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Moduli of real algebraic surfaces,
and their superanalogues.
Differentials, spinors, and Jacobians of real curves

S. M. Natanzon
Dedicated to my parents

Abstract. The survey is devoted to various aspects of the theory of real algebraic
curves. The involution defined by complex conjugation induces an antiholomorphic
involution 7: P — P on the complexification P of a real curve. This involution
acts on all structures related to the Riemann surface P, namely, on vector bundles,
Jacobians, Prymians, and so on. The greater part of the survey is devoted to finding
topological invariants and studying the corresponding moduli spaces. Statements of
these problems were inspired by applications of the theory of real curves to problems
in mathematical physics (theory of solitons, string theory, and so on).
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Introduction

According to standard definitions, a real algebraic curve is a pair (P, T), where P
is a complex algebraic curve (that is, a compact Riemann surface) and 7: P — P is
an antiholomorphic involution. The category of real algebraic curves is isomorphic
to the category of Klein surfaces [1], [35]. Investigations of real algebraic curves
were started by Klein [25] and Weichold [51]. For a long time thereafter researchers
studied only plane algebraic curves, that is, real curves embedded in RP?. The
systematic study of “general” real algebraic curves was renewed only in the seventies
[1], [16], [20], [31]-[33], [48]. The method of algebraic-geometric integration of
equations of mathematical physics, which was discovered in the seventies in the
works by S. P. Novikov and his school, posed a number of new problems in the
theory of real curves and significantly stimulated the development of this theory
[10], [12]-[14], [34], [37], [42]. Conformal field theory and, in particular, string
theory [9], [23], [24], [49] has become another area of applications of real curves.

The antiholomorphic involution 7 acts on all structures related to the Riemann
surface P, namely, on vector bundles, Jacobians, Prymians, and so on. The greater
part of this survey is devoted to finding topological invariants and describing the
moduli spaces corresponding to any set of such invariants.

In §1 we describe topological invariants of real algebraic curves following
Weichold [51]. The set of these invariants forms the topological type of a curve. In
§2 we associate with a real algebraic curve a special type of group of isometries
of the Lobachevskii plane (real Fuchsian groups). Applying this relationship and
the parametrization of Fuchsian groups described in [33] and [47], (§§1-4), we
prove that to each topological type there corresponds a connected component that
is homeomorphic to R™/ Mod, where Mod is a discrete group.

In § 3 the Arf functions equivalent to §-characteristics [2], [30] appear in the sur-
vey for the first time. In contrast to the complex situation, many topological invari-
ants are connected with these functions in the real case. In §4 a correspondence is
established between Arf functions and representations m1(P/ (1)) — GL(2,R) that
generate real Fuchsian groups. These representations are used in § 5 to describe real
spinors on (P, 7). The properties of real spinors enable one to describe non-trivial
topological properties of real holomorphic differentials in § 6. In §7 we show that
the simplest meromorphic tensors of arbitrary weight on real curves of arbitrary
genus behave just like classical trigonometric functions. Here we use the apparatus
developed for complex curves in the papers by Krichever and Novikov in connection
with conformal field theory [27]. For lack of space we do not include the classifica-
tion of meromorphic functions on real algebraic curves of arbitrary genus [40].

In § 8 we pass to a description of Jacobians of real curves, and, in particular, real
and imaginary tori of the Jacobian. The results of §6 enable one to find all such
tori disjoint from the #-divisor. In § 9 the analogous problem is solved for Prymians
of real curves with a symmetry. The results in §§ 8 and 9 play the key role in
singling out the non-singular real solutions of important equations in mathematical
physics [13], [14], [34]. In § 10 we described Bobenko’s approach to the calculation
of Jacobians of real curves by means of Schottky groups and Poincaré series [5], [6].
Like the parametrization in § 2, this approach uses the parametrization of Fuchsian
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groups [33], [47], (§§1-4). A similar method of describing the Prymians is contained
in [34].

In §11, we return to spinors and describe the moduli space of spinor bundles. It
turns out that its components are determined by the topological invariants of the
Arf functions introduced in §3. In §11 we also describe the topological structure
of the connected components of the moduli space of spinor bundles.

The last three sections are devoted to real algebraic supercurves. The complex
and real supercurves form the central object of the theory of superstrings that
relates the unified quantum field theory with integrals over the moduli space of
algebraic supercurves [4], [9], [18]. We define real supercurves via uniformizing
groups as is done for complex curves in [4], [29]. In §12 we describe the moduli
space of N = 1 real algebraic supercurves. The numerical part (the body) of
this superspace coincides with the moduli space of spinor bundles. The connected
components correspond to topological types of the real Arf functions, and each of
the components is of the form R("™) / Mod, where R(™I™) ig a linear superspace and
Mod is a discrete group. In § 13 the system of topological invariants of N = 2 real
algebraic supercurves is described. As is shown in § 14, these invariants describe
the connected components of the moduli space of the supercurves. As in the case
N =1, each of the components can be represented in the form R("™) / Mod.

The present survey is a natural continuation of [47] and is based on the results
presented there. The topological description of the connected components of (super)
real curves and spinor bundles is based, in particular, upon the special description
of the connected components of the spaces of (super) Riemann surfaces constructed
in [33], [39], and [47]. The topological invariants of (super) real curves include those
of (super) Riemann surfaces. However, the total system of topological invariants is
much more complicated and diverse.

In this survey the results of the author over several years are presented in a
unified style. Some of these topics arose as a result of discussions with V.I. Arnol’d,
E.B. Vinberg, and S.P. Novikov, and the author is sincerely indebted to them.

§ 1. Topological type of real algebraic curves

1. By a (non-singular) real algebraic curve we mean a pair X = (P, 1), where
P = X(C) is a compact Riemann surface (called a complezification of the curve X)
and 7 = 7x: P — P is an antiholomorphic involution (the so-called involution of
complex conjugation). The fixed points X(R) = P7 of this involution form the
set of real points of the curve. For instance, to a non-singular plane real algebraic
curve F(x,y) = 0 there corresponds a pair (P, 7), where P is the normalization and
compactification of the surface {(x,y) € C?| F(z,y) = 0} and 7 is generated by the
involution (z,y) — (T, 7).

Real algebraic curves X; = (P, 71) and Xy = (Pa, 72) are taken to be the same
if there is a biholomorphic map ¥: P; — P» such that ¥ = 1.

A curve X is said to be separating (type I in the Klein classification) if the set
X(C) \ X(R) is disconnected. Otherwise the curve is said to be non-separating
(type II in the Klein classification).

By the topological type of a real algebraic curve X we mean the triple (g, k, €),
where g = g(X) is the genus of the curve, that is, the genus of the surface X(C),
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k = k(X) is the number of connected components of the set X (R) of real points,

and
0 if the curve X is non-separating,

e=¢(X)= { . . .
1 if the curve X is separating.

In what follows, we often use the fact that every Riemann surface P is biholo-
morphically equivalent to a surface of the form H/T', where H is the Riemann
sphere C, the complex plane C, or the upper half-plane A = {z € C|Imz > 0},
and T' is a discrete group that acts without fixed points. The standard metric of
constant curvature on H induces a metric of constant curvature on P = H/T.

Let us present two examples of real algebraic curves.

Example 1.1. Let P be a surface of genus g with k holes. Let us endow P with
the structure of a Riemann surface PT and consider an atlas of holomorphic charts

{(U“Zl P+_UU1, Zi:Ui—>(C.

The atlas {(U;,%;)} endows P with the structure of another Riemann surface P~
The natural map o: Pt — P — P~ is antiholomorphic. The complex structure
of PT and P~ generates on these surfaces some metrics of constant curvature
with respect to which « is an isometry. Let us surround each of the holes of the
surface Pt by a geodesic. The geodesics cut out a compact surface P+ c Pt with
boundary OPF. We set P~ = aP™. N

Let us identify the boundaries 9P and OP~ by means of o.. As the result, we
obtain a compact Riemann surface P of genus 2g + k — 1 on which the map «
induces an antiholomorphic 1nvolut10n Ti.k: Py — Py . Thus, X5, = (Pyk, Ty.k)
is a real algebraic curve, and Xj;(R) = 8P+ = 8ﬁ_. Hence, Xj,, is a real
algebraic curve of type (29 + &k — 1, k, 1).

Example 1.2. Repeating the construction of Example 1.1, we take the Riemann
surface with boundary P+ P~ and the antiholomorphic map «: P+ — P~. The
boundary OP* consists of contours c1,--.,Ck. Let us consider ﬁxed-pomt-free
isometries «;: ¢; — ¢; such that oz? = 1. Let 0 < m < k. For i < m, we
identify the contours ¢; and ac; by means of the map «. For i > m, we identify
the contours ¢; and ac; by means of the map aa;. We again obtain a real curve
Y7 = (Pyy, 77%,) of the same genus; however, in this case Y7, (R) = U~ ¢i, and
hence Y3} is a curve of topological type (29 + &k —1,m, 0).

2. Real curves (P, 1) and (P, 72) are said to be topologically equivalent if there
is a homeomorphism ¢: P; — P, such that o = ¢7y.

Our immediate goal is to show that any real algebraic curve is topologically
equivalent to one of the curves in Examples 1.1 and 1.2.

Lemma 1.1. The set X(R) of real points of a real algebraic curve X = (P, )
decomposes into pairwise disjoint simple closed smooth contours (called ovals).

Proof. The complex structure of the surface P induces a metric of constant cur-
vature, and 7 is an isometry with respect to this metric. If x € X(R), then the
involution d7,: T, — T, of the tangent plane T, is the reflection with respect to a
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line v € T,,. We denote by ¢ C P the geodesic that passes through z in the direction
of the line v. All its points are fixed under 7, and in a small neighbourhood of x
there are no other fixed points of 7. Thus, each of the points z € X(R) belongs
to exactly one maximal geodesic ¢ C X (R) without self-intersections. Since P is
compact, it follows that each of these geodesics is a closed smooth contour.

Theorem 1.1. Let (P,7) be a real curve of type (g9,k,1). Then 1 < k < g+ 1,
k=g+1 (mod2), and (P, ) is topologically equivalent to the curve (Pjy,T5) of
Ezample 1.1, where g = (g +1 — k).

Proof. By Lemma 1.1, the set P\ P7 decomposes into two surfaces P; and P,
of genus g with k holes. Hence, g = 2g + k — 1, and therefore k < g+ 1 and k =
g+ 1 (mod2). Let us consider a homeomorphism ¢;: (P U P7) — PT. We set

( p1(x) forx € PLUP7,
xTr) =
T p17(x)  for x € Po.

We can readily see that ¢ realizes the desired topological equivalence.

3. Let us now study curves of non-separating type. Up to the end of the section,
Q@ stands for a Riemann surface of genus g with n holes and G: @ — @ is an
antiholomorphic involution without fixed points.

A simple closed contour a C @ is said to be invariant if Ba = a.

A system A = (aq,...,an) of pairwise disjoint invariant contours is said to be
complete if the set @ \ A is disconnected. Obviously, @ \ A then consists of two
surfaces Q" and Q" of genus 1(g —m + 1) with m + 4n holes, and Q' = Q".

Lemma 1.2. a) There is at least one invariant contour a C Q. b) If g > 0, then
there is an invariant contour b C Q such that Q \ b is connected. c) There is a
complete system formed by g + 1 invariant contours. d) If A = (a1,...,am) C Q
is a complete system of invariant contours and if m > 2, then there is an element
b C @ such that (a1,...,am—3,b) is also a complete system of invariant contours.

Proof. a) Without loss of generality we may assume that n > 2. We consider the
function f(z) = p(x, fz) on Q, where p is the distance in the standard metric of
constant negative curvature on (). The function f attains its minimum f(z) =
¢ > 0. If £ is a minimal geodesic joining z and Bz, then a = ¢ U 3¢ is an invariant
contour.

b) Let a C Q be the contour constructed in item a) and let @\ a be disconnected.
Then Q\a = Q'UQR", where Q" and Q" are surfaces of positive genus, and Q" = Q”.
Let us join points x € a and 7z by a curve £ C Q' without self-intersections and
such that @'\ ¢ is connected (see Fig. 1.1). Then b = £U 7/ is an invariant contour,
and @ \ b is connected.

¢) Let b be the contour constructed in item b). The surface @ \ b is of genus
g—1,and if g —1 > 0, then we can again apply the assertion in item b). For g = 0,
we apply item a).

d) The set Q \ A decomposes into the surfaces @’ and Q" (see Fig. 1.2).

Let us complete these surfaces by boundary contours. Corresponding to a contour
a; C A are contours a; C @' and a) C Q". Let ¢1, g2, g3 be points of the contours
Am—2,Gm-1,0m and let g; be the corresponding points of the contours aj, s,
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()

Figure 1.1

Figure 1.2

We denote by m; one of the two arcs into which the points ¢, and 3(qg;) divide
the contour a}. Let us join the points 5(¢}) and ¢4 by a curve ¢; C Q' and the
points B(q5) and ¢4 by a curve ¢ C Q' so that ¢; and {3 are disjoint, have no
self-intersections, and do not intersect 0Q’ (except for the endpoints). Let us join
the points 5(g5) and ¢} by a curve ¢3 without self-intersections which is homo-
topic to the curve (mlélmgégmg)_l and has no points in common with the latter
curve and with 0Q’, except for the endpoints (this can always be done because the
set @\ ({1 U {y) is connected). The closed contour £3mql;maoflams without self-
intersections decomposes the surface Q' into two parts, Q] and Q5. We consider now
the invariant contour b = ¢18(¢2)l35(¢1)¢26(¢3) C Q. Then Q\ (b,a1,...,am—3)
decomposes into the surfaces Q] U 8(Q5) and Q4 U B(QY).

Theorem 1.2. Let (P,7) be a real algebraic curve of topological type (g, m,0).
Then for anym < k < g+1 withk = g+1 (mod2) the curve (P, T) is topologically

equivalent to the curve (P, 77"} ) in Example 1.2, where g = 1(g+1—k).

Proof. According to Lemma 1.2, there is a complete set A of contours on

the surface P \ P7 that are invariant with respect to 7, A = (am41,-.-,ak).
The surface P\ (P™ U A) decomposes into two surfaces P; and P, of genus g
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with k holes. Let us consider now a homeomorphism ¢;: (PLUPTUA) — P+ such
that ¢1(P7) = (c1,-..,cr). We set

v1(z) forr e PPUPTUA,
(z) = { heerT(z) for x € P
We can readily see that ¢ defines a topological equivalence.
Examples 1.1 and 1.2 and Theorems 1.1 and 1.2 imply the following.

Corollary 1.1 [51]. Real algebraic curves are topologically equivalent if and only
if they have the same topological type. A set (g,k,¢€) is a topological type of a real
algebraic curve if and only if eithere =1, 1 <k < g+1, andk =g+1 (mod2) or
e=0and 0< k<g.

Remark. For plane real curves, the inequality k¥ < g + 1 was first proved by Har-
nack [21] and bears his name.

§2. Moduli of real algebraic curves

1. In what follows, we need some definitions and notation from [47], §§1-5.
Each hyperbolic automorphism C' € Aut(A) of the Lobachevskii plane A =
{z € C| Im~z > 0} is of the form

(Aa—B)z+ (1 —Nap
A—Dz+t(a—rg) °

where o # 8 € RU oo and A > 1. We denote by ¢(C) C A the geodesic (in
the Lobachevskii metric) that joins @ and § and is oriented from S to a. The
automorphism C' preserves the line £(C) while shifting it in the direction of the
orientation.

A triple of hyperbolic automorphisms (Cy, Ca, C3) is said to be sequential of type
(0,3) if (C1-Cz-C3) =1 and, for some D € Aut(A), the curves {(DC;D~!) are
placed as in Fig. 2.1.

C(z) =

Loc,07) LoeC,T") (oL 07)
Figure 2.1

An n-tuple of hyperbolic automorphisms (Cy,...,C,) is said to be sequential
of type (0,n) if, for any j, the triple (C1---Cj_1,C},Cj41---Cy) is sequential of
type (0, 3).

A set

{Aini (ZZ 1,...,g), Ci (ZZ 1,,k)}

is said to be sequential of type (g, k) if the tuple
(A, BIAT "B, Ay, ByA B, Gy, .., C)

is sequential of type (0,2g + k).
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By the classical Fricke—Klein theorem [17], [47], a moduli space of complex alge-
braic curves (that is, of compact Riemann surfaces) can be represented as 7'/ Mod,
where T is a linear space and Mod is a discrete group. Our immediate goal is to
prove a similar theorem for real algebraic curves.

