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Moduli of real algebraic surfaces,

and their superanalogues.

Differentials, spinors, and Jacobians of real curves

S. M. Natanzon

Dedicated to my parents

Abstract. The survey is devoted to various aspects of the theory of real algebraic
curves. The involution defined by complex conjugation induces an antiholomorphic
involution τ : P → P on the complexification P of a real curve. This involution
acts on all structures related to the Riemann surface P , namely, on vector bundles,
Jacobians, Prymians, and so on. The greater part of the survey is devoted to finding
topological invariants and studying the corresponding moduli spaces. Statements of
these problems were inspired by applications of the theory of real curves to problems
in mathematical physics (theory of solitons, string theory, and so on).
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Introduction

According to standard definitions, a real algebraic curve is a pair (P, τ), where P
is a complex algebraic curve (that is, a compact Riemann surface) and τ : P → P is
an antiholomorphic involution. The category of real algebraic curves is isomorphic
to the category of Klein surfaces [1], [35]. Investigations of real algebraic curves
were started by Klein [25] and Weichold [51]. For a long time thereafter researchers
studied only plane algebraic curves, that is, real curves embedded in RP2. The
systematic study of “general” real algebraic curves was renewed only in the seventies
[1], [16], [20], [31]–[33], [48]. The method of algebraic-geometric integration of
equations of mathematical physics, which was discovered in the seventies in the
works by S. P. Novikov and his school, posed a number of new problems in the
theory of real curves and significantly stimulated the development of this theory
[10], [12]–[14], [34], [37], [42]. Conformal field theory and, in particular, string
theory [9], [23], [24], [49] has become another area of applications of real curves.

The antiholomorphic involution τ acts on all structures related to the Riemann
surface P , namely, on vector bundles, Jacobians, Prymians, and so on. The greater
part of this survey is devoted to finding topological invariants and describing the
moduli spaces corresponding to any set of such invariants.

In § 1 we describe topological invariants of real algebraic curves following
Weichold [51]. The set of these invariants forms the topological type of a curve. In
§ 2 we associate with a real algebraic curve a special type of group of isometries
of the Lobachevskii plane (real Fuchsian groups). Applying this relationship and
the parametrization of Fuchsian groups described in [33] and [47], (§§ 1–4), we
prove that to each topological type there corresponds a connected component that
is homeomorphic to Rm/Mod, where Mod is a discrete group.

In § 3 the Arf functions equivalent to θ-characteristics [2], [30] appear in the sur-
vey for the first time. In contrast to the complex situation, many topological invari-
ants are connected with these functions in the real case. In § 4 a correspondence is
established between Arf functions and representations π1(P/ 〈τ〉)→ GL(2,R) that
generate real Fuchsian groups. These representations are used in § 5 to describe real
spinors on (P, τ). The properties of real spinors enable one to describe non-trivial
topological properties of real holomorphic differentials in § 6. In § 7 we show that
the simplest meromorphic tensors of arbitrary weight on real curves of arbitrary
genus behave just like classical trigonometric functions. Here we use the apparatus
developed for complex curves in the papers by Krichever and Novikov in connection
with conformal field theory [27]. For lack of space we do not include the classifica-
tion of meromorphic functions on real algebraic curves of arbitrary genus [40].

In § 8 we pass to a description of Jacobians of real curves, and, in particular, real
and imaginary tori of the Jacobian. The results of § 6 enable one to find all such
tori disjoint from the θ-divisor. In § 9 the analogous problem is solved for Prymians
of real curves with a symmetry. The results in §§ 8 and 9 play the key role in
singling out the non-singular real solutions of important equations in mathematical
physics [13], [14], [34]. In § 10 we described Bobenko’s approach to the calculation
of Jacobians of real curves by means of Schottky groups and Poincaré series [5], [6].
Like the parametrization in § 2, this approach uses the parametrization of Fuchsian
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groups [33], [47], (§§ 1–4). A similar method of describing the Prymians is contained
in [34].

In § 11, we return to spinors and describe the moduli space of spinor bundles. It
turns out that its components are determined by the topological invariants of the
Arf functions introduced in § 3. In § 11 we also describe the topological structure
of the connected components of the moduli space of spinor bundles.

The last three sections are devoted to real algebraic supercurves. The complex
and real supercurves form the central object of the theory of superstrings that
relates the unified quantum field theory with integrals over the moduli space of
algebraic supercurves [4], [9], [18]. We define real supercurves via uniformizing
groups as is done for complex curves in [4], [29]. In § 12 we describe the moduli
space of N = 1 real algebraic supercurves. The numerical part (the body) of
this superspace coincides with the moduli space of spinor bundles. The connected
components correspond to topological types of the real Arf functions, and each of
the components is of the form R(n|m)/Mod, where R(n|m) is a linear superspace and
Mod is a discrete group. In § 13 the system of topological invariants of N = 2 real
algebraic supercurves is described. As is shown in § 14, these invariants describe
the connected components of the moduli space of the supercurves. As in the case
N = 1, each of the components can be represented in the form R(n|m)/Mod.

The present survey is a natural continuation of [47] and is based on the results
presented there. The topological description of the connected components of (super)
real curves and spinor bundles is based, in particular, upon the special description
of the connected components of the spaces of (super) Riemann surfaces constructed
in [33], [39], and [47]. The topological invariants of (super) real curves include those
of (super) Riemann surfaces. However, the total system of topological invariants is
much more complicated and diverse.

In this survey the results of the author over several years are presented in a
unified style. Some of these topics arose as a result of discussions with V. I. Arnol’d,
É. B. Vinberg, and S. P. Novikov, and the author is sincerely indebted to them.

§ 1. Topological type of real algebraic curves

1. By a (non-singular) real algebraic curve we mean a pair X = (P, τ), where
P = X(C) is a compact Riemann surface (called a complexification of the curve X)
and τ = τX : P → P is an antiholomorphic involution (the so-called involution of
complex conjugation). The fixed points X(R) = P τ of this involution form the
set of real points of the curve. For instance, to a non-singular plane real algebraic
curve F (x, y) = 0 there corresponds a pair (P, τ), where P is the normalization and
compactification of the surface {(x, y) ∈ C2 |F (x, y) = 0} and τ is generated by the
involution (x, y) 7→ (x, y).

Real algebraic curves X1 = (P1, τ1) and X2 = (P2, τ2) are taken to be the same
if there is a biholomorphic map ψ : P1→ P2 such that ψτ1 = τ2ψ.

A curve X is said to be separating (type I in the Klein classification) if the set
X(C) \ X(R) is disconnected. Otherwise the curve is said to be non-separating
(type II in the Klein classification).

By the topological type of a real algebraic curve X we mean the triple (g, k, ε),
where g = g(X) is the genus of the curve, that is, the genus of the surface X(C),
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k = k(X) is the number of connected components of the set X(R) of real points,
and

ε = ε(X) =

{
0 if the curve X is non-separating,

1 if the curve X is separating.

In what follows, we often use the fact that every Riemann surface P is biholo-
morphically equivalent to a surface of the form H/Γ, where H is the Riemann
sphere C, the complex plane C, or the upper half-plane Λ = {z ∈ C | Im z > 0},
and Γ is a discrete group that acts without fixed points. The standard metric of
constant curvature on H induces a metric of constant curvature on P = H/Γ.

Let us present two examples of real algebraic curves.

Example 1.1. Let P be a surface of genus g̃ with k holes. Let us endow P with
the structure of a Riemann surface P+ and consider an atlas of holomorphic charts

{(Ui, zi)}, P+ =
⋃
Ui, zi : Ui → C.

The atlas {(Ui, zi)} endows P with the structure of another Riemann surface P−.
The natural map α : P+ → P → P− is antiholomorphic. The complex structure
of P+ and P− generates on these surfaces some metrics of constant curvature
with respect to which α is an isometry. Let us surround each of the holes of the

surface P+ by a geodesic. The geodesics cut out a compact surface P̃+ ⊂ P+ with
boundary ∂P̃+. We set P̃− = αP̃+.

Let us identify the boundaries ∂P̃+ and ∂P̃− by means of α. As the result, we
obtain a compact Riemann surface Pg̃,k of genus 2g̃ + k − 1 on which the map α
induces an antiholomorphic involution τg̃,k : Pg̃,k → Pg̃,k. Thus, Xg̃,k = (Pg̃,k, τg̃,k)

is a real algebraic curve, and Xg̃,k(R) = ∂P̃+ = ∂P̃−. Hence, Xg̃,m is a real
algebraic curve of type (2g̃ + k − 1, k, 1).

Example 1.2. Repeating the construction of Example 1.1, we take the Riemann

surface with boundary P̃+, P̃− and the antiholomorphic map α : P̃+ → P̃−. The

boundary ∂P̃+ consists of contours c1, . . . , ck. Let us consider fixed-point-free
isometries αi : ci → ci such that α2

i = 1. Let 0 6 m < k. For i 6 m, we
identify the contours ci and αci by means of the map α. For i > m, we identify
the contours ci and αci by means of the map ααi. We again obtain a real curve
Ymg̃,k = (Pmg̃,k, τ

m
g̃,k) of the same genus; however, in this case Ymg̃,k(R) =

⋃m
i=1 ci, and

hence Y mg̃,k is a curve of topological type (2g̃ + k − 1, m, 0).

2. Real curves (P1, τ1) and (P2, τ2) are said to be topologically equivalent if there
is a homeomorphism ϕ : P1 → P2 such that τ2ϕ = ϕτ1.

Our immediate goal is to show that any real algebraic curve is topologically
equivalent to one of the curves in Examples 1.1 and 1.2.

Lemma 1.1. The set X(R) of real points of a real algebraic curve X = (P, τ)
decomposes into pairwise disjoint simple closed smooth contours (called ovals).

Proof. The complex structure of the surface P induces a metric of constant cur-
vature, and τ is an isometry with respect to this metric. If x ∈ X(R), then the
involution dτx : Tx → Tx of the tangent plane Tx is the reflection with respect to a
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line v ∈ Tx. We denote by ` ⊂ P the geodesic that passes through x in the direction
of the line v. All its points are fixed under τ , and in a small neighbourhood of x
there are no other fixed points of τ . Thus, each of the points x ∈ X(R) belongs
to exactly one maximal geodesic ` ⊂ X(R) without self-intersections. Since P is
compact, it follows that each of these geodesics is a closed smooth contour.

Theorem 1.1. Let (P, τ) be a real curve of type (g, k, 1). Then 1 6 k 6 g + 1,
k ≡ g + 1 (mod 2), and (P, τ) is topologically equivalent to the curve (Pg̃,k, τg̃,k) of
Example 1.1, where g̃ = 1

2
(g + 1− k).

Proof. By Lemma 1.1, the set P \ P τ decomposes into two surfaces P1 and P2

of genus g̃ with k holes. Hence, g = 2g̃ + k − 1, and therefore k 6 g + 1 and k ≡
g + 1 (mod 2). Let us consider a homeomorphism ϕ1 : (P1 ∪ P τ)→ P̃+. We set

ϕ(x) =

{
ϕ1(x) for x ∈ P1 ∪ P τ ,
τg̃,kϕ1τ(x) for x ∈ P2.

We can readily see that ϕ realizes the desired topological equivalence.

3. Let us now study curves of non-separating type. Up to the end of the section,
Q stands for a Riemann surface of genus g with n holes and β : Q → Q is an
antiholomorphic involution without fixed points.

A simple closed contour a ⊂ Q is said to be invariant if βa = a.
A system A = (a1, . . . , am) of pairwise disjoint invariant contours is said to be

complete if the set Q \ A is disconnected. Obviously, Q \ A then consists of two
surfaces Q′ and Q′′ of genus 1

2(g −m+ 1) with m+ 1
2n holes, and βQ′ = Q′′.

Lemma 1.2. a) There is at least one invariant contour a ⊂ Q. b) If g > 0, then
there is an invariant contour b ⊂ Q such that Q \ b is connected. c) There is a
complete system formed by g + 1 invariant contours. d) If A = (a1, . . . , am) ⊂ Q
is a complete system of invariant contours and if m > 2, then there is an element
b ⊂ Q such that (a1, . . . , am−3, b) is also a complete system of invariant contours.

Proof. a) Without loss of generality we may assume that n > 2. We consider the
function f(x) = ρ(x, βx) on Q, where ρ is the distance in the standard metric of
constant negative curvature on Q. The function f attains its minimum f(z) =
c > 0. If ` is a minimal geodesic joining z and βz, then a = ` ∪ β` is an invariant
contour.

b) Let a ⊂ Q be the contour constructed in item a) and let Q\a be disconnected.
Then Q\a = Q′∪Q′′, whereQ′ and Q′′ are surfaces of positive genus, and βQ′ = Q′′.
Let us join points x ∈ a and τx by a curve ` ⊂ Q′ without self-intersections and
such that Q′ \ ` is connected (see Fig. 1.1). Then b = `∪ τ` is an invariant contour,
and Q \ b is connected.

c) Let b be the contour constructed in item b). The surface Q \ b is of genus
g−1, and if g−1 > 0, then we can again apply the assertion in item b). For g = 0,
we apply item a).

d) The set Q \A decomposes into the surfaces Q′ and Q′′ (see Fig. 1.2).
Let us complete these surfaces by boundary contours. Corresponding to a contour

ai ⊂ A are contours a′i ⊂ Q′ and a′′i ⊂ Q′′. Let q1, q2, q3 be points of the contours
am−2, am−1, am and let q′i be the corresponding points of the contours a′m−3+i.



1096 S. M. Natanzon

Figure 1.1

Figure 1.2

We denote by mi one of the two arcs into which the points q′i and β(q′i) divide
the contour a′i. Let us join the points β(q′1) and q′2 by a curve `1 ⊂ Q′ and the
points β(q′2) and q′3 by a curve `2 ⊂ Q′ so that `1 and `2 are disjoint, have no
self-intersections, and do not intersect ∂Q′ (except for the endpoints). Let us join
the points β(q′3) and q′1 by a curve `3 without self-intersections which is homo-
topic to the curve (m1`1m2`2m3)−1 and has no points in common with the latter
curve and with ∂Q′, except for the endpoints (this can always be done because the
set Q′ \ (`1 ∪ `2) is connected). The closed contour `3m1`1m2`2m3 without self-
intersections decomposes the surface Q′ into two parts, Q′1 andQ′2. We consider now
the invariant contour b = `1β(`2)`3β(`1)`2β(`3) ⊂ Q. Then Q \ (b, a1, . . . , am−3)
decomposes into the surfaces Q′1 ∪ β(Q′2) and Q′2 ∪ β(Q′1).

Theorem 1.2. Let (P, τ) be a real algebraic curve of topological type (g,m, 0).
Then for any m < k 6 g+1 with k ≡ g+1 (mod 2) the curve (P, τ) is topologically
equivalent to the curve (Pmg̃,k, τ

m
g̃,k) in Example 1.2, where g̃ = 1

2 (g + 1− k).

Proof. According to Lemma 1.2, there is a complete set A of contours on
the surface P \ P τ that are invariant with respect to τ , A = (am+1, . . . , ak).
The surface P \ (P τ ∪ A) decomposes into two surfaces P1 and P2 of genus g̃
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with k holes. Let us consider now a homeomorphism ϕ1 : (P1 ∪P τ ∪A)→ P̃+ such
that ϕ1(P τ) = (c1, . . . , ck). We set

ϕ(x) =

{
ϕ1(x) for x ∈ P1 ∪ P τ ∪A,
τmg̃,kϕ1τ(x) for x ∈ P2.

We can readily see that ϕ defines a topological equivalence.

Examples 1.1 and 1.2 and Theorems 1.1 and 1.2 imply the following.

Corollary 1.1 [51]. Real algebraic curves are topologically equivalent if and only
if they have the same topological type. A set (g, k, ε) is a topological type of a real
algebraic curve if and only if either ε = 1, 1 6 k 6 g+ 1, and k ≡ g+ 1 (mod 2) or
ε = 0 and 0 6 k 6 g.
Remark. For plane real curves, the inequality k 6 g + 1 was first proved by Har-
nack [21] and bears his name.

§2. Moduli of real algebraic curves

1. In what follows, we need some definitions and notation from [47], §§ 1–5.
Each hyperbolic automorphism C ∈ Aut(Λ) of the Lobachevskii plane Λ =
{z ∈ C | Im z > 0} is of the form

C(z) =
(λα− β)z + (1− λ)αβ

(λ− 1)z + (α− λβ)
,

where α 6= β ∈ R ∪ ∞ and λ > 1. We denote by `(C) ⊂ Λ the geodesic (in
the Lobachevskii metric) that joins α and β and is oriented from β to α. The
automorphism C preserves the line `(C) while shifting it in the direction of the
orientation.

A triple of hyperbolic automorphisms (C1, C2, C3) is said to be sequential of type
(0, 3) if (C1 · C2 · C3) = 1 and, for some D ∈ Aut(Λ), the curves `(DCiD

−1) are
placed as in Fig. 2.1.

Figure 2.1

An n-tuple of hyperbolic automorphisms (C1, . . . , Cn) is said to be sequential
of type (0, n) if, for any j, the triple (C1 · · ·Cj−1, Cj, Cj+1 · · ·Cn) is sequential of
type (0, 3).

A set
{Ai, Bi (i = 1, . . . , g), Ci (i = 1, . . . , k)}

is said to be sequential of type (g, k) if the tuple

(A1, B1A
−1
1 B−1

1 , . . . , Ag, BgA
−1
g B−1

g , C1, . . . , Ck)

is sequential of type (0, 2g + k).
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By the classical Fricke–Klein theorem [17], [47], a moduli space of complex alge-
braic curves (that is, of compact Riemann surfaces) can be represented as T/Mod,
where T is a linear space and Mod is a discrete group. Our immediate goal is to
prove a similar theorem for real algebraic curves.

