id/
��

Ab2.X 0/

�X0
��

.CH2

P3
k
=k
/0 �

Q
cjD2

Pic0Zj =k
� // .CH2

X 0=k/
0,

where the lower horizontal isomorphism is induced by (3.7) and the upper horizontal isomor-
phism is the one provided by [7, Lemma 2.10]. Since CH2.P3

k
/alg D 0, one has Ab2.P3

k
/ D

.CH2

P3
k
=k
/0 D 0 and the left vertical arrow of (3.10) is an isomorphism. We claim that (3.10)

commutes. Since k D k, it suffices to verify that it commutes at the level of k-points, which
follows from unwinding the definitions and making use of Lemma 2.1. A glance at (3.10)
now shows that �X 0 is an isomorphism.

Now, consider the diagram

(3.11)
Ab2.X/ hC //

�X��

Ab2.X 0/
hC

//

o �X0��

Ab2.X/
�X��

.CH2
X=k/

0 h� // .CH2
X 0=k/

0 h� // .CH2
X=k/

0,

whose lower horizontal arrows are induced by (3.8) and hence satisfy h� ı h� D Id,
and whose upper horizontal arrows are given by the functoriality of Murre’s interme-
diate Jacobians (see [7, §2.2.1]) and satisfy hC ı hC D Id as a consequence of the identity
h� ı h

� D Id W CH2.X/! CH2.X/ stemming from the projection formula [31, Proposi-
tion 8.3(c)]. To show that (3.11) commutes, it suffices to check that it commutes at the level
of k-points, since k D k. This follows from Lemma 2.1 for the left-hand square, and from the
fact that the morphisms 'c considered in §2.1.5 are compatible with proper push-forwards
[31, Example 15.1.5] for the right-hand square. A diagram chase in (3.11) shows that �X is
an isomorphism since �X 0 is one, which concludes the proof.

3.2.5. Further analysis of k-rational varieties. – We resume the discussion of §3.2.2 with
� D fppf, and keep the notation introduced there. Since CH2

P3
k
=k
' Z by §2.2.4, identity

(3.9) reads:

(3.12) CH2
X=k �G

�
�! CH2

X 0=k
�
 � Z �

Y
cjD2

PicZj =k �
Y
cjD3

ZZj =k .

The identity component of the right-hand side is isomorphic to
Q
cjD2

Pic0Zj =k , hence it
carries a natural principal polarization (see §1.4.2). Via (3.12), we thus obtain a principal
polarization on CH2

X 0=k in the sense of §1.2.

Proposition 3.5. – The isomorphism (3.12) realizes CH2
X=k and G as principally polar-

ized direct factors, in the sense of §1.2, of CH2
X 0=k , and the induced polarization on CH2

X=k

coincides with the one defined in Theorem 3.1 (vi).
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Proof. – We fix once and for all a prime number ` invertible in k and start with a few
recollections about (Borel-Moore) `-adic étale homology. If V is a variety over k, the
i -th étale homology group of V with coefficients in Q`.j / is defined by Hi .V;Q`.j // D

H�i .V;R"ŠQ`.j //, where " W V ! Spec.k/ denotes the structural morphism (see [63, Défi-
nition 2]). This group is covariantly functorial with respect to proper morphisms (loc. cit., §4)
and comes with a cap product operationH s.V;Q`.t//�Hi .V;Q`.j //! Hi�s.V;Q`.jCt //

(loc. cit., p. VIII-09), and with a cycle class map cl W CHi .V / ! H2i .V;Q`.�i// (loc. cit.,
§6), for any i , j , s, t . If V is of pure dimension n, we denote by ŒV � the fundamental cycle
of V (see [31, §1.5]), so that cl.ŒV �/ 2 H2n.V;Q`.�n//. For all i , j , the map

� Ket
V W H

2n�i .V;Q`.j C n//! Hi .V;Q`.j //(3.13)

defined by � Ket
V .x/ D x \ cl.ŒV �/ is an isomorphism if in addition V is smooth (see [63,

Prop. 3.2]). Thus, given a proper morphism f W V 0 ! V from a variety V 0 of pure
dimension n0 to a smooth variety V of pure dimension n over k, one can define a push-
forward in étale cohomology

f� W H
s.V 0;Q`.t//! H sC2n�2n0.V;Q`.t C n � n

0//(3.14)

as the composition .� Ket
V /
�1 ı f� ı �

Ket
V 0 . When V is a proper variety over k of pure odd

dimension n, we will speak of the “cup product pairing on Hn.V;Q`..n C 1/=2//” to refer
to the pairing Hn.V;Q`..nC 1/=2// �H

n.V;Q`..nC 1/=2//! Q`.1/ induced by the cup
product and by the push-forward map H 2n.V;Q`.n C 1// ! Q`.1/ along the structural
morphism V ! Spec.k/ (see (3.14)).

Lemma 3.6. – Let f W D ! V be a morphism between projective varieties over k,
where D has pure dimension d and V has pure dimension d C 1, for some integer d . Suppose
that V is smooth.

Let �1 W Pic.D/f`g ��! H 1.D;Q`=Z`.1// and �2 W CH2.V /f`g ! H 3.V;Q`=Z`.2//
respectively denote the Kummer isomorphism and Bloch’s `-adic Abel-Jacobi map. Then the
diagram

V`.F
2K0.V //

�V`.c2/ // V`.CH2.V //
V`.�

2/
// H 3.V;Q`.2//

V`.K0.D//
V`.det/

//

f�

OO

V`.Pic.D///
V`.�

1/
// H 1.D;Q`.1//

f�

OO
(3.15)

commutes, where the right-hand side vertical arrow is the map (3.14) and the left-hand side
vertical arrow is induced by the composition of the canonical map K0.D/ ! G0.D/, which
sends the rank 0 subgroup of K0.D/ to Fd�1G0.D/ (see [38, X, Corollaire 1.3.3]), with
f� W Fd�1G0.D/! Fd�1G0.V /.

We stress that D is not assumed to be reduced in Lemma 3.6.

Proof. – Let fK0.D/ D Ker.rk W K0.D/ ! Z/ and Gr1 K0.D/ D fK0.D/=SK0.D/

(a piece of notation justified by the fact that SK0.D/ and fK0.D/ form the beginning
of the  -filtration on K0.D/). As the canonical map K0.D/ ! G0.D/ sends fK0.D/

toFd�1G0.D/ and SK0.D/ toFd�2G0.D/ (see [38, X, Corollaire 1.3.3]), there is an induced
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map f� W V`.Gr1 K0.D//! V`.Gr2F K0.V // and it suffices to prove the commutativity of
the diagram

V`.Gr2F K0.V //
�V`.c2/

�
// V`.CH2.V //

V`.�
2/
// H 3.V;Q`.2//

V`.Gr1 K0.D//
V`.det/

�
//

f�

OO

V`.Pic.D///

OO

V`.�
1/
// H 1.D;Q`.1//,

f�

OO

(3.16)

without the dotted arrow. We note that the leftmost horizontal arrows of (3.16) are isomor-
phisms; their inverses are induced by the map '2 W CH2.V / ! Gr2F K0.V / of (2.4) and by
the map Pic.D/ ! Gr1 K0.D/ sending the class of a Cartier divisor Z on D to the class
of ŒOD.Z/� � ŒOD� 2 fK0.D/.

Let us complete this diagram with a dotted arrow induced by the composition of the
canonical map Pic.D/! CHd�1.D/ (see [31, §2.1]) with the push-forward
f� W CHd�1.D/! CHd�1.V /.

When D is smooth, the right half of (3.16) commutes by [10, Proposition 3.3, Propo-
sition 3.6] and the left half by the description of the inverses of the horizontal arrows.
Thus (3.16) commutes in this case.

In general, let us choose a family .Dj /j2J of smooth projective varieties of pure dimen-
sion d , and for each j 2 J , a morphism �j W Dj ! D and an element nj 2 Z`, such that the
equality of d -cycles with coefficients in Z`

ŒD� D
X
j2J

nj �j�ŒDj �(3.17)

holds. When dim.D/ � 2 (which will be the case when we apply the lemma), one can choose
the Dj to be desingularisations of the irreducible components of Dred and the nj to be the
multiplicities, in D, of these irreducible components. In arbitrary dimension, such Dj , �j
and nj exist by the Gabber–de Jong alteration theorem [48, Theorem 2.1] applied to the
irreducible components of Dred.

For j 2 J , let fj D f ı �j W Dj ! V . As Dj is smooth, we have already seen that the
outer square of (3.16) with D and f replaced with Dj and fj commutes. In order to show
that the outer square of (3.16) itself commutes, it therefore suffices, by the contravariant
functoriality of the lower row of (3.16), to check the equality f� D

P
j2J nj fj� ı �

�
j of

maps V`.Gr1 K0.D//! V`.Gr2F K0.V // and the same equality of maps
H 1.D;Q`.1//! H 3.V;Q`.2//. Let us set GrFi G0.D/ D FiG0.D/=Fi�1G0.D/ and
denote by �D W Gr1 K0.D/ ! GrFd�1 G0.D/ the map induced by the canonical map
K0.D/! G0.D/. Coming back to the definition of f� in the two contexts, we now see that
it is enough to check the equalities

�D D
X
j2J

nj �j� ı �Dj ı �
�
j W V`.Gr1 K0.D//! V`.GrFd�1 G0.D//(3.18)

and

� Ket
D D

X
j2J

nj �j� ı �
Ket
Dj
ı ��j W H

1.D;Q`.1//! H2d�1.D;Q`.1 � d//.(3.19)

The K0.D/-module structure of G0.D/ induces for any i a cap product operation
Gr1 K0.D/ � GrFi G0.D/ ! GrFi�1 G0.D/ (see [38, X, Corollaire 1.3.3]). Letting ŒOD�
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denote the class of OD in GrFd G0.D/, we have �D.x/ D x \ ŒOD� for any x 2 Gr1 K0.D/;
moreover (3.17) implies the equality ŒOD� D

P
j2J nj �j�ŒODj � in GrFd G0.D/ ˝Z Z` (see

[31, Example 15.1.5]). In view of the projection formula [38, IV, (2.11.1.2)], we deduce (3.18).
Similarly, the definition of � Ket

D , the equality obtained by applying cl to (3.17) and the projec-
tion formula [63, Proposition 4.2] together imply (3.19).