For T, we take the Fricke-Klein—Teichmiiller space Ty ; constructed in [33] and
n [47], §4. This space can be defined as follows. Let n = g + k and let vy, =
{ai,bi (i=1,...,9), ¢ (i=9g+1,...,n)} be a system of generators of a free group
Yg,n Of rank 2g + n — 1 with the defining relation

g9

H[ai,bi] H C; = 1.

i=1 i=g+1

Let us consider the set Tg,k of all monomorphisms ¢: v,, — Aut(A) such that
{Y(a;),v(b;) i =1,...,9), ¥(c;) (i = g+1,...,n)} is a sequential set of type
(g9,k). The group Aut(A) acts on ka by conjugations ¢ — CpC~1. By [33] and
[47], §4, the space Ty = Tg,k / Aut(A) is homeomorphic to R%9T3%=6 Moreover,
the correspondence

¥ = AJ(vg,n)

generates a homeomorphism
\I/gm: Tg7k/MOdg7k — M, k

onto the moduli space M, of Riemann surfaces of genus g with k holes. Here
Mod, ; is a discrete group that consists of the classes 1\//[?)?1g7k / Int(vg.n), where
1\//[?)?1g7k C Aut(vg,) is the group of automorphisms that send monomorphisms in
the set ka to monomorphisms in Tg7k.

2. In what follows, we consider curves of genus g > 1 only. The cases g < 1 are
much simpler but need different approaches.

Real algebraic curves of genus g > 1 are can be uniformized by discrete groups
of isometries of the metric % of the Lobachevskii plane A = {z€C| Imz >0}.
The full group m(A) of isometries consists of the holomorphic automorphisms
that form the group Aut(A) and of antiholomorphic ones.

The discrete subgroups I' C m(A) are called non-FEuclidean crystallographic
groups (NEC-groups) [28]. In what follows, we need only NEC-groups I for which
r=rn Aut(A) is a Fuchsian group that consists of hyperbolic automorphisms,
T # IN“, and P = A/T is a compact surface. These groups T will be called real
Fuchsian groups. In this case r \ T" induces an antiholomorphic involution 7 =
(I)(IN“ \[)® !': P — P (where ®: A — P is the natural projection). Thus, a real
Fuchsian group I' generates a real algebraic curve (P, 7) = [f]

Lemma 2.1. FEwvery real algebraic curve is generated by some real Fuchsian group.

Proof. Let I' C Aut(A) be a Fuchsian group uniformizing the Riemann surface P,
and let ®: A — P be the natural projection (see, for instance, [47], §2). Since A
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is simply connected, there is an element o € m(A) \ Aut(A) such that ®o = 7.
Let T be the group generated by o and I'. Then (P, 7) = [I].
3. Let My, be the moduli space of real algebraic curves of type (g,k,¢).
Our immediate object is to construct a natural map \I/g e I56 — Mg y,1, where
g=3(g+1-k). ~

Let n = g+ k, ¢ € Ty, and {4;,B; (i = 1,...,9), C; (1 = 1,...,k)} =
{w(a1)7w(bl)(z - 17 s 75)7 w(c’i) (Z = §+ 17 e 7n)} Denote by C’i € Aut(A) \
Aut(A) the reflection (in the sense of Lobachevskian geometry) with respect to the
geodesic £(C;). Let T'y, = ¥(v5,,) and let Ffb be the group generated by I'y, and the
elements C1, ..., Cy.

Lemma 2.2. '} is a real Fuchsian group, and [T%] € My 1.

Proof. Let {ai, i (i = 1,...,9)} be the generators of the group 7,0 with the
defining relation [[7_, [@;, b;] = 1. We set

1’/7( ) 6 g+1—1'6n7 /{Z(’g’t) = CnAﬁ-i-l—i@n (Z = 17 cee 75)7
1’;( ):A -9 J(Zi):B’i—E (i:§+17"'72§j7
U(@;) = WiCiW, o) =WDiW;t (i=2+1,...,25+k),

where D; = C,,C; and W; = [[} D]-C’]-Dj_1 (see Fig. 2.2).

Jj=i—1

i(ty)

Li4) L(B) Cr1)
TN
Figure 2.2
Then
9 e 1 g k 1 o
[110@), &(b:)] = Cn [[1Bi, AiJCy [ [ 145, B H Hc ST =1
i=1 i=g i=1 i=1 i=k

because H§=1[Ai: Bj] Hle C; = 1. Moreover,

($(@), vy by "), ..., ¥(ag), (bea, ', 1))
is a sequential set of type (0,2g) (see Fig. 2.2). Thus, 1; € Tgp, and hence P =
A/Y(vg,0) € Mgo. The group Ffb is generated by the group ¥(v4,0) together with
the involutions C;, and 61-1; (Y4.0)Ci = J('ygp). Hence, Ffb is a real Fuchsian group,

and the images £(C;) form ovals of the curve [Ffb] By construction, these contours
form the boundary of a surface of genus g.

Thus, the correspondence 1) [Ffb] defines a map \I/? K T@k — Mg k1.
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Lemma 2.3. ‘I’g,k(fﬁ,k) =M.

Proof. Let (P,7) € Mgy1. By Lemma 2.1, (P,7) = [IN“] for some real Fuchsian
group I'. Let I' € ' N Aut(A), let &: A — A/T" = P be the natural projection,
let ®(¢) = p, and let ®,: v — 71 (P, p) be an isomorphism that sends h € T' into
the image ®(¢) of the segment ¢ = [g, hg] C A. The ovals of P™ decompose P into
two surfaces Py and Po. Let p € Py and let v = {a;,b; (i = 1,...,9), ¢ (i =
g+1,...,n)} be a standard system of generators of the group 7(Py,p) in the sense
of [47], §2. By [47], Theorem~2.1, V = ®,'(v) is a sequential set of type (7, k),
that is, V' = ¢(v), where ¢ € T . Then [Fﬁ)] = (P, 7).
We recall that
Ty k= Tgn/ Aut(A) = ROTHH-0 — R39~5

[33], [47], §4.
For clear reasons, the map

\I/?k: Tﬁ,k — M k1
induces the map
E o Ty — Mgk
We also need the map
[o'N Tﬁ,k — Tﬁ,k

determined by the relations

ap(a;) = B(bz1-4)5,

ay(bi) = fv(agt,_;)B (i=1,...,9),

arp(ci) = wh(cs}_JPw™" (i=g+1,...,G+k),
where 3(z) = —z and w = a1 ?zl[ai,bi]). Let Modgk be the group of auto-
morphisms of T generated by Modg s and «. Then ind(Modj y : Mod?k) = 2.
Moreover, we can readily see from the construction that [Fﬁ)] = [F’J},] if and only if
Y’ = y1), where v € Modg x- Thus, Lemmas 2.2 and 2.3 imply the following result.
Theorem 2.1 ([31]-[33]). Myr1 = T/ Modgk, where the action of Modgk is
discrete.
4. Let us pass now to a description of the space M , 0. To this end, we construct
a map

U Ty — M/ Ty om0,
where m < k, k=g +1 (mod2),and g = 1(g+1—k).
As above, to a monomorphism ¢ € T5 j, there corresponds the sequential set
{4;,B; (i=1,...,9), C; (i=1,...,k)}
={(ai), ¥(bi) (i=1,...,9), ¥(c;) (i=g+1,...,n)}

We write @ = C;/C;, where 1/Cj is a hyperbolic automorphism such tl’ﬁit (\/Uz_ )2
= C;. Let T'y = 9(vg,n) and let I}, be the group generated by I'y, C1,...,Cn
together with Cy,y1, ..., Ck.
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Lemma 2.4. I'}}; is a real Fuchsian group and [ ;] € Mg m 0.

Proof. The proof repeats that of Lemma 2.2 almost literally. The only difference
is that the images £(C;) form ovals if and only if i < m, and hence [I7};] is a
non-separating curve.

Thus, the correspondence 1 — [['}},] defines a map

\I/gfkt T~,k: — Tg,m,O-

Lemma 2.5. \I/gfk(T@k) = Mgy mo-

Proof. Let (P,7) € Mg m,0. By Theorem 1.2, there is a set of invariant contours
A= (am+1,---,ax) C P\ P7 such that P\ (P™U A) decomposes into two surfaces
Py and P, of genus g = 2(g + 1 — k). The rest of the proof is just like that of
Lemma 2.3.

Theorem 2.2 ([31]-[33]). We have My o = Tgr/Mody',, where ModZ', acts
discretely and ind(ModZ';, N Modgk : Modgk) = (k).

m

Proof. The map v T@k — My m,0 induces a map U Tg e — Mgmo in an
obvious way. Let U7, (¢) = ¥, (¢'). This means that (P,7) = [FZ’:"] :~[F$’7k] =
(P’,7"). Let us consider the monomorphisms ¥, ¢’ € T, . We have ¢’ = 1)y, where
7 belongs to the group ModZ', generated by the group {y € Mod, o [T = 77}
together with «, so that WZ' (Yy) = U, (¢) for any v € Modg',. Let us now

consider the subgroup ModgkﬂModgk that consists of the automorphisms of
Mod];k preserving the set ¢; (i = 1,...,m). We can readily see that the index
of this subgroup in Modg . is equal to (X).

Comparing Theorems 2.1 and 2.2 with [47], §4, we obtain the following.

Corollary 2.1 ([31]-[33]). The moduli space of real algebraic curves of genus g > 1
decomposes into the connected components My o, where (g,k,€) is an arbitrary
topological type of a real algebraic curve. Each of the components is diffeomorphic
to R3973/Modg ke, where Mod, - is a discrete group of diffeomorphisms.

Remark. The assertion of Corollary 2.1 concerning the topological structure of the
connected components of the space of real algebraic curves was first presented
in [16]. The proof given in [16] used the theory of quasiconformal maps and was
based upon a theorem in [26], which turned out later to be wrong. A correct proof
based on the theory of quasiconformal maps was obtained in [48].

§3. Arf functions on real algebraic curves

1. In the study of spinor bundles and super Riemann surfaces, the Arf functions
play an important role [15], [47], §§ 7-15. Special Arf functions are connected with
real algebraic curves and we pass to their description.

Let P be a surface of genus g = g(P) with k holes. A basis v = {a;,b; (i =
1,...,9),¢ i=g+1,...,9 +k)} of the group Hy(P,Zs) (where Zy = Z/27 =
{0,1}) is said to be standard if the generators ¢; correspond to the holes of the
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surface P, (a;,a;) = (bi,b;) = 0, and (a;,b;) = d;;, where (-,-) € Zy is the
homology intersection number for H;(P,Zs).

By an Arf function on P we mean a function w: Hy(P,Z2) — Z2 such that
w(a+b) = w(a) + w(d) + (a,b). We say that an Arf function w is even and set
d = §(P,w) = 0 if there is a standard basis v such that

Zw(ai)w(bi) =0 (mod 2).

i=1
Otherwise we set § = §(P,w) = 1 and say that w is odd. By ko = ko(P,w) (a =10,1)
we denote the cardinality of the set of elements c¢; of a standard basis v such that
w(c;) = a. The triple (g, d, ko) is called the topological type of the Arf function w.

By [47], §8, a triple (g, d, ko) is the topological type of an Arf function if and
only if k&1 =0 (mod2) and 6 = 0 for k; > 0. Moreover, there is a standard basis v
such that w(a;) = w(b;) =0 for i > 1 and w(ay) = w(by) = 0.

Two Arf functions wy and ws on P are said to be topologically equivalent if there
is a homeomorphism t: P — P that induces an automorphism t: Hy(P,Z2) —
H, (P, Zs) satistying the relation wy = wath.

By [47], §8, Arf functions are topologically equivalent if and only if they have
the same topological type.

2. Let (P, 7) be a real algebraic curve. It what follows, we denote a simple contour
and the homology class of this contour in Hy(P,Z2) by the same symbol. The
involution Hy(P,Zs) — H1(P, Z2) induced by the involution 7: P — P will also be
denoted by the same letter 7.

By an Arf function on a real algebraic curve (P, T) (or simply a real Arf function)
we mean an Arf function w: Hy (P, Z3) — Z2 such that wr = w.

Lemma 3.1. Let (P,7) be a real curve, let c1,co C P be simple closed contours
such that 7(¢;) = ¢i, ¢; NPT =@, and ¢1 Nca = &, and let w be an arbitrary Arf
function on (P,7). Then w(c1) = w(cz).

Proof. By Theorem 1.2, there is a set of pairwise disjoint simple contours cs, . .., ¢,
belonging to P\ (c1Ucz) and such that 7(c;) = ¢; and the set P\ J;_, ¢; decomposes
into surfaces P, and P, with 7P, = P,. Let us join the contours ¢; and ¢y by a
curve ¢ C P; without self-intersections. Let d be a simple closed contour of the
form

d=L0U fiUTlU f,

where f; C ¢; is a segment joining the points £N¢; and 7¢N¢; (see Fig. 3.1). Then
7(d) = d 4 ¢1 + co, and hence

w(d) = w(d) + w(er) + w(ca).
An Arf function w on (P, ) is said to be singular if there is a simple closed
contour ¢ such that 7(c) = ¢, cN P = @, and w(c) = 0.
Lemma 3.2. If P™ # &, then any real Arf function on (P, T) is non-singular.

Proof. Let ¢ C P be a simple contour such that 7(c) = ¢ and ¢N P”™ = @&. Let
¢ C P7 be an oval of the real curve (P,7). By Theorem 1.2, there is a set of
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Figure 3.1

simple, pairwise disjoint contours ci,...,¢, € P\ (cU (') such that 7(¢;) = ¢
and the difference P\ (c uduli_, ci) decomposes into surfaces P, and P, with
7P, = P,. Let us join the contours ¢ and ¢’ by a curve ¢ C P; without self-
intersections. Let d be a simple closed contour of the form d = ¢ U f U 7¢, where
f Cc. Then 7(d) = d+ ¢, and hence w(d) = w(d + ¢) = w(d) + w(c) + 1.

Lemma 3.3. A singular real Arf function vanishes on all invariant contours.

Proof. Let w be a singular Arf function on a real algebraic curve (P, 7). Suppose
that there is a contour ¢ € P such that 7¢ = cand w(c) = 1. By Lemmas 1.2 and 3.2,
there is a complete system of invariant contours ¢, cy, . . ., ¢4 that decompose P into
spheres P; and P, with holes. Let us join the contour ¢; to the contour ¢ by a
segment ¢; C P; and set

di Z&'UT&'UMUT,

where r; C ¢; (r C ¢) are arcs joining the points p; = £; N ¢; and 7p; (the points
p = £; N c and 7p, respectively). Let us consider a disc D1 C P;. We identify the
boundary contours of the surface P\ (D; U7D;) by means of the involution .
On the surface P thus obtained, the involution 7 induces an involution with oval
¢ = 0D;. Let us join the contour ¢ to the contour ¢ by a segment ¢ C P, and set
d=tUrlu 7, where ¥ C ¢ is an arc joining the points p = /Necand 7p. The contours
{ei,d; (i =1,...,9), ¢ c?} form a basis of Hl(ﬁ,ZQ). Let us consider the Arf
function & on P such that &(c;) = w(c;), @(ds) = w(ds), and w(c) = &(d) = 0. Then

w(e) =37, 0(c) =>7_wlc;)) =w(c) and @(rd) = &(d+c) =&(d) +&(c)+ 1 =
Z)(J), and hence w is a real Arf function. By Lemma 3.2, this proves that @ is equal
to one on all contours ¢’ of the surface P \ ¢ such that 7¢/ = ¢/. However, on these
contours, w and @ must coincide, and hence w is non-singular. The contradiction

thus obtained shows that w(c) = 0.

Theorem 3.1 [41]. A singular Arf function on a real curve (P,T) of type (g,k,¢)
exists if and only if k = € = 0. In this case, there are 29 real Arf functions, and all
of them are even.
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Proof. The condition k = ¢ = 0 for singular Arf functions follows from Lemma 3.2.
Suppose that k = ¢ = 0. Let us consider the standard basis {¢;,d; (i =1,...,9)} C
Hy(P,Zs) with 7¢; = ¢; and 7d; = d; + ¢; + Zle c; that was constructed in
the proof of Lemma 3.3. We set w(c;) = 0 for all 4, assign to w(d;) (i =1,...,9)
arbitrary values in Z, and extend w to Hi(P,Z3) by setting w(a + b) =
w(a) + w(b) + (a,b). Then w(rd;) = w(d;), and hence w is a singular even real
Arf function. By Lemma 3.3, this construction gives all singular Arf functions
on (P, 7).

3. By the topological type of a non-singular Arf function w on a real curve (P, 7) of
type (g, k,0) we mean the triple (g, 9, k), where § = 6(P,w) and k, (o = 0,1) is
the number of ovals ¢; € P7 such that w(c;) = a.

Theorem 3.2 [41]. A triple (g, 0, ko) is the topological type of a non-singular Arf
function on a real curve of type (g, k,0) if and only if k = ko+k1 < g and kg = g+1
(mod2). In this case, there are ([)-2971 such functions.

Proof. Let (P,7)be a real curve of type (g,k,0). By Theorem 1.2, there is a set
(c1,...,c9+1) of pairwise disjoint simple contours such that P™ = Ule ¢; and
7(¢;) = ¢;. This set decomposes P into two spheres P; and P, with g+ 1 holes, and
TP; = P5. Let w be a non-singular Arf function on (P, 7). Then, by [47], § 8, the Arf
function w| P, takes the value 1 on evenly many holes. Hence, if w is non-singular,
then k1 + (g + 1 — k) =0 (mod 2), that is, kg = g + 1 (mod 2).