For T , we take the Fricke–Klein–Teichmüller space Tg,k constructed in [33] and
in [47], § 4. This space can be defined as follows. Let n = g + k and let vg,n =
{ai, bi (i = 1, . . . , g), ci (i = g+1, . . . , n)} be a system of generators of a free group
γg,n of rank 2g + n− 1 with the defining relation

g∏
i=1

[ai, bi]
n∏

i=g+1

ci = 1.

Let us consider the set T̃g,k of all monomorphisms ψ : γg,n → Aut(Λ) such that
{ψ(ai), ψ(bi) (i = 1, . . . , g), ψ(ci) (i = g + 1, . . . , n)} is a sequential set of type

(g, k). The group Aut(Λ) acts on T̃g,k by conjugations ψ 7→ CψC−1. By [33] and

[47], § 4, the space Tg,k = T̃g,k/Aut(Λ) is homeomorphic to R6g+3k−6. Moreover,
the correspondence

ψ 7→ Λ/ψ(γg,n)

generates a homeomorphism

Ψg,n : Tg,k/Modg,k →Mg,k

onto the moduli space Mg,k of Riemann surfaces of genus g with k holes. Here

Modg,k is a discrete group that consists of the classes M̃odg,k/ Int(γg,n), where

M̃odg,k ⊂ Aut(γg,n) is the group of automorphisms that send monomorphisms in

the set T̃g,k to monomorphisms in T̃g,k.

2. In what follows, we consider curves of genus g > 1 only. The cases g 6 1 are
much simpler but need different approaches.

Real algebraic curves of genus g > 1 are can be uniformized by discrete groups

of isometries of the metric
|dz|
Im z

of the Lobachevskii plane Λ = {z ∈C | Im z > 0}.
The full group Ãut(Λ) of isometries consists of the holomorphic automorphisms
that form the group Aut(Λ) and of antiholomorphic ones.

The discrete subgroups Γ ⊂ Ãut(Λ) are called non-Euclidean crystallographic

groups (NEC-groups) [28]. In what follows, we need only NEC-groups Γ̃ for which

Γ = Γ̃ ∩ Aut(Λ) is a Fuchsian group that consists of hyperbolic automorphisms,

Γ 6= Γ̃, and P = Λ/Γ is a compact surface. These groups Γ̃ will be called real

Fuchsian groups. In this case Γ̃ \ Γ induces an antiholomorphic involution τ =

Φ(Γ̃ \ Γ)Φ−1 : P → P (where Φ: Λ → P is the natural projection). Thus, a real

Fuchsian group Γ̃ generates a real algebraic curve (P, τ) = [Γ̃].

Lemma 2.1. Every real algebraic curve is generated by some real Fuchsian group.

Proof. Let Γ ⊂ Aut(Λ) be a Fuchsian group uniformizing the Riemann surface P ,
and let Φ: Λ → P be the natural projection (see, for instance, [47], § 2). Since Λ
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is simply connected, there is an element σ ∈ Ãut(Λ) \Aut(Λ) such that Φσ = τΦ.

Let Γ̃ be the group generated by σ and Γ. Then (P, τ) = [Γ̃].

3. Let Mg,k,ε be the moduli space of real algebraic curves of type (g, k, ε).

Our immediate object is to construct a natural map Ψk
g̃,k : T̃g̃,k → Mg,k,1, where

g̃ = 1
2
(g + 1− k).

Let n = g̃ + k, ψ ∈ T̃g̃,k, and {Ai, Bi (i = 1, . . . , g̃), Ci (i = 1, . . . , k)} =

{ψ(ai), ψ(bi)(i = 1, . . . , g̃), ψ(ci) (i = g̃ + 1, . . . , n)}. Denote by Ci ∈ Ãut(Λ) \
Aut(Λ) the reflection (in the sense of Lobachevskian geometry) with respect to the
geodesic `(Ci). Let Γψ = ψ(γg̃ ,n) and let Γkψ be the group generated by Γψ and the

elements C1, . . . , Ck.

Lemma 2.2. Γkψ is a real Fuchsian group, and [Γkψ] ∈ Mg,k,1.

Proof. Let {ãi, b̃i (i = 1, . . . , g)} be the generators of the group γg,0 with the

defining relation
∏g
i=1[ãi, b̃i] = 1. We set

ψ̃(ãi) = CnBg̃+1−iCn, ψ̃(̃bi) = CnAg̃+1−iCn (i = 1, . . . , g̃),

ψ̃(ãi) = Ai−g̃, ψ̃(̃bi) = Bi−g̃ (i = g̃ + 1, . . . , 2g̃),

ψ̃(ãi) = WiCiWi, ψ̃(̃bi) = WiDiW
−1
i (i = 2g̃ + 1, . . . , 2g̃ + k),

where Di = CnCi and Wi =
∏1
j=i−1 DjCjD

−1
j (see Fig. 2.2).

Figure 2.2

Then
g∏
i=1

[ψ̃(ãi), ψ̃(̃bi)] = Cn

1∏
i=g̃

[Bi, Ai]Cn

g̃∏
i=1

[Ai, Bi]
k∏
i=1

Ci

1∏
i=k

CnC
−1
i Cn = 1

because
∏g̃
i=1[Ai, Bi]

∏k
i=1Ci = 1. Moreover,(

ψ̃(ã1), ψ̃(̃b1ã
−1
1 b̃−1

1 ), . . . , ψ̃(ãg), ψ̃(̃bgã
−1
g b̃−1

g )
)

is a sequential set of type (0, 2g) (see Fig. 2.2). Thus, ψ̃ ∈ T̃g,0, and hence P =

Λ/ψ̃(γg,0) ∈ Mg,0. The group Γkψ is generated by the group ψ̃(γg,0) together with

the involutions Ci, and Ciψ̃(γg,0)Ci = ψ̃(γg,0). Hence, Γkψ is a real Fuchsian group,

and the images `(Ci) form ovals of the curve [Γkψ]. By construction, these contours
form the boundary of a surface of genus g̃.

Thus, the correspondence ψ 7→ [Γkψ] defines a map Ψk
g̃,k : T̃g̃,k →Mg,k,1.
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Lemma 2.3. Ψk
g̃,k(T̃g̃,k) = Mg,k,1.

Proof. Let (P, τ) ∈ Mg,k,1. By Lemma 2.1, (P, τ) = [Γ̃] for some real Fuchsian

group Γ̃. Let Γ ∈ Γ̃ ∩ Aut(Λ), let Φ: Λ → Λ/Γ = P be the natural projection,
let Φ(q) = p, and let Φq : γ → π1(P, p) be an isomorphism that sends h ∈ Γ into
the image Φ(`) of the segment ` = [q, hq] ⊂ Λ. The ovals of P τ decompose P into
two surfaces P1 and P2. Let p ∈ P1 and let v = {ai, bi (i = 1, . . . , g̃), ci (i =
g̃+ 1, . . . , n)} be a standard system of generators of the group π(P1, p) in the sense
of [47], § 2. By [47], Theorem 2.1, V = Φ−1

q (v) is a sequential set of type (g̃, k),

that is, V = ψ(v), where ψ ∈ T̃g̃,k. Then [Γkψ] = (P, τ).

We recall that

Tg̃,k = T̃g̃,k/Aut(Λ) ∼= R6g̃+3k−6 = R3g−3

[33], [47], § 4.
For clear reasons, the map

Ψk
g̃,k : T̃g̃,k →Mg,k,1

induces the map
Ψk
g̃,k : Tg̃,k →Mg,k,1.

We also need the map
α : Tg̃,k → Tg̃,k

determined by the relations

αψ(ai) = βψ(bg̃+1−i)β,

αψ(bi) = βψ(a−1
g̃+1−i)β (i = 1, . . . , g̃),

αψ(ci) = wβψ(c−1
g̃+k+1−i)βw

−1 (i = g̃ + 1, . . . , g̃+ k),

where β(z) = −z and w = αψ
(∏g̃

i=1[ai, bi]
)
. Let Modkg̃,k be the group of auto-

morphisms of Tg̃,k generated by Modg̃,k and α. Then ind(Modg̃,k : Modkg̃,k) = 2.

Moreover, we can readily see from the construction that [Γkψ] = [Γkψ′] if and only if

ψ′ = γψ, where γ ∈ Modkg̃,k. Thus, Lemmas 2.2 and 2.3 imply the following result.

Theorem 2.1 ([31]–[33]). Mg,k,1 = Tg̃,k/Modkg̃,k, where the action of Modkg̃,k is
discrete.

4. Let us pass now to a description of the space Mg,m,0. To this end, we construct
a map

Ψm
g̃,k : T̃g̃,k →M/Tg,m,0,

where m < k, k ≡ g + 1 (mod 2), and g̃ = 1
2
(g + 1− k).

As above, to a monomorphism ψ ∈ T̃g̃,k there corresponds the sequential set

{Ai, Bi (i = 1, . . . , g̃), Ci (i = 1, . . . , k)}
= {ψ(ai), ψ(bi) (i = 1, . . . , g̃), ψ(ci) (i = g̃ + 1, . . . , n)}.

We write C̃i = Ci
√
Ci, where

√
Ci is a hyperbolic automorphism such that (

√
Ci )2

= Ci. Let Γψ = ψ(γg̃,n) and let Γmψ,k be the group generated by Γψ, C1, . . . , Cm

together with C̃m+1, . . . , C̃k.
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Lemma 2.4. Γmψ,k is a real Fuchsian group and [Γmψ,k] ∈Mg,m,0.

Proof. The proof repeats that of Lemma 2.2 almost literally. The only difference
is that the images `(Ci) form ovals if and only if i 6 m, and hence [Γmψ,k] is a
non-separating curve.

Thus, the correspondence ψ 7→ [Γmψ,k] defines a map

Ψm
g̃,k : T̃g̃,k → Tg,m,0.

Lemma 2.5. Ψm
g̃,k(T̃g̃,k) = Mg,m,0.

Proof. Let (P, τ) ∈ Mg,m,0. By Theorem 1.2, there is a set of invariant contours
A = (am+1, . . . , ak) ⊂ P \ P τ such that P \ (P τ ∪A) decomposes into two surfaces
P1 and P2 of genus g̃ = 1

2 (g + 1 − k). The rest of the proof is just like that of
Lemma 2.3.

Theorem 2.2 ([31]–[33]). We have Mg,k,0 = Tg̃,k/Modmg̃,k, where Modmg̃,k acts

discretely and ind(Modmg̃,k ∩Modkg̃,k : Modkg̃,k) = ( km).

Proof. The map Ψm
g,k : T̃g̃,k → Mg,m,0 induces a map Ψm

g,k : Tg̃,k → Mg,m,0 in an

obvious way. Let Ψm
g̃,k(ψ) = Ψm

g̃,k(ψ′). This means that (P, τ) = [Γmψ,k] = [Γmψ′,k] =

(P ′, τ ′). Let us consider the monomorphisms ψ, ψ′ ∈ Tg,0. We have ψ̃′ = ψ̃γ, where
γ belongs to the group Modmg̃,k generated by the group {γ ∈ Modg,0 | γτ = τγ}
together with α, so that Ψm

g̃,k(ψγ) = Ψm
g̃,k(ψ) for any γ ∈ Modmg̃,k. Let us now

consider the subgroup Modmg̃,k ∩Modkg̃,k that consists of the automorphisms of

Modkg,k preserving the set ci (i = 1, . . . , m). We can readily see that the index

of this subgroup in Modkg̃,k is equal to ( km).

Comparing Theorems 2.1 and 2.2 with [47], § 4, we obtain the following.

Corollary 2.1 ([31]–[33]). The moduli space of real algebraic curves of genus g > 1
decomposes into the connected components Mg,k,ε, where (g, k, ε) is an arbitrary
topological type of a real algebraic curve. Each of the components is diffeomorphic
to R3g−3/Modg,k,ε, where Modg,k,ε is a discrete group of diffeomorphisms.

Remark. The assertion of Corollary 2.1 concerning the topological structure of the
connected components of the space of real algebraic curves was first presented
in [16]. The proof given in [16] used the theory of quasiconformal maps and was
based upon a theorem in [26], which turned out later to be wrong. A correct proof
based on the theory of quasiconformal maps was obtained in [48].

§3. Arf functions on real algebraic curves

1. In the study of spinor bundles and super Riemann surfaces, the Arf functions
play an important role [15], [47], §§ 7–15. Special Arf functions are connected with
real algebraic curves and we pass to their description.

Let P be a surface of genus g = g(P ) with k holes. A basis v = {ai, bi (i =
1, . . . , g), ci (i = g + 1, . . . , g + k)} of the group H1(P,Z2) (where Z2 = Z/2Z =
{0, 1}) is said to be standard if the generators ci correspond to the holes of the
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surface P , (ai, aj) = (bi, bj) = 0, and (ai, bj) = δij , where ( · , · ) ∈ Z2 is the
homology intersection number for H1(P,Z2).

By an Arf function on P we mean a function ω : H1(P,Z2) → Z2 such that
ω(a + b) = ω(a) + ω(b) + (a, b). We say that an Arf function ω is even and set
δ = δ(P, ω) = 0 if there is a standard basis v such that

g∑
i=1

ω(ai)ω(bi) ≡ 0 (mod 2).

Otherwise we set δ = δ(P, ω) = 1 and say that ω is odd. By kα = kα(P, ω) (α = 0, 1)
we denote the cardinality of the set of elements ci of a standard basis v such that
ω(ci) = α. The triple (g, δ, kα) is called the topological type of the Arf function ω.

By [47], § 8, a triple (g, δ, kα) is the topological type of an Arf function if and
only if k1 ≡ 0 (mod 2) and δ = 0 for k1 > 0. Moreover, there is a standard basis v
such that ω(ai) = ω(bi) = 0 for i > 1 and ω(a1) = ω(b1) = δ.

Two Arf functions ω1 and ω2 on P are said to be topologically equivalent if there

is a homeomorphism ψ : P → P that induces an automorphism ψ̃ : H1(P,Z2) →
H1(P,Z2) satisfying the relation ω1 = ω2ψ̃.

By [47], § 8, Arf functions are topologically equivalent if and only if they have
the same topological type.

2. Let (P, τ) be a real algebraic curve. It what follows, we denote a simple contour
and the homology class of this contour in H1(P,Z2) by the same symbol. The
involution H1(P,Z2)→ H1(P,Z2) induced by the involution τ : P → P will also be
denoted by the same letter τ .

By an Arf function on a real algebraic curve (P, τ) (or simply a real Arf function)
we mean an Arf function ω : H1(P,Z2)→ Z2 such that ωτ = ω.

Lemma 3.1. Let (P, τ) be a real curve, let c1, c2 ⊂ P be simple closed contours
such that τ(ci) = ci, ci ∩ P τ = ∅, and c1 ∩ c2 = ∅, and let ω be an arbitrary Arf
function on (P, τ). Then ω(c1) = ω(c2).

Proof. By Theorem 1.2, there is a set of pairwise disjoint simple contours c3, . . . , cr
belonging to P \(c1∪c2) and such that τ(ci) = ci and the set P \

⋃r
i=1 ci decomposes

into surfaces P1 and P2 with τP1 = P2. Let us join the contours c1 and c2 by a
curve ` ⊂ P1 without self-intersections. Let d be a simple closed contour of the
form

d = ` ∪ f1 ∪ τ` ∪ f2,

where fi ⊂ ci is a segment joining the points `∩ ci and τ`∩ ci (see Fig. 3.1). Then
τ(d) = d+ c1 + c2, and hence

ω(d) = ω(d) + ω(c1) + ω(c2).

An Arf function ω on (P, τ) is said to be singular if there is a simple closed
contour c such that τ(c) = c, c ∩ P τ = ∅, and ω(c) = 0.

Lemma 3.2. If P τ 6= ∅, then any real Arf function on (P, τ) is non-singular.

Proof. Let c ⊂ P be a simple contour such that τ(c) = c and c ∩ P τ = ∅. Let
c′ ⊂ P τ be an oval of the real curve (P, τ). By Theorem 1.2, there is a set of
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Figure 3.1

simple, pairwise disjoint contours c1, . . . , cr ∈ P \ (c ∪ c′) such that τ(ci) = ci
and the difference P \

(
c ∪ c′ ∪

⋃r
i=1 ci

)
decomposes into surfaces P1 and P2 with

τP1 = P2. Let us join the contours c and c′ by a curve ` ⊂ P1 without self-
intersections. Let d be a simple closed contour of the form d = ` ∪ f ∪ τ`, where
f ⊂ c. Then τ(d) = d+ c, and hence ω(d) = ω(d+ c) = ω(d) + ω(c) + 1.

Lemma 3.3. A singular real Arf function vanishes on all invariant contours.

Proof. Let ω be a singular Arf function on a real algebraic curve (P, τ). Suppose
that there is a contour c ∈ P such that τc = c and ω(c) = 1. By Lemmas 1.2 and 3.2,
there is a complete system of invariant contours c, c1, . . . , cg that decompose P into
spheres P1 and P2 with holes. Let us join the contour ci to the contour c by a
segment `i ⊂ P1 and set

di = `i ∪ τ`i ∪ ri ∪ r,

where ri ⊂ ci (r ⊂ c) are arcs joining the points pi = `i ∩ ci and τpi (the points
p = `i ∩ c and τp, respectively). Let us consider a disc D1 ⊂ P1. We identify the
boundary contours of the surface P \ (D1 ∪ τD1) by means of the involution τ .