Let us finally start the proof of Proposition 3.5. As X is smooth over k, the morphism h

gives rise to a push-forward map h� W H
3.X 0

k
;Q`.2// ! H 3.Xk ;Q`.2// (see (3.14)),

satisfying h� ı h� D Id on H 3.Xk ;Q`.2//, since h�.h�x \ cl.ŒX 0
k
�// D x \ cl.h�ŒX 0

k
�/ D

x \ cl.ŒXk �/ for x 2 H 3.Xk ;Q`.2// (see [63, Proposition 4.2]).

Let K D Ker
�
h� W H

3.X 0
k
;Q`.2//! H 3.Xk ;Q`.2//

�
. We obtain a decomposition

H 3.Xk ;Q`.2//˚K
�
�! H 3.X 0

k
;Q`.2//.(3.20)

A second decomposition of the right-hand side can be obtained using the formula for the
étale cohomology of the blow-up of a regularly immersed closed subscheme [75, Proposi-
tion 2.2.2.1] applied to the blow-ups appearing in diagram (3.3). This yields a canonical
isomorphism M

cjD2

H 1..Zj /k ;Q`.1//
�
�! H 3.X 0

k
;Q`.2//(3.21)

even though both X 0
k

and .Zj /k may fail to be regular.

Let Z0j denote the normalization of .Zj /red
k

and �j W Z0j ! .Zj /k the natural morphism.
The normality of Zj implies that .Zj /k is geometrically unibranch and hence that �j is
universally bijective (see [35, Proposition 6.15.6, Proposition 6.15.5]). We deduce that
��j W H

1..Zj /k ;Q`.1//! H 1.Z0j ;Q`.1// is an isomorphism (see [39, VIII, Corollaire 1.2]).

Letting L D V`.A.G0
k
//, we now consider the diagram of isomorphisms

H 3.Xk ;Q`.2//˚K
� // H 3.X 0

k
;Q`.2//

M
cjD2

H 1..Zj /k ;Q`.1//

o��
j
��

�oo

V`..CH2
X=k/

0

k
/˚ L

o

��

M
cjD2

H 1.Z0j ;Q`.1//

o
��

V`.A..CH2
X=k/

0

k
//˚ L

� // V`.A..CH2
X 0=k/

0

k
//

M
cjD2

V`.A..Pic0Zj =k/k//,
�oo

(3.22)

whose upper horizontal arrows are (3.20) and (3.21), whose lower horizontal arrows
stem from (3.12), whose left vertical isomorphism results from Theorem 3.1 (ii) and
whose lower right vertical isomorphism is the composition of the canonical isomorphism
V`.Pic.Z0j //

�
�! V`.A..Pic0Zj =k/k// coming from §1.4 and (1.4) with the Kummer isomor-

phism H 1.Z0j ;Q`.1//
�
�! V`.Pic.Z0j //.

Let mj denote the multiplicity of .Zj /kp , i.e., the length of its generic local ring, and �j
the canonical principal polarization of Pic0Zj =k (see §1.4.2).
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Lemma 3.7. – 1. Diagram (3.22) transports the opposite of the cup product pairing
onH 3.X 0

k
;Q`.2// to the pairing on

L
cjD2

V`.A..Pic0Zj =k/k// defined as the orthogonal
sum of the Q`.1/-valued Weil pairings associated with the polarizations mj �j .

2. Diagram (3.22) transports H 3.Xk ;Q`.2// to V`..CH2
X=k/

0

k
/ and K to L.

3. The isomorphism H 3.Xk ;Q`.2// D V`..CH2
X=k/

0

k
/ resulting from (ii) coincides with

the one induced by Bloch’s `-adic Abel-Jacobi map and by the identification between
V`..CH2

X=k/
0

k
/ and V`.CH2.Xk// that stems from Theorem 3.1 (iv), (v).

Proof. – Let us consider the commutative diagramM
cjD2

H 1..Zj /k ;Q`.1//

o
��

��
j

//
M
cjD2

H 1.Z0j ;Q`.1//

o
��M

cjD2

V`.Pic..Zj /k//
��
j

//
M
cjD2

V`.Pic.Z0j //

M
cjD2

V`.PicZj =k/
M
cjD2

V`.Pic0Zj =k/ //�oo
M
cjD2

V`.A..Pic0Zj =k/k//

V`.CH2
X 0=k/ V`..CH2

X 0=k/
0/

�oo // V`.A..CH2
X 0=k/

0

k
//,

(3.23)

in which the unlabeled horizontal arrows are the obvious ones (the bottom leftward arrow
being an isomorphism in view of (3.12)), the top vertical arrows are the Kummer isomor-
phisms, the middle vertical isomorphisms come from §1.4 and (1.4), and the bottom vertical
isomorphisms are induced by (3.12).

Since the top horizontal arrow of this diagram is an isomorphism, all of the maps
appearing in (3.23) have to be isomorphisms.

We note that as a consequence of the projection formula [63, Proposition 4.2] and of the
equality of cycles Œ.Zj /k � D mj �j�ŒZ

0
j �, the top horizontal isomorphism of (3.23) transports

the cup product pairing on H 1..Zj /k ;Q`.1// to the cup product pairing on H 1.Z0j ;Q`.1//

multiplied by mj .

As on the other hand (3.23) transports the Weil pairing on V`.A..Pic0Zj =k/k// D
V`.Pic0Z0

j
=k
/ (see (1.4)) to the cup product pairing on H 1.Z0j ;Q`.1//, we see that

Lemma 3.7 (i) amounts to the assertion that (3.21) transports the orthogonal sum of
the cup product pairings on H 1..Zj /k ;Q`.1// to the opposite of the cup product pairing
on H 3.X 0

k
;Q`.2//. When the Zj are smooth, this is shown in [7, (2.9)]; the same argument

applies in our setting.

Thus, it only remains to prove Lemma 3.7 (ii) and (iii). For this, it suffices to check the
commutativity of the squares

V`.A..CH2
X 0=k/

0

k
//

�

 0
// H 3.X 0

k
;Q`.2//

V`.A..CH2
X=k/

0

k
//

h�
OO

�


// H 3.Xk ;Q`.2//

h�
OO

(3.24)
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and

V`.A..CH2
X 0=k/

0

k
//

h�
��

�

 0
// H 3.X 0

k
;Q`.2//

h�
��

V`.A..CH2
X=k/

0

k
//

�


// H 3.Xk ;Q`.2//,

(3.25)

where  is the isomorphism constructed from Bloch’s `-adic Abel-Jacobi map for the
smooth varietyX (see the statement of Lemma 3.7 (iii)) and  0 is the isomorphism extracted
from (3.21) and (3.23), and where the vertical arrows are those appearing in the upper and
lower rows of (3.22).

The square (3.25) fits into a larger diagramM
cjD2

V`.K0..Zj /k//

˛
��

det
�

//
M
cjD2

V`.Pic..Zj /k//
M
cjD2

H 1..Zj /k ;Q`.1//

V`.SK0.X
0

k
//

h�
��

// V`.CH2
X 0=k/

h�
��

ˇ 0
// V`.A..CH2

X 0=k/
0

k
//

h�
��

�

 0
// H 3.X 0

k
;Q`.2//

h�
��

V`.SK0.Xk//
// V`.CH2

X=k/
ˇ
// V`.A..CH2

X=k/
0

k
//

�


// H 3.Xk ;Q`.2//,

(3.26)

in which the map ˛ is induced by (3.6) (see also (3.7)), the map ˇ0 comes from the bottom
row of (3.23), the map ˇ is constructed in the same way as ˇ’ (legitimate thanks to
Theorem 3.1 (v)) and the isomorphisms of the square of the top right corner all come
from (3.21) and (3.23).

In order for the square in the bottom right corner to commute, it suffices that the outer
square of the diagram commutes, since the other inner squares clearly commute. That is,
fixing j such that cj D 2 and letting j̨ and ˛ Ket

j respectively denote the j -th component
of ˛ and of (3.21), we need only prove that the square

V`.K0..Zj /k//

h�ı j̨
��

� // H 1..Zj /k ;Q`.1//

h�ı˛
Ket
j��

V`.SK0.Xk//
// H 3.Xk ;Q`.2//,

(3.27)

whose horizontal arrows are extracted from (3.26), commutes.
Set Dj D Zj �Yj X

0 and Ej D Zj �Yj YjC1, where the Yj are the varieties appearing in
diagram (3.3). Let qj W Dj ! Zj andp0j W Ej ! Zj denote the projections. Let �j W Zj ,! Yj ,
�0j W Ej ,! YjC1 and ıj W Dj ,! X 0 be the inclusions, so that �j , �0j , ıj are regular closed

immersions of codimensions cj , 1, 1, respectively. Recall that˛ Ket
j D .pjC1ı� � �ıpN /

�ı�0j�ıp
0�
j ,

where �0j� denotes the map given by cup product with the class of the Cartier divisor .Ej /k
in H 2

.Ej /k
..YjC1/k ;Q`.1// (see [75, §2.1]) composed with the map

H 3
.Ej /k

..YjC1/k ;Q`.2//! H 3..YjC1/k ;Q`.2//

forgetting the support. As Ej pulls back, as a Cartier divisor, to Dj , we deduce that

˛ Ket
j D ıj� ı q

�
j ,(3.28)

where ıj� is again defined as in loc. cit., §2.1.
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Similarly, recall that j̨ is given by x 7! .pjC1 ı � � � ı pN /
�.�0j�p

0�
j x ˝ ŒOYjC1.Ej /�/ D

..pjC1ı� � �ıpN /
��0j�p

0�
j x/˝ŒOX 0.Dj /�/ (see (2.3)). Noting that the morphismspjC1ı� � �ıpN

and �0j are Tor-independent (indeed one has TorAi .A=fA;B/ D 0 for any i > 0, any
commutative ringA, anyA-algebraB and any f 2 A such that neither f nor its image inB is
a zero divisor), the base change theorem [64, Theorem 3.10.3] allows us to rewrite this as

j̨ .x/ D .ıj� ı q
�
j /.x/˝ ŒOX 0.Dj /�(3.29)

for any x 2 V`.K0..Zj /k//.