We assume now that (g, 0, k) is an arbitrary triple such that ko + k1 < g and
ko = g+ 1 (mod2). Let us join the contours ¢; and c4+1 by a segment ¢; C P;
and consider a simple contour d; = ¢; U 74; Ur; Urgy1, where ; C c;. Then
7(di) = d; + cg+1 + ¢, where a; =0 for ¢ < k and o; =1 for i > k.

We now set w(c;)=0 for an arbitrary ko-tuple of contours from among cy, . . ., .
We set w(c;) = 1 on the other contours in {ci,...,¢cq}. Since kg = g + 1 (mod 2),
it follows that such contours do exist. Let ¢, be one of them, that is, let w(c,) = 1.
We assign arbitrary values to w(d;), ¢ # r, and let

w(dy) =0 —Y_ w(ei)w(ds).

i#£r
Let us extend w to the whole of Hy(P,Z2) by setting
w(a +b) = w(a) + w(b) + (a,b).

We can readily see that this construction gives all real non-singular Arf functions
of type (g, 6, ka).

4. Arf functions on curves of separating type (all such functions are automatically
non-singular) have additional topological invariants.

Let (P, ) be a real curve of separating type and let PyUP, = P\ P". Let us join
ovals ¢;,c; € P™ by a segment ¢;; C P, and consider the contour d;; = £;; U 74;;.
Ovals ¢; and ¢; are said to be similar with respect to an Arf function w on (P, 7) if
w(dij) =0.
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Figure 3.2

Theorem 3.3. The similarity relation is well defined, and it partitions the ovals
into at most two equivalence classes.

Proof. Let E-j C P, be another segment joining c¢; and c;, let czj = E-j U TE-]-,
and let b C P; U P7 be a closed contour composed of ¢;;, E-j, and parts of the
ovals ¢; and ¢;. Then w(di; + dy;) = w(b+ 7b) = 2w(b) = 0, and hence w(d;;) =
w(dij + dij) + w(ds;) = w(di;). Thus, the definition of similarity does not depend
on the choice of the segment ¢;;. Suppose now that a C P; U P7 is a closed
contour formed by the segments ¢;;, ¢;i, and £i; and by parts of the ovals ¢;, ¢j,
and ¢ (see Fig. 3.2). Then w(d;; + djr + dii) = w(a + 7a) = 2w(a) = 0. Hence,
w(dij) = w(dix) + w(dk;). Thus, if ¢; is (not) similar to ¢ and ¢ is (not) similar
to c;, then ¢; is similar to c;.

Let us choose some oval ¢ € P7. Let B. be the set of ovals similar to ¢. By
kS = KO(P,7,w) (by k} = kL (P, 7,w), respectively) we denote the number of ovals
¢; in the set B, (in P7\ B., respectively) such that w(c;) = a. The set of numbers
kY (o, € {0,1}) is defined up to the simultaneous substituion k) — k1~7 related
to the choice of the contour c.

By the topological type of an Arf function w on a real curve (P, 7) of type (g, k, 1)
we mean the triple (g, d, k), where k) = kY (P, T,w), 6 =06(Py,w|p), and PLUP, =
P\ P

Theorem 3.4 [41]. A triple (g,g, k) is the topological type of an Arf function on
a real curve (P, 1) of type (g,k,1) if and only if (g, 5, kS + kL) is the topological type
of an Arf function on a surface of genus g = %(g +1—k) with k holes. In this case
the number of such Arf functions is

<i§o> ' <Z§> ' (Zo> 12072 (27 4 m),

where m = 29 fork, >0, m=1 forgz 0, and m = —1 for ky =0 and §=1. The
parity of the Arf function coincides with that of kY.
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Proof. 1f (g, 5, kY) is the topological type of an Arf function on a real curve (P, 7) of
type (g, k, 1), then the set (g, g, kS + kl) is the topological type of an Arf function
of the form w|P1: Hy(P1,Z2) — Z2, where P\ P™ = Py U P,. Let (P,7) be a real
curve of type (g,k,1), let P\ P™ = P, U Py, let @: H1(P1,Z2) — Z2 be an Arf
function on P; of type (g, g, KO +kl), and let v = {a;,b; (i=1,...,9), ¢; (j =g+1,

.., g+k)} C H1(P1,7Zs) be astandard basis. Let us partition the ovals ¢; arbitrarily
into groups A9, A}, A, Al, where AY contains k) contours. Let us join the ovals
¢; and ¢ by segments ¢; C Py and set d; = £; U7¢;. We assume that w(c;) = « if
c; € AYUAL and w(d;) = 0if ¢; and ¢, belong to the same set of the form ASU Af.
Otherwise we set w(d;) = 1. Finally, we set w(7a;) = w(a;) and w(7h;) = w(b;)
(¢=1,...,9). The relation

w(a +b) =w(a) + w(d) + (a,b)

enables one to extend w uniquely to an Arf function on (P, 7). We can readily see
that w is of type (g, g, k), and that the construction gives all Arf functions of this
type. The function w is even for k; = 0 and, for k; > 0, its parity coincides with
that of the number of contours in AY (recall that k9 + k} is even).

§ 4. Lifting of real Fuchsian groups

1. By
J: SL(2,R) — PSL(2,R) = Aut(A)

we denote the natural projection. Let
' C Aut(A)

be a Fuchsian group that consists of hyperbolic automorphisms. A subgroup I'* C
SL(2,R) is called a lifting of T if J(I'") =I" and J|.,: T — T is an isomorphism.
By [47], § 7, to the lifting I'* there corresponds an Arf function

Wrs © Hl(A/F,ZQ) — ZQ,

which can be defined as follows. Let o’ € T" and let a € H1(A/T, Z2) be the image
of ¢’ under the natural projection P,: I' — m1(A/T') — H1(A/T, Z3). Let

A=JYd)nT*
and let Tr(A) be the trace of the matrix A € SL(2,R). We set

wre(a) = { 0 for Tr(A) <0,

1 for Tr(A4) > 0.

By [47], Theorem 7.2, the correspondence I'* — wp« between the liftings of the
group I' and the Arf functions on P = A/I" is one-to-one.

2. We consider now the group

SLi(2,R) = {A € GL(2,R)| det A = £1}.
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We extend the projection J to a homomorphism .J: SLy (2, R) — m(A) by setting

az+b a b
J(A)_CE—I—d for A_<c d

) and detA = —1.

Let T be a real Fuchsian group. A subgroup I* c SLi(2,R) is called a hftlng
of Tif J ( *) = :T* > Tis an isomorphism. It is clear that a lifting r*

of the group I' induces a hftlng r* =I"nN SL(2,R) of the group I = rn Aut(A),
and hence an Arf function wg, = wr«: H1(A/T', Zo) — Zs.

Lemma 4.1. The Arf function wg. is a non-singular Arf function on the real
curve [I].

Proof. The Arf function wg, is real because, for any a € r* \I'*, &’ €T, and
a = P,(a'), we have

wi. (ta) = Tr(a(J (@) NT*)a™") = Tr(J 7' (a') NT*) = wg. (a).

Let us prove that wg, is non-singular. Let ¢ C P\ P” be a simple contour such that
Tc = cand let C C T be its image under the natural isomorphism 71 (A/T', p) — T.
Let

c=r@ni = (4 1),

c

where C = Cv/C (see §2.4). Then

T HC)NT* = (6)? = (“ Z)Q.

c

Hence,
Tr(J7'(C)NT*) >0, and w(c)=1.

Liftings T'f and T'j of a real Fuchsian group I are said to be similar if (T7\T*) =
—(T5\T™).
Lemma 4.2. Let w be a non—smgular Arf function on [ |. Then there are exactly
two liftings r* of the group r for which wg, = w, and these liftings are similar.

Proof. By [47], §7, there is a unique lifting I'* C SL(2,R) of the group I" =
rn Aut(A) with wp« = w. Therefore, any lifting I'* of the group T with Wi, = W
b
is generated by I'* and a matrix a such that J(a) € I'\ T. If (J(a))(2) = af——_:-_d’
cz
then a = £ (Z Z) . Since the Arf function w is real, we have Tr(aAa~!) = Tr(A)

for A e I'™, and hence~af*a_1 = I'*. Thus, the group r* generated by I'* and « is
a lifting of the group T

Lemmas 4.1 and 4.2 imply the following assertion.
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Theorem 4.1 [44]. The correspondence r* wi. between similarity classes of
liftings of a real Fuchsian group I' and non-singular Arf functions on a real curve
[[] is one-to-one.

3. The natural isomorphism 71 (A/T",p) — I" sends each free homotopy class of a
contour ¢ € P = A/T to a conjugacy class I'. C T' that does not depend on the
choice of p. Thus, to each simple geodesic contour ¢ € P there corresponds a set
I.CT,and ®(¢(C)) =cif C €. and ®: A — P is the natural projection.

We assume now that I' is a real Fuchsian group and c is an oval of a curve

(P,7) = [I']. Let us consider C € I'.. Replacing the group I' by a conjugate group,
we may assume that £(C) = I = {z € A| Rez = 0}. Then I contains the involution

B(z) = —z. A lifting I —TI* maps (3 into a matrix of the form o ( _01 ?) , where

o = +1. Let us endow the half-line I with the orientation in which Im z increases
for ¢ = 1 and with the opposite orientation for 0 = —1. The projection ® transfers
the orientation to the contour ¢ = ®(I). The latter’s orientation is completely
determined by the lifting I'* and is called the orientation generated on the oval by
the lifting r*.

Lemma 4.3 [36]. Let I'* be a lifting of a real Fuchsian group T, let (P,7) = [T,
let c1 and ¢y be ovals of the involution T endowed with the orientation generated by
I'*, and let a C P be a simple oriented contour intersecting c1 and co and such that
T7a = —a. Then a has the same intersection numbers with c; and co if and only if
wg. (a) = 1.

Proof. Replacing the group r by a conjugate group, we may assume that I'; D A,
where A(z) = Az and A > 1.

In this case we have I';; D C; (because Ta = —a, ¢;Na # &, and ¢; C P7), where
ai(Ni+ 1)z +aZ(\ — 1) —  a?
C; = g N>1, C;=—=2
T T Det a0 T YT

and A = C,C; (see Fig. 4.1). We set A* = J-1(A)NT*, C; = J~1(C;) NT*, and
6: = J~}(C;)NT*. Then, by the definition of the orientation generated by I'*, we
obtain C; = — ( 21 Oai

7

, and hence

1
AT = — (al% 0 )

-1
0 oy o

On the other hand, the intersection numbers of the contour a with the ovals ¢; and
c2 coincide if and only if the attracting fixed points «; and as have the same sign.
This is equivalent to the condition Tr(A*) > 0, or, which is the same, wg. (a) = 1.

4. We assume now that ¢ C P is an invariant contour of a curve (P,7) = [I'] such
that ¢cN P™ = @. Letusconsider C € I'.. Asabove, replacing I' by a conjugate group,
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we may assume that [(C) = I. Hence, the group [ contains a map of the form
B(z) = =Xz, where A > 0. A lifting I' — I'* sends (3 into a matrix of the form

U—A%O
0 A3 )’

where o = +1. As above, we endow I with the orientation in which Im z increases
for 0 = 1, and with the opposite orientation for 0 = —1. The projection ® transfers
the orientation to the contour ¢ = ®(I). The latter’s orientation depends only on
the lifting I'* and is called the orientation generated on the invariant contour by
the lifting r*.

Theorem 4.2. Let I* be a lifting of a real Fuchsian group T and let (P,7) = [f] be
a real algebraic curve of type (g,k,0). Let (c1,...,¢cq) be a set of pairwise disjoint

=

simple contours such that PT = Ule ¢; and 7(¢c;) = ¢;. Then there is an invariant
contour cg11 that is disjoint from the above contours and that, together with the
contours (c1,...,cq), decomposes the surface P into spheres P1 and Py with holes
so that the orientation of c1,...,cq generated by T* coincides with their orientation
as parts of the boundary of one of the surfaces P;.

Proof. By Lemma 1.2, there is a set of pairwise disjoint invariant contours cy, ... ,

¢g, ¢ belonging to P and such that P7= Ule ¢; and the set P\ (Ui, ¢ Uc)

decomposes into two spheres with holes. Let us endow the contours ci,...,cq4
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with the orientation generated by the lifting I'*. Their images on the surface P =
P\ U{_, ¢ are represented by pairs of contours ¢, and ¢/ of opposite orientation,
where ¢ and c;- belong to the same connected components of the surface P \ ¢
(see Fig. 4.2). Symmetrically modifying the contour ¢ as shown in Fig. 4.2, we can
pass from c to a symmetric contour cy41 that separates the contours of different
orientation.

§ 5. Rank-one spinors on real algebraic curves

1. Werecall that a linear bundle e: E — P is said to be a spinor bundle of rank one
if the tensor square of this bundle coincides with the cotangent bundle. In what
follows, unless otherwise stated, a spinor bundle is understood to be a rank-one
spinor bundle over a Riemann surface P.

In [47], §10, a one-to-one correspondence is established between the liftings I'*
of a Fuchsian group I' and the spinor bundles on P = A/T". A spinor bundle er-
corresponding to I'* is of the form

(A x C)/T* — AJT,

where I'* acts on (A x C) by the rule

a b az+b
(c d) (z,2) = (cz—l—d’ (cz—l—d)m) .
Thus, the correspondence er~ — I'* — wr+ established between spinor bundles and
Arf functions on P = A/T by the map e — w, is one-to-one.

2. By a spinor bundle on a real curve (P,T) we mean a pair (e, 3), where e: E — P
is a spinor bundle and 8: E — FE is an antiholomorphic involution such that e =
Te. Two spinor bundles (e, 81) and (ez, 52) on curves (Py, 1) and (P2, 72), respec-
tively, are assumed to be isomorphic if there are biholomorphic maps pg: E1 — F»
and pp: P — P, such that

e2pE = ppe1, Popr = rbi, TP = PpT1.

As usual, we do not distinguish between isomorphic bundles.
With any lifting I'™ of a real Fuchsian group I' we associate a spinor bundle

es. on the real curve (P,7) = [T]. By definition, the bundle es. is of the form
er«, B=.), where 8=, : (A x C)/T* — (A x C)/I"* is generated by the map
T T

(z,2) — (ZEZI; (cz+d)f>, (Cc‘ Z) eT*\T.

Lemma 5.1. The correspondence I* ex. between similarity classes of liftings
I'* of a real Fuchsian group T' and spinor bundles on (P, ) = [I'] is one-to-one.

Proof. Let (e, 8) be an arbitrary spinor bundle on (P, 7). By [47], § 10, there is a
unique lifting I'* of the group I' = I' N Aut(A) such that

e: (AxC)/T" — AJT.
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By replacing the group r by a conjugate group, we may assume that T contains a
map of the form
Z = —UZ,
where p > 1. Let p, be the minimal value of all these u’s. We set v = /..
—p—1
0

I'* of the group I. These are the only liftings of T that contain I'*. Moreover,
ey =6 and an isomorphism between ef and ep. Is generated by the involution

(z,2) = (2, —x).

Then the group I'* and the matrices + ( 2) generate some liftings l:i and

By Lemma 2.1 and Theorem 4.1, this immediately yields the following assertion.

Theorem 5.1 ([36], [44]). The correspondence e — w, between spinor bundles and
non-singular Arf functions on a real curve (P,T) is one-to-one.

Let (e,3) be a spinor bundle on a real curve (P,7). Applying Lemmas 2.1
and 5.1, we construct an isomorphism

(676) — (efxyﬁfx)7

where I'* is a lifting of a real Fuchsian group I' and (P,7) = [T]. Let us endow
the ovals and the invariant contours of [f] disjoint from them with the orientation
induced by I'* (see §4). Thus, a spinor bundle (e, 3) on a real curve (P, T) generates
an orientation on the ovals and the invariant contours of (P, 7) disjoint from them.
This orientation is defined up to its simultaneous reversal on all ovals and invariant
contours.

3. A holomorphic section n: P — FE of a spinor bundle e: F — P is called a spinor.
A section 1 of an arbitrary spinor bundle (e, 3) on a real curve (P, 7) is called a
real spinor if fn = nr. Let {IN“{,IN“§} be a similarity class that corresponds to the
bundle (e, 3) by Lemma 5.1. Then the spinor 7 can be regarded as a section of the
spinor bundle er«, where I'* = l:f N f§ Moreover, 1 is invariant with respect to
one of the involutions Bf"? and is anti-invariant with respect to the other. To be

definite, let ﬁf;” = n7. The orientation generated by the lifting l:f on the ovals

and invariant contours of (P, 7) is called the orientation generated by n.

A local chart u: U — C in a neighbourhood of a real point py € P7 is said to
be real if 7U = U and u(rp) = u(p). In this case u(U N P7) C R. We say that the
local chart u agrees with the spinor n if the spinor generates an orientation of the
oval apg that passes under the action of u into the orientation of increasing real
values on R C C.

A local chart on a Riemann surface defines a local trivialization of the cotangent
bundle, and hence a local trivialization of the spinor bundle. Thus, in the local
chart u, a complex function f(u) corresponds to the spinor.