On the surface P̃ thus obtained, the involution τ induces an involution with oval

c̃ = ∂D1. Let us join the contour c̃ to the contour c by a segment ˜̀⊂ P1 and set

d̃ = ˜̀∪τ ˜̀∪ r̃, where r̃ ⊂ c is an arc joining the points p̃ = ˜̀∩c and τ p̃. The contours

{ci, di (i = 1, . . . , g), c̃, d̃} form a basis of H1(P̃ ,Z2). Let us consider the Arf

function ω̃ on P̃ such that ω̃(ci) = ω(ci), ω̃(di) = ω(di), and ω̃(c̃) = ω̃(d̃) = 0. Then

ω̃(c) =
∑g
i=1 ω̃(ci) =

∑g
i=1 ω(ci) = ω(c) and ω̃(τ d̃) = ω̃(d̃+ c) = ω̃(d̃) + ω̃(c) + 1 =

ω̃(d̃), and hence ω̃ is a real Arf function. By Lemma 3.2, this proves that ω̃ is equal
to one on all contours c′ of the surface P \ c̃ such that τc′ = c′. However, on these
contours, ω and ω̃ must coincide, and hence ω is non-singular. The contradiction
thus obtained shows that ω(c) = 0.

Theorem 3.1 [41]. A singular Arf function on a real curve (P, τ) of type (g, k, ε)
exists if and only if k = ε = 0. In this case, there are 2g real Arf functions, and all
of them are even.
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Proof. The condition k = ε = 0 for singular Arf functions follows from Lemma 3.2.
Suppose that k = ε = 0. Let us consider the standard basis {ci, di (i = 1, . . . , g)} ⊂
H1(P,Z2) with τci = ci and τdi = di + ci +

∑g
i=1 ci that was constructed in

the proof of Lemma 3.3. We set ω(ci) = 0 for all i, assign to ω(di) (i = 1, . . . , g)
arbitrary values in Z2, and extend ω to H1(P,Z2) by setting ω(a + b) =
ω(a) + ω(b) + (a, b). Then ω(τdi) = ω(di), and hence ω is a singular even real
Arf function. By Lemma 3.3, this construction gives all singular Arf functions
on (P, τ).

3. By the topological type of a non-singular Arf function ω on a real curve (P, τ) of
type (g, k, 0) we mean the triple (g, δ, kα), where δ = δ(P, ω) and kα (α = 0, 1) is
the number of ovals ci ∈ P τ such that ω(ci) = α.

Theorem 3.2 [41]. A triple (g, δ, kα) is the topological type of a non-singular Arf
function on a real curve of type (g, k, 0) if and only if k = k0+k1 6 g and k0 = g+1
(mod 2). In this case, there are ( kk0

) · 2g−1 such functions.

Proof. Let (P, τ)be a real curve of type (g, k, 0). By Theorem 1.2, there is a set

(c1, . . . , cg+1) of pairwise disjoint simple contours such that P τ =
⋃k
i=1 ci and

τ(ci) = ci. This set decomposes P into two spheres P1 and P2 with g+1 holes, and
τP1 = P2. Let ω be a non-singular Arf function on (P, τ). Then, by [47], § 8, the Arf
function ω

∣∣
P1

takes the value 1 on evenly many holes. Hence, if ω is non-singular,

then k1 + (g + 1− k) ≡ 0 (mod 2), that is, k0 ≡ g + 1 (mod 2).
We assume now that (g, δ, kα) is an arbitrary triple such that k0 + k1 6 g and

k0 ≡ g + 1 (mod 2). Let us join the contours ci and cg+1 by a segment `i ⊂ Pi
and consider a simple contour di = `i ∪ τ`i ∪ ri ∪ rg+1, where rj ⊂ cj . Then
τ(di) = di + cg+1 + αici, where αi = 0 for i 6 k and αi = 1 for i > k.

We now set ω(ci)=0 for an arbitrary k0-tuple of contours from among c1, . . . , ck.
We set ω(ci) = 1 on the other contours in {c1, . . . , cg}. Since k0 ≡ g + 1 (mod 2),
it follows that such contours do exist. Let cr be one of them, that is, let ω(cr) = 1.
We assign arbitrary values to ω(di), i 6= r, and let

ω(dr) = δ −
∑
i 6=r

ω(ci)ω(di).

Let us extend ω to the whole of H1(P,Z2) by setting

ω(a + b) = ω(a) + ω(b) + (a, b).

We can readily see that this construction gives all real non-singular Arf functions
of type (g, δ, kα).

4. Arf functions on curves of separating type (all such functions are automatically
non-singular) have additional topological invariants.

Let (P, τ) be a real curve of separating type and let P1∪P2 = P \P τ . Let us join
ovals ci, cj ∈ P τ by a segment `ij ⊂ P1 and consider the contour dij = `ij ∪ τ`ij .
Ovals ci and cj are said to be similar with respect to an Arf function ω on (P, τ) if
ω(dij) = 0.
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Figure 3.2

Theorem 3.3. The similarity relation is well defined, and it partitions the ovals
into at most two equivalence classes.

Proof. Let ˜̀ij ⊂ P1 be another segment joining ci and cj, let d̃ij = ˜̀
ij ∪ τ ˜̀ij ,

and let b ⊂ P1 ∪ P τ be a closed contour composed of `ij , ˜̀ij, and parts of the

ovals ci and cj . Then ω(dij + d̃ij) = ω(b + τb) = 2ω(b) = 0, and hence ω(dij) =

ω(dij + d̃ij) + ω(d̃ij) = ω(d̃ij). Thus, the definition of similarity does not depend
on the choice of the segment `ij . Suppose now that a ⊂ P1 ∪ P τ is a closed
contour formed by the segments `ij, `jk, and `ki and by parts of the ovals ci, cj ,
and ck (see Fig. 3.2). Then ω(dij + djk + dki) = ω(a + τa) = 2ω(a) = 0. Hence,
ω(dij) = ω(dik) + ω(dkj). Thus, if ci is (not) similar to ck and ck is (not) similar
to cj, then ci is similar to cj.

Let us choose some oval c ∈ P τ . Let Bc be the set of ovals similar to c. By
k0
α = k0

α(P, τ, ω) (by k1
α = k1

α(P, τ, ω), respectively) we denote the number of ovals
ci in the set Bc (in P τ \Bc, respectively) such that ω(ci) = α. The set of numbers
kγα (α, γ ∈ {0, 1}) is defined up to the simultaneous substituion kγα 7→ k1−γ

α related
to the choice of the contour c.

By the topological type of an Arf function ω on a real curve (P, τ) of type (g, k, 1)

we mean the triple (g, δ̃, kγα), where kγα = kγα(P, τ, ω), δ̃ = δ(P1, ω|P1), and P1∪P2 =
P \ P τ .

Theorem 3.4 [41]. A triple (g, δ̃, kγα) is the topological type of an Arf function on

a real curve (P, τ) of type (g, k, 1) if and only if (g̃, δ̃, k0
α+k1

α) is the topological type
of an Arf function on a surface of genus g̃ = 1

2(g+ 1− k) with k holes. In this case
the number of such Arf functions is(

k
k0

)
·
(
k0

k0
0

)
·
(
k1

k0
1

)
· 2g̃−2 · (2g̃ +m),

where m = 2g̃ for k1 > 0, m = 1 for δ̃ = 0, and m = −1 for k1 = 0 and δ̃ = 1. The
parity of the Arf function coincides with that of k0

1.
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Proof. If (g, δ̃, kγα) is the topological type of an Arf function on a real curve (P, τ) of

type (g, k, 1), then the set (g̃, δ̃, k0
α + k1

α) is the topological type of an Arf function
of the form ω

∣∣
P1

: H1(P1,Z2) → Z2, where P \ P τ = P1 ∪ P2. Let (P, τ) be a real

curve of type (g, k, 1), let P \ P τ = P1 ∪ P2, let ω̃ : H1(P1,Z2) → Z2 be an Arf

function on P1 of type (g̃, δ̃, k0
α+k1

α), and let v = {ai, bi (i = 1, . . . , g̃), cj (j = g̃+1,
. . . , g̃+k)} ⊂ H1(P1,Z2) be a standard basis. Let us partition the ovals ci arbitrarily
into groups A0

0, A1
0, A0

1, A1
1, where Aγα contains kγα contours. Let us join the ovals

ci and ck by segments `i ⊂ P1 and set di = `i ∪ τ`i. We assume that ω(ci) = α if
ci ∈ A0

α∪A1
α, and ω(di) = 0 if ci and ck belong to the same set of the form Aα0 ∪Aα1 .

Otherwise we set ω(di) = 1. Finally, we set ω(τai) = ω(ai) and ω(τbi) = ω(bi)
(i = 1, . . . , g̃). The relation

ω(a + b) = ω(a) + ω(b) + (a, b)

enables one to extend ω uniquely to an Arf function on (P, τ). We can readily see

that ω is of type (g, δ̃, kγα), and that the construction gives all Arf functions of this
type. The function ω is even for k1 = 0 and, for k1 > 0, its parity coincides with
that of the number of contours in A0

1 (recall that k0
1 + k1

1 is even).

§ 4. Lifting of real Fuchsian groups

1. By
J : SL(2,R)→ PSL(2,R) = Aut(Λ)

we denote the natural projection. Let

Γ ⊂ Aut(Λ)

be a Fuchsian group that consists of hyperbolic automorphisms. A subgroup Γ∗ ⊂
SL(2,R) is called a lifting of Γ if J(Γ∗) = Γ and J

∣∣
Γ∗

: Γ∗ → Γ is an isomorphism.
By [47], § 7, to the lifting Γ∗ there corresponds an Arf function

ωΓ∗ : H1(Λ/Γ,Z2)→ Z2,

which can be defined as follows. Let a′ ∈ Γ and let a ∈ H1(Λ/Γ,Z2) be the image
of a′ under the natural projection Pr : Γ→ π1(Λ/Γ)→ H1(Λ/Γ,Z2). Let

A = J−1(a′) ∩ Γ∗

and let Tr(A) be the trace of the matrix A ∈ SL(2,R). We set

ωΓ∗(a) =

{
0 for Tr(A) < 0,

1 for Tr(A) > 0.

By [47], Theorem 7.2, the correspondence Γ∗ 7→ ωΓ∗ between the liftings of the
group Γ and the Arf functions on P = Λ/Γ is one-to-one.

2. We consider now the group

SL±(2,R) = {A ∈ GL(2,R) | detA = ±1}.
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We extend the projection J to a homomorphism J : SL±(2,R)→ Ãut(Λ) by setting

J(A) =
az + b

cz + d
for A =

(
a b
c d

)
and detA = −1.

Let Γ̃ be a real Fuchsian group. A subgroup Γ̃∗ ⊂ SL±(2,R) is called a lifting

of Γ̃ if J(Γ̃∗) = Γ̃ and J
∣∣
Γ̃∗

: Γ̃∗ → Γ̃ is an isomorphism. It is clear that a lifting Γ̃∗

of the group Γ̃ induces a lifting Γ∗ = Γ̃∗ ∩ SL(2,R) of the group Γ = Γ̃ ∩Aut(Λ),
and hence an Arf function ωΓ̃∗ = ωΓ∗ : H1(Λ/Γ,Z2)→ Z2.

Lemma 4.1. The Arf function ωΓ̃∗ is a non-singular Arf function on the real

curve [Γ̃].

Proof. The Arf function ωΓ̃∗ is real because, for any α ∈ Γ̃∗ \ Γ∗, a′ ∈ Γ, and
a = Pr(a

′), we have

ωΓ̃∗(τa) = Tr
(
α(J−1(a′) ∩ Γ∗)α−1

)
= Tr

(
J−1(a′) ∩ Γ∗

)
= ωΓ̃∗(a).

Let us prove that ωΓ̃∗ is non-singular. Let c ⊂ P \P τ be a simple contour such that
τc = c and let C ⊂ Γ be its image under the natural isomorphism π1(Λ/Γ, p)→ Γ.
Let

C̃∗ = J−1(C̃) ∩ Γ̃∗ =

(
a b
c d

)
,

where C̃ = C
√
C (see § 2.4). Then

J−1(C) ∩ Γ∗ = (C̃∗)2 =

(
a b
c d

)2

.

Hence,
Tr
(
J−1(C) ∩ Γ∗

)
> 0, and ω(c) = 1.

Liftings Γ̃∗1 and Γ̃∗2 of a real Fuchsian group Γ̃ are said to be similar if (Γ̃∗1 \Γ∗) =

−(Γ̃∗2 \ Γ∗).

Lemma 4.2. Let ω be a non-singular Arf function on [Γ̃]. Then there are exactly

two liftings Γ̃∗ of the group Γ̃ for which ωΓ̃∗ = ω, and these liftings are similar.

Proof. By [47], § 7, there is a unique lifting Γ∗ ⊂ SL(2,R) of the group Γ =

Γ̃ ∩ Aut(Λ) with ωΓ∗ = ω. Therefore, any lifting Γ̃∗ of the group Γ̃ with ωΓ̃∗ = ω

is generated by Γ∗ and a matrix α such that J(α) ∈ Γ̃ \ Γ. If (J(α))(z) =
az + b

cz + d
,

then α = ±
(
a b
c d

)
. Since the Arf function ω is real, we have Tr(αAα−1) = Tr(A)

for A ∈ Γ∗, and hence αΓ∗α−1 = Γ∗. Thus, the group Γ̃∗ generated by Γ∗ and α is

a lifting of the group Γ̃.

Lemmas 4.1 and 4.2 imply the following assertion.
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Theorem 4.1 [44]. The correspondence Γ̃∗ 7→ ωΓ̃∗ between similarity classes of

liftings of a real Fuchsian group Γ̃ and non-singular Arf functions on a real curve

[Γ̃] is one-to-one.

3. The natural isomorphism π1(Λ/Γ, p) → Γ sends each free homotopy class of a
contour c ∈ P = Λ/Γ to a conjugacy class Γc ⊂ Γ that does not depend on the
choice of p. Thus, to each simple geodesic contour c ∈ P there corresponds a set
Γc ⊂ Γ, and Φ(`(C)) = c if C ∈ Γc and Φ: Λ→ P is the natural projection.

We assume now that Γ̃ is a real Fuchsian group and c is an oval of a curve

(P, τ) = [Γ̃]. Let us consider C ∈ Γc. Replacing the group Γ̃ by a conjugate group,

we may assume that `(C) = I = {z ∈ Λ | Re z = 0}. Then Γ̃ contains the involution

β(z) = −z. A lifting Γ̃→ Γ̃∗ maps β into a matrix of the form σ

(
−1 0
0 1

)
, where

σ = ±1. Let us endow the half-line I with the orientation in which Im z increases
for σ = 1 and with the opposite orientation for σ = −1. The projection Φ transfers
the orientation to the contour c = Φ(I). The latter’s orientation is completely

determined by the lifting Γ̃∗ and is called the orientation generated on the oval by

the lifting Γ̃∗.

Lemma 4.3 [36]. Let Γ̃∗ be a lifting of a real Fuchsian group Γ̃, let (P, τ) = [Γ̃],
let c1 and c2 be ovals of the involution τ endowed with the orientation generated by

Γ̃∗, and let a ⊂ P be a simple oriented contour intersecting c1 and c2 and such that
τa = −a. Then a has the same intersection numbers with c1 and c2 if and only if
ωΓ̃∗(a) = 1.

Proof. Replacing the group Γ̃ by a conjugate group, we may assume that Γa ⊃ A,
where A(z) = λz and λ > 1.

In this case we have Γci ⊃ Ci (because τa = −a, ci∩a 6= ∅, and ci ⊂ P τ), where

Ci =
αi(λi + 1)z + α2

i (λi − 1)

(λi − 1)z + αi(λi + 1)
, λi > 1, Ci =

α2
i

z
,

and A = C1C2 (see Fig. 4.1). We set A∗ = J−1(A) ∩ Γ̃∗, C∗i = J−1(Ci) ∩ Γ̃∗, and

C
∗
i = J−1(Ci)∩ Γ̃∗. Then, by the definition of the orientation generated by Γ̃∗, we

obtain C
∗
i = −

(
0 αi
α−1
i 0

)
, and hence

A∗ = C
∗
1C
∗
2 = −

(
α1α

−1
2 0

0 α−1
1 α2

)
.

On the other hand, the intersection numbers of the contour a with the ovals c1 and
c2 coincide if and only if the attracting fixed points α1 and α2 have the same sign.
This is equivalent to the condition Tr(A∗) > 0, or, which is the same, ωΓ̃∗(a) = 1.

4. We assume now that c ⊂ P is an invariant contour of a curve (P, τ) = [Γ̃] such

that c∩P τ = ∅. Let us considerC ∈ Γc. As above, replacing Γ̃ by a conjugate group,
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Figure 4.1

Figure 4.2

we may assume that l(C) = I. Hence, the group Γ̃ contains a map of the form

β(z) = −λz, where λ > 0. A lifting Γ̃→ Γ̃∗ sends β into a matrix of the form

σ

(
−λ 1

2 0
0 λ−

1
2

)
,

where σ = ±1. As above, we endow I with the orientation in which Im z increases
for σ = 1, and with the opposite orientation for σ = −1. The projection Φ transfers
the orientation to the contour c = Φ(I). The latter’s orientation depends only on

the lifting Γ̃∗ and is called the orientation generated on the invariant contour by

the lifting Γ̃∗.