Let ˛0j W V`.K0..Zj /k// ! V`.SK0.X
0

k
// be given by ˛0j .x/ D .ıj� ı q

�
j /.x/. In view

of (3.28) and of the contravariant functoriality of the first row of (3.26), we deduce from
Lemma 3.6 applied to h ı ıj W Dj ! X that the square obtained by replacing, in (3.27),
the left-hand side vertical arrow h� ı j̨ with h� ı ˛0j commutes. On the other hand, it
follows from (3.29) that the map h� ı j̨ � h� ı ˛

0
j takes its values in V`.F

3K0.Xk//,
since rk.ŒOX 0.Dj /� � ŒOX 0 �/ D 0 (see [38, X, Corollaire 1.3.3]). Now the lower horizontal
map of (3.27) vanishes on V`.F 3K0.Xk// since it factors through c2; we conclude that the
square (3.27) itself commutes, and therefore so does (3.25).

Let us turn to (3.24). We introduce a desingularisation � W X 00 ! X 0
k

of X 0
k

(which exists
by Cossart and Piltant [23]) and consider the square

V`.A..CH2
X 0=k/

0

k
//

��

��

�

 0
// H 3.X 0

k
;Q`.2//

��

��

V`.A..CH2

X 00=k
/0//

�

 00
// H 3.X 00;Q`.2//,

(3.30)

where  00 is constructed from Bloch’s `-adic Abel-Jacobi map for the smooth variety X 00 in
the same way as  for X . One verifies the commutativity of the square (3.30) by proceeding
exactly as we did with (3.25), that is, by reducing to Lemma 3.6 using the diagram obtained
by replacing, in (3.26), all occurrences of X with X 00 and all occurrences of h� with ��, and
using the equalities obtained by replacing, in (3.28) and (3.29) and in their proofs, j̨ and ˛ Ket

j

with �� ı j̨ and �� ı˛ Ket
j , andDj , qj , ıj withD00j , q00j , ı00j , whereD00j D Zj �Yj X

00 and where
q00j W D

00
j ! Zj and ı00j W D

00
j ,! X 00 denote the projections.

All the k-varieties in sight and all the k-morphisms between them are defined over a
common subfield of k that is finitely generated over the prime field. Their `-adic coho-
mology groups are thus endowed with a weight filtration (see [51, §2]). As theZ0j are smooth
and projective, the groups H 1.Z0j ;Q`.1// are pure of weight �1. In view of the isomor-
phisms (3.22), we deduce that the groupH 3.X 0

k
;Q`.2// is pure of weight �1 as well. On the

other hand, the kernel of the right-hand side vertical map of (3.30) has weights < �1, as
follows from cohomological descent and Deligne’s theorem on the Weil conjectures (op. cit.,
§9; proper smooth hypercoverings ofX 0

k
that start with � exist by [52, Theorem 4.1]). Hence

the right-hand side vertical map of (3.30) is injective.
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This injectivity, the commutativity of (3.30) and the commutativity of the square

V`.A..CH2

X 00=k
/0//

�

 00
// H 3.X 00;Q`.2//

V`.A..CH2
X=k/

0

k
//

��ıh�
OO

�


// H 3.Xk ;Q`.2//

��ıh�

OO

(3.31)

(which holds by functoriality of Bloch’s Abel-Jacobi map [10, Proposition 3.5]) together
imply that (3.24) commutes. This concludes the proof of Lemma 3.7.

We resume the proof of Proposition 3.5. Consider the diagram

(3.32) .CH2
X=k/

0

k
� A.G0

k
/
�
�! A..CH2

X 0=k/
0

k
/
�
 �

Y
cjD2

A..Pic0Zj =k/k/

of isomorphisms of abelian varieties stemming from (3.12) and whose `-adic Tate modules
appear on the bottom line of (3.22). The product of the polarizationsmj �j on the right-hand
side of (3.32) induces a polarization � on the left-hand side .CH2

X=k/
0

k
�A.G0

k
/ of (3.32). Let

us view the Weil pairing of� as aQ`.1/-valued pairing onH 3.X 0
k
;Q`.2// thanks to (3.22). By

Lemma 3.7 (i), it is equal to the opposite of the cup product pairing onH 3.X 0
k
;Q`.2//. Since,

by the projection formula [63, Proposition 4.2], the decomposition (3.20) is orthogonal with
respect to the cup product, it follows from Lemma 3.7 (ii) that � is a product polarization
on .CH2

X=k/
0

k
� A.G0

k
/. Since the restriction of the cup product pairing on H 3.X 0

k
;Q`.2//

toH 3.Xk ;Q`.2// coincides with the cup product pairing onH 3.Xk ;Q`.2//, it follows from
Lemma 3.7 (iii) that the restriction of � to .CH2

X=k/
0

k
is the canonical principal polarization

defined in Theorem 3.1 (vi).

By a theorem of Debarre [24, Corollary 2], polarized abelian varieties can be written
in a unique way as a product of indecomposable polarized abelian varieties. As the
.A..Pic0Zj =k/k/;mj �j / are indecomposable or trivial (since so are the .A..Pic0Zj =k/k/; �j /),
we deduce the existence of a partition fj jcj D 2g D J t J 0 such that (3.32) induces isomor-
phisms

Q
j2J A..Pic

0
Zj =k

/k/
�
�! .CH2

X=k/
0

k
and

Q
j2J 0 A..Pic

0
Zj =k

/k/
�
�! A.G0

k
/. Since

� restricts to a principal polarization on .CH2
X=k/

0

k
, we see that mj D 1 for all the j 2 J

such that A..Pic0Zj =k/k/ is non-zero.

Thus, the product of the polarizations �j on the right-hand side of (3.32) induces
on .CH2

X=k/
0

k
� A.G0

k
/ a polarization which is at the same time a principal polarization

and the product of two polarizations, and which is therefore the product of two principal
polarizations; moreover, the first of these coincides with the canonical principal polarization
of Theorem 3.1 (vi). Proposition 3.5 is proved.

Now that Proposition 3.5 is proved, we let J1 (resp. J2, resp. J3) be the set of indices j
such that cj D 2 and the curve Zj is smooth over k (resp. such that cj D 2 and Zj is not
smooth over k, resp. such that cj D 3), and we proceed to show that the .Zj /j2J2 do not
contribute to .CH2

X=k/
0.

Lemma 3.8. – The map
Y
j2J2

Pic0Zj =k ! .CH2
X=k/

0 induced by (3.12) vanishes.
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Proof. – We fix j 2 J2. Let a W Pic0Zj =k ! .CH2
X=k/

0 and b W Pic0Zj =k ! G0 denote the
maps induced by (3.12). Let us assume that a ¤ 0 and derive a contradiction. When a ¤ 0,
we claim that Pic0Zj =k D Ker.a/ � Ker.b/, that Ker.a/ is affine and that Ker.b/ is a non-
trivial abelian variety; Corollary 1.8 then provides the desired contradiction. It thus suffices
to prove the claim. To this end, it is enough to check that

.Pic0Zj =k/kp D Ker.akp/ �Ker.bkp/;

that Ker.akp/ is affine and that Ker.bkp/ is a non-trivial abelian variety, as these three
properties descend to k.

By functoriality, the map b induces maps A.bkp/ W A..Pic
0
Zj =k

/kp/ ! A.G0
kp
/ and

L.bkp/ W L..Pic
0
Zj =k

/kp/! L.G0
kp
/. As .CH2

X=k/
0
kp

is an abelian variety (see Theorem 3.1 (ii)),
we have L.akp/ D 0 and the map A.akp/ can be viewed as a map

A.akp/ W A..Pic
0
Zj =k

/kp/! .CH2
X=k/

0
kp

through which akp factors, so that our assumption that akp ¤ 0 implies that A.akp/ ¤ 0. On
the other hand, the map L.bkp/ is a closed immersion since a � b is one and L.akp/ D 0.

Proposition 3.5 allows us to viewA..Pic0Zj =k/kp/ as a principally polarized direct factor of

the product of principally polarized abelian varieties .CH2
X=k/

0
kp
�A.G0

kp
/ over kp, through

A.akp/�A.bkp/. As the decomposition of a principally polarized abelian variety into its inde-
composable factors is unique, as A..Pic0Zj =k/kp/ is itself indecomposable (see §1.4.2), and
as A.akp/ ¤ 0, necessarily A.bkp/ D 0 and A.akp/ is a closed immersion, so that Ker.akp/ D

L..Pic0Zj =k/kp/ (see (1.1)).

All in all, the exact sequences (1.1) fit into a commutative diagram

(3.33)

0 // Ker.akp/
//

� _

��

.Pic0Zj =k/kp
//

bkp
��

A..Pic0Zj =k/kp/

0
��

// 0

0 // L.G0
kp
/ // G0

kp
// A.G0

kp
/ // 0.

An isomorphism Ker.bkp/
�
�! A..Pic0Zj =k/kp/ and then all of the desired statements now

result from this diagram, in view of the remark that the snake homomorphism is trivial since
it goes from an abelian variety to an affine group.

Remark 3.9. – At the end of the proof of Proposition 3.5 (penultimate paragraph), we
had seen, as a by-product of [24], that for any j 2 f1; : : : ; N g such that cj D 2, if the
map A..Pic0Zj =k/k/ ! .CH2

X=k/
0

k
induced by (3.12) does not vanish, then the curve Zj is

geometrically reduced. Lemma 3.8 reproves this fact by other means, in the course of showing
that Zj is even smooth. Instead of reproving it, it would have been possible to use the
geometric reducedness ofZj to simplify the proof of Lemma 3.8, inasmuch as Corollary 1.8
could have been applied over kp.

Proof of Theorem 3.1 (vii). – In view of Lemma 3.8, we may consider the quotientH ofG
by its subgroup scheme

Q
j2J2

Pic0Zj =k .
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Thanks to the exact sequences 0 ! Pic0Zj =k ! PicZj =k ! ZZj =k ! 0 given by
Proposition 1.6 for j 2 J2, we deduce from (3.12) an isomorphism

(3.34) CH2
X=k �H

�
 � Z �

Y
j2J1

PicZj =k �
Y

j2J2[J3

ZZj =k .