Lemma 5.2. Let (e,) be a spinor bundle on a real curve (P,7) and let n be a
real spinor of this bundle. Then in any real chart u: U — C that agrees with n, the
spinor n is described by a function f(u) such that f(ut) = f(u).
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Proof. We set i.: (z,z) — (iz,z). By Lemmas 2.1 and 5.1, we may assume that

(P,r) =[], e: (AxC)/T* T, (‘01 ?)ef*\r*,

and that ei.: (—iA x 0) — P generates a real chart u that agrees with 7. In this
chart, the relation 8n = n7 becomes

(ur, f(w)) = Bp. (u, f(w)) = (uT, f(ur)),

and hence f(u) = f(ur). A passage to any other real chart that agrees with 7
preserves this relation.

Theorem 5.2 ([42], [44]). Let (e, 3) be a spinor bundle on a real curve (P, ), let
1 be a real spinor of this bundle, and let a be an oval of the curve (P, 7). Then the
parity of the number of zeros of n on a is opposite to the parity of we(a).

Proof. By Lemmas 2.1 and 5.1, we may assume that

(P,7) =0, e: (AxC)/T* — [T], (‘01 ?)ef*\r*,

a=1/T", where I={z€ A|Rez=0}.

In the local chart u generated by the projection e: (A x 0) — P, the spinor 7 is
represented in the form (u, f(u)), where u € A and f(u) is a holomorphic function

such that
728 = feu+9)

for any element (?; g) eI'™.

Corresponding to the contour a is the matrix
A0 ,
A:U(u)(o )\_1>EF,

where

_ 1 forw(a) =
ola) = { -1 for w(a)

L
0.
Thus, f(A\u) = o(a)f(u). Moreover, the natural projection A — A /T establishes
a one-to-one correspondence between the interval (v, \?v] € I and the contour a.
Hence, the number of zeros of the spinor 7 on a is equal to that of the function
f(u) on the interval (v,A\?v] € I. On the other hand, the map e: (A x 0) — P
generates a real chart in a neighbourhood of each point of the oval a, and hence,
by Lemma 5.2, f(u) is real on (v,A\?v] € I. Thus, the number of zeros of f in
(v,A2v] € I is even for o(a) = 1 and odd for o(a) = —1.
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4. Theorem 5.3 ([42], [44]). Let c1,...,cx be oriented ovals of a real algebraic
curve (P,7) of type (g,k,0). Let 0 < m < k, a1,...,ar € Z2, and let Zle o =
g+ 1(mod 2). Then there is a real spinor 1 on (P, T) such that 1) the orientation
of the oval c; generated by m coincides with the original orientation if and only if
i < m, 2) the parity of the number of zeros of the spinor nn on the oval ¢; is equal
to a;.

Proof. By Theorem 1.2, there is a set of pairwise disjoint and 7-invariant contours
C1,- .., Cq+1 that decompose P into spheres P, and P, with holes. The orientation of
P; generates a new orientation on P, = {c1, ..., cq+1}. Without loss of generality,
we may assume that the new orientation coincides on c¢; with the original one. Let
us join the contour cy4; with ¢; by a segment ¢; C P; and consider the simple
contour d; = ¢; UTl; Ur; Urgrr, where r; C ¢j. We set w(e;)) =1 —ay for i <k
and w(c;) = 1for k < i < g. Forl < ¢ < m we set w(d;) = 0 if and only if
the orientation generated by P; coincides with the original orientation of ¢;. For
m < i < k we set w(d;) = 0 if and only if the orientation generated by P is opposite
to the original orientation of ¢;. For k < i < g we set w(d;) = 0. The function w
can be uniquely extended to an Arf function w: Hi(P,Z3) — Zsa, and w(cg1) =1
because Zle a; = g+ 1 (mod2). Moreover, 7d; = —d; + cg41 + ¢;, where

" { 0 fori<k,
C; =
c; fori>k.

Thus, w(rd;) = w(—d; + cg+1 + ¢;) = w(d;), and hence w is a real Arf function.
By Lemma 3.3, it is non-singular. By Lemma 2.1, (P,7) = [f], where T is a real
Fuchsian group. In view of Lemma 4.2 we have w = wg., where I*isa lifting of
the group L. By definition, w, = w, where (e, B) = (er~, Bg.)-

Along with w, we consider a real Arf function w’ such that w’(¢;) = w(c¢;) and
W'(d;) =1 —w(d;). Corresponding to this function is a real spinor bundle (¢’, )
such that w.s = w’. Moreover,

d(w) + (W) = Zw(ci) =1
i=1
because Zle a; = g+ 1 (mod2). Hence, either §(w) = 1 or §(w’) = 1. To be
definite, let §(w.) = d(w) = 1. By [2] and [30], this implies that the bundle e has
a holomorphic section £. Then one of the sections n = £ + 8¢ and n = i(§ — 5) is
a non-zero real section of the bundle (e, 5). By Lemmas 4.3 and Theorem 5.2, this
section has the properties indicated in Theorem 5.3.

Theorem 5.4 ([42], [44]). Let (P,T) be a real algebraic curve of type (g,k,1). Let
its ovals c1,...,c, be orietned as parts of the boundary of a connected component
Py of the set P\ P". Consider a set ai,...,ay € Zy that has evenly many zeros
and for which a; = ax = 0. Let 1 < m < k and let Z:’ll a; = m+1 (mod?2).
Then there is a real spinor n on (P,T) such that 1) the orientation generated on
the oval ¢; by n coincides with the original one if and only if i < m, 2) the parity
of the number of zeros of n on c¢; is equal to .

Proof. Let us join the ovals ¢; and ¢ by a segment ¢; C P; and set d; = £; U 7¢;
(¢ =1,...,k —1). Let us consider an arbitrary Arf function w; on P; such that
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w1(e;) =1 — ;. (Such a function exists by [47], Lemma 8.1.) Let us extend it to
an Arf function w on P by assuming that w(tw) = w(w) for w € Hy(P1,Z2) and
that w(d;) = 1 if and only if ¢ < m. Then é(w) = 1. The rest of the proof coincides
with the corresponding part of the proof of Theorem 5.3.

§ 6. Holomorphic differentials on real algebraic curves

1. In this section we assume that the ovals of a real algebraic curve X = (P,7)
are endowed with an orientation. This orientation is induced by an orientation of
one of the connected components of the set P\ P7 if ¢(X) = 1. We say that a real
chart u: U — C agrees with the orientation of the set P7 if u sends an oriented
segment ¢ = U N P7 into the segment u(¢) C R oriented by increasing order of the
reals.

We recall that a holomorphic differential on a Riemann surface P is defined to
be a section £: P — T* of the cotangent bundle t: T* — P. We assume now
that (P,7) is a real algebraic curve. The involution 7 induces the antiholomorphic
involution 7*: T* — T™* such that ¢t7* = 7¢t. A differential £ is said to be real if
7*¢ = &7. In areal chart, it becomes & = f(u)du, where f(uw) = f(u). In particular,
f(u(p)) € R for p € P7. The sign of the number f(u(p)) € R is the same for all
real charts that agree with the orientation of the set P7, and it is called the sign
of the differential £ at the point p € P7.

We say that a real differential ¢ is positive (non-negative, non-positive, negative,
respectively) on an oval a C P7 if it is positive (non-negative, non-positive, and
negative, respectively) at any point of the oval.

Lemma 6.1. Let n be a real spinor on the curve (P,7). Then & = n? is a real
differential that is non-negative on the oval a C P7 if the orientation generated
by n coincides with the original orientation, and non-positive on a if the orientation
generated by n is opposite to the original one.

Proof. If the spinor 7 is described by a function f(u) in a real chart u: U — C that
agrees with the orientation of P7, then ¢ = f?(u)du. If, in addition, the orientation

of the oval a is generated by 7, then it follows from Lemma 5.2 that f(ur) = f(u)
and f? is non-negative on a. A change of orientation of the oval changes the sign
of f2.

Theorem 6.1 ([34], [44]). Let (P,7) be a real algebraic curve of type (g, k, €) with
ovals ¢1,...,cr, where k = ky +k_ + ko, ko < g, and let ky - k_ # 0 fore = 1.
Then there is a real differential on (P,T) that is non-negative on ¢; for i < ki,
non-positive on ¢; for ky <1i < ki +k_, and has zeros on c¢; fori > ki + k_.

Proof. By Theorems 5.3 and 5.4, there is a real spinor 7 that has zeros on ¢, 1%_ 11,

., ¢ and generates on any other oval ¢; an orientation that coincides with that
of P7 for ¢ < k4 and is opposite to the orientation of P7 for ky < ¢ < ky + k_.
Then by Lemma 6.1, the differential £ = n? has the desired properties.

2. Let us consider in more detail the real M-curves, that is, curves of type
(9:9+1,1).
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Lemma 6.2. Let cy,...,cq1 be ovals of an M-curve of genus g and let 1 < o <
n < B < g+1. Then there is a real differential & that is positive on c,, non-negative
on cy,...,Cn, negative on cg, and non-positive on Cpy1, ..., Cqil-

Proof. By Theorem 5.4, there is a real spinor 7 that generates on cy,...,c, the
original orientation, generates on cp41,...,cq+1 the orientation opposite to the
original one, and has zeros on the ovals ¢; with i # «,3. However, the total
number of zeros of the spinor is g — 1 [30]. Hence, 1 has no zeros on ¢, and cg.
Thus, by Lemma 6.1, the real differential £ = n? satisfies all hypotheses of the
lemma.

This immediately yields the following assertion.

Lemma 6.3. Let cy,...,cq+1 be the ovals of an M-curve of genus g and let 1 <
n < g+ 1. Then there is a real differential £ that is positive on c1,...,c, and
negative on Cp41,...,Cqtl-

Lemma 6.4. Let oy < --- < aggta be real numbers, let h(x) = Hfﬂﬂ(m — ),

let P be the Riemann surface of the algebraic curve y* = h(z), and let 7: P — P
be the antiholomorphic involution generated by the correspondence (x,y) — (T, 7).
Then (P,T) is a real M-curve of genus g each of whose real differentials is positive
on one of the ovals.

Proof. The ovals of the curve (P, T) correspond to the segments [a2;—1, az;]. Any
real differential on (P, 7) is of the form

f(z)dx

§r = o)

where f is a polynomial with real coeflicients and of degree at most g — 1. If
f(z) > 0, then the differential has opposite signs on the ovals corresponding to
neighbouring segments. Therefore, if on any oval the differential £f is not positive,
then f has more than g — 1 zeros. This is impossible because deg f < g — 1.

Theorem 6.2 [34]. For any real differential on an M-curve, there is an oval on
which this differential is positive and an oval on which it is negative.

Proof. Let M be the set of all M-curves of genus g with an ordered set of ovals
C1,...,Cq+1. Let us consider a bundle €: E — M with fibre e!(P, 7) that consists
of all real differentials on (P, 7). We take a basis of ¢ }(P,7) that is formed by
differentials & = &;(P,7) such that fq & = 0 (4,5 < g). The correspondence
& (P, 1) — &(P',7") defines a connection F' on €.

A real differential is called a differential of type A (of type B) if each of the ovals
contains points at which the differential is non-positive (negative, respectively). Let
M4 (MP) be the set of M-curves that admit a differential of type A (of type B,
respectively). Then M# is a closed set. Using the connection F, we can readily
prove that MP is an open set. Moreover, M4 > ME. Let us prove that M4 ¢ M5B.
Let (P,7) C M* and let ¢ be a differential of type A on (P, 7). Since

g+1

;/ﬂ&:o,
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it follows that the differential is negative at least at one point. Let ¢ be an oval
containing such a point. By Lemma 6.3, there is a real differential y that is positive
on c and negative on the other ovals. Then the differential £ + oy is of type B for
a sufficiently small «. Thus, M i = M?5 is an open and closed set in M.

However, by Theorem 2.1, M is a connected set, and hence if M A £ &, then
M A = M. The latter relation contradicts Lemma 6.4, according to which the set
M\M 4 contains hyperelliptic curves. Thus, M4 = @, that is, any real differential
on an M-curve is positive on one of the ovals. We can prove similarly that it is also
negative on one of the ovals.

Theorem 6.3 [34]. Let 1< k<g+1l,k=g+1 (mod2), andm > k— [g] Then
there is a real algebraic curve of type (g, k,1) with ovals c1, ..., ci and such that on
this curve any real differential without zeros on cy, ..., cn must be positive on one
of the ovals and negative on another.

Proof. Let us consider the Riemann surface P of the curve
vt =20%(z = B1) - (& = Bm) — (2 — ) - (2 — )]
+@=p1)- (@ =) + (@ —a1) - (z - an)]? =0,

where a1 < - < ap < f1 < < Bm € R, n >0, and n,m = 0 (mod2). This
surface is obtained by resolution of singularities from the set

(z.y) €T ly=+t/(x—a) (@ —an) £V (@ B1) (& Bm)).
The correspondences
C(z,y) = (Z,7),

Te: (m,:l:\/—(m—oq)---(m—ozn)j:\/(m—ﬁﬂ"'(m—ﬁm))
= (2, TV (@ —an) (@ —an) £/ —(@ = B1) - (z — Bm))

and

78" (m,:l:\/—(m—oq)---(m—ozn):l:\/(m—ﬁl)---(m—ﬁm))
= (2@ —ar) (2 —an) FV (2= B1) - (z — Bm))

define commuting involutions on P.
We can readily see that (P, 7) is a real algebraic curve of type (g, k, 1), where

_[n+m-—1 fora, <pi,
9= n+m-—2 fora, =70

and

b — n forozn<ﬁl,
ln—-1 fora,=/4.
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The involution 7, preserves each of the ovals, and the involution 7z pairwise trans-
poses the ovals for a,, < (51 and preserves exactly one oval for a,, = ;. Let us
number the ovals ¢y, ..., ¢k so that 7¢; = cpy1—;. We assume that there is a real
differential £ that is positive on the ovals c1,...,¢,/2 and is not negative on the
other ovals. Then the differential £ 4 £0 is negatlve on no oval. The involution 7
induces an antiholomorphic involution 7: P — P on the surface P = P/{(B). We
can readily see that (P, 7) is an M-curve of genus (n/2) — 1. The differential { +¢{3
induces a real dlfferentlal on the curve (P 7) that is negative on no oval. This
contradicts Theorem 6.2, and thus shows that there is no such differential &.

§ 7. Analogues of Fourier series, and the Sturm—Hurwitz
theorem on real algebraic curves of arbitrary genus

1. The simplest real algebraic curve is the Riemann sphere C = C U oo with the
antiholomorphic involution 7¢: z — 1/Z. The curve (C,7¢) has a unique oval,
namely,

c={z€C||z| =1} = {e" | € R}.

We consider meromorphic functions f: C — C such that f(rcz) = f(z). The
simplest functions of this form are holomorphic away from 0 and co. They can be
represented by Fourier series

Z ancn(z) + bnsn(2)),
n=0

where
1 n —n
cn(2) = (2" +277)
2
and
1 n —n
sn(z)—2—z(z —2z7™).

The restrictions of s, and ¢, to ¢ are the classical trigonometric functions
s5n(e™) = sinnap, cn(e™) = cosnap.

2. We assume now that (P, 7) is a real algebraic curve of type (g, k, 1) with generic
points p,p— € P\ P7 such that 7p; = p_. Instead of functions, we consider
tensors of integer and half-integer weight A, that is, sections of the line bundle
E®2% _ P where (E, B) is the real spinor bundle on (P,7) and 2)\ € Z, that are
meromorphic on P and holomorphic on P = P\ (p+Up_). Let M be the space of
such tensors. According to [27],if A # 0,1 or |n| > £, then for any integer n+(g/2)
there is a unique tensor f) € M) with the asymptotic behavior

f)‘ = ZI“ s(l + O(zi))(dzi))‘,
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where z4 belongs to a neighbourhood of the corresponding point pi and s =
s(A, g) = £—A(g—1). The involutions 3 and 7 induce involutions 3 : E®?* — E®2A
and 7y: My — My, where 7 f(p) = Brf(7p). We can readily see that 7, f) = f2,,.
A tensor £ € M), is said to be real if TZ& = £. In a real local chart, this tensor takes
real values on P7.

The analogues of the functions cos nz and sinnx are the real tensors

SR ad 8= (- ),

where n > 0. The corresponding analogue of the addition theorem for trigonometric
functions is as follows.

Theorem 7.1. Let A1, A2, A1 + Ao £ 0,1 or let ny +no > g. Then

A1 A A1+ A1 A A2 A1 A+A
Cnicni - n Z On Cni+n§—n7 Cnisni _cnisni Z Nns ni—i—nz—n?
n—=— _g n=— .,‘1
where 0,, Ny € R.
Proof. By [27],
M kAt
fafh = Z Quikfath L.
k=—4
The relation 7y f) = f2,, implies
Nk ANk
Q—n,—m - Qn,m
Thus,
A1 )\2 A1 )\2 _ 1 A1 A1 Ao A2 1 A1 )\2 Ao
CniCny — Sny ng_Z( n1 +f—n1)( na +f—n2)+1( f )( _f TI,Q)
1
25( ni +f—n1 —ng)
5
_1 AAzn | HAABTY A A, A1+Az
- 5 (Q—nh_nQ + inmz )(f 1+nz2—n + f—nl—n2+n)
n:—%

E A1+A2
6 Cn1+n2—n7
n=—4

where 6, = 2Re Qi‘&i‘é” The other relation can be proved similarly.