Theorem 4.2. Let Γ̃∗ be a lifting of a real Fuchsian group Γ̃ and let (P, τ) = [Γ̃] be
a real algebraic curve of type (g, k, 0). Let (c1, . . . , cg) be a set of pairwise disjoint

simple contours such that P τ =
⋃k
i=1 ci and τ(ci) = ci. Then there is an invariant

contour cg+1 that is disjoint from the above contours and that, together with the
contours (c1, . . . , cg), decomposes the surface P into spheres P1 and P2 with holes

so that the orientation of c1, . . . , cg generated by Γ̃∗ coincides with their orientation
as parts of the boundary of one of the surfaces Pi.

Proof. By Lemma 1.2, there is a set of pairwise disjoint invariant contours c1, . . . ,

cg, c belonging to P and such that P τ=
⋃k
i=1 ci and the set P \

(⋃g
i=1 ci ∪ c

)
decomposes into two spheres with holes. Let us endow the contours c1, . . . , cg
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with the orientation generated by the lifting Γ̃∗. Their images on the surface P̃ =
P \

⋃g
i=1 ci are represented by pairs of contours c′i and c′′i of opposite orientation,

where c′i and c′j belong to the same connected components of the surface P̃ \ c
(see Fig. 4.2). Symmetrically modifying the contour c as shown in Fig. 4.2, we can
pass from c to a symmetric contour cg+1 that separates the contours of different
orientation.

§5. Rank-one spinors on real algebraic curves

1. We recall that a linear bundle e : E → P is said to be a spinor bundle of rank one
if the tensor square of this bundle coincides with the cotangent bundle. In what
follows, unless otherwise stated, a spinor bundle is understood to be a rank-one
spinor bundle over a Riemann surface P .

In [47], § 10, a one-to-one correspondence is established between the liftings Γ∗

of a Fuchsian group Γ and the spinor bundles on P = Λ/Γ. A spinor bundle eΓ∗

corresponding to Γ∗ is of the form

(Λ×C)/Γ∗ → Λ/Γ,

where Γ∗ acts on (Λ× C) by the rule(
a b
c d

)
(z, x) =

(
az + b

cz + d
, (cz + d)x

)
.

Thus, the correspondence eΓ∗ → Γ∗ → ωΓ∗ established between spinor bundles and
Arf functions on P = Λ/Γ by the map e→ ωe is one-to-one.

2. By a spinor bundle on a real curve (P, τ) we mean a pair (e, β), where e : E → P
is a spinor bundle and β : E → E is an antiholomorphic involution such that eβ =
τe. Two spinor bundles (e1, β1) and (e2, β2) on curves (P1, τ1) and (P2, τ2), respec-
tively, are assumed to be isomorphic if there are biholomorphic maps ϕE : E1 → E2

and ϕP : P1→ P2 such that

e2ϕE = ϕP e1, β2ϕE = ϕEβ1, τ2ϕP = ϕP τ1.

As usual, we do not distinguish between isomorphic bundles.

With any lifting Γ̃∗ of a real Fuchsian group Γ̃ we associate a spinor bundle
eΓ̃∗ on the real curve (P, τ) = [Γ̃]. By definition, the bundle eΓ̃∗ is of the form
(eΓ∗ , βΓ̃∗), where βΓ̃∗ : (Λ× C)/Γ∗ → (Λ ×C)/Γ∗ is generated by the map

(z, x) 7→
(
az + b

cz + d
, (cz + d)x

)
,

(
a b
c d

)
∈ Γ̃∗ \ Γ̃.

Lemma 5.1. The correspondence Γ̃∗ 7→ eΓ̃∗ between similarity classes of liftings

Γ̃∗ of a real Fuchsian group Γ̃ and spinor bundles on (P, τ) = [Γ̃] is one-to-one.

Proof. Let (e, β) be an arbitrary spinor bundle on (P, τ). By [47], § 10, there is a

unique lifting Γ∗ of the group Γ = Γ̃ ∩Aut(Λ) such that

e : (Λ× C)/Γ∗ → Λ/Γ.
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By replacing the group Γ̃ by a conjugate group, we may assume that Γ̃ contains a
map of the form

z 7→ −µz,

where µ > 1. Let µ∗ be the minimal value of all these µ’s. We set ν =
√
µ∗.

Then the group Γ∗ and the matrices ±
(
−ν−1 0

0 ν

)
generate some liftings Γ̃∗+ and

Γ̃∗− of the group Γ̃. These are the only liftings of Γ̃ that contain Γ∗. Moreover,
eΓ̃∗±

= e, and an isomorphism between eΓ̃∗+
and eΓ̃∗−

is generated by the involution

(z, x) 7→ (z,−x).

By Lemma 2.1 and Theorem 4.1, this immediately yields the following assertion.

Theorem 5.1 ([36], [44]). The correspondence e 7→ ωe between spinor bundles and
non-singular Arf functions on a real curve (P, τ) is one-to-one.

Let (e, β) be a spinor bundle on a real curve (P, τ). Applying Lemmas 2.1
and 5.1, we construct an isomorphism

(e, β)→ (eΓ̃∗ , βΓ̃∗),

where Γ̃∗ is a lifting of a real Fuchsian group Γ̃ and (P, τ) = [Γ̃]. Let us endow

the ovals and the invariant contours of [Γ̃] disjoint from them with the orientation

induced by Γ̃∗ (see § 4). Thus, a spinor bundle (e, β) on a real curve (P, τ) generates
an orientation on the ovals and the invariant contours of (P, τ) disjoint from them.
This orientation is defined up to its simultaneous reversal on all ovals and invariant
contours.

3. A holomorphic section η : P → E of a spinor bundle e : E → P is called a spinor.
A section η of an arbitrary spinor bundle (e, β) on a real curve (P, τ) is called a

real spinor if βη = ητ . Let {Γ̃∗1, Γ̃∗2} be a similarity class that corresponds to the
bundle (e, β) by Lemma 5.1. Then the spinor η can be regarded as a section of the

spinor bundle eΓ∗ , where Γ∗ = Γ̃∗1 ∩ Γ̃∗2. Moreover, η is invariant with respect to
one of the involutions βΓ̃∗i

and is anti-invariant with respect to the other. To be

definite, let βΓ̃∗1
η = ητ . The orientation generated by the lifting Γ̃∗1 on the ovals

and invariant contours of (P, τ) is called the orientation generated by η.
A local chart u : U → C in a neighbourhood of a real point p0 ∈ P τ is said to

be real if τU = U and u(τp) = u(p). In this case u(U ∩ P τ) ⊂ R. We say that the
local chart u agrees with the spinor η if the spinor generates an orientation of the
oval ap0 that passes under the action of u into the orientation of increasing real
values on R ⊂ C.

A local chart on a Riemann surface defines a local trivialization of the cotangent
bundle, and hence a local trivialization of the spinor bundle. Thus, in the local
chart u, a complex function f(u) corresponds to the spinor.

Lemma 5.2. Let (e, β) be a spinor bundle on a real curve (P, τ) and let η be a
real spinor of this bundle. Then in any real chart u : U → C that agrees with η, the
spinor η is described by a function f(u) such that f(uτ) = f(u).
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Proof. We set ie : (z, x) 7→ (iz, x). By Lemmas 2.1 and 5.1, we may assume that

(P, τ) = [Γ̃], e : (Λ× C)/Γ∗ → [Γ],

(
−1 0
0 1

)
∈ Γ̃∗ \ Γ∗,

and that eie : (−iΛ × 0) → P generates a real chart u that agrees with η. In this
chart, the relation βη = ητ becomes

(uτ, f(u) ) = βΓ̃∗(u, f(u)) = (uτ, f(uτ)),

and hence f(u) = f(uτ). A passage to any other real chart that agrees with η
preserves this relation.

Theorem 5.2 ([42], [44]). Let (e, β) be a spinor bundle on a real curve (P, τ), let
η be a real spinor of this bundle, and let a be an oval of the curve (P, τ). Then the
parity of the number of zeros of η on a is opposite to the parity of ωe(a).

Proof. By Lemmas 2.1 and 5.1, we may assume that

(P, τ) = [Γ̃], e : (Λ× C)/Γ∗ → [Γ],

(
−1 0
0 1

)
∈ Γ̃∗ \ Γ∗,

a = I/Γ, where I = {z ∈ Λ | Re z = 0}.

In the local chart u generated by the projection e : (Λ × 0) → P , the spinor η is
represented in the form (u, f(u)), where u ∈ Λ and f(u) is a holomorphic function
such that

f

(
αu+ β

γu + δ

)
= f(u)(γu + δ)

for any element

(
α β
γ δ

)
∈ Γ∗.

Corresponding to the contour a is the matrix

A = σ(a)

(
λ 0
0 λ−1

)
∈ Γ∗,

where

σ(a) =

{
1 for ω(a) = 1,

−1 for ω(a) = 0.

Thus, f(λ2u) = σ(a)f(u). Moreover, the natural projection Λ → Λ/Γ establishes
a one-to-one correspondence between the interval (v, λ2v] ∈ I and the contour a.
Hence, the number of zeros of the spinor η on a is equal to that of the function
f(u) on the interval (v, λ2v] ∈ I. On the other hand, the map e : (Λ × 0) → P
generates a real chart in a neighbourhood of each point of the oval a, and hence,
by Lemma 5.2, f(u) is real on (v, λ2v] ∈ I. Thus, the number of zeros of f in
(v, λ2v] ∈ I is even for σ(a) = 1 and odd for σ(a) = −1.



Moduli of real algebraic curves, and their superanalogues 1113

4. Theorem 5.3 ([42], [44]). Let c1, . . . , ck be oriented ovals of a real algebraic

curve (P, τ) of type (g, k, 0). Let 0 6 m 6 k, α1, . . . , αk ∈ Z2, and let
∑k
i=1 αi ≡

g + 1(mod 2). Then there is a real spinor η on (P, τ) such that 1) the orientation
of the oval ci generated by η coincides with the original orientation if and only if
i 6 m, 2) the parity of the number of zeros of the spinor η on the oval ci is equal
to αi.

Proof. By Theorem 1.2, there is a set of pairwise disjoint and τ -invariant contours
c1, . . . , cg+1 that decompose P into spheres P1 and P2 with holes. The orientation of
P1 generates a new orientation on ∂P1 = {c1, . . . , cg+1}. Without loss of generality,
we may assume that the new orientation coincides on c1 with the original one. Let
us join the contour cg+1 with ci by a segment `i ⊂ P1 and consider the simple
contour di = `i ∪ τ`i ∪ ri ∪ rg+1, where rj ⊂ cj. We set ω(ci) = 1 − αi for i 6 k
and ω(ci) = 1 for k < i 6 g. For 1 6 i 6 m we set ω(di) = 0 if and only if
the orientation generated by P1 coincides with the original orientation of ci. For
m < i 6 k we set ω(di) = 0 if and only if the orientation generated by P1 is opposite
to the original orientation of ci. For k < i 6 g we set ω(di) = 0. The function ω
can be uniquely extended to an Arf function ω : H1(P,Z2)→ Z2, and ω(cg+1) = 1

because
∑k
i=1 αi ≡ g + 1 (mod 2). Moreover, τdi = −di + cg+1 + c̃i, where

c̃i =

{
0 for i 6 k,
ci for i > k.

Thus, ω(τdi) = ω(−di + cg+1 + c̃i) = ω(di), and hence ω is a real Arf function.

By Lemma 3.3, it is non-singular. By Lemma 2.1, (P, τ) = [Γ̃], where Γ̃ is a real

Fuchsian group. In view of Lemma 4.2 we have ω = ωΓ̃∗ , where Γ̃∗ is a lifting of

the group Γ̃. By definition, ωe = ω, where (e, β) = (eΓ∗ , βΓ̃∗).
Along with ω, we consider a real Arf function ω′ such that ω′(ci) = ω(ci) and

ω′(di) = 1 − ω(di). Corresponding to this function is a real spinor bundle (e′, β′)
such that ωe′ = ω′. Moreover,

δ(ω) + δ(ω′) =

g∑
i=1

ω(ci) = 1

because
∑k
i=1 αi ≡ g + 1 (mod 2). Hence, either δ(ω) = 1 or δ(ω′) = 1. To be

definite, let δ(ωe) = δ(ω) = 1. By [2] and [30], this implies that the bundle e has
a holomorphic section ξ. Then one of the sections η = ξ + βξ and η = i(ξ − βξ) is
a non-zero real section of the bundle (e, β). By Lemmas 4.3 and Theorem 5.2, this
section has the properties indicated in Theorem 5.3.

Theorem 5.4 ([42], [44]). Let (P, τ) be a real algebraic curve of type (g, k, 1). Let
its ovals c1, . . . , ck be orietned as parts of the boundary of a connected component
P1 of the set P \ P τ . Consider a set α1, . . . , αk ∈ Z2 that has evenly many zeros
and for which α1 = αk = 0. Let 1 6 m < k and let

∑m
i=1 αi ≡ m + 1 (mod 2).

Then there is a real spinor η on (P, τ) such that 1) the orientation generated on
the oval ci by η coincides with the original one if and only if i 6 m, 2) the parity
of the number of zeros of η on ci is equal to αi.

Proof. Let us join the ovals ci and ck by a segment `i ⊂ P1 and set di = `i ∪ τ`i
(i = 1, . . . , k − 1). Let us consider an arbitrary Arf function ω1 on P1 such that
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ω1(ci) = 1− αi. (Such a function exists by [47], Lemma 8.1.) Let us extend it to
an Arf function ω on P by assuming that ω(τw) = ω(w) for w ∈ H1(P1,Z2) and
that ω(di) = 1 if and only if i 6 m. Then δ(ω) = 1. The rest of the proof coincides
with the corresponding part of the proof of Theorem 5.3.

§6. Holomorphic differentials on real algebraic curves

1. In this section we assume that the ovals of a real algebraic curve X = (P, τ)
are endowed with an orientation. This orientation is induced by an orientation of
one of the connected components of the set P \ P τ if ε(X) = 1. We say that a real
chart u : U → C agrees with the orientation of the set P τ if u sends an oriented
segment ` = U ∩ P τ into the segment u(`) ⊂ R oriented by increasing order of the
reals.

We recall that a holomorphic differential on a Riemann surface P is defined to
be a section ξ : P → T ∗ of the cotangent bundle t : T ∗ → P . We assume now
that (P, τ) is a real algebraic curve. The involution τ induces the antiholomorphic
involution τ∗ : T ∗ → T ∗ such that tτ∗ = τt. A differential ξ is said to be real if
τ∗ξ = ξτ . In a real chart, it becomes ξ = f(u)du, where f(u) = f(u). In particular,
f(u(p)) ∈ R for p ∈ P τ . The sign of the number f(u(p)) ∈ R is the same for all
real charts that agree with the orientation of the set P τ , and it is called the sign
of the differential ξ at the point p ∈ P τ .

We say that a real differential ξ is positive (non-negative, non-positive, negative,
respectively) on an oval a ⊂ P τ if it is positive (non-negative, non-positive, and
negative, respectively) at any point of the oval.

Lemma 6.1. Let η be a real spinor on the curve (P, τ). Then ξ = η2 is a real
differential that is non-negative on the oval a ⊂ P τ if the orientation generated
by η coincides with the original orientation, and non-positive on a if the orientation
generated by η is opposite to the original one.

Proof. If the spinor η is described by a function f(u) in a real chart u : U → C that
agrees with the orientation of P τ , then ξ = f2(u)du. If, in addition, the orientation

of the oval a is generated by η, then it follows from Lemma 5.2 that f(uτ) = f(u)
and f2 is non-negative on a. A change of orientation of the oval changes the sign
of f2.

Theorem 6.1 ([34], [44]). Let (P, τ) be a real algebraic curve of type (g, k, ε) with
ovals c1, . . . , ck, where k = k+ + k− + k0, k0 < g, and let k+ · k− 6= 0 for ε = 1.
Then there is a real differential on (P, τ) that is non-negative on ci for i 6 k+,
non-positive on ci for k+ < i 6 k+ + k−, and has zeros on ci for i > k+ + k−.

Proof. By Theorems 5.3 and 5.4, there is a real spinor η that has zeros on ck++k−+1,
. . . , ck and generates on any other oval ci an orientation that coincides with that
of P τ for i 6 k+ and is opposite to the orientation of P τ for k+ < i 6 k+ + k−.
Then by Lemma 6.1, the differential ξ = η2 has the desired properties.

2. Let us consider in more detail the real M -curves, that is, curves of type
(g, g + 1, 1).
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Lemma 6.2. Let c1, . . . , cg+1 be ovals of an M -curve of genus g and let 1 6 α 6
n < β 6 g+1. Then there is a real differential ξ1 that is positive on cα, non-negative
on c1, . . . , cn, negative on cβ, and non-positive on cn+1, . . . , cg+1.

Proof. By Theorem 5.4, there is a real spinor η that generates on c1, . . . , cn the
original orientation, generates on cn+1, . . . , cg+1 the orientation opposite to the
original one, and has zeros on the ovals ci with i 6= α, β. However, the total
number of zeros of the spinor is g − 1 [30]. Hence, η has no zeros on cα and cβ.
Thus, by Lemma 6.1, the real differential ξ = η2 satisfies all hypotheses of the
lemma.

This immediately yields the following assertion.

Lemma 6.3. Let c1, . . . , cg+1 be the ovals of an M -curve of genus g and let 1 6
n < g + 1. Then there is a real differential ξ that is positive on c1, . . . , cn and
negative on cn+1, . . . , cg+1.

Lemma 6.4. Let α1 < · · · < α2g+2 be real numbers, let h(x) =
∏2g+2
i=1 (x − αi),

let P be the Riemann surface of the algebraic curve y2 = h(x), and let τ : P → P
be the antiholomorphic involution generated by the correspondence (x, y) 7→ (x, y).
Then (P, τ) is a real M -curve of genus g each of whose real differentials is positive
on one of the ovals.