Let B be the disjoint union of P1
k

, of the curves P1
�0.Zj =k/

for all j 2 J2 [ J3, and of the
curves Zj for all j 2 J1. It is a smooth projective curve over k, and it has the property that

PicB=k ' Z �
Y
j2J1

PicZj =k �
Y

j2J2[J3

ZZj =k

since PicP1
�0.Zj =k/

=k ' Res�0.Zj =k/=k.Z/ ' ZZj =k for j 2 J2 [ J3 by Proposition 1.1. The

isomorphism PicB=k �
�! CH2

X=k �H deduced from (3.34) realizes CH2
X=k as a principally

polarized direct factor of PicB=k by Proposition 3.5, as desired.

The proof of Theorem 3.1 is now complete.

3.3. Blow-ups

The next proposition, which relies on arguments already used in the proof of Theorem 3.1,
allows one to compute CH2

X=k in concrete situations.

Proposition 3.10. – Let X be a smooth projective k-rational threefold over k, let
i W Y ! X be the inclusion of a smooth closed subvariety of pure codimension c, and let
p W X 0 ! X be its blow-up. Then the formula (2.8) induces an isomorphism

(3.35)
CH2

X=k �PicY=k
�
�! CH2

X 0=k if c D 2

(resp.CH2
X=k �ZY=k

�
�! CH2

X 0=k if c D 3),

respecting the principal polarizations furnished by Theorem 3.1 (applied to X and to X 0) and
by §1.4.2 (applied to Y ).

Proof. – The isomorphism (2.8), Corollary 1.5 and Remark 1.2 (ii) yield canon-
ical isomorphisms K0;X=k � Kc�1

0;Y=k

�
�! K0;X 0=k , PicX=k �ZY=k �

�! PicX 0=k and

ZX=k �
�! ZX 0=k . Identifying .rk; det/ W K0;X 0=k ! ZX 0=k � PicX 0=k in terms of these

decompositions and using Proposition 2.4, we obtain an isomorphism

(3.36)
SK0;X=k;fppf � PicY=k;fppf

�
�! SK0;X 0=k;fppf if c D 2

(resp. SK0;X=k;fppf � ZY=k ��! SK0;X 0=k;fppf if c D 3).

If l=k is a finite extension and x 2 .X n Y /.l/, one has p�ŒOx � D ŒOp�1.x/� 2 K0.X
0
l
/. It

follows that p��X .1/ D �X 0.1/ 2 SK0;X 0=k;fppf.k/ � SK0;X 0=k;fppf.l/. We thus deduce from
(3.36) the required isomorphism (3.35) of k-group schemes.

If c D 2, considering the commutative diagram

(3.37)

Ab2.Xkp/ � Pic0Ykp=kp

� //

o
��

Ab2.X 0
kp
/

o
��

.CH2
Xkp=kp

/0 � Pic0Ykp=kp

� // .CH2
X 0
kp
=kp
/0
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whose vertical arrows stem from Theorem 3.1 (vi), whose lower horizontal arrow is
the above constructed isomorphism and whose upper horizontal arrow is that of [7,
Lemma 2.10] concludes the proof, as the latter arrow respects the principal polarizations by
[7, Lemma 2.10]. If c D 3, one can argue in the same way, using a diagram similar to (3.37)
in which Pic0Ykp=kp

does not appear.

3.4. Obstructions to k-rationality

The most general obstruction to the k-rationality of a smooth projective k-rational three-
fold obtained in this article is Theorem 3.1 (vii). In this subsection, we spell out concrete
consequences of this theorem.

We recall that a �k-module M is a permutation �k-module if it is free of finite rank
as a Z-module and admits a Z-basis that is permuted by the action of �k , and that it is
stably of permutation if there exists a �k-equivariant isomorphism M ˚ N1 ' N2 for some
permutation �k-modules N1 and N2.

If X is a smooth projective k-rational threefold, we associate with any class ˛ 2

NS2.Xk/
�k D .CH2

X=k =.CH
2
X=k/

0/.k/ (see Theorem 3.1 (v)) its inverse image .CH2
X=k/

˛

in CH2
X=k . It is an fppf torsor under .CH2

X=k/
0, hence an étale torsor under .CH2

X=k/
0 by

[68, III, Corollary 4.7, Remark 4.8 (a)]. We let Œ.CH2
X=k/

˛� 2 H 1.k; .CH2
X=k/

0/ be its Galois
cohomology class.

Theorem 3.11. – Let X be a smooth projective k-rational threefold over k. Then:

(i) The �k-module NS2.Xk/ is a direct factor of a permutation �k-module.

(ii) There exists an isomorphism .CH2
X=k/

0 ' Pic0C=k of principally polarized abelian
varieties over k for some smooth projective curve C over k.

(iii) For all smooth projective geometrically connected curves D of genus � 2 over k, all
morphisms  W .CH2

X=k/
0 ! Pic0D=k identifying Pic0D=k with a principally polar-

ized direct factor of .CH2
X=k/

0 and all ˛ 2 NS2.Xk/
�k , there exists d 2 Z such

that  �Œ.CH2
X=k/

˛� D ŒPicdD=k � 2 H 1.k;Pic0D=k/.

(iv) For all elliptic curvesE over k and all morphisms  W .CH2
X=k/

0 ! E identifyingE with
a principally polarized direct factor of .CH2

X=k/
0, there exists a class � 2 H 1.k; E/ such

that for all ˛ 2 NS2.Xk/
�k , there exists d 2 Z with  �Œ.CH2

X=k/
˛� D d� 2 H 1.k; E/.

Proof. – Theorem 3.1 (vii) shows the existence of a smooth projective curveB over k such
that CH2

X=k is a principally polarized direct factor of PicB=k .

We denote by q W PicB=k ! CH2
X=k the projection onto this direct factor and by

r W CH2
X=k ! PicB=k the inclusion of this direct factor.

Passing to the groups of connected components shows that NS2.Xk/ is a direct factor
of ZB=k.k/, which is a permutation �k-module, thus proving (i).

Passing to the identity components shows that .CH2
X=k/

0 is a principally polarized direct

factor of Pic0B=k . In view of the uniqueness of the decomposition of a principally polarized
abelian variety as a product of indecomposable ones, and in view of the description of
the indecomposable factors of Pic0B=k (see [7, §2.1]), there exists a union C of connected
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components of B such that .CH2
X=k/

0 ' Pic0C=k as principally polarized abelian varieties
over k, thus proving (ii).

Let us now fix D,  and ˛ as in (iii). The composition p WD  ı q0 W Pic0B=k ! Pic0D=k
realizes Pic0D=k as a principally polarized direct factor of Pic0B=k . All indecomposable prin-
cipally polarized direct factors of Pic0B=k are of the form Pic0B0=k for some connected
component B 0 of B (as the connected components of B are in bijection with those
of Bkp , this statement reduces to the case of a perfect field, for which see [7, §2.1]). Let
B 0 be the connected component of B corresponding to Pic0D=k . Since D is geometri-
cally connected of genus � 2, we see that Pic0D=k , hence also Pic0B0=k , is geometrically
indecomposable of dimension � 2, and it follows that B 0 is geometrically connected
of genus � 2. By the precise form of the Torelli theorem [77, Théorèmes 1 et 2], after
possibly replacing q with �q (and p with �p) if D is not hyperelliptic, we can iden-
tify D and B 0 in such a way that p is the pull-back by the inclusion i W D ' B 0 ,! B.
Since q W PicB=k ! CH2

X=k realizes CH2
X=k as a direct factor of PicB=k , one can find

ˇ 2 NS1.Bk/
�k with q.ˇ/ D ˛ 2 NS2.Xk/

�k . Letting d WD i�ˇ 2 NS1.Dk/ ' Z, we obtain

 �Œ.CH2
X=k/

˛� D p�ŒPicˇB=k � D ŒPic
d
D=k � 2 H

1.k;Pic0D=k/, which proves (iii).

Fix E and  as in (iv). Arguing as above shows that p WD  ı q0 W Pic0B=k ! E identifies
E with Pic0B0=k for some connected component i W B 0 ,! B of B which is geometrically
connected of genus 1. The genus 1 curve B 0 has a natural structure of Pic0B0=k-torsor, and
we set � WD ŒB 0� 2 H 1.k;Pic0B0=k/ D H 1.k; E/ its class. Let ˛ 2 NS2.Xk/

�k . Setting
s WD i� ı r W CH2

X=k ! PicB0=k and d WD s�˛ 2 NS1.B 0
k
/ ' Z, we get  �Œ.CH2

X=k/
˛� D

s�Œ.CH2
X=k/

˛� D ŒPicdB0=k � D d� 2 H 1.k;Pic0B0=k/ D H 1.k; E/, which completes the proof
of (iv).

Remarks 3.12. – (i) If X is a smooth projective k-rational variety and if k has charac-
teristic 0, one can apply the weak factorization theorem [2, Theorem 0.3.1] to show that the
�k-module NS2.Xk/ is stably of permutation. This statement is stronger than Theorem 3.11
(i). We do not know if it holds if k has characteristic p > 0 andX has dimension� 3. We do
not know either whether Theorem 3.11 (i) holds for smooth projective k-rational varieties of
dimension � 4.

(ii) The geometric Néron-Severi group NS1.Xk/ of a smooth projective k-rational
variety X is stably of permutation (see [66, Theorem 2.2] if X is a surface and [16, Proposi-
tion 2.A.1] in general). Theorem 3.11 (i) and Remark 3.12 (i) may be viewed as analogues of
this classical statement for codimension 2 cycles.

(iii) To obtain a variant of Theorem 3.11 (iii) in the case where D is connected but not
geometrically connected, one can apply Theorem 3.11 (iii) to the l-rational varietyXl over l ,
where l is the algebraic extension l WD H 0.D;OD/ of k. The same remark applies to
Theorem 3.11 (iv).

4. Smooth complete intersections of two quadrics

In this last section, we apply the above results to k-varieties X that are three-dimensional
smooth complete intersections of two quadrics, computing the variety CH2

X=k (in Theorem 4.5)
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and providing a necessary and sufficient criterion for their k-rationality (in Theorem 4.7).
A more classical necessary and sufficient criterion for their (separable) k-unirationality
(Theorem 4.8) allows us to give examples, for any algebraically closed field �, of such vari-
eties over �..t// that are separably �..t//-unirational but not �..t//-rational (Theorem 4.14).