The corresponding analogue of Fourier’s theorem is as follows.
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Theorem 7.2 [43]. Each real tensor f* of weight X # 0,1 can be uniquely repre-
sented in the form

(o)
= (arcy +bisp),
k=0
where ag, by, € R.
Proof. According to [27], we have
[e ) [e )
A= (anfy +Buf2,) Z ancp + bysp
n=0 n=0

where a,, = a,, + B, and b, = i(a, — B,). The relation 7f* = f* yields 3, = @,
and hence a,, b, € R.

The following assertion is an analogue of the classical Sturm—Hurwitz theo-
rem [22].

Theorem 7.3 [43]. Let A\ # 0,1 or n > g/2. Then the real tensor

(o]
F= Z(akcg + brsp)
k=n

has at least 2n — g zeros on the ovals of P7.

Proof. Let D be a divisor of the tensor c). It is of the form D= D; + Dy + Do,
where Dy € P7, P\ P" = PLUP,, D, € P;, and 7Dy = Ds. Let p; € Py, let ng be
the degree of Dy, and let ny be the degree of D;. We set G = Z:‘;n ozkf,?, where
ap = %(ak — iby). Let us consider a system of pairwise disjoint arcs and contours
L C P, such that @ = P; \ L is a simply connected domain (see Fig. 7.1). Let
¢ C @ be a simple contour on @ — p4 that is not homotopic to zero. In the domain
bounded by ¢, the function f = G/c) has a zero at p, of multiplicity 2n, and at
most n; poles. Therefore, the contour f(c) goes around 0 at least 2n — n; times,
and hence intersects InC = {z € C| Rez = 0} at least 2(2n — n;) times. As ¢
tends to the boundary of the domain @, we see that f(P7) intersects Im C at least
4dn — (2n1 + no) = 2n — g times. However, if p € P™ and f(p) € ImC, then

F(p) = G(p) + (rG)(p) = c1 (p) (f(p) + f(7(p)) ) =0.

Hence, F has at least 2n — g zeros on P7.

Figure 7.1
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Remark. In the case of g = A = 0, Theorem 7.3 was proved by Hurwitz [22]. In
this case it has been re-proved more than once by various methods in connection
with important applications in singularity theory. The above proof is similar to
the original Hurwitz proof for the case in which g = A = 0 in the interpretation of
Arnol’d.

§ 8. Jacobians and f-functions of real algebraic curves

1. We recall some facts from the classical theory of Riemann surfaces [19]. Let P
be a compact Riemann surface of genus g. A homology basis

{a;,b; (i=1,...,9)} € H(P,Z)
is said to be symplectic if the intersection numbers of the cycles are of the form
(@i, a;) = (bi;b;) =0, (ai,b;) = i
We say that a basis &;,...,&, of the space of holomorphic differentials on P is

generated by a symplectic basis {a;, b;} if & = 2midy;. In this case, the matrix
ak

B = (By;) given by By = % &; is symmetric and has negative-definite real part
b
Re B = (Re B;;). This enables one to define a §-function 9: C9 — C by
1
0(z) =0(z|B)= ) exp {5 (BN, N) + <N,z)} :
NezZs

where

g
(1, .-, 2q), (Y1,---,Yg)) = Zmiyi.
i=1
Let G be the group generated by the vectors
Ek = 27Ti(5k1, .. -76kg) and hk = (Bkh .. .,Bkg) (k = 1, .. .,g).

The complex torus J = J(P) = C9/G is called the Jacobian of the surface P. Let
®: C9 — J be the natural projection.
A set of k points of P is called a (positive) divisor of degree k. Let Sy, be the set
of all positive divisors of degree k. Let us choose a point ¢ on P. With a divisor
k . .
D =3"" | pi; we associate the point form

a)=a( [“eo [Ta) =a(S( "o [6))

of the Jacobian. Then A,(Sy) = J and the Abel map A, is invertible at a generic
point. The image K, in J of the vector (K;, ..., KJ) with components

. omi+ By 1 P
j_2mit B 1 .
Kj="— 27”.Z/a (we(p)/ wa)
L£g U a
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is called the vector of Riemann constants. We also have 2K, = —A,(D;), where
D is the divisor of zeros of an arbitrary (holomorphic) differential £ on P. The set

(9) = Aq(Sg—l) +K,CJ

coincides with the image in J of the set of zeros of the #-function and is called the
6-divisor. A subset ¥ C J is said to be singular if ¥ N A4(Sy—1) # @. In this case,
the set ¥ + K, contains a zero of the §-function.

2. We assume now that (P, 7) is a real algebraic curve. In this subsection and the
next two we consider only curves with real points. Let ¢ € P” be such a point. We
need a symplectic basis that agrees with 7,

{aiabi (Z = 17' . 79)} - Hl(P7Z)7

which is called a real homology basis. For curves of type (g, k, 0) this is a basis with
the following properties: 1) 7(a;) =a; (i=1,...,9), 7(b;)) = =b; (i=1,...,k—1),
and 7(b;) = —b;+a; (i =k,...,g), 2) the oval containing the point ¢ is homologous
to >.9_, a;. For curves of type (g, k, 1), this is a basis with the following properties:
1) 7(a;) = as, 7(b;)) = =b; (i =1,...,k—1), 7(a;) = @itm, and 7(b;) = —biym
(i=k,...,k+m—1), where m = 2(g+ 1 — k), 2) the oval containing the point ¢

. k—1
is homologous to >, a;.

Lemma 8.1. A real basis exists.

Proof. Let (P,7) be a real curve of type (g, k,0). Then by Lemma 1.2 there is a
set of pairwise disjoint contours ag, a1, ..., aqs such that

k
7(a;) = ai, P = U a;,
i=0

and P\ Uf:o a; decomposes into two components P; and P». Let us number the
contours so that ¢ € ag. We set b; = ¢; U7c; Ur;, where ¢; C Py joins ag and a;
and r; C a; joins p; = ¢; Na; and 7p;. The case (g, k,1) can be treated similarly.

The next assertion follows directly from the definitions.

Lemma 8.2. Let {a;,b; (i=1,...,9)} be a real basis of an algebraic curve (P, )
of type (g,k,€). Then hj = hj forj <k—1,hj=h;—{; fore=0andj=k,...,qg,
and hj = hjym fore=1and j=k,....,k+m — 1.

In the rest of the section we assume that the homology basis is real.

3. Let (P,7) be a real algebraic curve of type (g, k, ) and let J = J(P). Let us
consider an involution 7: C9 — C9 that is defined on the basis (¢;,h; (i =1,...,9))
of the space R?9 = CY by the linear map ¢; + ¢;,hj — —h; for j < k —1 or for
e=0,by ¢; = ljzm,hj = —hjym fore =1and j =k,...,k+m—1, and by
Ui —Lli_m,hj— —hj_pfore=1and j =k+m,...,g. By Lemma 8.2, the map 7
induces an involution 7g: J — J. By the same lemma, the Abel map A, identifies
r with an involution S, — S, that sends a divisor D € S, to the divisor 7.D.

The fixed points of the involution 7 are called the real points of the Jacobian of
the curve (P, 7). These points form the real part Jr of the Jacobian.
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Theorem 8.1. The real part of the Jacobian of a real algebraic curve (P, T) of type
(9,k,¢€), where k > 0, decomposes into 28~ real tori of the form

(I)(T]R + 5),

where

Tk = iRY ife =0, and
TR:{(ml,...,mg)ECg|ijin0rj<k—1, Ekz—mj+mf0rk<j<k+m}

ife =1.
Such a torus is non-singular if and only ife =1,k =g+1, and 6 =--- =4, = 1.

Proof. The equations for the real part can be found by direct calculation. If p € P,

then ) . ) o
(/q §1+/q 51""’/(1 §g+/q §g>eTR.
([ [ 5) =1

Therefore, z € ®(Tr + 6) if and only if x = Ay (D), where D € Rs = {D € S|
7D = D and the parity of the degree of the divisor D Na; is equal to ¢;}.
On the other hand, Rs N Sy_1 = @ if and only if

k—1
Z(Si >g— 17
=1

that is, if and only if k =g+ 1 and 6, =--- =d4 = 1.

If p € a;, then

4. Along with the involution 7, we consider the involution 7 = —7mg: J — J. The
fixed points of this involution form the imaginary part J; of the Jacobian J.

Theorem 8.2. The imaginary part of the Jacobian of a real algebraic curve (P, T) of
type (g,k,€), where k > 0, decomposes into 25~ real tori of the form ®(Tj + 9),
where § = mi(d1,...,06-1),0; € {0,1}, and T = RI if ¢ = 0 and T} =

{(x1,...,2zg) € CI|z; € R for j < k—1,T; = —xj4m for k < j < k+ m}
if e = 1. For e = 0 all the tori are singular. For € = 1 there is exactly one
non-singular torus among them, corresponding to §; =6y = -+ = dp—1 = 1.

Proof. The equations for the imaginary part can be found by direct calculation. Let
us consider the set I = {D € S, | D + 7D = (the divisor of zeros of a meromorphic
differential that is holomorphic away from ¢ and has a pole of order 0 or 2 at ¢)}.
Then A,(I) — K, = Jy because v K, = K.

By definition, corresponding to a divisor D € I is a meromorphic differential £p.
Let A; U Ay be an arbitrary decomposition of the set of ovals A = (ag,...,ak—1).
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By Ia,,4, = Ia,,4, C I we denote the set of all D € I such that the differential
&p or the differential —€p is non-negative on the ovals of A; and non-positive on
the ovals of A;. The zeros and the poles of {p that belong to the ovals have even
degrees, and hence I = J 14, 4,-

By Theorem 6.1, for any decomposition A = A; U Ay with A; # @ and
Ay # @ we can find a holomorphic real differential £ that is non-negative on A
and non-positive on A;. By adding the differential A{ to an arbitrary differential
&p, D € I, we can readily prove that I4, 4, # @. Thus, I = JIa,, 4, consists
of at least 2°~1 connected components. However, as was already proved, the set
Ji = Ay(I) — K, consists of 28~1 connected components. Therefore, each of the
sets 14,4, is connected. If A; # @ and Ay # @ or if ¢ = 0, then it follows from
Theorem 6.1 that there is a differential D € I4, 4, such that £p is holomorphic. In
this case ¢ € D and

Aq(D) = Ag(D\ q) € Ag(Sg-1),

and hence the component I4, 4, is singular. If Ay = @ or Ay = &, then the
condition A4(D) C A4(Sy—1) means that the differential {p is holomorphic and has
the same signs on all ovals. This is impossible for € = 1 because Zi-:ol a; = 0.
Hence, for € = 1 the components of A,(Iz, 4) is non-singular.

Let us find a vector ¢ to which this component corresponds. We assume first
that k = g+ 1 and (P, 7) is a hyperelliptic curve. Then the imaginary part of the
Jacobian of (P, ) coincides with the real part of the Jacobian of the curve (P, art),
where a: P — P is the hyperelliptic involution. We assume that ¢ € P™ N P%7 is
a fixed point of this involution. It follows from Theorem 8.1 that a non-singular
imaginary torus of the Jacobian of (P,7) (or, which is the same, a non-singular
real torus of the Jacobian of (P, ar)) corresponds to the vector 6 = 7i(1,...,1).
This vector remains the same under a continuous deformation of the curve (P, 7).
Since the set M, g11.1 is connected (Theorem 2.1), the same vector corresponds to
a non-singular torus of the imaginary part of the Jacobian for any M-curve.

The case k < g+1 can be reduced to the case k = g+1 as follows. Let us consider
a simple contour a on the surface P such that a Ura cuts out a surface P of genus
k — 1 with two holes on P. We introduce a continuous deformation of the curve
(P, 7) that contracts the contour a to a point. In the course of deformation, the
vector corresponding to a non-singular torus of the imaginary part of the Jacobian
does not change. In the limit it gives a vector corresponding to the M-curve, that
is, mi(1,...,1).

Remark. The number of real and imaginary tori of the Prymian was first found
in [11]. The number of singular and non-singular tori was found in [19] for € = 1,
and in [13] and [34] for € = 0. This was done in another way in [50].

§9. Prymians of real algebraic curves

1. To curves with automorphisms in classical algebraic geometry (see, for exam-
ple, [19]) there correspond algebraic varieties that are similar to Jacobians but do
not coincide with them, namely, the Prymians. We consider only the simplest
example of such varieties, which is, however, important in applications.

Let P be a compact Riemann surface of genus 2g and let a: P — P be a
holomorphic involution with two fixed points ¢; and ¢2. A symplectic basis
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{a;,b; (i =1,...,2g9)} is said to be symmetric if aa; = —a;4+4 and ab; = —b;14
(t=1,...,9). The divisor map D — «(D) induces an involution o*: S, — Sj.
The Abel map A, transfers it to J = J(P), and thus generates an involution
a*: J — J. The subset

Pr=Pr(Pa)={zeJ|a"c=—z}

is called the Prymian of the surface with involution (P, ). The Prymian is iso-
morphic to the torus C9/G, where G is the lattice generated by the vectors ¢; and
the column vectors §; of the matrix

Aij=/b§j+§j+g (i,j=1,...,9)

in the notation of § 7.

2. By a real curve with involution (P, 71, @) we mean a compact Riemann surface
P of genus 2g with two commuting involutions one of which, 71, is antiholomorphic
and the other, «, is holomorphic and has exactly two fixed points ¢; and ¢2, with
T1q1 = q2. We set 72 = mpa. We assume that among the ovals of the involution 7;
there are r; that are invariant with respect to a and 2t; that are pairwise transposed
by the involution a. Then

(P,7) = (P/{a), 7/ (a))

is a real algebraic curve of type (g, k, €), where k = t1 +r1 +t2 + r2. Moreover, the
pre-image of the set P7 coincides with P™ U P™. This pre-image decomposes P
into two parts if and only if e = 1. The set (g,¢,t1,71,t2,72) is called the type of
the real curve with involution (P, 11, a).

Example 9.1. Let (ﬁ, 7) be areal curve of type (g, k,1) and let k = t;+71+ta+7,
where r; + r2 = 1 (mod2). Let us consider a connected component Py of the
set P \ P7 and a two-sheeted covering ¢1: P, — Py with a unique branch point
q1 € Py, the covering being two-sheeted on the 1 +r5 contours ¢y, ..., ¢p 4r, € OP)
and one-sheeted on the other boundary contours ¢ 4ry41,...,c;, where k=
r1 + ro + 2t1 + 2t3. By using the con§truction of Example 1.1, we form a real
algebraic curve (ﬁ 7) such that PT = Uf 1Ci decomposes P into P, and P, = TP;.
The covering 1 induces a two-sheeted covering @: P - P where T = 7.
Let a: P — P be the involution defined by transposition of the sheets. This
involution commutes with 7 and has exactly two fixed points ¢; and g2 = Tqi.
Let us cut the surface P along the contours Crit+1s- -y Critry ANA Cry4ro g2t 41, - - -,
Cry4+ry+2t,+2t, and paste together the boundary contours in accordance with the
map a7. On the surface P thus obtained, the involution 7 induces an involution
71: P — P that commutes with . We set 75 = a7. It can readily be seen that
(P, 71, ) is a real curve with involution of type (g, 1, t1, 71, t2,72).

The following lemma is clear.

Lemma 9.1. The construction of Example 9.1 enables one to produce all real
curves with involution of type (g,1,t1,71,t2,72).
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Example 9.2. Let (ﬁ, T) be areal curve of type (g, k,0) and let k = t;+71+ta+7,
where r; +72 = 1 (mod 2). Using Lemma 1.2, we construct a set of pairwise disjoint
contours ¢y, . .., Cg+1 such that 7¢; = ¢; and P = Ule ¢;. Let us consider a con-
nected component ﬁl of the set P \Uf:ll ¢; and a two-sheeted covering p1: P, — ﬁl
with a single branch point ¢; € P; that is two-sheeted on the contours ci, . .., ¢ry 4,
and one-sheeted on the other contours Critratl, -5 Co: Using the construction of

Example 1.2, we form a real algebraic curve (P, 7) such that ﬁ\Ule ¢; decomposes

P into P, and P, = TPy, and we have PT = Ule c;, where k= 1+ 1y + 2t + 2ts.

Repeating the cuts and pastings together described in Example 9.1, we obtain a
real curve with involution (P, 7y, «) of type (g, 0,t1,71,t2,72).

Lemma 9.2 ([7], [35]). The construction of Example 9.2 enables one to produce
all real curves with involution of type (g,0,t1,71,t2,72).