Proof. The ovals of the curve (P, τ) correspond to the segments [α2i−1, α2i]. Any
real differential on (P, τ) is of the form

ξf =
f(x) dx√
h(x)

,

where f is a polynomial with real coefficients and of degree at most g − 1. If
f(x) > 0, then the differential has opposite signs on the ovals corresponding to
neighbouring segments. Therefore, if on any oval the differential ξf is not positive,
then f has more than g − 1 zeros. This is impossible because deg f 6 g − 1.

Theorem 6.2 [34]. For any real differential on an M -curve, there is an oval on
which this differential is positive and an oval on which it is negative.

Proof. Let M̃ be the set of all M -curves of genus g with an ordered set of ovals

c1, . . . , cg+1. Let us consider a bundle ẽ : Ẽ → M̃ with fibre ẽ−1(P, τ) that consists
of all real differentials on (P, τ). We take a basis of ẽ−1(P, τ) that is formed by
differentials ξi = ξi(P, τ) such that

∮
ci
ξj = δij (i, j 6 g). The correspondence

ξi(P, τ) 7→ ξi(P
′, τ ′) defines a connection F on ẽ.

A real differential is called a differential of type A (of type B) if each of the ovals
contains points at which the differential is non-positive (negative, respectively). Let
MA (MB) be the set of M -curves that admit a differential of type A (of type B,
respectively). Then MA is a closed set. Using the connection F , we can readily
prove that MB is an open set. Moreover, MA ⊃MB. Let us prove that MA ⊂MB .
Let (P, τ) ⊂MA and let ξ be a differential of type A on (P, τ). Since

g+1∑
i=1

∫
ci

ξ = 0,
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it follows that the differential is negative at least at one point. Let c be an oval
containing such a point. By Lemma 6.3, there is a real differential γ that is positive
on c and negative on the other ovals. Then the differential ξ + αγ is of type B for

a sufficiently small α. Thus, MA = MB is an open and closed set in M̃ .

However, by Theorem 2.1, M̃ is a connected set, and hence if MA 6= ∅, then

MA = M̃ . The latter relation contradicts Lemma 6.4, according to which the set

M̃ \MA contains hyperelliptic curves. Thus, MA = ∅, that is, any real differential
on an M -curve is positive on one of the ovals. We can prove similarly that it is also
negative on one of the ovals.

Theorem 6.3 [34]. Let 1 6 k 6 g+ 1, k ≡ g+ 1 (mod 2), and m > k−
[
k
2

]
. Then

there is a real algebraic curve of type (g, k, 1) with ovals c1, . . . , ck and such that on
this curve any real differential without zeros on c1, . . . , cm must be positive on one
of the ovals and negative on another.

Proof. Let us consider the Riemann surface P of the curve

y4 − 2y2[(x− β1) · · · (x− βm) − (x− α1) · · · (x− αn)]

+ [(x− β1) · · · (x − βm) + (x− α1) · · · (x− αn)]2 = 0,

where α1 < · · · < αn 6 β1 < · · · < βm ∈ R, n > 0, and n,m ≡ 0 (mod 2). This
surface is obtained by resolution of singularities from the set(

(x, y) ∈ C2 | y = ±
√

(x− α1) · · · (x − αn) ±
√
−(x− β1) · · · (x− βm)

)
.

The correspondences

τ : (x, y) 7→ (x, y),

τα :
(
x,±

√
−(x− α1) · · · (x− αn) ±

√
(x− β1) · · · (x− βm)

)
7→
(
x,∓

√
(x− α1) · · · (x− αn)±

√
−(x− β1) · · · (x − βm)

)
and

τβ :
(
x,±

√
−(x− α1) · · · (x− αn) ±

√
(x− β1) · · · (x− βm)

)
7→
(
x,±

√
(x− α1) · · · (x− αn)∓

√
−(x− β1) · · · (x − βm)

)
define commuting involutions on P .

We can readily see that (P, τ) is a real algebraic curve of type (g, k, 1), where

g =

{
n +m− 1 for αn < β1,

n +m− 2 for αn = β1

and

k =

{
n for αn < β1,

n − 1 for αn = β1.
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The involution τα preserves each of the ovals, and the involution τβ pairwise trans-
poses the ovals for αn < β1 and preserves exactly one oval for αn = β1. Let us
number the ovals c1, . . . , ck so that τci = ck+1−i. We assume that there is a real
differential ξ that is positive on the ovals c1, . . . , cn/2 and is not negative on the
other ovals. Then the differential ξ + ξβ is negative on no oval. The involution τ

induces an antiholomorphic involution τ̃ : P̃ → P̃ on the surface P̃ = P/ 〈β〉. We

can readily see that (P̃ , τ̃) is an M -curve of genus (n/2)−1. The differential ξ+ ξβ

induces a real differential on the curve (P̃ , τ̃) that is negative on no oval. This
contradicts Theorem 6.2, and thus shows that there is no such differential ξ.

§ 7. Analogues of Fourier series, and the Sturm–Hurwitz
theorem on real algebraic curves of arbitrary genus

1. The simplest real algebraic curve is the Riemann sphere C = C ∪∞ with the
antiholomorphic involution τC : z 7→ 1/z. The curve (C, τC) has a unique oval,
namely,

c = {z ∈ C | |z| = 1} = {eiψ |ψ ∈ R}.

We consider meromorphic functions f : C → C such that f(τCz) = f(z). The
simplest functions of this form are holomorphic away from 0 and ∞. They can be
represented by Fourier series

f(z) =
∞∑
n=0

(
ancn(z) + bnsn(z)

)
,

where

cn(z) =
1

2
(zn + z−n)

and

sn(z) =
1

2i
(zn − z−n).

The restrictions of sn and cn to c are the classical trigonometric functions

sn(eiψ) = sinnψ, cn(eiψ) = cosnψ.

2. We assume now that (P, τ) is a real algebraic curve of type (g, k, 1) with generic
points p+, p− ∈ P \ P τ such that τp+ = p−. Instead of functions, we consider
tensors of integer and half-integer weight λ, that is, sections of the line bundle
E⊗2λ → P̃ , where (E, β) is the real spinor bundle on (P̃ , τ) and 2λ ∈ Z, that are

meromorphic on P and holomorphic on P̃ = P \ (p+∪ p−). Let Mλ be the space of
such tensors. According to [27], if λ 6= 0, 1 or |n| > g

2
, then for any integer n+(g/2)

there is a unique tensor fλn ∈ Mλ with the asymptotic behavior

fλn = z±n−s±
(
1 +O(z±)

)
(dz±)λ,
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where z± belongs to a neighbourhood of the corresponding point p± and s =
s(λ, g) = g

2
−λ(g−1). The involutions β and τ induce involutions βλ : E⊗2λ → E⊗2λ

and τλ : Mλ →Mλ, where τλf(p) = βλf(τp). We can readily see that τλf
λ
n = fλ−n.

A tensor ξ ∈ Mλ is said to be real if τλξ = ξ. In a real local chart, this tensor takes
real values on P τ .

The analogues of the functions cos nx and sinnx are the real tensors

cλn =
1

2
(fλn + fλ−n) and sλn =

1

2i
(fλn − fλ−n),

where n > 0. The corresponding analogue of the addition theorem for trigonometric
functions is as follows.

Theorem 7.1. Let λ1, λ2, λ1 + λ2 6= 0, 1 or let n1 + n2 > g. Then

cλ1
n1
cλ2
n2
− sλ1

n1
sλ2
n2

=

g
2∑

n=− g2

δnc
λ1+λ2
n1+n2−n, cλ1

n1
sλ2
n2
− cλ2

n2
sλ1
n1

=

g
2∑

n=− g2

ηns
λ1+λ2
n1+n2−n,

where δn, ηn ∈ R.

Proof. By [27],

fλn f
µ
m =

g
2∑

k=− g2

Qλ,µ,kn,m fλ+µ
n+m−k.

The relation τλf
λ
n = fλ−n implies

Qλ,µ,k−n,−m = Q
λ,µ,−k
n,m .

Thus,

cλ1
n1
cλ2
n2
− sλ1

n1
sλ2
n2

=
1

4
(fλ1
n1

+ fλ1
−n1

)(fλ2
n2

+ fλ2
−n2

) +
1

4
(fλ1
n1
− fλ1
−n1

)(fλ2
n2
− fλ2
−n2

)

=
1

2
(fλ1
n1
fλ2
n2

+ fλ1
−n1

fλ2
−n2

)

=
1

2

g
2∑

n=− g2

(Qλ1,λ2,n
−n1,−n2

+Q
λ1,λ2,n

n1,n2
)(fλ1+λ2

n1+n2−n + fλ1+λ2
−n1−n2+n)

=

g
2∑

n=− g2

δnc
λ1+λ2
n1+n2−n,

where δn = 2 ReQλ1,λ2,n
n1,n2

. The other relation can be proved similarly.

The corresponding analogue of Fourier’s theorem is as follows.
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Theorem 7.2 [43]. Each real tensor fλ of weight λ 6= 0, 1 can be uniquely repre-
sented in the form

fλ =
∞∑
k=0

(akc
λ
k + bks

λ
k ),

where ak, bk ∈ R.

Proof. According to [27], we have

fλ =
∞∑
n=0

(αnf
λ
n + βnf

λ
−n) =

∞∑
n=0

(anc
λ
n + bns

λ
n),

where an = αn + βn and bn = i(αn − βn). The relation τfλ = fλ yields βn = αn,
and hence an, bn ∈ R.

The following assertion is an analogue of the classical Sturm–Hurwitz theo-
rem [22].

Theorem 7.3 [43]. Let λ 6= 0, 1 or n > g/2. Then the real tensor

F =
∞∑
k=n

(akc
λ
k + bks

λ
k)

has at least 2n− g zeros on the ovals of P τ .

Proof. Let D be a divisor of the tensor cλn. It is of the form D=D1 + D0 + D2,
where D0 ∈ P τ , P \P τ = P1 ∪ P2, Di ∈ Pi, and τD1 = D2. Let p+ ∈ P1, let n0 be
the degree of D0, and let n1 be the degree of D1. We set G =

∑∞
k=n αkf

λ
k , where

αk = 1
2(ak − ibk). Let us consider a system of pairwise disjoint arcs and contours

L ⊂ P1 such that Q = P1 \ L is a simply connected domain (see Fig. 7.1). Let
c ⊂ Q be a simple contour on Q− p+ that is not homotopic to zero. In the domain
bounded by c, the function f = G/cλn has a zero at p+ of multiplicity 2n, and at
most n1 poles. Therefore, the contour f(c) goes around 0 at least 2n − n1 times,
and hence intersects ImC = {z ∈ C | Rez = 0} at least 2(2n − n1) times. As c
tends to the boundary of the domain Q, we see that f(P τ ) intersects ImC at least
4n− (2n1 + n0) = 2n− g times. However, if p ∈ P τ and f(p) ∈ ImC, then

F (p) = G(p) + (τG)(p) = cλ1 (p)
(
f(p) + f(τ(p))

)
= 0.

Hence, F has at least 2n− g zeros on P τ .

Figure 7.1
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Remark. In the case of g = λ = 0, Theorem 7.3 was proved by Hurwitz [22]. In
this case it has been re-proved more than once by various methods in connection
with important applications in singularity theory. The above proof is similar to
the original Hurwitz proof for the case in which g = λ = 0 in the interpretation of
Arnol’d.

§ 8. Jacobians and θθθ-functions of real algebraic curves

1. We recall some facts from the classical theory of Riemann surfaces [19]. Let P
be a compact Riemann surface of genus g. A homology basis

{ai, bi (i = 1, . . . , g)} ∈ H1(P,Z)

is said to be symplectic if the intersection numbers of the cycles are of the form

(ai, aj) = (bi, bj) = 0, (ai, bj) = δij .

We say that a basis ξ1, . . . , ξg of the space of holomorphic differentials on P is

generated by a symplectic basis {ai, bi} if

∮
ak

ξj = 2πiδkj. In this case, the matrix

B = (Bkj) given by Bkj =

∮
bk

ξj is symmetric and has negative-definite real part

ReB = (ReBij). This enables one to define a θ-function θ : Cg → C by

θ(z) = θ(z |B) =
∑
N∈Zg

exp

{
1

2
〈BN,N〉 + 〈N, z〉

}
,

where

〈(x1, . . . , xg), (y1, . . . , yg)〉 =

g∑
i=1

xiyi.

Let G be the group generated by the vectors

`k = 2πi(δk1, . . . , δkg) and hk = (Bk1, . . . , Bkg) (k = 1, . . . , g).

The complex torus J = J(P ) = Cg/G is called the Jacobian of the surface P . Let
Φ: Cg → J be the natural projection.

A set of k points of P is called a (positive) divisor of degree k. Let Sk be the set
of all positive divisors of degree k. Let us choose a point q on P . With a divisor

D =
∑k
i=1 pi we associate the point form

Aq(D) = Φ

(∫ D

q

ξ1, . . . ,

∫ D

q

ξg

)
= Φ

( k∑
i=1

(∫ pi

q

ξ1, . . . ,

∫ pi

q

ξg

))
of the Jacobian. Then Aq(Sg) = J and the Abel map Aq is invertible at a generic
point. The image Kq in J of the vector (K1

q , . . . , K
g
q ) with components

Kj
q =

2πi+ Bjj

2
− 1

2πi

∑
` 6=j

∫
a`

(
ω`(p)

∫ p

q

ωj

)
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is called the vector of Riemann constants. We also have 2Kq = −Aq(Dξ), where
Dξ is the divisor of zeros of an arbitrary (holomorphic) differential ξ on P . The set

(θ) = Aq(Sg−1) +Kq ⊂ J

coincides with the image in J of the set of zeros of the θ-function and is called the
θ-divisor. A subset Σ ⊂ J is said to be singular if Σ∩Aq(Sg−1) 6= ∅. In this case,
the set Σ +Kq contains a zero of the θ-function.

2. We assume now that (P, τ) is a real algebraic curve. In this subsection and the
next two we consider only curves with real points. Let q ∈ P τ be such a point. We
need a symplectic basis that agrees with τ ,

{ai, bi (i = 1, . . . , g)} ⊂ H1(P,Z),

which is called a real homology basis. For curves of type (g, k, 0) this is a basis with
the following properties: 1) τ(ai) = ai (i = 1, . . . , g), τ(bi) = −bi (i = 1, . . . , k− 1),
and τ(bi) = −bi+ai (i = k, . . . , g), 2) the oval containing the point q is homologous
to
∑g
i=1 ai. For curves of type (g, k, 1), this is a basis with the following properties:

1) τ(ai) = ai, τ(bi) = −bi (i = 1, . . . , k − 1), τ(ai) = ai+m, and τ(bi) = −bi+m
(i = k, . . . , k+m− 1), where m = 1

2 (g + 1− k), 2) the oval containing the point q

is homologous to
∑k−1
i=1 ai.

Lemma 8.1. A real basis exists.

Proof. Let (P, τ) be a real curve of type (g, k, 0). Then by Lemma 1.2 there is a
set of pairwise disjoint contours a0, a1, . . . , ag such that

τ(ai) = ai, P τ =
k⋃
i=0

ai,

and P \
⋃g
i=0 ai decomposes into two components P1 and P2. Let us number the

contours so that q ∈ a0. We set bi = ci ∪ τci ∪ ri, where ci ⊂ P1 joins a0 and ai
and ri ⊂ ai joins pi = ci ∩ ai and τpi. The case (g, k, 1) can be treated similarly.

The next assertion follows directly from the definitions.

Lemma 8.2. Let {ai, bi (i = 1, . . . , g)} be a real basis of an algebraic curve (P, τ)
of type (g, k, ε). Then hj = hj for j 6 k−1, hj = hj−`j for ε = 0 and j = k, . . . , g,

and hj = hj+m for ε = 1 and j = k, . . . , k +m− 1.

In the rest of the section we assume that the homology basis is real.

3. Let (P, τ) be a real algebraic curve of type (g, k, ε) and let J = J(P ). Let us
consider an involution τ̃ : Cg → Cg that is defined on the basis (`i, hi (i = 1, . . . , g))
of the space R2g = Cg by the linear map `j 7→ `j , hj 7→ −hj for j 6 k − 1 or for
ε = 0, by `j 7→ `j+m, hj 7→ −hj+m for ε = 1 and j = k, . . . , k + m − 1, and by
`j 7→ `j−m, hj 7→ −hj−m for ε = 1 and j = k+m, . . . , g. By Lemma 8.2, the map τ̃
induces an involution τR : J → J . By the same lemma, the Abel map Aq identifies
τR with an involution Sg → Sg that sends a divisor D ∈ Sg to the divisor τD.

The fixed points of the involution τR are called the real points of the Jacobian of
the curve (P, τ). These points form the real part JR of the Jacobian.
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Theorem 8.1. The real part of the Jacobian of a real algebraic curve (P, τ) of type
(g, k, ε), where k > 0, decomposes into 2k−1 real tori of the form

Φ(TR + δ),

where

δ =
1

2

k−1∑
j=1

δjhj , δj ∈ {0, 1},

TR = iRg if ε = 0, and

TR =
{

(x1, . . . , xg) ∈ Cg | xj ∈ iR for j 6 k − 1, xk = −xj+m for k 6 j 6 k +m
}

if ε = 1.
Such a torus is non-singular if and only if ε = 1, k = g+1, and δ1 = · · · = δg = 1.