Many of the geometric results that we need along the way are available in the literature
only in characteristic 0 or in characteristic¤ 2 [74, 27, 82], and we extend them to arbitrary
characteristic.

4.1. Lines in a complete intersection of two quadrics

LetX � P5
k

be a three-dimensional smooth complete intersection of two quadrics over k.
We let F be the Hilbert scheme of lines in X (also called the Fano variety of lines of X ).

Lemma 4.1. – The following assertions hold:

(i) The variety X does not contain any plane.

(ii) The normal bundle NL=X of a line L � X is isomorphic either to O˚2L or to OL.1/˚OL.�1/.

(iii) The variety F is a non-empty geometrically connected smooth projective surface with
trivial canonical bundle. Its tangent space at a k-point corresponding to a line L � X is
naturally isomorphic to H 0.X;NL=X /.

Proof of (i). – By the Lefschetz hyperplane theorem [42, XII, Corollary 3.7], Pic.X/ is
generated by OX .1/. If X contained a plane P , we would have OX .P / ' OX .l/ for some
l 2 Z, hence an equality of intersection numbers

1 D OP .1/ �OP .1/ D OX .P / �OX .1/ �OX .1/ D 4l ,

which is a contradiction.

Proof of (ii). – Since L and X are complete intersections in P5
k

, the normal exact
sequence 0 ! NL=X ! NL=P5

k
! NX=P5

k
jL
! 0 of the inclusions L � X � P5

k

reads:

(4.1) 0! NL=X ! OL.1/˚4 ! OL.2/˚2 ! 0:

It follows thatNL=X is a rank 2 vector bundle of degree 0 on L, hence is of the formOL.l/˚
OL.�l/ for some l � 0 (see [47]). Since it admits an injective morphism toOL.1/˚4, one has
l 2 f0; 1g.

Proof of (iii). – The computation of the tangent space is [59, Chapter I, Theorem 2.8.1].
To prove that F is smooth, geometrically connected and non-empty, we may work over k.
For allL 2 F.k/, one has h1.L;NL=X

k
/ D 0 and h0.L;NL=X

k
/ D 2 by (ii). The variety Fk is

thus smooth of dimension 2 at L by [59, Chapter I, Theorem 2.8.3]. That Fk is non-empty
and connected follows from [25, Théorème 2.1 b) c)]. To compute the canonical bundle of F ,
we let G be the Grassmannian of lines in P5

k
and 0 ! S ! O˚6G ! Q ! 0 be the short

exact sequence of tautological bundles on G, where S and Q respectively have rank 4 and
rank 2. The variety of lines F is defined in G by the vanishing of a section of .Sym2Q/˚2.
Since F is smooth of the expected dimension, the normal short exact sequence reads
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0! TF ! TG jF
! NF=G ! 0, where NF=G ' .Sym2Q/˚2jF and TG jF ' .S_ ˝ Q/jF .

We deduce that

KF ' .det..Sym2Q/˚2/˝ det.S ˝Q_//jF ' det.Q/j˝6F ˝ det.Q/j˝�6F
' OF .

We will later show that Fk is actually an abelian surface (see Theorem 4.5).

Let Z � X � F be the universal line in X . If ƒ � X is a line, the second projection
Z \ .ƒ � .F n fƒg//! F n fƒg is a closed immersion by [36, Proposition 8.11.5]. Its image
is a subscheme W.ƒ/ � F n fƒg parametrizing the lines of X that are distinct from ƒ and
that intersect ƒ. If L 2 W.ƒ/.k/ and x D L \ƒ, then TLW.ƒ/ � TLF D H 0.X;NL=X / is
the subset of those � 2 H 0.X;NL=X / such that �x 2 hTxL; Txƒi=TxL (as can be seen using
[76, Remark 4.5.4 (ii)]).

Lemma 4.2. – If L andƒ are two distinct lines inX that intersect, the inclusion of tangent
spaces TLW.ƒ/ � TLF is strict.

Proof. – In view of Lemma 4.1 (ii), we may distinguish two cases according to the isomor-
phism class of the normal bundle NL=X . Suppose first that NL=X ' O˚2L . Consider the
point x D L\ƒ. SinceNL=X is globally generated, we can choose a section � 2 H 0.L;NL=X /

such that �x … hTxL; Txƒi=TxL. Then, the tangent vector of F at L associated to � by
Lemma 4.1 (iii) is not tangent to W.ƒ/.

Assume now thatNL=X ' OL.1/˚OL.�1/. Choose homogeneous coordinatesX0; : : : ; X5
on P5

k
such that L D fX0 D � � � D X3 D 0g and use X0; : : : ; X3 to identify NL=P5

k
with

OL.1/˚4. After a coordinate change, we may assume that the composition
OL.1/! OL.1/˚OL.�1/! OL.1/˚4 of the inclusion of the first factor and of the first
arrow of (4.1) is the inclusion of the first factor. In such coordinates,

fX0 C "X4 D X1 D X2 D X3 D 0g and fX0 C "X5 D X1 D X2 D X3 D 0g

are two kŒ"�=."2/-points of F . Assuming for contradiction that TLW.ƒ/ D TLF and using
the characterization recalled above of TLW.ƒ/ viewed as a subspace ofH 0.X;NL=X /, we see
that ƒ � P WD fX1 D X2 D X3 D 0g. Since X contains L, the monomials X24 , X4X5 and
X25 do not appear in the equations of X . Since X also contains the above two infinitesimal
deformations ofL, neither do the monomialsX0X4 andX0X5. It follows that the intersection
of X with the plane P is equal either to P or to the double line fX20 D 0g � P . Since
ƒ � X \ P but ƒ ¤ L, we deduce that P � X , which contradicts Lemma 4.1 (i).

4.2. Projecting from a line

We keep the notation of §4.1.

Assume that X contains a line ƒ � X , which we fix. We denote by � W X 0 ! X ande� W .P5
k
/0 ! P5

k
the blow-ups of ƒ in X and in P5

k
, and by � W X 0 ! P3

k
ande� W .P5

k
/0 ! P3

k

the morphisms obtained by projecting away from ƒ.

Proposition 4.3. – There exists a smooth projective geometrically connected curve
� � P3

k
of genus 2 such that � can be identified with the blow-up of � in P3

k
.
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Proof. – Write ƒ D fX0 D � � � D X3 D 0g in appropriate homogeneous coordi-
nates X0; : : : ; X5 of P5

k
. The morphisme� W .P5

k
/0 ! P3

k
realizes .P5

k
/0 as the projectivization

(in Grothendieck’s sense) of the vector bundle E D OP3
k
˚OP3

k
˚OP3

k
.1/ on P3

k
. In a natural

way, we use homogeneous coordinatesX0; : : : ; X3 on P3
k

, and we letX4; X5 (resp.X6) denote
the global sections of E (resp. of E.�1/) on P3

k
corresponding to the direct sum decompo-

sition of E . If X has equations fL1X4 C L2X5 C Q D 0g and fL01X4 C L
0
2X5 C Q

0 D 0g

in P5
k

, with L1; L2; L01; L
0
2 (resp. Q;Q0) linear (resp. quadratic) in X0; : : : ; X3, then X 0 has

equations fL1X4 C L2X5 CQX6 D 0g and fL01X4 C L
0
2X5 CQ

0X6 D 0g in .P5
k
/0.

The fibers of � W X 0 ! P3
k

are defined by two linear equations in a 2-dimensional
projective space, hence are isomorphic to P0, to P1 or to P2. The determinantal subscheme
� � P3

k
defined by the vanishing of the maximal minors of the matrix

(4.2)

 
L1 L2 Q

L01 L
0
2 Q

0

!
endows the subset of P3

k
over which the fibers of � are positive-dimensional with a schematic

structure. We claim that �j��1.�/ W �
�1.�/ ! � is a flat family of lines in the projective

bundle e�je��1.�/ W e��1.�/ ! �. To see it, we work on an affine open subset of � with

coordinate ring R. One has to show that the cokernel M of the linear map R2 ! R3 given
by the transpose of the matrix (4.2) is free of rank 2. This follows from [28, Proposition 20.8]
since Fitt1.M/ D 0 by the definition of � and Fitt2.M/ D R by Lemma 4.1 (i).

Let us show that � is smooth of the expected dimension (equal to 1). To this end, we fix
x 2 �.k/ such that Tx�k has dimension � 2 and derive a contradiction.

We first assume that ��1.x/ is the line fX6 D 0g �e��1.x/. Then the linear forms L1; L2; L01
and L02 vanish at x. As Tx�k has dimension � 2, the differentials at x of the cubic
forms L1Q0 � L01Q and L2Q

0 � L02Q are linearly dependent. After replacing .L1; L01/
and .L2; L02/with suitable k-linear combinations of .L1; L01/ and .L2; L02/ (which is possible
by a change of coordinates), we may therefore assume that the cubic fL1Q0 � L01Q D 0g is
singular at x. Since Q and Q0 do not both vanish at x (otherwise Xk would contain the
plane e�.e��1.x//, contradicting Lemma 4.1 (i) over k), and since L1 and L01 vanish at x,
we deduce that L1 and L01 are linearly dependent. Consequently, an appropriate k-linear
combination of the degree 2 equations definingXk is of the form L002X5CQ

00, where L002 and
Q00 are respectively linear and quadratic in X0; : : : ; X3. Since V WD fL002X5 C Q

00 D 0g is
singular at p WD Œ0 W 0 W 0 W 0 W 1 W 0� and Xk � V is a Cartier divisor containing p, we see
that Xk is also singular at p, which is absurd.