3. Let (P, 71, a) be a real curve with involution of type (g, &, t1,71,t2,72). The
intersection of the Prymian Pr = Pr(P,«a) C J(P) = J with the real part of the
Jacobian of the curve (P, 71) is called the real part of the Prymian of the real curve
with involution (P, 71, «). The connected components of this part are called real
tori of the Prymian of the curve (P, 7, ). These tori form the fixed tori of the
involution (Tl)R|PT: Pr — Pr.

Theorem 9.1. The real part of the Prymian of a real curve with involution (P, 1, a)
of type (g,€,t1,71,t2,72), where k = t1 + 11 +t2 +ro > 0, decomposes into 281
real tori of dimension g.

Proof. Let us choose a symmetric basis A = {a;,b; (i = 1,...,9)} of the pair
(P, a) so that the projections of the cycles {a;,b; (i = 1,...,9)} give a real basis
A of the real curve (P,7) = (P/(a), 71/ () of type (g,k,€). Let {f;,d;} be
the generators of the lattice of the Prymian Pr of a real curve with involution
(P, 1, «) that corresponds to the basis A, and let {E,E} be the generators of the
lattice of the Jacobian J of the real curve (ﬁ,?’). In these bases, the involutions
(t1)r|pr: Pr — Pr and Tr: J — J are described by the same formulae, and hence
have equally many fixed tori.

4. Let (P, 1y, ) be a real curve with involution of type (g,€,t1,71,t2,72). Let us

J J i i ) J_ ,J : .
number the ovals ay, ..., a3, 4, of the involution 7; so that aaj = a; ; for i <t;.

We put a divisor D C P of degree g in the set  if mD = D and aD + D is the
divisor of zeros of a meromorphic differential £ that is holomorphic away from the
fixed points g1 and g2 of the involution a and has poles of order 0 or 1 at these
points. We say that {p is positive definite on an oval a = a;, where i > 2t1, if
either 1) £p is non-negative on a or 2) there is a point p € aN D that, together with
the point ap, divides the contour a into two open arcs so that the arc on which the
differential is positive contains evenly many points of D in a neighbourhood of p.
Otherwise we say that £p is negative definite on a. We also say that {p is positive
(negative) definite on an oval a? if it is non-negative (non-positive, respectively) on
this oval as a real differential of the curve (P, 72).
Let us decompose the set

1 1 2 2
a2t1+1,. . .,a2t1+7.1,a1,. . .,a2t2+7.2
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into subsets A; and A,. Let
6 = (51, .. -75t1) S Zgl

We denote by Q(d, A1, A2) the subset of Q consisting of the divisors D € Q such
that £p or —&p is positive definite on A; and negative definite on As, and the
parity of the degree of the divisor D Na} coincides for i < ¢; with the parity of §;.

Lemma 9.3. Each of the sets Q(d, A1, A2) is non-empty.

Proof. Let us prove first that, on any real algebraic curve (P, 7) with ovals ey, . . ., ¢,
where k = k1 + k_ + ko, and for any pair of points g1 # g2, where g2 = T¢1, there is
a meromorphic real differential £ that is holomorphic away from ¢; and g2, has poles
of degree at most one at these points, is non-negative on ¢; for ¢ < k4, non-positive
on ¢; for k4 < i < k4t + k_, and has zeros on ¢; for ¢ > k4 + k_. To this end, we
take disjoint neighbourhoods U; D ¢; of ¢; and ¢ such that 7U; = Us and paste
together the boundaries of the surface p \ (U1 U Us) by means of the involution 7.
Then the boundary is mapped to an oval ¢ of a new real algebraic curve (P’, 7).
Applying Theorem 6.1 to this curve, we find a real differential £ with the desired
properties on the ovals c1, ..., cg. Degenerating the oval ¢y, we obtain the desired
differential on the curve (P, 7).

Applying the above result to the real curve (P,7) = (P/ (), 71/ (), we find
a meromorphic differential that is holomorphic away from the images ¢; and g of
the points ¢; and g2, has at most simple poles at these points, is non-negative on
the images of the ovals of A; and non-positive on the images of the ovals in A, and
has zeros on the other ovals. Its pre-image £ on P is a meromorphic differential
that is holomorphic away from ¢; and g2, has at most simple poles at these points,
and is positive definite on the ovals of A; and negative definite on the ovals of As.
The divisor of zeros of the above differential intersected with a} U aal (i < t1) has
positive degree divisible by four and is symmetric with respect to . Hence, there
is a divisor D € () such that {p = &, and the parity of the degree of the divisor
D Na} coincides with the parity of §; for i < ;.

Theorem 9.2 ([34], [42]). Let (P,7,a) be a real curve with involution of type
(9,€,t1,71,t2,72), where k = t1 +r1 +ta + 12 > 0. Then the following assertions
hold:
1) for e =0, all real tori of the Prymian are singular,
2) for e =1, there is at most one non-singular real torus of the Prymian,
3) fore =1 and k = g+ 1, a non-singular real torus of the Prymian always
exists,
4) for e =1 and t1 + r1 < k/2, there are curves (P, T1,a) of type (g,¢€,t1,71,
ta,r2) such that there is a non-singular torus among the real tori of their
Prymians.

Proof. We can readily see that
06, A1, A2) N Q' A}, AL) # @

if and only if ¢/ = 0, A] = A, and A} = A;, in which case these sets coincide.
Thus, the number of disjoint sets of the form €(J, A;, A3) is equal to 2F~1.
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On the other hand, the real part of the Prymian of a curve with involution (P, 71, @)
coincides with (J A, ((8, A1, A2)) — K, and, by Theorem 9.1, it consists of 2¢~!
connected components. Thus, by Lemma 9.3, each real torus of the Prymian is of

the form
Alh (9(57 A17 AQ)) - th .

The torus is singular if and only if there is a D € (4, A1, Az) such that D + D is
the divisor of zeros of a holomorphic differential on P.

1) Let ¢ = 0 and let T = Ay, (2(6, A1, A2)) — K4, be an arbitrary real torus
of the Prymian. Let A; be the image of the set A; on the real curve (ﬁ,ﬁ =
(P/{a), 71/ {a)). By Theorem 6.1, there is a holomorphic real differential {N on
(ﬁ,?) that is non-negative on gl, non-positive on gg, and has zeros on the other
ovals. Its pre-image £ on P is a holomorphic differential that is positive definite on
the ovals of A; and negative definite on the ovals of As. The divisor of zeros of this
differential intersected with a} U ozaz1 (¢ < t1) has positive degree divisible by four
and is symmetric with respect to . Hence, there is a differential D € Q(d, A;, As)
such that £p = & and T is a singular torus.

2) Let ¢ =1 and let T' = Ag, (6, A1, As)) — K, be a torus that differs from
Ag (0, A, @) — K, , where 0 = (1,...,1). Then, repeating the arguments used
in the case € = 0, we see that T is a singular torus.

3) Let e = 1 and k = g + 1. We prove that for § = (1,...,1) the real torus
Aq (208, A1, 2)) — Ky, is non-singular. Indeed, otherwise there must be a real
holomorphic differential £ on P that is positive definite on all ovals of the involutions
71 and 7 where it has no zeros, and such that oz§~= &. This differential induces
a holomorphic real differential £ on the M-curve (P,7) = (P/{(a), 71/ («)) that is
positive on all ovals on which it has no zeros. However, by Theorem 6.2, there are
no such differentials.

4)Lete =1and t;+k < g Let T be a real torus of the form Ay, (Q(d, A1, @))—
K, , where 6 = (1,...,1). If T is singular, then, repeating the reasoning used in the
case of k = g+1, we find a differential £ on the real curve (P,7) = (P/ (a), 71/ ()
that is non-negative on tg + ko > g images of the ovals in A; and either has zeros
or is positive on the other ovals of the curve. Example 9.1 shows that we can take
(P,T) to be any real curve and, in particular, the curve constructed in Theorem 6.3
on which there are no such differentials.

Remark. Under a small deformation of a curve with involution (P, 71, «), a non-
singular torus is mapped into a non-singular one. Therefore, the curves with invo-
lution (P, 71, «) that have a non-singular real torus of the Prymian form an open
set in the space of all curves of a given type.

§10. Uniformization of real algebraic curves by Schottky groups

1. Let ¢ € T@k, where k£ > 0, and let {4;,B; (i=1,...,39), C; i=1,...,k)} =
1(5,%) be the corresponding sequential set of shifts. We set

A={4;,B; (i=1,...,3), Ci (i=1,....k— 1)}

The invariant lines £(A) of the set A are shown in Fig. 10.1.
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Figure 10.1

By [33] and [47], §§ 1-3, for any D € A there are discs Sp and Sp- with centres
on RUoo and such that SpNé(A) C ¢(D), Sp-NL(A) C £(D), D(¢(A)\¢(D)) C Sp,
and D~1(¢(A)\ £(D)) C Sp+. By the methods described in [33] and [47], §§ 1-3,
we can readily show that Sp and Sp« can be chosen so that

SD1 ﬁSD2 :SDI ﬁSD2 :SDI mSD; =g for D, #DQ

and D(0Sp~) = 0Sp. In this case @ = CUoo \ Upca (Sp USp-) is a fundamental
domain of the Schottky group G generated by A. On the quotient surface P = Q/G
of genus ¢ = 2g + k — 1, the involution z — Z induces a separating involution
7: P — P with k ovals.

To prove that this construction gives all separating real algebraic curves, it suf-
fices to construct for such a curve (P, 7) a system of cuts on a connected component
Py of the surface P\ P” that transforms P; into half of a fundamental domain of a
Schottky group of the desired form. Such a system of cuts is presented in [5] and
shown in Fig. 10.2.

Figure 10.2

Thus (see [5] and [6]), the correspondence 1) — (P, 7) defines a map
\I/k: T_?j,k — M, k1,

where \Ilk(Tg,k) = Mg,k,l-
A similar description of non-separating curves with real points can be obtained
on replacing the system A of generators of the Schottky group G by the set

A*={A,B; (i=1,....3), Ci (i=1,....k), CF (i=k+1,....k—1)},
where C7 is obtained from

(Ao — Bi)z — (1 — N fB3;
(A =Dz + (i — NifBi)

Ci(z) =
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by replacing A; by —A;. The system A* generates a Schottky group G*. On the quo-
tient surface P* =/G* the involution z+— Z induces a non-separating involution
T7*: P*— P* with k + 1 ovals. Thus, the correspondence v — (P*,7*) generates a
map

Ve i Tge = M 5

The relation
\IJ%-H(TEJC) = Mg,E+1,0

is proved by the scheme used in the case of separating curves. We need only
complete the set of ovals of the curve (P*,7*) to form a system of pairwise disjoint
invariant contours ¢y, ..., cx so that the surface P* \ Ule ¢; decomposes into two
connected components. Thus, any moduli space Mg %.. has a representation of the
form

oie = YiTgn)-
This, together with the theorem

~ 69+3k—6
T; j = R%

)

presented in [33] and [47], gives another proof of Corollary 2.1:
My ke =R976/Mod, ke -
2. The Schottky uniformization enables one to solve the Schottky problem for real
algebraic curves, that is, to find the matrices B;; described in §8.
We find the matrix corresponding to the system of generators
A={A;,B; (i=1,...,3), Ci (i=1,....k—1)}={D; (i=1,...,25+ k—1)}
of a Schottky group G of the above type. Let
Di(z) = (Niai = Bi)z — (1 = Naif3;

(A =1z + (i — A\if3)
By G, we denote the subset of the group G that consists of the elements

D =D ...D¥

1k 7

(21 — 22)(22 — 24)
(21 — 24)(22 — 23) |

Then by [3] and [8] the Jacobi matrix (By,) (of the algebraic curve Q/G) corre-
sponding to the generators A is given by the convergent series

where jo # 0, i1 # m, and i, # n. We set {21, 29, 23,24} =

Bnn :ln)\n—l- Z ln{anyﬁnyDanaDﬁn} (1)
DeGnn
and
Bnm = Z ln{amaﬁn’uDanaDﬁn} for m #n. (2)
DeGmn

Thus (1) and (2), together with the explicit description of the space Ty , in the
coordinates {a;, i, \i (1 =1,...,29+k)} (see [33] and [47], §§ 3, 4), enable one to
find the Jacobians of algebraic real curves and, by means of formulae in §8, their
real and imaginary tori.

A modification of this approach enables one to describe the Prymians of real
curves [34].
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§11. The moduli space of rank-one
spinor bundles on real algebraic curves

1. We recall that the Fuchsian groups uniformizing Riemann surfaces of genus 0
are of the form ¢(vo g+1), where g g11 is the group with generators ci, ..., cg+1
that has a single defining relation ¢1---cg41 = 1, and ¢: v9,g41 — Aut(A) is
a monomorphism belonging to the set T07g+1 [47], 88 1, 2. Corresponding to such a
monomorphism is the group Ffb (k < g) generated by ¥(v0,4+1) and the maps

~ C, fori<k,
C;, =
{ C; fori>k,

where C; = ¥(c;). We set D; = @g“@ (¢ =1,...,9). The natural isomorphism
Ffb — m1(P,p), where P = A/F’J), sends {C;,D; (i = 1,...,9)} into elements
{ciyd; (i = 1,...,9)} of the group 71(P,p) that generate it and satisfy a single

defining relation
g 1
H C; H dici_ldi_l =1.
i=1 i=g

Lemma 11.1. Let I'* be a lifting of a real Fuchsian group T, where [f] = (P, ) is
a real algebraic curve of type (g,k,0). Then there is a monomorphism ¢ € Ty g41
such that T' = Ffb and wg. (d;) = wg. (dj) for any i,j < g.
Proof. Let us consider a set of contours cy, ..., cg41 that has the properties listed in
Theorem 4.2. Let P be a sphere with g+ 1 holes and let the boundary 0P consist
of the contours ¢i, ..., Cg+1 with the orientation generated by I'*. We consider the
standard system of generators (c1, . .., cg41) of the group 7(Py, p) that is associated
with these contours and identify the ¢;’s with the standard generators of the group
70,g+1- Then the natural isomorphism 71 (P, p) — I" induces an element ¢ € Tp g41.
We can readily see that I'% =T.

Let us find wg. (d;). We set @f = J‘l(@i) NI*. Replacing I' by a conjugate
group, we may assume that

A “Hg+1 0
C =0 — )
g+1 g+1 ( 0 Mg-il)

where pg11 > 0 and o441 = £1. The shifts C4,...,Cy11 form a sequential set
(see §2), and hence the invariant lines ¢(C;) are arranged as in Fig. 11.1.

l / [.!f/}

) Lity)

Figure 11.1
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Thus, - -
C;, = Ficg+1Fi_1,
where
o ()\iozi + ozi)z — (1 — )\i)a? . ozi()\i + 1)2’ + ()\z — 1)0[12
v (1 — )\z)z + (ozi + )\iozi) o (1 — )\z)z + ozi()\i + 1)
We set
o ai(hi+1)  (N—1)
P (1 — )\z) ozi()\i + 1) )

Then

C; =o;F] ( 6“ M?1> (Fi*)_ly
where p; > 0 and 0; = £1. Let us prove that o; = —1 for ¢ < g. Indeed, by
construction, the orientation generated by I'* on the contour ¢; coincides with its
orientation as a part of the boundary of the surface P;. This orientation induces
the orientation of the line £(C;) indicated in Fig. 11.1. The map F~! sends it into
the orientation of the imaginary axis I in the direction in which the values Im z
decrease (see Fig. 11.1). This means exactly that o; = —1.

Thus,

~p ~p Hg+1 0 * i 0 *\ —
ConCi =—0og1 ( go -1 )Fi ('Lg M_1> (FH~,
and hence

wr(d;) = sgn(Tr(D;)) = sgn(Tr(Ciy 1 CF)) = —ogi1;

therefore, wg. (d;) is the same for all i < g.

Lemma 11.2. Let w be a non-singular Arf function on a real algebraic curve (P, T)
of type (g,k,0). Then there is a standard basis

{Ci,di (Z =1,.. .,g)} S Hl(P,ZQ)

such that ¢;, . . ., cq are pairwise disjoint invariant contours, 7(d;) = d; + cg11 + G,
where )
~ 0 fori<k,
C; =
‘ c; fori>k,

and w(d;) = w(d;) for any i,j < g.

Proof. By Lemma 2.1, there is a real Fuchsian group I such that (P,7) = [IN“] By

Lemma 4.2, there is a lifting I'* of T such that wg. = w. Therefore, the assertion
of Lemma 11.2 follows from Lemma 11.1.

2. Let (P, 7) be a real algebraic curve. Arf functions wy and wy on (P, 7) are said
to be topologically equivalent if there is a homeomorphism ¢: P — P such that
o1 = T and the induced automorphism ¢: Hy(P,Z2) — H;(P,7Zs) satisfies the
condition wi = wa.
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Theorem 11.1 [41]. All singular Arf functions on an arbitrary real curve (P, T)
are topologically equivalent .