Proof. The equations for the real part can be found by direct calculation. If p ∈ P ,
then (∫ p

q

ξ1 +

∫ τp

q

ξ1, . . . ,

∫ p

q

ξg +

∫ τp

q

ξg

)
∈ TR.

If p ∈ aj , then (∫ p

q

ξ1, . . . ,

∫ p

q

ξg

)
=

1

2
hj.

Therefore, x ∈ Φ(TR + δ) if and only if x = Aq(D), where D ∈ Rδ = {D ∈ Sg |
τD = D and the parity of the degree of the divisor D ∩ aj is equal to δi}.

On the other hand, Rδ ∩ Sg−1 = ∅ if and only if

k−1∑
i=1

δi > g − 1,

that is, if and only if k = g + 1 and δ1 = · · · = δg = 1.

4. Along with the involution τR, we consider the involution τI = −τR : J → J . The
fixed points of this involution form the imaginary part JI of the Jacobian J .

Theorem 8.2. The imaginary part of the Jacobian of a real algebraic curve (P, τ) of
type (g, k, ε), where k > 0, decomposes into 2k−1 real tori of the form Φ(TI + δ),
where δ = πi(δ1, . . . , δk−1), δi ∈ {0, 1}, and TI = Rg if ε = 0 and TI =
{(x1, . . . , xg) ∈ Cg | xj ∈ R for j 6 k − 1, xj = −xj+m for k 6 j 6 k + m}
if ε = 1. For ε = 0 all the tori are singular. For ε = 1 there is exactly one
non-singular torus among them, corresponding to δ1 = δ2 = · · · = δk−1 = 1.

Proof. The equations for the imaginary part can be found by direct calculation. Let
us consider the set I = {D ∈ Sg |D+ τD = (the divisor of zeros of a meromorphic
differential that is holomorphic away from q and has a pole of order 0 or 2 at q)}.
Then Aq(I) −Kq = JI because τRKq = Kq .

By definition, corresponding to a divisor D ∈ I is a meromorphic differential ξD.
Let A1 ∪ A2 be an arbitrary decomposition of the set of ovals A = (a0, . . . , ak−1).
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By IA1,A2 = IA2,A1 ⊂ I we denote the set of all D ∈ I such that the differential
ξD or the differential −ξD is non-negative on the ovals of A1 and non-positive on
the ovals of A2. The zeros and the poles of ξD that belong to the ovals have even
degrees, and hence I =

⋃
IA1,A2 .

By Theorem 6.1, for any decomposition A = A1 ∪ A2 with A1 6= ∅ and
A2 6= ∅ we can find a holomorphic real differential ξ that is non-negative on A1

and non-positive on A2. By adding the differential λξ to an arbitrary differential
ξD, D ∈ I, we can readily prove that IA1,A2 6= ∅. Thus, I =

⋃
IA1,A2 consists

of at least 2k−1 connected components. However, as was already proved, the set
JI = Aq(I) − Kq consists of 2k−1 connected components. Therefore, each of the
sets IA1,A2 is connected. If A1 6= ∅ and A2 6= ∅ or if ε = 0, then it follows from
Theorem 6.1 that there is a differential D ∈ IA1,A2 such that ξD is holomorphic. In
this case q ∈ D and

Aq(D) = Aq(D \ q) ∈ Aq(Sg−1),

and hence the component IA1,A2 is singular. If A1 = ∅ or A2 = ∅, then the
condition Aq(D) ⊂ Aq(Sg−1) means that the differential ξD is holomorphic and has

the same signs on all ovals. This is impossible for ε = 1 because
∑k−1
i=0 ai = 0.

Hence, for ε = 1 the components of Aq(I∅,A) is non-singular.
Let us find a vector δ to which this component corresponds. We assume first

that k = g + 1 and (P, τ) is a hyperelliptic curve. Then the imaginary part of the
Jacobian of (P, τ) coincides with the real part of the Jacobian of the curve (P, ατ),
where α : P → P is the hyperelliptic involution. We assume that q ∈ P τ ∩ Pατ is
a fixed point of this involution. It follows from Theorem 8.1 that a non-singular
imaginary torus of the Jacobian of (P, τ) (or, which is the same, a non-singular
real torus of the Jacobian of (P, ατ)) corresponds to the vector δ = πi(1, . . . , 1).
This vector remains the same under a continuous deformation of the curve (P, τ).
Since the set Mg,g+1,1 is connected (Theorem 2.1), the same vector corresponds to
a non-singular torus of the imaginary part of the Jacobian for any M -curve.

The case k < g+1 can be reduced to the case k = g+1 as follows. Let us consider

a simple contour a on the surface P such that a∪ τa cuts out a surface P̃ of genus
k − 1 with two holes on P . We introduce a continuous deformation of the curve
(P, τ) that contracts the contour a to a point. In the course of deformation, the
vector corresponding to a non-singular torus of the imaginary part of the Jacobian
does not change. In the limit it gives a vector corresponding to the M -curve, that
is, πi(1, . . . , 1).

Remark. The number of real and imaginary tori of the Prymian was first found
in [11]. The number of singular and non-singular tori was found in [19] for ε = 1,
and in [13] and [34] for ε = 0. This was done in another way in [50].

§ 9. Prymians of real algebraic curves

1. To curves with automorphisms in classical algebraic geometry (see, for exam-
ple, [19]) there correspond algebraic varieties that are similar to Jacobians but do
not coincide with them, namely, the Prymians. We consider only the simplest
example of such varieties, which is, however, important in applications.

Let P be a compact Riemann surface of genus 2g and let α : P → P be a
holomorphic involution with two fixed points q1 and q2. A symplectic basis
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{ai, bi (i = 1, . . . , 2g)} is said to be symmetric if αai = −ai+g and αbi = −bi+g
(i = 1, . . . , g). The divisor map D 7→ α(D) induces an involution α∗ : Sg → Sg .
The Abel map Aq1 transfers it to J = J(P ), and thus generates an involution
α∗ : J → J . The subset

Pr = Pr(P, α) = {x ∈ J |α∗x = −x}

is called the Prymian of the surface with involution (P, α). The Prymian is iso-
morphic to the torus Cg/G, where G is the lattice generated by the vectors `i and
the column vectors ξi of the matrix

Aij =

∫
bi

ξj + ξj+g (i, j = 1, . . . , g)

in the notation of § 7.

2. By a real curve with involution (P, τ1, α) we mean a compact Riemann surface
P of genus 2g with two commuting involutions one of which, τ1, is antiholomorphic
and the other, α, is holomorphic and has exactly two fixed points q1 and q2, with
τ1q1 = q2. We set τ2 = τ1α. We assume that among the ovals of the involution τi
there are ri that are invariant with respect to α and 2ti that are pairwise transposed
by the involution α. Then

(P̃ , τ̃ ) = (P/ 〈α〉 , τi/ 〈α〉)

is a real algebraic curve of type (g, k, ε), where k = t1 + r1 + t2 + r2. Moreover, the

pre-image of the set P̃ τ̃ coincides with P τ1 ∪ P τ2 . This pre-image decomposes P
into two parts if and only if ε = 1. The set (g, ε, t1, r1, t2, r2) is called the type of
the real curve with involution (P, τ1, α).

Example 9.1. Let (P̃ , τ̃) be a real curve of type (g, k, 1) and let k = t1+r1+t2+r2,

where r1 + r2 = 1 (mod 2). Let us consider a connected component P̃1 of the

set P̃ \ P̃ τ and a two-sheeted covering ϕ1 : P1 → P̃1 with a unique branch point
q1 ∈ P1, the covering being two-sheeted on the r1 +r2 contours c1, . . . , cr1+r2 ∈ ∂P1

and one-sheeted on the other boundary contours cr1+r2+1, . . . , ck̂, where k̂ =
r1 + r2 + 2t1 + 2t2. By using the construction of Example 1.1, we form a real

algebraic curve (P̂ , τ̂) such that P̂ τ̂ =
⋃k̂
i=1 ci decomposes P̂ into P1 and P2 = τ̂P1.

The covering ϕ1 induces a two-sheeted covering ϕ̂ : P̂ → P̃ , where ϕ̂τ̂ = τ̃ ϕ̂.

Let α : P̂ → P̂ be the involution defined by transposition of the sheets. This
involution commutes with τ̂ and has exactly two fixed points q1 and q2 = τ̂ q1.

Let us cut the surface P̂ along the contours cr1+1, . . . , cr1+r2 and cr1+r2+2t1+1, . . . ,
cr1+r2+2t1+2t2 and paste together the boundary contours in accordance with the
map ατ̂ . On the surface P thus obtained, the involution τ̂ induces an involution
τ1 : P → P that commutes with α. We set τ2 = ατ1. It can readily be seen that
(P, τ1, α) is a real curve with involution of type (g, 1, t1, r1, t2, r2).

The following lemma is clear.

Lemma 9.1. The construction of Example 9.1 enables one to produce all real
curves with involution of type (g, 1, t1, r1, t2, r2).
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Example 9.2. Let (P̃ , τ̃) be a real curve of type (g, k, 0) and let k = t1+r1+t2+r2,
where r1 +r2 = 1 (mod 2). Using Lemma 1.2, we construct a set of pairwise disjoint

contours c̃1, . . . , c̃g+1 such that τ̃ c̃i = c̃i and P̃ τ̃ =
⋃k
i=1 c̃i. Let us consider a con-

nected component P̃1 of the set P̃ \
⋃g+1
i=1 c̃i and a two-sheeted covering ϕ1 : P1 → P̃1

with a single branch point q1 ∈ P1 that is two-sheeted on the contours c1, . . . , cr1+r2

and one-sheeted on the other contours cr1+r2+1, . . . , cv. Using the construction of

Example 1.2, we form a real algebraic curve (P̂ , τ̂) such that P̂ \
⋃v
i=1 ci decomposes

P̂ into P1 and P2 = τ̂P1, and we have P̂ τ̂ =
⋃k̂
i=1 ci, where k̂ = r1 + r2 + 2t1 + 2t2.

Repeating the cuts and pastings together described in Example 9.1, we obtain a
real curve with involution (P, τ1, α) of type (g, 0, t1, r1, t2, r2).

Lemma 9.2 ([7], [35]). The construction of Example 9.2 enables one to produce
all real curves with involution of type (g, 0, t1, r1, t2, r2).

3. Let (P, τ1, α) be a real curve with involution of type (g, ε, t1, r1, t2, r2). The
intersection of the Prymian Pr = Pr(P, α) ⊂ J(P ) = J with the real part of the
Jacobian of the curve (P, τ1) is called the real part of the Prymian of the real curve
with involution (P, τ1, α). The connected components of this part are called real
tori of the Prymian of the curve (P, τ1, α). These tori form the fixed tori of the
involution (τ1)R

∣∣
Pr

: Pr→ Pr.

Theorem 9.1. The real part of the Prymian of a real curve with involution (P, τ1, α)
of type (g, ε, t1, r1, t2, r2), where k = t1 + r1 + t2 + r2 > 0, decomposes into 2k−1

real tori of dimension g.

Proof. Let us choose a symmetric basis ∆ = {ai, bi (i = 1, . . . , g)} of the pair
(P, α) so that the projections of the cycles {ai, bi (i = 1, . . . , g)} give a real basis

∆̃ of the real curve (P̃ , τ̃) = (P/ 〈α〉 , τ1/ 〈α〉) of type (g, k, ε). Let {`i, di} be
the generators of the lattice of the Prymian Pr of a real curve with involution

(P, τ1, α) that corresponds to the basis ∆, and let {˜̀i, h̃i} be the generators of the

lattice of the Jacobian J̃ of the real curve (P̃ , τ̃). In these bases, the involutions

(τ1)R|Pr : Pr→ Pr and τ̃R : J̃ → J̃ are described by the same formulae, and hence
have equally many fixed tori.

4. Let (P, τ1, α) be a real curve with involution of type (g, ε, t1, r1, t2, r2). Let us

number the ovals aj1, . . . , a
j
2tj+rj

of the involution τj so that αaji = ajtj+i for i 6 tj .
We put a divisor D ⊂ P of degree g in the set Ω if τ1D = D and αD +D is the
divisor of zeros of a meromorphic differential ξD that is holomorphic away from the
fixed points q1 and q2 of the involution α and has poles of order 0 or 1 at these
points. We say that ξD is positive definite on an oval a = a1

i , where i > 2t1, if
either 1) ξD is non-negative on a or 2) there is a point p ∈ a∩D that, together with
the point αp, divides the contour a into two open arcs so that the arc on which the
differential is positive contains evenly many points of D in a neighbourhood of p.
Otherwise we say that ξD is negative definite on a. We also say that ξD is positive
(negative) definite on an oval a2

i if it is non-negative (non-positive, respectively) on
this oval as a real differential of the curve (P, τ2).

Let us decompose the set

a1
2t1+1, . . . , a

1
2t1+r1 , a

2
1, . . . , a

2
2t2+r2



1126 S. M. Natanzon

into subsets A1 and A2. Let

δ = (δ1, . . . , δt1) ∈ Zt12 .

We denote by Ω(δ, A1, A2) the subset of Ω consisting of the divisors D ∈ Ω such
that ξD or −ξD is positive definite on A1 and negative definite on A2, and the
parity of the degree of the divisor D ∩ a1

i coincides for i 6 t1 with the parity of δi.

Lemma 9.3. Each of the sets Ω(δ, A1, A2) is non-empty.

Proof. Let us prove first that, on any real algebraic curve (P̃ , τ̃) with ovals c1, . . . , ck,
where k = k+ +k−+k0, and for any pair of points q1 6= q2, where q2 = τ̃ q1, there is
a meromorphic real differential ξ that is holomorphic away from q1 and q2, has poles
of degree at most one at these points, is non-negative on ci for i 6 k+, non-positive
on ci for k+ < i 6 k+ + k−, and has zeros on ci for i > k+ + k−. To this end, we
take disjoint neighbourhoods Ui ⊃ qi of q1 and q2 such that τ̃U1 = U2 and paste
together the boundaries of the surface P̃ \ (U1 ∪ U2) by means of the involution τ̃ .
Then the boundary is mapped to an oval c0 of a new real algebraic curve (P ′, τ ′).
Applying Theorem 6.1 to this curve, we find a real differential ξ′ with the desired
properties on the ovals c1, . . . , ck. Degenerating the oval c0, we obtain the desired
differential on the curve (P̃ , τ̃).

Applying the above result to the real curve (P̃ , τ̃) = (P/ 〈α〉 , τ1/ 〈α〉), we find
a meromorphic differential that is holomorphic away from the images q̃1 and q̃2 of
the points q1 and q2, has at most simple poles at these points, is non-negative on
the images of the ovals of A1 and non-positive on the images of the ovals in A2, and
has zeros on the other ovals. Its pre-image ξ on P is a meromorphic differential
that is holomorphic away from q1 and q2, has at most simple poles at these points,
and is positive definite on the ovals of A1 and negative definite on the ovals of A2.
The divisor of zeros of the above differential intersected with a1

i ∪ αa1
i (i 6 t1) has

positive degree divisible by four and is symmetric with respect to α. Hence, there
is a divisor D ∈ Ω such that ξD = ξ, and the parity of the degree of the divisor
D ∩ a1

i coincides with the parity of δi for i 6 t1.

Theorem 9.2 ([34], [42]). Let (P, τ, α) be a real curve with involution of type
(g, ε, t1, r1, t2, r2), where k = t1 + r1 + t2 + r2 > 0. Then the following assertions
hold :

1) for ε = 0, all real tori of the Prymian are singular,
2) for ε = 1, there is at most one non-singular real torus of the Prymian,
3) for ε = 1 and k = g + 1, a non-singular real torus of the Prymian always

exists,
4) for ε = 1 and t1 + r1 6 k/2, there are curves (P, τ1, α) of type (g, ε, t1, r1,

t2, r2) such that there is a non-singular torus among the real tori of their
Prymians.

Proof. We can readily see that

Ω(δ, A1, A2) ∩Ω(δ′, A′1, A
′
2) 6= ∅

if and only if δ′ = δ, A′1 = A2, and A′2 = A1, in which case these sets coincide.
Thus, the number of disjoint sets of the form Ω(δ, A1, A2) is equal to 2k−1.
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On the other hand, the real part of the Prymian of a curve with involution (P, τ1, α)
coincides with

⋃
Aq1(Ω(δ, A1, A2)) −Kq1 and, by Theorem 9.1, it consists of 2k−1

connected components. Thus, by Lemma 9.3, each real torus of the Prymian is of
the form

Aq1(Ω(δ, A1, A2)) −Kq1 .

The torus is singular if and only if there is a D ∈ Ω(δ, A1, A2) such that αD+D is
the divisor of zeros of a holomorphic differential on P .

1) Let ε = 0 and let T = Aq1(Ω(δ, A1, A2)) − Kq1 be an arbitrary real torus

of the Prymian. Let Ãi be the image of the set Ai on the real curve (P̃ , τ̃) =

(P/ 〈α〉 , τ1/ 〈α〉). By Theorem 6.1, there is a holomorphic real differential ξ̃ on

(P̃ , τ̃) that is non-negative on Ã1, non-positive on Ã2, and has zeros on the other
ovals. Its pre-image ξ on P is a holomorphic differential that is positive definite on
the ovals of A1 and negative definite on the ovals of A2. The divisor of zeros of this
differential intersected with a1

i ∪ αa1
i (i 6 t1) has positive degree divisible by four

and is symmetric with respect to α. Hence, there is a differential D ∈ Ω(δ, A1, A2)
such that ξD = ξ and T is a singular torus.

2) Let ε = 1 and let T = Aq1(Ω(δ, A1, A2)) −Kq1 be a torus that differs from
Aq1(Ω(δ, A,∅)) −Kq1 , where δ = (1, . . . , 1). Then, repeating the arguments used
in the case ε = 0, we see that T is a singular torus.