Thus the line ��1.x/ is not equal to fX6 D 0g �e��1.x/. In other words, its image by � is
a line L � X distinct from ƒ. We note that the open subset of the relative Hilbert scheme
of lines of e� W .P5

k
/0 ! P3

k
consisting of those lines that are not defined by the equation

fX6 D 0g in a fiber ofe� is naturally isomorphic to the scheme parametrizing the lines in P5
k

that are distinct fromƒ but intersectƒ. Since moreover �j��1.�/ W �
�1.�/! � is a family of

lines over�, two independent tangent vectors of� at x give rise to two independent tangent
vectors ofW.ƒ/ atL. AsF is smooth of dimension 2 atL by Lemma 4.1 (iii), this contradicts
Lemma 4.2 and finishes the proof that � is a smooth curve.
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It then follows from [29, Theorem A2.60, Example A2.67] that O� is resolved by the
Eagon-Northcott complex

0! OP3
k
.�4/˚2 ! OP3

k
.�2/˚OP3

k
.�3/˚2 ! OP3

k
! O� ! 0,

where the first arrow is given by the matrix (4.2) and the second one by its maximal minors.
Using it allows one to compute that h0.�;O�/ D 1 and h1.�;O�/ D 2, hence that the
smooth projective curve � is geometrically connected of genus 2.

To conclude, we denote by � W Y ! P3
k

the blow-up of � in P3
k

.
Since �j��1.�/ W �

�1.�/ ! � is a flat family of lines, hence a smooth morphism, the

subscheme ��1.�/ � X 0 is a smooth divisor. SinceX 0 is smooth, ��1.�/ is a Cartier divisor
in X 0, and the universal property of a blow-up yields a morphism � W X 0 ! Y such
that � ı � D �. Both � and � are birational (the latter because the generic fiber of � is a
0-dimensional projective space), hence so is �. We deduce that � is an isomorphism, as is any
birational morphism between smooth projective varieties with the same Picard number.

Remark 4.4. – By Lemma 4.1 (iii), a smooth complete intersection of two quadrics
in P5

k
contains a line over k, hence is k-rational by Proposition 4.3.

4.3. The intermediate Jacobian

In Theorem 4.5, we compute CH2
X=k for threefolds X that are smooth complete inter-

sections of two quadrics. Note that such varieties are k-rational by Remark 4.4, so that
Theorem 3.1 applies to them.

Theorem 4.5 (iv) will be used in a crucial manner in the proof of Theorem 4.7. In charac-
teristic¤ 2, it goes back to the work of Wang [82].

In the statement of Theorem 4.5 (ii), we denote by Alb0V=k (resp. Alb1V=k) the Albanese
variety (resp. torsor) of a smooth proper geometrically connected variety V over k. This
is the abelian variety over k (resp. torsor under Alb0V=k) which underlies the solution of
the universal problem of morphisms from V to torsors under abelian varieties over k.
We recall that Alb0V=k is canonically dual to the abelian variety .Pic0V=k/red and that the
formation of Alb0V=k is compatible with arbitrary extensions of scalars (see [33, Exp. 236,
Théorème 3.3 (iii)], in which the geometric fibers of X ! S should be assumed to be
connected). We also recall that Alb0V=k D Pic0V=k and Alb1V=k D Pic1V=k if in addition V is a
curve.

By a conic on X we mean a 1-dimensional closed subscheme of X which, when viewed as
a subscheme of P5

k
, is the intersection of a quadric and a plane.

Theorem 4.5. – Let X � P5
k

be a smooth complete intersection of two quadrics, let F be
its variety of lines, and let Z � X � F be the universal line.

Denote by  2X W CH2.Xk/
�
�! CH2

X=k.k/ the isomorphism of Theorem 3.1 (iv). Then:

(i) The degree map deg W CH2.Xk/ ! Z induces, via  2X , a short exact sequence

0! .CH2
X=k/

0 ! CH2
X=k

ı
�! Z! 0 of k-group schemes.

(ii) The class ŒOZ � 2 K0.XF / induces isomorphisms F �
�! .CH2

X=k/
1 WD ı�1.1/ and

Alb0F=k
�
�! .CH2

X=k/
0.
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(iii) Let „ � CH2.Xk/ be the subset of classes represented by a conic on Xk . There exists a
unique reduced closed subscheme D � .CH2

X=k/
2 WD ı�1.2/ such that  2X .„/ D D.k/.

The scheme D is a smooth projective geometrically connected curve of genus 2 over k.

(iv) Via the identifications Pic0D=k D Alb0D=k and Pic1D=k D Alb1D=k , the inclusion
D � .CH2

X=k/
2 induces isomorphisms of principally polarized abelian varieties

Pic0D=k
�
�! .CH2

X=k/
0 and of torsors Pic1D=k

�
�! .CH2

X=k/
2.

Proof. – The sheafOZ induces a class ŒOZ � 2 F3G0.XF / D F
2K0.XF / D SK0.XF / by

§2.1.5 (as F is smooth by Lemma 4.1 (iii)). It therefore induces a morphism F ! CH2
X=k .

This morphism factors through .CH2
X=k/

1 because it sends a point x 2 F.k/ to the class

in CH2
X=k.k/ D CH2.Xk/ of the line in Xk associated with x (as Z is flat over F ), which has

degree 1.
A morphism a W F ! .CH2

X=k/
1 having been constructed, we are now free to extend

the scalars from k to any finite Galois extension of k: indeed, the existence, unicity and
smoothness of D can be tested over such an extension, and all other conclusions of the
theorem can even be tested over k. As F is smooth, we may therefore, and will, assume
that F.k/ ¤ ; (see [12, 2.2/13]).

Let us fix a line ƒ � X defined over k. Proposition 4.3 yields a diagram X
�
 � X 0

�
�! P3

k
,

where � is the blow-up of ƒ and � is the blow-up of a smooth projective geometrically
connected curve � � P3

k
of genus 2. Our knowledge of the Chow groups of a blow-

up [31, Proposition 6.7 (e)] shows the existence of a �k-equivariant short exact sequence

0! CH2.Xk/alg ! CH2.Xk/
deg
��! Z! 0. Assertion (i) now follows from (3.1) and (3.2).

Let f W Alb0F=k ! Alb0
.CH2

X=k
/1=k
D .CH2

X=k/
0 denote the morphism between Albanese

varieties induced by a W F ! .CH2
X=k/

1. The morphism b W �! F associating with x 2 �

the line �.��1.x// induces a morphism g W Pic0�=k ! Alb0F=k between Albanese varieties.

The composition f ıg W Pic0�=k ! .CH2
X=k/

0 is an isomorphism of principally polarized

abelian varieties. Indeed, it coincides at the level of k-points with the principally polarized
isomorphism Pic0�=k

�
�! .CH2

X=k/
0 obtained by applying Proposition 3.10 to� and �, hence

is equal to it. It follows that the kernel of g is trivial and that Alb0F=k has dimension� 2, hence
that the first Betti number of Fk is� 4. Lemma 4.1 (iii) and the classification of surfaces with
Kodaira dimension 0 (see [11, Table p.25 and Theorem 6]) now show that Fk is an abelian
surface. We deduce that g is an isomorphism as its kernel is trivial and as Pic0�=k and Alb0F=k
are both abelian surfaces. It follows that f is an isomorphism.

The varietyF is isomorphic to an abelian variety since so isFk and sinceF.k/ ¤ ;. Thus a
and f can be identified; hence a is an isomorphism as well, and (ii) is proved.

Let c W � ! .CH2
X=k/

2 be defined by c.x/ D a.b.x// C a.ƒ/, where ƒ denotes the
rational point of F corresponding to ƒ. Passing to Albanese torsors yields a morphism
Pic1�=k ! .CH2

X=k/
2 which is an isomorphism since the underlying morphism of abelian

varieties is the (principally polarized) isomorphism f ıg. It follows, in particular, that c is a
closed immersion.

Let us set D D c.�/ and check that D.k/ D  2X .„/, where „ � CH2.Xk/ is the subset
appearing in (iii). The theorem will then be proved.
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We take up the notation e�, e� of §4.2 and the notation introduced in the proof of
Proposition 4.3. The subvariety e��1.X/ � .P5

k
/0 is given by the system of equations

f.L1X4 C L2X5 CQX6/X6 D 0g and f.L01X4 C L
0
2X5 CQ

0X6/X6 D 0g. If X0; : : : ; X3 are
the homogeneous coordinates of x 2 �.k/, this system of equations defines a conic in the
planee��1.x/ since the matrix (4.2) has rank � 1. Thus, for any x 2 �.k/, we have exhibited
a (singular) conic on Xk whose class in CH2.Xk/ is visibly equal to Œ�.��1.x//�C Œƒk �, that
is, to . 2X /

�1.c.x//. Hence D.k/ �  2X .„/.
Let us now fix a conic C on Xk and prove that  2X .ŒC �/ 2 D.k/. There exist a (unique)

plane P � P5
k

such that C D Xk \ P and a (unique) quadric Y � P5
k

containing
Xk [P . As X is smooth, the singular locus of Y is disjoint from Xk and has dimension � 0.
Lemma 4.6 below provides a plane P 0 � Y containing ƒk such that ŒP � D ŒP 0� 2 CH2.Y /.
As Xk is an effective Cartier divisor on Y and as Xk contains neither P nor P 0 (see
Lemma 4.1 (i)), it follows that ŒC � D ŒXk \ P � D ŒXk \ P

0� 2 CH2.Xk/ [31, Proposi-
tion 2.6(a)]. Now P 0 D e�.e��1.x// for a unique x 2 P3.k/; as Xk \ P

0 is a conic in P 0, a
glance at the equations of e��1.X/ \e��1.x/ shows that (4.2) has rank � 1, hence x 2 �.k/
and ŒXk \ P

0� D Œ�.��1.x//�C Œƒk �, so that  2X .ŒC �/ D c.x/ 2 D.k/, as desired.

Lemma 4.6. – Let Y � P5
k

be a quadric whose singular locus has dimension � 0. Let
P � Y be a plane. Let ƒ � Y be a line along which Y is smooth. There exists a (unique)
plane P 0 � Y rationally equivalent to P on Y such that ƒ � P 0.

Proof. – Let X0; : : : ; X5 denote the homogeneous coordinates of P5
k

. After a linear
change of coordinates, we may assume that ƒ is the line X0 D X2 D X4 D X5 D 0 and
that Y is defined by the equation X0X1 C X2X3 C X4X5 D 0 (if Y is smooth) or by the
equation X0X1 C X2X3 C X24 D 0 (otherwise). Indeed, letting H � P5

k
be a hyperplane

containing ƒ and avoiding the singular locus of Y , if Y is singular (so that Y is in this case
a cone over the quadric Y \ H , which is smooth), and setting H D P5

k
otherwise, one

can use ƒ to split off two hyperbolic planes from a quadratic form defining the smooth
quadric Y \ H [30, Proposition 7.13, Lemma 7.12]; the remaining regular quadratic form
of dimension 1 or 2 has the desired shape since the ground field is algebraically closed.