Proof. We have P™ = @ by Lemma 3.2. Therefore, by Lemma 1.2, there is a set of
pairwise disjoint, invariant contours ci, ..., cg+1 such that P\ Uf:ll ¢; decomposes
into two spheres P; and P, with holes. We join any contour c¢; to the contour
cg+1 by a simple segment ¢; C P;. Let us consider a simple closed contour d; =
L;UTl;UriUrgyr, where r; C ¢;. Let wy and wo be singular Arf functions on (P, 7).
By Lemma 3.3, wi(c¢;) = wa(c;) = 0. For any ¢ with wy(d;) # wa(d;) we apply to P
the Dehn twist along c;, that is, cut P along ¢; and paste together along the same
contour after a rotation of 2r. We can readily see that the homeomorphism ¢ thus
obtained commutes with 7. On the other hand, for such i we have

wa(p(di)) = wa(di + ¢;) = wa(dy) + w(c;) +1 = wi(dy).

Thus, wep = ws.

Theorem 11.2 [41]. Let (P,7) be a real algebraic curve of type (g,k,0). Then
non-singular Arf functions on (P, T) are topologically equivalent if and only if they
have the same topological type (g, 9, k).

Proof. Let wy and wy be non-singular Arf functions on (P, 7) of type (g, 0, ko). Using
Lemma 11.2, we associate with the Arf function w,, a standard basis {c", d"
(1 = 1,...,g)}, where the c]* are pairwise disjoint invariant contours and
wm(d*) = wp(d]') for any 4,5 < g. After renumbering, we may assume that
ey Che iy, are ovals and that wp(c*) = 0 for i < ko and wp(cf’) = 1

for i > ko. By Theorem 3.2 we have ko = g + 1 (mod2), and hence

g+1 g
(P, wm,) Zwm e wm(d]) = Z wm(d]") = wm(d]").
j=ko+1

Thus, wy (djl) =0= wg(d?). By Lemma 1.2, the set c*, . .., cy* can be supplemented

by a contour cg’ ; to form a complete set of invariant contours. Let

g+1
Prupry =P\ ]

We choose cg’; so that the homeomorphism ¢: Pl — P? can be extended to
a homeomorphism ¢: P! — P? that sends {c},d}} into {c?
with 7. Then w; = wap.

Theorem 11.3 [41]. Let (P, 7) be a real algebraic curve of type (g, k,1). Then Arf
functions on (P,T) are topologzcally equivalent if and only if they have the same

2 d?} and commutes

topological type (g, 9, k).

Proof. Let w; and wy be Arf functions on (P,7) of type (g,g, k)). The ovals of
P7 decompose P into two connected components P; and P,. By assumption,
w1| P, and w2| P, have the same topological type, and hence by [47], § 8, there is a
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homeomorphism ¢;: P, — P; that sends w1| P, into w2| P Since the topological
types of wy and wy coincide, we can choose ;1 such that ovals similar with respect
to wi pass to ovals similar with respect to ws. We now set po = 7017: Py — Ps.
Then 1 U py: P — P commutes with 7 and sends w; into ws.

3. In the rest of this section a spinor bundle is understood to mean a rank-one
spinor bundle.

Theorem 5.1 establishes a one-to-one correspondence between spinor bundles on
a real algebraic curve (P, 7) and real Arf functions on this curve. By the type of a
spinor bundle we mean the type of the corresponding Arf function.

By the moduli space of spinor bundles on real algebraic curves we mean the space
of pairs ((P,7), (e, E)), where (P, 7) is a real algebraic curve and (e, F) is a spinor
bundle on (P, 7). By Theorem 5.1, there are only finitely many spinor bundles on
a real curve, and therefore the topology of the moduli space of real curves induces
a topology in the moduli space of spinor bundles on real curves.

Theorem 11.4 [36]. The space of spinor bundles on non-separating real algebraic
curves decomposes into the connected components Sp(g, 9, ko), where (g,9, ko) is an
arbitrary topological type of a non-singular Arf function on a non-separating real
curve. Each of the components S(g, 0, ko) is diffeomorphic to

R3g_3/ MOdgv‘svka

(where Modg sk, is a discrete group of diffeomorphisms) and is a (§,)-29~ - sheeted
covering of Mg 1.0, where k = ko + k.

Proof. By definition, to any ¢ € T07g+1 there corresponds a sequential set
V= (Cl, ceey Cg+1) S Aut(A)
of type (0,g + 1) which, together with

,\_{61- for i <k,
R o7 for i >k,

generates a real Fuchsian group I' = I% i1 On a real curve (P,7) = [T, we
consider a homology basis {¢;,d; (i = 1,...,9)} € H1(P,Z2) that corresponds to
the shifts {C;, D; = 5g+1@ (¢=1,...,9)}. We introduce a non-singular real Arf
function w = wy, defined by the conditions w(c;) = 0 for i < ko, w(c;) = 1 for
i > ko, w(d;) =0 for i < g, and w(dy) = 6. By Theorem 3.2 we have ko = g+ 1
(mod 2), which immediately implies that w is a non-singular real Arf function of
type (9,9, ko). By Theorem 5.1, a spinor bundle Q(¢) € S,(g, 9, ko) is associated
with this Arf function. The correspondence ¢ — Q(¢) induces a map Q: Ty g+1 —
SP (97 57 ka)'
Let us prove that Q(Tp g+1) = Sp(g, 6, ko). Indeed, by Theorem 2.2, the map

Q [
v T07g+1 — SP(Q? 9, ka) — Mg,k,O;
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where @ is the natural projection, satisfies the condition
¥ (To,g+1) = Mg k0.

The fibre of the map ¥ is represented by the group Modg k¢ of all autohomeo-

morphisms of the curve (P,7), that is, the autohomeomorphisms of P that

commute with 7. By Theorem 11.2, this group Modg ;0 acts transitively on the

set of non-singular real Arf functions of type (g, d, ko) and hence, by Theorem 5.1,

transitively on the fibres ®~1((P, 7)). Thus,

Q(T(Lg-i—l) = Sp(g7 9, k) and Sp(g7 9, ka) - T07g+1/ MOdg@ka?
where
Modg, sk, C Modg k0.

By [47], §4, the space Tp g+1 is diffeomorphic to R3973. By Theorem 3.2, the index

of the subgroup Modg sk, in Modg,k,+k, 0 is equal to (§ )- 297"

Theorem 11.5 [36]. The space of spinor bundles on separating real algebraic

curves decomposes into connected components Sy(g,d,kY), where (g,0,k2) is an

arbitrary topological type of an Arf function on a separating real algebraic curve.

Each of the components Sp(g,9,k)) is diffeomorphic to Rgg_g/Modg@kl (where
k

k§)'

(ﬁ})) -2972.(29 4+ m) sheets, where m = 29 forky >0, m =1 for 6 =0, m = —1

1
forkis=0and 6 =1, and ko = kO + kL, k = ko + k1, and g =29+ k — 1.

Mod, 5, is a discrete group of diffeomorphisms) and covers My k1 with (k) (

Proof. By definition, to each ¢ € T@k there corresponds a sequential set V =
{A;,B; (i =1,...,9),C; (i = 1,...,k)} of type (g, k) which, together with C;
(¢ =1,...,k), generates a real Fuchsian group [ = Fﬁ,. On areal curve (P, 7) = [f]
we consider a homology basis {a;, b;,al,0; (i=1,...,9), ¢;,d; (i =1,...,k—1)} €
H,(P,Zs) generated by the shifts
{A;, B;,CxA;Cy,C1BCy, (i=1,...,3), C;,CyC; (i=1,...,k—1)}.

To be definite, let k} > 0 (the other cases can be treated similarly). We consider
the real Arf function w = w,, determined by the following conditions: 1) w(a;) =
w(b;) = w(a}) = w(b}) = &;, where &; = 0 for i < §and ¢; = 6 for i = §; 2) w(c;) =0
for i < ko and w(c;) = 1 for i > ko; 3) w(d;) = 0 for i = kJ + 1,..., ko and for
i=hko+k +1,....,k— 1 and w(d;) = 1 otherwise. By Theorem 5.1, a spinor
bundle Q) € S, (g, 8,kY) corresponds to this Arf function. The rest of the proof
coincides almost literally with the corresponding part of the proof of Theorem 11.4.

§12. Real algebraic N =1 supercurves, and their moduli space

1. We recall some definitions (see [4] and [47], § 11).

Let L = L(K) be the Grassmann algebra with infinitely many generators
1,01,4,... over a field K. Each of the elements a € L(K) is a finite linear combi-
nation of monomials ¢;, A --- A ¥{; with coeflicients in K, that is,

aza#—l—Zaiei—FZaijei/\ej—l-"'-
ij

The correspondence a + a* defines an epimorphism #: L(K) — K.
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A monomial ¢;, A---A¥{;, # 0 is said to be even if n is even and odd if n is
odd. The constants are also regarded as even monomials. The linear combinations
of even (odd) monomials with coefficients in K form the linear space L (K) of even
(the linear space L1 (K) of odd) elements of the algebra L(K). The superanalogue
of a linear space is the set

KO™ = {21, 20|01, o, 0m): 2 € Lo(K), 0 € L1 (K)}.

For the field K we take the field C of complex numbers or the field R of real
numbers.
The set
ANS = {(2]61,...,0n5) € CHN | Im2# > 0}

is called the upper N super half-plane. In this section we deal with the 1 super
half-planes A% = A'%. The group Aut(A®) of automorphisms of the super domain
A% consists of transformations A = A[a, b, ¢, d, o] ¢, 6] of the form

az+b (ad—bc)(5+5z)9 U\/ad_bc<9+5+6z+1569>>
2 )

A(z|6) = -
(216) (cz—l—d (cz + d)? T ocez+d

where a,b,c,d € Lo(R), 0 = +1, ,6 € Li(R), (ad — bc)# > 0, and the symbol
V/A stands for an element of Lg (R) that is uniquely determined by the properties
(vVA)? = A and (VA)# > 0.

The correspondence

# #
# #(y) - T 2T
A A7, where A (Z)_c#z—l—d#’

generates an epimorphism
#: Aut(A®) — Aut(A).

The transformations that are mapped by this epimorphism into hyperbolic trans-
formations are said to be superhyperbolic.
With an automorphism A = Ala, b, ¢,d, 0| e, §] we associate the matrix

J(A) = —ZF a0 € SL(2,R)
T JaFdE _cFa# \c* d” P

A subgroup I' C Aut(A®) is said to be super Fuchsian if I# = #(T) is a Fuchsian
group and #: I' — I'# is an isomorphism. In this section we study (unless otherwise
stated) only super Fuchsian groups that consist of superhyperbolic automorphisms
of AS.

The quotient set P = AS/T is called an (N = 1) Riemann supersurface (or a

super Riemann surface). The correspondence J generates a lifting

J*:T# - T C SL(2,R).
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The type of the corresponding Arf function wr = wr+ on pP# = A/ I'# is called the
type of the supersurface.
2. We now let m(AS ) be the group generated by Aut(A®) together with the

involutions B
o1r:(z]0)— (—Z| £0).

If C € Aut(A®) is a hyperbolic automorphism, then there is an element g € Aut(A®)
such that g='Cg(z) = (A\z| VA0), where \# > 0. We set

= go+g L, C*=VCCy € m(AS),

where ¢g='VC g(2|60) = (VAz| VA0). Let us extend #: Aut(A®) — Aut(A) to a
map #: m(AS) — m(A) by setting #(o1) = Uﬁt zZ —Z.

A subgroup T C m(AS) is said to be a real super Fuchsian group if I'# is
a real Fuchsian group. To a real super Fuchsian group T there correspond the
super Fuchsian group I' = N Aut(A%), the Riemann supersurface P = A9/T,
and the real algebraic supercurve [I] = (P,7), where 7 = (I \T)/T: P — P is
a superantiholomorphic involution. Corresponding to the supercurve (P, 7) is the

real algebraic curve B
#(P7T) - (P#7T#) = [F#],

called the substructure of the supercurve (P,7). We can readily see that wr is a
real Arf function on (P#,7#). Its topological type is called the topological type of
the real supercurve (P,T).

3. Let t = (g, 0, ko) be the topological type of a Riemann supersurface of genus g
with k£ holes. Denote by M? the set of all such supersurfaces. By [47], §12, it is
“uniformized” by the space

Tt = T*/ Aut(A%),

where T is the space of monomorphisms 1 Y5.n — Aut(AS) (where n = g+ k)
such that ¢(vz,)¥ is a sequential set of type (g, k) and A%/1(v5,,) € M*, and the
group Aut(A®) acts by conjugations.

A set Q is said to be strongly diffeomorphic to R®9 if there is an embedding
Q c R®l9) such that Q# is diffeomorphic to R? and Q = # 1 (#(Q)). By [47], § 12,
T is strongly diffeomorphic to

R(plq)/z2 _ R(6§+3k—6|4§+2k—4)/z2'
Moreover,
M" = T"/ Mody,
where Mod; is a discrete group.

Theorem 12.1 ([36], [38]). The moduli space of real algebraic supercurves with
non-separating substructure decomposes into comnected components of the form
S(9,9, ko), where (g,9,kq) is an arbitrary topological type of a non-singular Arf
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function on a non-separating real curve. Each of the components has a representa-
tion
S(g7 67 ka) = Tg,(s,k:a/ MOdgﬁJga,

where Ty 5k, is strongly diffeomorphic to R(39-3129-2) /7., and Mod, s . is a dis-
crete group.

Proof. Weset t = (0,0, ko, g+1—ko). By definition, to any ¢ € T* there corresponds

a set
V= (Cl, ceey Cg+1) S Aut(AS)

such that V# = (C’i#, .. .,C’jil) is a sequential set of type (0,9 + 1). This set,
together with

C, fori<k,
& CN':' fork<i<y,
t 6’; fori=g, 6 =0,

C; fori=g,0=1,

(where k = ko + k1) generates a real super Fuchsian group [. On the real curve
(P#,7%) = [['#], we consider a homology basis

(Ci,di (Z = 1, .. .,g)) S Hl(P, ZQ)
that corresponds to the shifts
(Ci,D; = CyrCi (i=1,...,9)).

In this case the Arf function w = wr satisfies the conditions w(c;) = 0 for ¢ < ko,
w(c;) =1 for i > ko, w(d;) =0 for i < g, and w(dy) = §. Thus, the correspondence
¢+ [I'] induces a map

Q: (T — S(g, 6, ko)

Under this map conjugate 1’s are mapped into the same supercurves, and hence a
map

0: 7Tt — S(g,9, ko)
is well defined.
We prove that Q(T%) = S(g, 6, ko). Let
(P,7) € 5(9,6, ka).

It follows from Lemma 1.2 and Theorem 11.2 that there are simple closed contours
{ci,d; (i=1,...,9)} on (P#, 7#) such that: 1) 7#(c;) = ¢; and (P#)™" = Ule Ci;
2) the elements of H;(P¥,Z,) representing these contours satisfy the conditions
7*(d;) = —d; + ¢ + ¢;, where ¢ = le ¢; and

N {0 for i < k,

C; =
! ¢; fori>k;
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3) the Arf function w = wr satisfies the conditions

(cs) = 0 fori < ko,
wiG) = 1 fori > ko,

w(d;) = 0 for i < g, and w(dy) = 0. The contours {c¢;} decompose the surface
P# into components Pj* and P}'. We set P, = #'(Pf). By [47], §12, we have
Py = A /¢(v0,441), where ¥ € Tt. Tt follows immediately from our constructions
that Q(¢) = (P, 7), and Q(¢') = Q(v) if and only if ¢’ = 9, where o € Mod s k., ,
and Mody s, stands for the group in Theorem 11.5.

Theorem 12.2 ([36], [38]). The moduli space of real algebraic supercurves with

separating substructure decomposes into connected components S(g, g, k) that cor-

respond to arbitrary topological types t = (g, g, kY) of Arf functions on separating
real curves. Fach of the components is of the form

t

T /MOdg,g,kl’

where T is strongly diffeomorphic to R<3g—3|2g—2)/Z2 and MOdg,E,kg is a discrete
group.

Proof. We set ko = k) + ki, k1 = kY + kI, k = ko+ k1, g = %(g—l—l—k),

and t = (g,0,k,). By definition, to any ¢ € T* there corresponds a set V =

(Ai,B; (i = 1,...,3), C; (i = 1,...,k)) C Aut(AS) such that V# = {A% BY

(t=1,...,9), C’z#(z =1,...,k)} is a sequential set of type (g, k). Together with

6’-—{6; for i < k9 and for ko < i < ko + kY,
=

C. for kY < i < ko and for i > ko + k9,

7

the set V' generates a real super Fuchsian group I. The correspondence Y [IN“]
defines a map Q: T* — S(g, 9, k2). The rest of the proof repeats the corresponding
part of the proof of Theorem 12.1 with obvious modifications.

§13. Real algebraic N =2 supercurves

1. We recall some definitions of [29] and [47], § 13. By Ala, b, ¢, d, £ | ] we denote a
map A: A% — A25 of the form

Az [01,00) = (& +b+ 6101 4020, | 0110, + 0120, 4 etz + 12
LY\ ez +d+ 0210, + 02205 | cz+d + 6210, + 0220,
62191 +€2292 +521Z+522>

cz +d+ 6210, + 5220,

where a,b,c,d € Lo(R), £ € GL(2, Lo(R)), and ¥, §% € Li(R).
According to [29], the automorphism group Aut(A%) of the super domain A%
consists of Ala,b,c,d,?]e], where

—c a 511 512 B 521 511 611 £12
—d b 521 522 - 522 512 621 £22
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and
ad — be — 511512 _ 521522 — £11€22 +€21£12 4 611522 4 512621 — A,

where A# > 0, and
gllte + 511621 _ 612£22 + 512522 —0.