3) Let ε = 1 and k = g + 1. We prove that for δ = (1, . . . , 1) the real torus
Aq1(Ω(δ, A1,∅)) − Kq1 is non-singular. Indeed, otherwise there must be a real
holomorphic differential ξ on P that is positive definite on all ovals of the involutions
τ1 and τ2 where it has no zeros, and such that αξ = ξ. This differential induces

a holomorphic real differential ξ̃ on the M -curve (P̃ , τ̃) = (P/ 〈α〉 , τ1/ 〈α〉) that is
positive on all ovals on which it has no zeros. However, by Theorem 6.2, there are
no such differentials.

4) Let ε = 1 and t1+k1 6 k
2 . Let T be a real torus of the form Aq1(Ω(δ, A1,∅))−

Kq1 , where δ = (1, . . . , 1). If T is singular, then, repeating the reasoning used in the

case of k = g+1, we find a differential ξ̃ on the real curve (P̃ , τ̃) = (P/ 〈α〉 , τ1/ 〈α〉)
that is non-negative on t2 + k2 >

k
2

images of the ovals in A1 and either has zeros
or is positive on the other ovals of the curve. Example 9.1 shows that we can take

(P̃ , τ̃) to be any real curve and, in particular, the curve constructed in Theorem 6.3
on which there are no such differentials.

Remark. Under a small deformation of a curve with involution (P, τ1, α), a non-
singular torus is mapped into a non-singular one. Therefore, the curves with invo-
lution (P, τ1, α) that have a non-singular real torus of the Prymian form an open
set in the space of all curves of a given type.

§ 10. Uniformization of real algebraic curves by Schottky groups

1. Let ψ ∈ T̃g̃,k, where k > 0, and let {Ai, Bi (i = 1, . . . , g̃), Ci (i = 1, . . . , k)} =
ψ(γg̃,k) be the corresponding sequential set of shifts. We set

∆ = {Ai, Bi (i = 1, . . . , g̃), Ci (i = 1, . . . , k − 1)}.

The invariant lines `(∆) of the set ∆ are shown in Fig. 10.1.
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Figure 10.1

By [33] and [47], §§ 1–3, for any D ∈ ∆ there are discs SD and SD∗ with centres
on R∪∞ and such that SD∩`(∆) ⊂ `(D), SD∗∩`(∆) ⊂ `(D), D(`(∆)\`(D)) ⊂ SD ,
and D−1(`(∆) \ `(D)) ⊂ SD∗ . By the methods described in [33] and [47], §§ 1–3,
we can readily show that SD and SD∗ can be chosen so that

SD1 ∩ SD2 = SD∗1 ∩ SD2 = SD∗1 ∩ SD∗2 = ∅ for D1 6= D2

and D(∂SD∗ ) = ∂SD . In this case Ω = C∪∞\
⋃
D∈∆(SD ∪SD∗) is a fundamental

domain of the Schottky group G generated by ∆. On the quotient surface P = Ω/G
of genus g = 2g̃ + k − 1, the involution z 7→ z induces a separating involution
τ : P → P with k ovals.

To prove that this construction gives all separating real algebraic curves, it suf-
fices to construct for such a curve (P, τ) a system of cuts on a connected component
P1 of the surface P \P τ that transforms P1 into half of a fundamental domain of a
Schottky group of the desired form. Such a system of cuts is presented in [5] and
shown in Fig. 10.2.

Figure 10.2

Thus (see [5] and [6]), the correspondence ψ 7→ (P, τ) defines a map

Ψk : Tg̃,k →Mg,k,1,

where Ψk(Tg̃,k) = Mg,k,1.
A similar description of non-separating curves with real points can be obtained

on replacing the system ∆ of generators of the Schottky group G by the set

∆∗ = {Ai, Bi (i = 1, . . . , g̃), Ci (i = 1, . . . , k̃), C∗i (i = k̃ + 1, . . . , k − 1)},

where C∗i is obtained from

Ci(z) =
(λiαi − βi)z − (1− λ)αiβi

(λi − 1)z + (αi − λiβi)
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by replacing λi by −λi. The system ∆∗ generates a Schottky group G∗. On the quo-
tient surface P ∗= Ω/G∗ the involution z 7→ z induces a non-separating involution

τ∗ : P ∗→P ∗ with k̃ + 1 ovals. Thus, the correspondence ψ 7→ (P ∗, τ∗) generates a
map

Ψ
k̃+1

: Tg̃,k →M
g,k̃+1,0

.

The relation
Ψ
k̃+1

(Tg̃,k) = M
g,k̃+1,0

is proved by the scheme used in the case of separating curves. We need only
complete the set of ovals of the curve (P ∗, τ∗) to form a system of pairwise disjoint

invariant contours c1, . . . , ck so that the surface P ∗ \
⋃k
i=1 ci decomposes into two

connected components. Thus, any moduli space Mg,k̃,ε has a representation of the

form
M
g,k̃,ε

= Ψ
k̃
(Tg̃,k).

This, together with the theorem

Tg̃,k ∼= R6g̃+3k−6

presented in [33] and [47], gives another proof of Corollary 2.1:

Mg,k,ε
∼= R6g−6/Modg,k,ε .

2. The Schottky uniformization enables one to solve the Schottky problem for real
algebraic curves, that is, to find the matrices Bij described in § 8.

We find the matrix corresponding to the system of generators

∆̃ = {Ai, Bi (i = 1, . . . , g̃), C̃i (i = 1, . . . , k− 1)} = {D̃i (i = 1, . . . , 2g̃+ k − 1)}
of a Schottky group G̃ of the above type. Let

Di(z) =
(λiαi − βi)z − (1− λ)αiβi

(λi − 1)z + (αi − λiβi)
.

By Gmn we denote the subset of the group G that consists of the elements

D = Dj1
i1
· · ·Djk

ik
,

where j` 6= 0, i1 6= m, and ik 6= n. We set {z1, z2, z3, z4} =
(z1 − z2)(z2 − z4)

(z1 − z4)(z2 − z3)
.

Then by [3] and [8] the Jacobi matrix (Bnm) (of the algebraic curve Ω/G̃) corre-

sponding to the generators ∆̃ is given by the convergent series

Bnn = lnλn +
∑

D∈Gnn

ln{αn, βn, Dαn, Dβn} (1)

and

Bnm =
∑

D∈Gmn

ln{αm, βm, Dαn, Dβn} for m 6= n. (2)

Thus (1) and (2), together with the explicit description of the space Tg̃,k in the
coordinates {αi, βi, λi (i = 1, . . . , 2g̃+ k)} (see [33] and [47], §§ 3, 4), enable one to
find the Jacobians of algebraic real curves and, by means of formulae in § 8, their
real and imaginary tori.

A modification of this approach enables one to describe the Prymians of real
curves [34].
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§11. The moduli space of rank-one
spinor bundles on real algebraic curves

1. We recall that the Fuchsian groups uniformizing Riemann surfaces of genus 0
are of the form ψ(γ0,g+1), where γ0,g+1 is the group with generators c1, . . . , cg+1

that has a single defining relation c1 · · · cg+1 = 1, and ψ : γ0,g+1 → Aut(Λ) is

a monomorphism belonging to the set T̃0,g+1 [47], §§ 1, 2. Corresponding to such a
monomorphism is the group Γkψ (k 6 g) generated by ψ(γ0,g+1) and the maps

Ĉi =

{
Ci for i 6 k,
C̃i for i > k,

where Ci = ψ(ci). We set Di = Ĉg+1Ĉi (i = 1, . . . , g). The natural isomorphism
Γkψ → π1(P, p), where P = Λ/Γkψ, sends {Ci, Di (i = 1, . . . , g)} into elements
{ci, di (i = 1, . . . , g)} of the group π1(P, p) that generate it and satisfy a single
defining relation

g∏
i=1

ci

1∏
i=g

dic
−1
i d−1

i = 1.

Lemma 11.1. Let Γ̃∗ be a lifting of a real Fuchsian group Γ̃, where [Γ̃] = (P, τ) is

a real algebraic curve of type (g, k, 0). Then there is a monomorphism ψ ∈ T̃0,g+1

such that Γ̃ = Γkψ and ωΓ̃∗(di) = ωΓ̃∗(dj) for any i, j 6 g.
Proof. Let us consider a set of contours c1, . . . , cg+1 that has the properties listed in
Theorem 4.2. Let P1 be a sphere with g+1 holes and let the boundary ∂P1 consist

of the contours c̃1, . . . , c̃g+1 with the orientation generated by Γ̃∗. We consider the
standard system of generators (c1, . . . , cg+1) of the group π(P1, p) that is associated
with these contours and identify the ci’s with the standard generators of the group
γ0,g+1. Then the natural isomorphism π1(P, p)→ Γ induces an element ψ ∈ T̃0,g+1.

We can readily see that Γkψ = Γ̃.

Let us find ωΓ̃∗(di). We set Ĉ∗i = J−1(Ĉi) ∩ Γ̃∗. Replacing Γ̃ by a conjugate
group, we may assume that

Ĉg+1 = σg+1

(
−µg+1 0

0 µ−1
g+1

)
,

where µg+1 > 0 and σg+1 = ±1. The shifts C1, . . . , Cg+1 form a sequential set
(see § 2), and hence the invariant lines `(Ci) are arranged as in Fig. 11.1.

Figure 11.1
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Thus,
Ci = FiCg+1F

−1
i ,

where

Fi =
(λiαi + αi)z − (1− λi)α2

i

(1− λi)z + (αi + λiαi)
=
αi(λi + 1)z + (λi − 1)α2

i

(1− λi)z + αi(λi + 1)
.

We set

F ∗i =

(
αi(λi + 1) (λi − 1)
(1− λi) αi(λi + 1)

)
.

Then

Ĉ∗i = σiF
∗
i

(
−µi 0

0 µ−1
i

)
(F ∗i )−1,

where µi > 0 and σi = ±1. Let us prove that σi = −1 for i 6 g. Indeed, by

construction, the orientation generated by Γ̃∗ on the contour ci coincides with its
orientation as a part of the boundary of the surface P1. This orientation induces
the orientation of the line `(Ci) indicated in Fig. 11.1. The map F−1 sends it into
the orientation of the imaginary axis I in the direction in which the values Im z
decrease (see Fig. 11.1). This means exactly that σi = −1.

Thus,

Ĉ∗g+1Ĉ
∗
i = −σg+1

(
µg+1 0

0 µ−1
g+1

)
F ∗i

(
µi 0
0 µ−1

i

)
(F ∗i )−1,

and hence

ωΓ∗(di) = sgn
(
Tr(Di)

)
= sgn

(
Tr(Ĉ∗g+1Ĉ

∗
i )
)

= −σg+1;

therefore, ωΓ̃∗(di) is the same for all i 6 g.
Lemma 11.2. Let ω be a non-singular Arf function on a real algebraic curve (P, τ)
of type (g, k, 0). Then there is a standard basis

{ci, di (i = 1, . . . , g)} ∈ H1(P,Z2)

such that ci, . . . , cg are pairwise disjoint invariant contours, τ(di) = di + cg+1 + c̃i,
where

c̃i =

{
0 for i 6 k,
ci for i > k,

and ω(di) = ω(dj) for any i, j 6 g.

Proof. By Lemma 2.1, there is a real Fuchsian group Γ̃ such that (P, τ) = [Γ̃]. By

Lemma 4.2, there is a lifting Γ̃∗ of Γ̃ such that ωΓ̃∗ = ω. Therefore, the assertion
of Lemma 11.2 follows from Lemma 11.1.

2. Let (P, τ) be a real algebraic curve. Arf functions ω1 and ω2 on (P, τ) are said
to be topologically equivalent if there is a homeomorphism ϕ : P → P such that
ϕτ = τϕ and the induced automorphism ϕ : H1(P,Z2) → H1(P,Z2) satisfies the
condition ω1 = ω2ϕ.
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Theorem 11.1 [41]. All singular Arf functions on an arbitrary real curve (P, τ)
are topologically equivalent .

Proof. We have P τ = ∅ by Lemma 3.2. Therefore, by Lemma 1.2, there is a set of
pairwise disjoint, invariant contours c1, . . . , cg+1 such that P \

⋃g+1
i=1 ci decomposes

into two spheres P1 and P2 with holes. We join any contour ci to the contour
cg+1 by a simple segment `i ⊂ P1. Let us consider a simple closed contour di =
`i∪τ`i∪ri∪rg+1, where rj ⊂ cj . Let ω1 and ω2 be singular Arf functions on (P, τ).
By Lemma 3.3, ω1(ci) = ω2(ci) = 0. For any i with ω1(di) 6= ω2(di) we apply to P
the Dehn twist along ci, that is, cut P along ci and paste together along the same
contour after a rotation of 2π. We can readily see that the homeomorphism ϕ thus
obtained commutes with τ . On the other hand, for such i we have

ω2(ϕ(di)) = ω2(di + ci) = ω2(di) + ω(ci) + 1 = ω1(di).

Thus, ω2ϕ = ω1.

Theorem 11.2 [41]. Let (P, τ) be a real algebraic curve of type (g, k, 0). Then
non-singular Arf functions on (P, τ) are topologically equivalent if and only if they
have the same topological type (g, δ, kα).

Proof. Let ω1 and ω2 be non-singular Arf functions on (P, τ) of type (g, δ, kα). Using
Lemma 11.2, we associate with the Arf function ωm a standard basis {cmi , dmi
(i = 1, . . . , g)}, where the cmi are pairwise disjoint invariant contours and
ωm(dmi ) = ωm(dmj ) for any i, j 6 g. After renumbering, we may assume that
cm1 , . . . , c

m
k0+k1

are ovals and that ωm(cmi ) = 0 for i 6 k0 and ωm(cmi ) = 1
for i > k0. By Theorem 3.2 we have k0 ≡ g + 1 (mod 2), and hence

δ(P, ωm) =

g+1∑
j=1

ωm(cmj )ωm(dmj ) =

g∑
j=k0+1

ωm(dmj ) = ωm(dmj ).

Thus, ω1(d1
j ) = δ = ω2(d2

j). By Lemma 1.2, the set cm1 , . . . , c
m
g can be supplemented

by a contour cmg+1 to form a complete set of invariant contours. Let

Pm1 ∪ Pm2 = P \
g+1⋃
i=1

cmi .

We choose cmg+1 so that the homeomorphism ϕ : P 1
1 → P 2

1 can be extended to

a homeomorphism ϕ : P 1 → P 2 that sends {c1i , d1
i} into {c2i , d2

i} and commutes
with τ . Then ω1 = ω2ϕ.

Theorem 11.3 [41]. Let (P, τ) be a real algebraic curve of type (g, k, 1). Then Arf
functions on (P, τ) are topologically equivalent if and only if they have the same

topological type (g, δ̃, kγα).

Proof. Let ω1 and ω2 be Arf functions on (P, τ) of type (g, δ̃, kγα). The ovals of
P τ decompose P into two connected components P1 and P2. By assumption,
ω1

∣∣
P1

and ω2

∣∣
P1

have the same topological type, and hence by [47], § 8, there is a
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homeomorphism ϕ1 : P1 → P1 that sends ω1

∣∣
P1

into ω2

∣∣
P1

. Since the topological

types of ω1 and ω2 coincide, we can choose ϕ1 such that ovals similar with respect
to ω1 pass to ovals similar with respect to ω2. We now set ϕ2 = τϕ1τ : P2 → P2.
Then ϕ1 ∪ ϕ2 : P → P commutes with τ and sends ω1 into ω2.

3. In the rest of this section a spinor bundle is understood to mean a rank-one
spinor bundle.

Theorem 5.1 establishes a one-to-one correspondence between spinor bundles on
a real algebraic curve (P, τ) and real Arf functions on this curve. By the type of a
spinor bundle we mean the type of the corresponding Arf function.

By the moduli space of spinor bundles on real algebraic curves we mean the space
of pairs ((P, τ), (e, E)), where (P, τ) is a real algebraic curve and (e, E) is a spinor
bundle on (P, τ). By Theorem 5.1, there are only finitely many spinor bundles on
a real curve, and therefore the topology of the moduli space of real curves induces
a topology in the moduli space of spinor bundles on real curves.

Theorem 11.4 [36]. The space of spinor bundles on non-separating real algebraic
curves decomposes into the connected components Sp(g, δ, kα), where (g, δ, kα) is an
arbitrary topological type of a non-singular Arf function on a non-separating real
curve. Each of the components S(g, δ, kα) is diffeomorphic to

R3g−3/Modg,δ,kα

(where Modg,δ,kα is a discrete group of diffeomorphisms) and is a (kk0
) ·2g−1-sheeted

covering of Mg,k,0, where k = k0 + k1.

Proof. By definition, to any ψ ∈ T̃0,g+1 there corresponds a sequential set

V = (C1, . . . , Cg+1) ∈ Aut(Λ)

of type (0, g + 1) which, together with

Ĉi =

{
Ci for i 6 k,
C̃i for i > k,

generates a real Fuchsian group Γ̃ = Γkψ,g+1. On a real curve (P, τ) = [Γ̃], we
consider a homology basis {ci, di (i = 1, . . . , g)} ∈ H1(P,Z2) that corresponds to

the shifts {Ci, Di = C̃g+1Ĉi (i = 1, . . . , g)}. We introduce a non-singular real Arf
function ω = ωψ defined by the conditions ω(ci) = 0 for i 6 k0, ω(ci) = 1 for
i > k0, ω(di) = 0 for i < g, and ω(dg) = δ. By Theorem 3.2 we have k0 ≡ g + 1
(mod 2), which immediately implies that ω is a non-singular real Arf function of
type (g, δ, kα). By Theorem 5.1, a spinor bundle Ω(ψ) ∈ Sp(g, δ, kα) is associated
with this Arf function. The correspondence ψ 7→ Ω(ψ) induces a map Ω: T0,g+1 →
Sp(g, δ, kα).