If Y is smooth, the intersection of Y with the linear subspace fX0 D X2 D 0g is the union
of two planes containingƒ. According to op. cit., Proposition 68.2, one of them is rationally
equivalent to P on Y .

IfY is singular, letP 0 be the plane that containsƒ and the singular point ofY . The smooth
quadric Y \H cannot contain a plane (op. cit., Lemma 8.10), therefore P \H is a line. The
two linesP\H andƒ are rationally equivalent on Y \H (op. cit., Proposition 68.2); henceP
and P 0, being the cones over P \H and overƒ inside Y , are rationally equivalent on Y [31,
Example 2.6.2].

4.4. Rationality

We can now prove a necessary and sufficient criterion for the k-rationality of three-
dimensional smooth complete intersections of two quadrics.

Theorem 4.7. – LetX � P5
k

be a smooth complete intersection of two quadrics. ThenX is
k-rational if and only if it contains a line defined over k.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1074 O. BENOIST AND O. WITTENBERG

Proof. – If X contains a line ƒ, then projecting from ƒ induces a birational map
X 99K P3

k
(see the more precise Proposition 4.3).

Assume, conversely, that X is k-rational. Let D be as in Theorem 4.5 (iii).
Let  W .CH2

X=k/
0 ��! Pic0D=k be the inverse of the isomorphism of Theorem 4.5 (iv).

Using Theorem 4.5 (ii), we identify the variety of lines F of X with the torsor .CH2
X=k/

1

under .CH2
X=k/

0.

Theorem 3.11 (iii) shows the existence of d 2 Z such that  �ŒF � D ŒPicdD=k � 2 H 1.k;Pic0D=k/
and Theorem 4.5 (iv) yields the identity ŒPic1D=k � D 2 �ŒF � 2 H 1.k;Pic0D=k/. Combining
these two equalities shows that

(4.3)  �ŒF � D ŒPicdD=k � D ŒPic
1�d
D=k � 2 H

1.k;Pic0D=k/:

Noting that KD 2 Pic2D=k.k/ since D has genus 2, we see that the Pic0D=k-torsor Pic2D=k is
trivial. As one of d and 1� d is even, it follows from (4.3) that  �ŒF � D 0 2 H 1.k;Pic0D=k/.
Consequently, F.k/ ¤ ; and X contains a line defined over k.

4.5. Unirationality

We now study the k-unirationality and the separable k-unirationality of smooth complete
intersections of two quadrics.

Theorem 4.8. – Fix N � 4, and let X � PN
k

be a smooth complete intersection of two
quadrics. The following assertions are equivalent:

(i) The variety X is separably k-unirational.

(ii) The variety X is k-unirational.

(iii) One has X.k/ ¤ ;.

If N D 4, Theorem 4.8 (ii),(iii) is due to Manin [67, Theorems 29.4 and 30.1] and
Knecht [57, Theorem 2.1]. Over infinite perfect fields of characteristic not 2, Theorem 4.8
can be found in [17, Remark 3.28.3]. The counterpart of Theorem 4.8 (ii),(iii) for cubic
hypersurfaces is due to Kollár [60, Theorem 1.1], and we verify, in Theorem 4.13 below, that
the equivalence with (i) holds for cubic hypersurfaces as well.

We start with a few lemmas. The first one is an analogue for separable k-unirationality of
a statement proved by Kollár [60, Lemma 2.3] for k-unirationality.

Lemma 4.9. – Let X be an integral variety over k. The following are equivalent:

(i) The variety X is separably k-unirational.

(ii) The variety Xk.t/ is separably k.t/-unirational.

(iii) There exists a separable dominant rational map Am
k
99K X for some m � 0.

Proof. – The implications (i))(ii))(iii) are immediate. To prove (iii))(i), we adapt [60,
Lemma 2.3]. We argue by induction on m. Let � W Am

k
99K X be a separable dominant

rational map with m > dim.X/, and let U � Am
k

be a dense open subset such that �jU is a
smooth morphism. If k is infinite, set k0 D k. If k is finite, choose a prime number ` invertible
in k and a Z`-extension k0 of k.
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As k0 is infinite, one can choose a point u D .u1; : : : ; um/ 2 U.k
0/. After renumbering

theui , we may assume that k.um/ � k.u1/, so that there existsP1 2 kŒX1�withum D P1.u1/.
The ideal I.u/ � kŒX1; : : : ; Xm� of u viewed as a closed point in Am

k
is then generated

by Xm�P1.X1/ and by elements of kŒX1; : : : ; Xm�1�. It is thus generated by polynomials of
the formXm�P.X1; : : : ; Xm�1/. Sinceu is étale over k, the zero locusZ � Am

k
of one of these

polynomials intersects the fiber of �jU through u transversally at u. Then �jZ W Z 99K X is
smooth at u, hence it is dominant and separable. As Z ' Am�1

k
, the induction hypothesis

applies.

Lemma 4.10. – Let X be either a smooth complete intersection of two quadrics in P4
k

or a
smooth cubic surface in P3

k
. In the cubic case, assume that the characteristic of k is not 2. Then

there exists a hyperplane section of X that contains an ordinary double point.

Proof. – Set N D 4 if X is an intersection of two quadrics in P4
k

and N D 3 if X is a

cubic surface in P3
k

. By [67, Theorem 24.4], the variety X is isomorphic to a blow-up of P2
k

in 9 � N points p1; : : : ; p9�N 2 P2.k/, no three of which lie on the same line. As the
embeddingX � PN

k
is given by the anticanonical bundle ofX , the hyperplane sections ofX

correspond bijectively to the cubic curves in P2
k

through the pi . WhenN D 4, the hyperplane
section associated with the union of the lines .p1p2/ and .p3p4/ and of a general line through
p5 has the required property. WhenN D 5 and the characteristic of k is not 2, the hyperplane
section associated with the union of the unique conic through p1; : : : ; p5 and of a general
line through p6 has the required property. (If k had characteristic 2, it could happen that a
general line through p6 is tangent to this conic.)

Lemma 4.11. – FixN � 4, letX � PN
k

be a smooth complete intersection of two quadrics,

and let x 2 X.k/. Then, ifH � PN
k

is a general hyperplane containing x, the variety X \H is
smooth of dimension N � 3.

Proof. – Suppose for contradiction that the conclusion of the lemma does not hold. It
follows that for every hyperplane H � PN

k
containing x, there exists a quadric Q � PN

k
in the pencil defining X such that Q \ H is not smooth of dimension N � 2 along some
point ofX . Consequently, the projective varietyW � P.H 0.PN

k
;O.2///�P.H 0.PN

k
;O.1///

parametrizing such pairs .Q;H/ is at least .N � 1/-dimensional.

Let Q0 � PN
k

be any singular quadric in the pencil defining X . (Such a Q0 exists since
the locus of quadrics with a unique singular point has codimension 1 in the projective space
of quadrics in PN

k
, so that its closure contains an ample divisor.) Note that x 2 X � Q0.

As X is smooth, the singular locus of Q0 is zero-dimensional, hence Q0 is a cone over a
smooth quadric Q00, and X does not contain the vertex of this cone. The projective dual
.Q0/

_ of Q0 can be naturally identified with the projective dual of Q00. By Lemma 4.12
below, the variety .Q0/_ has dimension N � 2 and is either a smooth quadric or a linear
space whose dual is a line that meets Q0 in its vertex and nowhere else. In both cases, the
subset of .Q0/_ consisting of the hyperplanes that contain x is a non-trivial hyperplane
section of .Q0/_, hence is .N � 3/-dimensional. It follows that the variety parametrizing
the hyperplanes H � PN

k
with .Q0;H/ 2 W is at most .N � 3/-dimensional.
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Let � W W ! P1
k
� P.H 0.PN

k
;O.2/// be the projection of W to the pencil of quadrics

defining X . The fibers of � over singular quadrics have dimension � N � 3, and there
exist such fibers. As dim.W / � N � 1, some fiber of � over a smooth quadric must have
dimension � N � 1. In other words, there exists a smooth quadric Q � PN

k
in the pencil

defining X such that .Q;H/ 2 W for all hyperplanes H � PN
k

containing x. Consequently,
the projective dual of Q is the hyperplane dual to the point x. This contradicts Lemma 4.12
below since x 2 X � Q.

Lemma 4.12. – Fix N � 1 and letQ � PN
k

be a smooth quadric. Then the projective dual
ofQ is a smooth quadric if k has characteristic¤ 2 or if N is odd; otherwise it is a hyperplane
whose dual is a point not contained in Q.

Proof. – In appropriate homogeneous coordinates, the quadricQ is defined by the equa-
tion fX0X1 C � � � CXN�1XN D 0g if N is odd, and by fX20 CX1X2 C � � � CXN�1XN D 0g
ifN is even (see [40, XII, Proposition 1.2]). The lemma follows by a direct computation.

We finally reach the goal of this subsection.

Proof of Theorem 4.8. – That (i) implies (ii) is clear. Since projective k-unirational vari-
eties always have k-points, (ii) implies (iii). It remains to show that (iii) implies (i). In view of
Lemma 4.9, we may replace k with k.t/ to prove this implication. We thus assume from now
on that k is infinite.

We argue by induction on N � 4. Suppose first that N D 4. Since k is infinite, [67,
Theorems 29.4 and 30.1 (i)] shows that X is k-unirational. (The hypothesis that k is perfect
is not used in the proof of [67, Theorem 30.1 (i)] for degree 4 del Pezzo surfaces. One only
needs to notice that the variety of lines in a degree 4 del Pezzo surface over k is étale over k.) In
particular, again because k is infinite, we see thatX.k/ is Zariski dense inX . Choose x 2 X.k/
general. Let � W eX ! X be the blow-up of X at x, with exceptional divisor E � eX . By [67,
Theorems 24.4 and 24.5] applied toXk and eXk , the linear system j�K eX j yields an embedding
of eX in P3

k
as a cubic surface, the image of E being a line. Let � W eX ! P1

k
be the conic

bundle obtained by projecting eX away from the line E. Choose y 2 P1.k/ general. The
scheme ��1.y/ \ E can be identified with the exceptional divisor of the blow-up at x of a
hyperplane section of X that contains x and is singular at x. In view of Lemma 4.10, since x
and y have been chosen general, the singularity at x of this hyperplane section is an ordinary
double point (see [40, XVII, (4.1)]). We deduce that ��1.y/\E is smooth over k, hence that
the morphism �jE

W E ! P1
k

is separable. The base change Y WD eX �P1
k
E ! E of �

by �jE is a conic bundle over E with a section, hence is birational to P1
k
� E D P1

k
� P1

k
.