It can be shown by direct calculation that any automorphism Ala, b, ¢, d, ¢| €] is
of one of the two types
1) (non-twisted) (£2)# = (£21)# =0, (£11¢*2)# > 0,
2) (twisted) ((11)# = ((22)# =0, (£12021)# > 0.
A non-twisted (twisted) automorphism is uniquely determined by the parameters a,
b, ¢, d, ¥, ¢*' (by the parameters a, b, c, d, Ef:j 012, respepj:ively).These parameters
can take arbitrary values such that a, b, ¢, d, £ € Lo(R), e¥ € Ly (R), (ad—bc)* > 0,
and (011 + (12)# £ 0.
The correspondence A — A#, where

A= Ala,b,c,d,{|¢g],

# #
N z+b
A (Z)_C#Z—Fd#,

generates an epimorphism #: Aut(A?%) — Aut(A). A transformation that is
mapped into a hyperbolic transformation under this epimorphism is said to be
superhyperbolic.

A subgroup T' C Aut(A%%) is called an N = 2 super Fuchsian group if T# =
#(T') is a Fuchsian group and #: ' — I'# is an isomorphism. Unless otherwise
stated, in this section we treat only N = 2 super Fuchsian groups that consist of
superhyperbolic automorphisms of A2,

With an automorphism A = Ala, b, ¢, d, £| €] we associcate the matrix

JA) = ——2 ar b € SL(2,R)
T VaFd# _bFcE \c* d¥ P

where 0 = o(A) = sgn(£ + 012 + (21 4 (22)#,

If I' € Aut(A?) is an N = 2 super Fuchsian group, then the correspondence
J: T — SL(2,R) is a monomorphism, and hence defines a lifting J*: I'*# — J(T).

Let T' C Aut(A%°) be an N = 2 super Fuchsian group. The quotient set A2 /T
is called a Riemann N = 2 supersurface or an N = 2 super Riemann surface. Two
N = 2 supersurfaces P, = A2 /Ty and Py = A25 /Ty are assumed to be equal if T'y
and Ty are conjugate in Aut(A2%). The projections #: A% — A and #: T — I'#
determine a projection #: P — P# = A/T#.

By [47], § 7, the lifting J* defines an Arf function

wh: Hy(P#,Zy) — Zs.
Let us introduce functions ; = Q;(I'): ' — Zy = {0,1} (¢ = 1,2) by setting
0 for > (RY)* <0,
M(A) = {

i,j€{1,2}
1 otherwise,
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and
0 for h'? = p?l =0,
UA) = D) +%(4) = { 1 for h'l = K22 = 0.

We can readily see that {; induces w} and that { is a homomorphism inducing a
homomorphism w®: Hy (P#,Z3) — Zs. By w? we denote the Arf function wh +w?
generated by Q.

An N = 2 super Riemann surface P is said to be non-twisted if w% = 0. By its
topological type we mean the topological type (g, 6, ko) of the Arf function wh = w?.
For w® # 0, the Riemann surface is said to be twisted. By its topological type we
mean the topological type (g, 01,02, kag) of the pair of Arf functions (wh,w?),
where §; = §(P#,w;) and kap is the number of holes ¢; of the surface P# such that
wi(e;) = a and wa(c;) = B [47], §8.

2. An N = 2 superanalogue of the group Xth(A) is the group m(AQS ) gener-
ated by Aut(A2) together with the map o: (2|61, 602) — (=% |601,02). We extend
#: Aut(A%%) — Aut(A) to a homomorphism #: m(AQS) — Aut(A) by assum-
ing that #(o): z — —Z. A subgroup T c m(AQS) is called a real N = 2 super
Fuchsian group if ' = rn Aut(A%%) is an N = 2 super Fuchsian group, r # T, and
A# /T# is a compact surface. In this case, the pair (A25/I',T/T) is called a real
algebraic N = 2 supercurve.

Real N = 2 supercurves (AQS/Fl,fl/Fl) and (AQS/FQ,fQ/FQ) are assumed to
be equal if there is an h € m(AQS) such that I'y = h';h~!. The projection
# sends a real supercurve (P,7) = (A/I,I/T) into the real curve (P#, 1#) =
(A# T# T#T#).

Let (P,7) = (A25/I',T'/T) be a real N = 2 supercurve and let C' C " correspond
to an oval or to an invariant contour ¢ (disjoint from the ovals). Replacing I' by a
conjugate group, we may assume that C(z |0y, 602) = (Az | h'6;, h?05_;). In this case
the group T contains an element Sc of the form Sc(z|61,02) = (—pz | 110;,1%05_;),
where p* > 0 and 142 = p?, p = 1 if ¢ is an oval, and (S¢)? = C if c is an invariant
contour. We set u(c) =0 for i = 1 and u(c) =1 for i = 2.

If wy = we (where w; = wh), then p(c) is the same for all ovals and invariant
contours ¢ (disjoint with the ovals). This enables us to define the invariant u(P, 7) =
p(c)-

If w1 # wo, then the kernel of the homomorphism Q: I' — Z, forms a subgroup
T, of index two. On the surface P = A#/T# the involutions in the set {F =
Sc | u(c) = pu} generate the involution 77# (u € Zz). We set p,(P,7) = e(P¥, ).

Let M(g,e) be the set of all real algebraic N = 2 supercurves (P, 7) such that
g(P#) = g and e(P#,7#) = € € Zy. The structure of an N = 2 supercurve defines
two Arf functions w; = wh: H(P#,73) — Zy. We set x(P) = 0 if w; = wy and
X(P) = 1if w1 # wy. The invariant x € Zy decomposes M (g, ) into the subsets
M(g,e,x) = {(P,7) € M(g,¢) | x(P) = x}-

By Theorem 3.2, the number of ovals ¢ with the properties w;(c) = 0 has
the parity of g + 1. For (P,7) € M(g,0,0), denote by ko(P,7) the number
of ovals ¢ such that wi(c) = wa(c) = a € Zy. We decompose the set M(g,0,0)
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into the subsets

M(g,0,0, kq, 6, 1)
={(P,7) € M(g,0,0) | ka(P,T) = ka, d(w1) = d(w2) =3, u(P,7)= p}.

For (P,7) € M(g, 0,1) we denote by kgﬁ(P, 7) the number of ovals ¢ C P” such
that

wi(e) = a, wa(c) = B, u(e) = p € Zos.
We set

( 0717ka57617pi)

—{ EMg,O 1)|k ( )Zkgﬁ, 5(&)1):51, pi(P,T)Zpi}.
By [7] and [35], we have M (g, 0, l,kgﬁ,éz,pi) = 0 for p; = p2 = 1 and also for
kg1 + kS + kgy + ko > 0 and py + p2 > 0.
Let (P#,7%) be a real algebraic curve such that ¢(P#,7#) =1 and suppose that
w: Hy(P#,73) — Zy is an Arf function with w(7#a) = w(a) for alla € Hy(P#,Z,).
The ovals ¢y, . . ., ¢, decompose P# into components Pl# and PQ# . We set

ne(P*,7%) = (P, '),
where ' is the restriction of w to Pl# . In particular, n,,(P#,7%) = 0 if there is an

oval ¢ such that w(c) = 1.
Let

M(g,1,0,k3,m, 1)
={(P 7)€ M(g,1,0) | KX(P#, 7% w) = kY, 1, (P,T) =1, (P, 1) = p}.

Assume now that (P, 7) € M(g,1,1). We denote by kg%(P, 7) (by ki%(P, 7)) the
number of ovals ¢; that are similar to ¢; with respect to w; (that are not similar
to ¢ with respect to wy, respectively) and such that wi(c;) = a, wa(c;) = 8, and
p(ci) = p. The set of numbers k)5 = k/3(P,7) is defined up to a permutation

k;{“ — kl 7# related to the choice of 1. We set

M( 1717k2’f57 )_{(P7T)EM(97171)|]€Z%(P7T):]€Z£7 Uwi(PyT):Ui}-
Thus, we obtain the following theorem.

Theorem 13.1 [46]. 1) The set M(g,e,0) of real supercurves (P,T) of genus g
with the property wi(P) = wa(P) decomposes into the subsets

M(g70707ka767:u’)7 M(g71707k37n7/~1’)7

where

047%57777MEZ27 ngo_’_klgg? Zk’y g+1
Zk =g+1 (mod2), ko=g+1 (mod?2), ko—l-kozg—l—l(mon)

and n=0 for kY-+ki>O0.
Among these subsets, only M(g,1,0,kY,n, 1) and M(g,1,0,kL=7,n, 1) coincide.
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2) The set M(g,e,1) of real supercurves (P,T) of genus g with the property
w1(P) # wa(P) decomposes into the subsets

M(g70717kgﬁ76i7pi)7 M(g71717k3fﬁt7ni)7

where

a7ﬁ777ﬂ7i75i7pi7niez27 ngk55<g7

aBu
lgzkg;ﬁtgg“‘l; Zk;%Eg—l-l(modm,
aByp afyu
Zkgﬁ = Zkgo = Zkgg = Zklﬁ =g+1 (mod 2),
np he B Y pex

pr+p2<2, pr=p2=0 for Kk +ks +ki+kip>0,

m=0 for Zk?g >0 and n2=0 for Zkgff > 0.
Bym ok

Among these subsets, only M(g,1,1, kl‘ﬁ‘, n;) and M(g,1,1, ki;“‘, n;) coincide.

§14. The moduli space of the real algebraic N =2 supercurves

1. Let (P,7) be real algebraic curves. By a double Arf function on (P,T) we
mean a pair (w,a), where w: Hy(P,Z2) — Z2 is an Arf function on (P,7) and
a: Hy(P,Zs) — Zso is a homomorphism such that a7 = «. Double Arf functions
(w1, 1) and (w2, az) on (P1,71) and (Ps, 72) are said to be topologically equivalent
if there is a homeomorphism ¢: Py — P» such that o7 = 79, w1 = w2y, and
a1 = 2.

By §13, a real algebraic N = 2 supercurve gives rise to a double Arf function
(wp,ap) = (wh,wh) on (P#,77#).

Theorem 14.1 [46]. Real algebraic N = 2 supercurves P; and P> give rise to
topologically equivalent double Arf functions if and only if the topological types of
Py and P, coincide or differ from each other by a simultaneous replacement of u
by 1 — p, kg by kog, and k2% by k)5,

Proof. All the topological invariants associated with a supercurve P, except for
u(c) for ovals and invariant contours ¢, are uniquely determined by a pair of Arf
functions (wh,w?%), and hence are preserved under homeomorphisms ¢: Pl# — P2#
that agree with Ti#. Thus, the topological equivalence of the double Arf functions

(wp, , w), ) implies the conditions on the types of P and P, indicated in the theorem.

In the case E(Pi#, Ti#) = 1 the proof of the converse assertion repeats the proof
of Theorem 11.3. Let us prove the converse assertion for curves (P-# T#) of type

R

(9,k,0). We consider standard bases (which exist by Theorem 1.1)

{al, b (i=1,...,2r), ci,d’ (i=1,...,8)} € Hi(P}, Zy),
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where

k
(Pi#)ﬂ‘# = U c§-, s—k <1,
j=1

Ti#(aj) = aér-}-l—j? 7 (b;) = —b§r+1—j7
T; (c;) = c;'-, Ti#(d;.-) = —d;- +

here ¢t = >°°_. ¢! and

j=1"J
Ti#(di) =—d. +c+c for s>k
By Theorem 11.2, these bases can be chosen so that
wp, (dj) = wp, (d5)

for all j < s. Under the conditions of Theorem 14.1, we can renumber ¢’ and d;- SO

3
that
1

wp(cj) =wh (), wh (d)) =wp,(dF)
for all j and for m = 1,2. Moreover, by [47], Theorem 8.1, under the conditions
of Theorem 14.1 we can pass to a basis of the same form so that c§- and d;- are
preserved and
W (a;) = wp, (a?) and wp (bjl) = wp, (b?)
for all j. Then a homeomorphism ¢: Pl# — PQ# that maps one of the bases into
another generates a topological equivalence of the double Arf functions.

2. We recall the description of the moduli space of N = 2 super Riemann surfaces
[47], § 14.
Let 2t be the topological type of a Riemann N = 2 supersurface of genus g with
k holes. By M we denote the set of all such supersurfaces. It is “uniformized” by
the space
T2t _ TQt/ Aut(AQS),

where T2t is the space of monomorphisms 1 V5.0 — Aut(A?5) (where n = g + k)
such that ¢(vg,)# is a sequential set of type (g,k), A*S/i(v5,) € M?, and
the group Aut(A2%) acts by conjugation [47], § 14. According to [47], §14, T? is
strongly diffeomorphic to

R(plq)/Z2 — R(8§+4k—b(2t)|8§+4k—8)/(Z2)27
where b(2t) = 8 for the surface of twisted type and b(2t) = 7 otherwise. Moreover,
M?" = T?"/ Moda,

where Mods; is a discrete group.

3. Let us pass now to the description of the moduli space of real algebraic N = 2
supercurves.
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Theorem 14.2 [46]. 1) The moduli space M (g, e,0) of real algebraic N = 2 super-
curves (P, T) of genus g with w1(P) = wa(P) decomposes into the connected com-
ponents

M(g,0,0, kq, 6, 1), M(g,1, k2, n, p),

where

a,v,0,m €Ly, 0<k=ky+ki <g, 1<Zk7 g+1,
k= Zk7=g+1 (mod 2), kOEg+1(mod2),

kS + K} Eg—l—l mod 2) and n=0 for k+ki >0.
0 T Ko

Among these components, only M(g,1,0,k),n,u) and M(g,1,0,k =7, n, 1) coin-
cide. Each of the components M(x) is of the form T(x)/Mod(x), where T(x) is
strongly diffeomorphic to R(49=3+#k149-4) /(7,,)2 " and Mod(x) is a discrete group.

2) The moduli space M (g, ,1) of real algebraic N = 2 supercurves (P, ) of genus
g for which w1 (P) # wa(P) decomposes into connected components of the form

( 0717ka57617pi)7 M( 1717kaﬁ7 )

where

a7ﬁ777ﬂ7i75i7pi7niez27 0<Zk26<

afu
IQZkaBLSg—l—l, Zk;’fﬁ‘:g—l—l(mod%,
afyu aByu
ZkOB_Zkao_Zkgg:Zk%‘:g+l (mod 2),
YHB Yo

p1+p2<2 p1=p2=0 for k81+kél+k?0+k%0>0
m=0 for ka>0 and 12 =0 for Zkgff>0

By ayup

Among these components, only M (g, 1,1, k), ;) and M(g, 1,1, kiﬁv " 1) coincide.

Each of these components M(x) is of the form T(x)/Mod(x), where Mod(x)

is a discrete group, the space T(x) is strongly diﬁeomorphic to the quotient
— 1 — .

RAg—4+k"149-4) /(7)) and k' is equal to D asy Ko aﬁ or Y .pkas

Proof. Let T beareal N =2 super Fuchsian group, let (P, 7) = [F], let ¢ be an oval
or an invariant contour of the curve (P#,7#) that does not intersect ovals, and let

ccr=r N Aut(A2%) be the shift corresponding to it. Replacmg r by a conjugate
group, we may assume that C(z |61, 02) = (pz |110;,1205_;). By Cc F\F we denote
an element such that: 1) CCC~! = C; 2) C? = 1 if ¢ is an oval; 3) C% = C if ¢ is
an invariant contour. If p(c) =0 and c is an oval, then

C(z]61,0,) = (—Z| +61,46,).
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If u(c) = 0 and c is an invariant contour, then

C(z]61,0) = (—/pZ| £ /[01] 01, £/]02]62).

If u(c) =1 and c is an oval, then
C(z|61,02) = (=% | kB, h™16,).

If u(c) =1 and c is an invariant contour, then

C(261,6) = (—/pZ| kB2, /o h~10y).

The rest of the proof repeats that of Theorems 12.1 and 12.2 with the space T%
replaced by 72! and Theorems 11.2 and 11.3 by Theorem 14.1. The single essential
difference arises only when associating a map C; with a shift C; belonging to the
set

{4;,B; (i=1,...,9), C; i=1,....,m)} = ¥(V5.m), e T2,

The above arguments show that if p(c;) = 0 for a contour ¢; corresponding to
C;, then the map d- is determined by the shift C; with the same arbitrariness
as in the case N = 1 (§12). For pu(c;) = 1 the choice of C; depends on a single
additional arbitrary parameter h € Lo(R). However, if ¢; is not an oval, then the
condition 6’3 = C; fixes one of the parameters in Lo(R) on which an arbitrary
element C; € Ath(AQS ) depends. It is this that determines the dimension of the
superlinear spaces that uniformize the connected components of the moduli space
of real N = 2 supercurves.
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