The projection Y ! eX is dominant and separable because so is �jE . The variety eX is thus

separably k-unirational. This concludes the proof since X is birational to eX .

IfN � 5, choose x 2 X.k/, and consider the spaceB of hyperplanes in PN
k

that contain x.
Let Z D f.w; b/ 2 X � B I w 2 bg and let p W Z ! B and q W Z ! X be the natural
projections. The generic fiber of p is a smooth complete intersection of two quadrics in PN�1

k.B/

by Lemma 4.11, and has a k.B/-point induced by x, hence is separably k.B/-unirational
by the induction hypothesis. Since B is a projective space, it follows that Z is separably

4 e SÉRIE – TOME 56 – 2023 – No 4



INTERMEDIATE JACOBIANS AND RATIONALITY OVER ARBITRARY FIELDS 1077

k-unirational. As the generic fiber of the dominant map q is a projective space, hence is
smooth, Lemma 4.9 shows that X is also separably k-unirational.

The strategy of the proof of Theorem 4.8 can also be applied to smooth cubic hypersur-
faces, as we now briefly explain. Theorem 4.13 generalizes a theorem of Kollár, who proved
the equivalence between (ii) and (iii) in [60, Theorem 1.1].

Theorem 4.13. – Fix N � 3, and let X � PN
k

be a smooth cubic hypersurface. The
following assertions are equivalent:

(i) The variety X is separably k-unirational.

(ii) The variety X is k-unirational.

(iii) One has X.k/ ¤ ;.

Proof. – The implication (i) ) (ii) is trivial, and the equivalence (ii) , (iii) is [60,
Theorem 1.1]. We prove (ii)) (i). By Lemma 4.9, we may assume that k is infinite. By (ii),
one can thus choose .x; y/ 2 .X � X/.k/ general. We argue by induction on N � 3. The
induction step is identical to the one in the proof of Theorem 4.8, replacing Lemma 4.11
with Bertini’s theorem, which can be applied as x is general.

We now suppose that N D 3. Let Cx (resp. Cy) be the hyperplane section of X that is
singular at x (resp. at y). By [60, First unirationality construction of §2, Proposition 3.1,
Lemma 3.2], the curves Cx and Cy are k-rational, and the third intersection point map
� W Cx � Cy 99K X is dominant. As the map � has degree 9, it is separable unless k has
characteristic 3. Hence we may assume that k has characteristic¤ 2. Since .x; y/ is general,
one has y … TxX , and the planes TxX and TyX intersect along a line D not containing y.
If x0 2 Cx.k/ is general, Tx0Cx meets D at a unique point z ¤ y. By Lemma 4.10 and [40,
XVII, (4.1)], the curve Cy is nodal at y. One of the two tangent lines to Cy at y avoids z. We
deduce that for y0 2 Cy.k/ general, the line Ty0Cy avoids z, hence does not meet Tx0Cx . This
exactly means that � is étale at .x0; y0/, hence separable.

4.6. Examples over fields of Laurent series

Here are examples of smooth complete intersections of two quadrics in P5
�..t//

which are
not �..t//-rational. The equations we use in characteristic 2 are borrowed from Bhosle [8].

Theorem 4.14. – Let � be an algebraically closed field. If the characteristic of � is ¤ 2,
let a0; : : : ; a5 2 � be pairwise distinct elements, and consider the smooth projective variety
X � P5

�..t//
with equations(

tX20 C tX
2
1 CX

2
2 C � � � CX

2
5 D 0;

ta0X
2
0 C ta1X

2
1 C a2X

2
2 C � � � C a5X

2
5 D 0:

If � has characteristic 2, let a; b; c 2 � be pairwise distinct elements and consider the smooth
projective variety X � P5

�..t//
with equations(

tX0X1 CX2X3 CX4X5 D 0;

t.X20 C aX0X1 CX
2
1 /C .X

2
2 C bX2X3 CX

2
3 /C .X

2
4 C cX4X5 CX

2
5 / D 0:

Then X is separably �..t//-unirational, �..t
1
2 //-rational, but not �..t//-rational.
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Proof. – In view of Theorem 4.7 and Theorem 4.8, the conclusion of the theorem is
equivalent to the assertion that X contains a point over �..t//, a line over �..t

1
2 //, but no line

over �..t//, and this is what we shall now prove.
Let Y � P5� be the subvariety with equations f

P
i X

2
i D

P
i aiX

2
i D 0g if � has

characteristic¤ 2, with equations(
X0X1 CX2X3 CX4X5 D 0;

.X20 C aX0X1 CX
2
1 /C .X

2
2 C bX2X3 CX

2
3 /C .X

2
4 C cX4X5 CX

2
5 / D 0

if � has characteristic 2. Let �..t// � �..u// be the quadratic extension with u2 D t and
� W X�..u//

�
�! Y�..u// the isomorphism .X0; : : : ; X5/ 7! .uX0; uX1; X2; : : : ; X5/.

As � is algebraically closed, the varietyX has a �..t//-point in the subspace fX0 D X1 D 0g.
The variety Y contains a line (by Lemma 4.1 (iii)), so that X�..u// contains a line as well. Let
us now assume that X itself contains a line L � X , and derive a contradiction.

We denote by � W �2 � P5� ! P5� the action of the �-group scheme �2 on P5� , via its
non-trivial character on X0 and X1 and trivially on X2, X3, X4 and X5. The subvariety
Y � P5� is � -invariant. Let � W �2 � Spec.�..u///! Spec.�..u/// be the �2-action endowing
Spec.�..u/// with its natural structure of �2-torsor over Spec.�..t///. It extends to an action
of �2 on Spec.�ŒŒu��/ for which the closed point is an invariant subscheme.

Let us regard the line L0 WD �.L�..u/// � Y�..u// as a �..u//-point of the variety of lines F
of Y . In view of the equation defining � and since L is defined over �..t//, the morphisms
�2 � Spec.�..u///! F given by the orbits of L0 with respect to the actions of �2 on F�..u//
induced by � and by � coincide. It follows that the specializationL00 � Y ofL0 with respect to
the u-adic valuation of �..u// is � -invariant. Since Y does not meet the projectivization of the
subspace of �6 where �2 acts via its non-trivial character, the lineL00must be contained in the
projectivization fX0 D X1 D 0g of the subspace where �2 acts trivially. But the intersection
of Y with fX0 D X1 D 0g is an elliptic curve, which contains no line. This is the required
contradiction, and the proposition is proved.

Remarks 4.15. – (i) We do not know whether the variety X appearing in Proposi-
tion 4.14 is stably rational over �..t//, even when � D C.

(ii) If � has characteristic 2, the variety X considered in Proposition 4.14 is not
�..t//-rational, but it becomes rational over the perfect closure �..t//p of �..t//. It follows that
one cannot prove Proposition 4.14 by applying Theorem 4.7 over �..t//p. A theory of inter-
mediate Jacobians over imperfect fields is therefore crucial for our proof of Theorem 4.14.

(iii) The variety X appearing in Proposition 4.14 when � has characteristic 2 is the first
example of a smooth projective variety over a field k which is kp-rational, which has a
k-point, but which is not k-rational. There are no such examples in dimension � 2 (see
Proposition 4.16 below).

(iv) Over fields k of characteristic p > 2, smooth complete intersections of two quadrics
X � P5

k
cannot satisfy the conditions of Remark 4.15 (iii). Indeed, if X is kp-rational, then

the period of the variety of lines on X , viewed as a torsor under the intermediate Jacobian
of X , must be a power of p, by Theorem 4.7 and [62, Proposition 5]; on the other hand,
it divides 4 (see the proof of Theorem 4.7), hence it is equal to 1, so that X contains a line
defined over k and is therefore k-rational. Adapting to imperfect fields the work of Kuznetsov
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and Prokhorov [61] on prime Fano threefolds of genus 10might lead to examples, over fields
of characteristic 3, of smooth projective varieties that are kp-rational, have a k-point, but
are not k-rational. It remains a completely open problem whether varieties (resp. threefolds)
satisfying these conditions exist in all characteristics p � 5.

(v) We do not know whether there exists a smooth projective variety over a separably
closed field k which is k-rational but not k-rational.

We include the following proposition, which generalizes [20, Theorem 1], to justify
Remark 4.15 (iii).

Proposition 4.16 (Segre, Manin, Iskovskikh). – LetX be a smooth projectivek-rational
surface over k. The following assertions are equivalent:

(i) X is k-rational,

(ii) X is kp-rational and X.k/ ¤ ;.

If X is minimal, they are also equivalent to

(iii) K2X � 5 and X.k/ ¤ ;.

Proof. – To prove the proposition, we may assume that X is minimal, from which it
follows thatXkp is minimal (see [73, Corollary 9.3.7]). That (i) implies (ii) is obvious. That (ii)
and the minimality ofXkp imply (iii) results from the birational classification of geometrically
rational surfaces over perfect fields, due to Segre, Manin and Iskovskikh (see [50, p. 642]). It
remains to prove that (iii) implies (i). If X is a del Pezzo surface, this is [81, Theorem 2.1].
Suppose now that X is not a del Pezzo surface. Then X belongs to the family II described
in [49, Theorem 1]. Since 5 � K2X � 8 by [49, Theorem 3 (2)–(3)], one has K2X D 8 by [49,
Theorem 5]. It then follows from [49, Theorem 3 (2)] that X is either a product of curves of
genus 0, or a projective bundle over a curve of genus 0. AsX.k/ ¤ ;, these curves of genus 0
are isomorphic to P1

k
, and X is k-rational.
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