Let us prove that Ω(T0,g+1) = Sp(g, δ, kα). Indeed, by Theorem 2.2, the map

Ψ: T0,g+1
Ω−→ Sp(g, δ, kα)

Φ−→Mg,k,0,
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where Φ is the natural projection, satisfies the condition

Ψ(T0,g+1) = Mg,k,0.

The fibre of the map Ψ is represented by the group Modg,k,0 of all autohomeo-
morphisms of the curve (P, τ), that is, the autohomeomorphisms of P that
commute with τ . By Theorem 11.2, this group Modg,k,0 acts transitively on the
set of non-singular real Arf functions of type (g, δ, kα) and hence, by Theorem 5.1,
transitively on the fibres Φ−1((P, τ)). Thus,

Ω(T0,g+1) = Sp(g, δ, k) and Sp(g, δ, kα) = T0,g+1/Modg,δ,kα ,

where
Modg,δ,kα ⊂ Modg,k,0 .

By [47], § 4, the space T0,g+1 is diffeomorphic to R3g−3. By Theorem 3.2, the index
of the subgroup Modg,δ,kα in Modg,k0+k1,0 is equal to (kk0

) · 2g−1.

Theorem 11.5 [36]. The space of spinor bundles on separating real algebraic

curves decomposes into connected components Sp(g, δ̃, kγα), where (g, δ̃, kγα) is an
arbitrary topological type of an Arf function on a separating real algebraic curve.

Each of the components Sp(g, δ̃, k
γ
α) is diffeomorphic to R3g−3/Mod

g,δ̃,k
γ
α

(where

Modg,δ̃,kγα is a discrete group of diffeomorphisms) and covers Mg,k,1 with (kk0
) · (k0

k0
0
) ·

(k1

k0
1
) · 2g̃−2 · (2g̃ + m) sheets, where m = 2g̃ for k1 > 0, m = 1 for δ̃ = 0, m = −1

for k1 = 0 and δ̃ = 1, and kα = k0
α + k1

α, k = k0 + k1, and g = 2g̃ + k − 1.

Proof. By definition, to each ψ ∈ T̃g̃,k there corresponds a sequential set V =

{Ai, Bi (i = 1, . . . , g̃), Ci (i = 1, . . . , k)} of type (g̃, k) which, together with Ci
(i = 1, . . . , k), generates a real Fuchsian group Γ̃ = Γkψ. On a real curve (P, τ) = [Γ̃]
we consider a homology basis {ai, bi, a′i, b′i (i = 1, . . . , g̃), ci, di (i = 1, . . . , k− 1)} ∈
H1(P,Z2) generated by the shifts

{Ai, Bi, CkAiCk, CkBiCk (i = 1, . . . , g̃), Ci, CkCi (i = 1, . . . , k − 1)}.
To be definite, let k1

1 > 0 (the other cases can be treated similarly). We consider
the real Arf function ω = ωψ determined by the following conditions: 1) ω(ai) =

ω(bi) = ω(a′i) = ω(b′i) = εi, where εi = 0 for i < g̃ and εi = δ̃ for i = g̃; 2) ω(ci) = 0
for i 6 k0 and ω(ci) = 1 for i > k0; 3) ω(di) = 0 for i = k0

0 + 1, . . . , k0 and for
i = k0 + k0

1 + 1, . . . , k − 1 and ω(di) = 1 otherwise. By Theorem 5.1, a spinor

bundle Ω(ψ) ∈ Sp(g, δ̃, kγα) corresponds to this Arf function. The rest of the proof
coincides almost literally with the corresponding part of the proof of Theorem 11.4.

§ 12. Real algebraic N = 1N = 1N = 1 supercurves, and their moduli space

1. We recall some definitions (see [4] and [47], § 11).
Let L = L(K) be the Grassmann algebra with infinitely many generators

1, `1, `2, . . . over a field K. Each of the elements a ∈ L(K) is a finite linear combi-
nation of monomials `i1 ∧ · · · ∧ `in with coefficients in K, that is,

a = a# +
∑

aiei +
∑
ij

aijei ∧ ej + · · · .

The correspondence a 7→ a# defines an epimorphism #: L(K) → K.
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A monomial `i1 ∧ · · · ∧ `in 6= 0 is said to be even if n is even and odd if n is
odd. The constants are also regarded as even monomials. The linear combinations
of even (odd) monomials with coefficients in K form the linear space L0(K) of even
(the linear space L1(K) of odd) elements of the algebra L(K). The superanalogue
of a linear space is the set

K(n|m) =
{

(z1, . . . , zn | θ1, . . . , θm) : zi ∈ L0(K), θj ∈ L1(K)
}
.

For the field K we take the field C of complex numbers or the field R of real
numbers.

The set
ΛNS =

{
(z | θ1, . . . , θN) ∈ C(1|N) | Im z# > 0

}
is called the upper N super half-plane. In this section we deal with the 1 super
half-planes ΛS = Λ1S. The group Aut(ΛS) of automorphisms of the super domain
ΛS consists of transformations A = A[a, b, c, d, σ | ε, δ] of the form

A(z | θ) =

(
az + b

cz + d
− (ad− bc)(ε+ δz)

(cz + d)2
θ,
σ
√
ad− bc
cz + d

(
θ + ε+ δz +

1

2
εδθ

))
,

where a, b, c, d ∈ L0(R), σ = ±1, ε, δ ∈ L1(R), (ad − bc)# > 0, and the symbol√
∆ stands for an element of L0(R) that is uniquely determined by the properties

(
√

∆ )2 = ∆ and (
√

∆ )# > 0.
The correspondence

A 7→ A#, where A#(z) =
a#z + b#

c#z + d#
,

generates an epimorphism

#: Aut(ΛS)→ Aut(Λ).

The transformations that are mapped by this epimorphism into hyperbolic trans-
formations are said to be superhyperbolic.

With an automorphism A = A[a, b, c, d, σ | ε, δ] we associate the matrix

J(A) =
σ√

a#d# − c#d#

(
a# b#

c# d#

)
∈ SL(2,R).

A subgroup Γ ⊂ Aut(ΛS) is said to be super Fuchsian if Γ# = #(Γ) is a Fuchsian
group and #: Γ→ Γ# is an isomorphism. In this section we study (unless otherwise
stated) only super Fuchsian groups that consist of superhyperbolic automorphisms
of ΛS .

The quotient set P = ΛS/Γ is called an (N = 1) Riemann supersurface (or a
super Riemann surface). The correspondence J generates a lifting

J∗ : Γ# → Γ∗ ⊂ SL(2,R).
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The type of the corresponding Arf function ωΓ = ωΓ∗ on P# = Λ/Γ# is called the
type of the supersurface.

2. We now let Ãut(ΛS) be the group generated by Aut(ΛS) together with the
involutions

σ± : (z | θ) 7→ (−z | ± θ).

If C ∈ Aut(ΛS) is a hyperbolic automorphism, then there is an element g ∈ Aut(ΛS)

such that g−1Cg(z) = (λz |
√
λ θ), where λ# > 0. We set

C
±

= gσ±g
−1, C̃± =

√
C C± ∈ Ãut(ΛS),

where g−1
√
C g(z | θ) = (

√
λ z | 4
√
λ θ). Let us extend #: Aut(ΛS) → Aut(Λ) to a

map #: Ãut(ΛS)→ Ãut(Λ) by setting #(σ±) = σ#
± : z 7→ −z.

A subgroup Γ̃ ⊂ Ãut(ΛS) is said to be a real super Fuchsian group if Γ̃# is

a real Fuchsian group. To a real super Fuchsian group Γ̃ there correspond the

super Fuchsian group Γ = Γ̃ ∩ Aut(ΛS), the Riemann supersurface P = ΛS/Γ,

and the real algebraic supercurve [Γ] = (P, τ), where τ = (Γ̃ \ Γ)/Γ: P → P is
a superantiholomorphic involution. Corresponding to the supercurve (P, τ) is the
real algebraic curve

#(P, τ) = (P#, τ#) = [Γ̃#],

called the substructure of the supercurve (P, τ). We can readily see that ωΓ is a
real Arf function on (P#, τ#). Its topological type is called the topological type of
the real supercurve (P, τ).

3. Let t = (g̃, δ, kα) be the topological type of a Riemann supersurface of genus g̃
with k holes. Denote by M t the set of all such supersurfaces. By [47], § 12, it is
“uniformized” by the space

T t = T̃ t/Aut(ΛS),

where T̃ t is the space of monomorphisms ψ : γg̃,n → Aut(ΛS) (where n = g̃ + k)
such that ψ(vg̃,n)# is a sequential set of type (g, k) and ΛS/ψ(γg̃,n) ∈M t, and the
group Aut(ΛS) acts by conjugations.

A set Q is said to be strongly diffeomorphic to R(p,q) if there is an embedding
Q ⊂ R(p|q) such that Q# is diffeomorphic to Rp and Q = #−1(#(Q)). By [47], § 12,
T t is strongly diffeomorphic to

R(p|q)/Z2 = R(6g̃+3k−6|4g̃+2k−4)/Z2.

Moreover,
M t = T t/Modt,

where Modt is a discrete group.

Theorem 12.1 ([36], [38]). The moduli space of real algebraic supercurves with
non-separating substructure decomposes into connected components of the form
S(g, δ, kα), where (g, δ, kα) is an arbitrary topological type of a non-singular Arf
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function on a non-separating real curve. Each of the components has a representa-
tion

S(g, δ, kα) = Tg,δ,kα/Modg,δ,kα ,

where Tg,δ,kα is strongly diffeomorphic to R(3g−3|2g−2)/Z2 and Modg,δ,kα is a dis-
crete group.

Proof. We set t = (0, 0, k0, g+1−k0). By definition, to anyψ ∈ T̃ t there corresponds
a set

V = (C1, . . . , Cg+1) ∈ Aut(ΛS)

such that V # = (C#
1 , . . . , C

#
g+1) is a sequential set of type (0, g + 1). This set,

together with

Ĉi =


C

+

i for i 6 k,

C̃+
i for k < i < g,

C̃+
g for i = g, δ = 0,

C̃−i for i = g, δ = 1,

(where k = k0 + k1) generates a real super Fuchsian group Γ̃. On the real curve

(P#, τ#) = [Γ̃#], we consider a homology basis

(ci, di (i = 1, . . . , g)) ∈ H1(P,Z2)

that corresponds to the shifts

(Ci, Di = C̃g+1Ĉi (i = 1, . . . , g)).

In this case the Arf function ω = ωΓ satisfies the conditions ω(ci) = 0 for i 6 k0,
ω(ci) = 1 for i > k0, ω(di) = 0 for i < g, and ω(dg) = δ. Thus, the correspondence

ψ 7→ [Γ̃] induces a map

Ω: (T̃ t)→ S(g, δ, kα).

Under this map conjugate ψ’s are mapped into the same supercurves, and hence a
map

Ω: T t → S(g, δ, kα)

is well defined.
We prove that Ω(T t) = S(g, δ, kα). Let

(P, τ) ∈ S(g, δ, kα).

It follows from Lemma 1.2 and Theorem 11.2 that there are simple closed contours

{ci, di (i = 1, . . . , g)} on (P#, τ#) such that: 1) τ#(ci) = ci and (P#)τ
#

=
⋃k
i=1 ci;

2) the elements of H1(P#,Z2) representing these contours satisfy the conditions
τ∗(di) = −di + c + ĉi, where c =

∑g
i=1 ci and

ĉi =

{
0 for i 6 k,

ci for i > k;
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3) the Arf function ω = ωΓ satisfies the conditions

ω(ci) =

{
0 for i 6 k0,

1 for i > k0,

ω(di) = 0 for i < g, and ω(dg) = δ. The contours {ci} decompose the surface

P# into components P#
1 and P#

2 . We set P1 = #−1(P#
1 ). By [47], § 12, we have

P1 = Λs/ψ(γ0,g+1), where ψ ∈ T̃ t. It follows immediately from our constructions
that Ω(ψ) = (P, τ), and Ω(ψ′) = Ω(ψ) if and only if ψ′ = ψα, where α ∈Modg,δ,kα ,
and Modg,δ,kα stands for the group in Theorem 11.5.

Theorem 12.2 ([36], [38]). The moduli space of real algebraic supercurves with

separating substructure decomposes into connected components S(g, δ̃, kγα) that cor-

respond to arbitrary topological types t = (g, δ̃, kγα) of Arf functions on separating
real curves. Each of the components is of the form

T t/Modg,δ̃,kγα ,

where T t is strongly diffeomorphic to R(3g−3|2g−2)/Z2 and Mod
g,δ̃,kγα

is a discrete
group.

Proof. We set k0 = k0
0 + k1

0, k1 = k0
1 + k1

1, k = k0 + k1, g̃ = 1
2(g + 1 − k),

and t = (g̃, δ̃, kα). By definition, to any ψ ∈ T̃ t there corresponds a set V =

(Ai, Bi (i = 1, . . . , g̃), Ci (i = 1, . . . , k)) ⊂ Aut(ΛS) such that V # = {A#
i , B

#
i

(i = 1, . . . , g̃), C#
i (i = 1, . . . , k)} is a sequential set of type (g̃, k). Together with

Ĉi =

{
C

+

j for i 6 k0
0 and for k0 < i 6 k0 + k0

1,

C
−
i for k0

0 < i 6 k0 and for i > k0 + k0
1,

the set V generates a real super Fuchsian group Γ̃. The correspondence ψ 7→ [Γ̃]

defines a map Ω: T t → S(g, δ̃, kγα). The rest of the proof repeats the corresponding
part of the proof of Theorem 12.1 with obvious modifications.

§13. Real algebraic N = 2N = 2N = 2 supercurves

1. We recall some definitions of [29] and [47], § 13. By A[a, b, c, d, ` | ε] we denote a
map A : Λ2S → Λ2S of the form

A(z | θ1, θ2) =

(
az + b+ δ11θ1 + δ12θ2

cz + d+ δ21θ1 + δ22θ2

∣∣∣ `11θ1 + `12θ2 + ε11z + ε12

cz + d+ δ21θ1 + δ22θ2
,

`21θ1 + `22θ2 + ε21z + ε22

cz + d+ δ21θ1 + δ22θ2

)
,

where a, b, c, d ∈ L0(R), ` ∈ GL(2, L0(R)), and εij, δij ∈ L1(R).
According to [29], the automorphism group Aut(Λ2S) of the super domain Λ2S

consists of A[a, b, c, d, ` | ε], where(
−c a
−d b

)(
δ11 δ12

δ21 δ22

)
=

(
ε21 ε11

ε22 ε12

)(
`11 `12

`21 `22

)
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and
ad− bc− ε11ε12 − ε21ε22 = `11`22 + `21`12 + δ11δ22 + δ12δ21 = ∆,

where ∆# > 0, and

`11`21 + δ11δ21 = `12`22 + δ12δ22 = 0.

It can be shown by direct calculation that any automorphism A[a, b, c, d, ` | ε] is
of one of the two types

1) (non-twisted) (`12)# = (`21)# = 0, (`11`22)# > 0,
2) (twisted) (`11)# = (`22)# = 0, (`12`21)# > 0.

A non-twisted (twisted) automorphism is uniquely determined by the parameters a,
b, c, d, εij, `11 (by the parameters a, b, c, d, εij, `12, respectively).These parameters
can take arbitrary values such that a, b, c, d, `ij ∈ L0(R), εij ∈ L1(R), (ad−bc)# > 0,
and (`11 + `12)# 6= 0.

The correspondence A 7→ A#, where

A = A[a, b, c, d, ` | ε],

A#(z) =
a#z + b#

c#z + d#
,

generates an epimorphism #: Aut(Λ2S) → Aut(Λ). A transformation that is
mapped into a hyperbolic transformation under this epimorphism is said to be
superhyperbolic.

A subgroup Γ ⊂ Aut(Λ2S) is called an N = 2 super Fuchsian group if Γ# =
#(Γ) is a Fuchsian group and #: Γ → Γ# is an isomorphism. Unless otherwise
stated, in this section we treat only N = 2 super Fuchsian groups that consist of
superhyperbolic automorphisms of Λ2S.

With an automorphism A = A[a, b, c, d, ` | ε] we associcate the matrix

J(A) =
σ√

a#d# − b#c#

(
a# b#

c# d#

)
∈ SL(2,R),

where σ = σ(A) = sgn(`11 + `12 + `21 + `22)#.
If Γ ∈ Aut(Λ2S) is an N = 2 super Fuchsian group, then the correspondence

J : Γ→ SL(2,R) is a monomorphism, and hence defines a lifting J∗ : Γ# → J(Γ).
Let Γ ⊂ Aut(Λ2S) be an N = 2 super Fuchsian group. The quotient set Λ2S/Γ

is called a Riemann N = 2 supersurface or an N = 2 super Riemann surface. Two
N = 2 supersurfaces P1 = Λ2S/Γ1 and P2 = Λ2S/Γ2 are assumed to be equal if Γ1

and Γ2 are conjugate in Aut(Λ2S). The projections #: Λ2S → Λ and #: Γ → Γ#

determine a projection #: P → P# = Λ/Γ#.
By [47], § 7, the lifting J∗ defines an Arf function

ω1
P : H1(P#,Z2)→ Z2.

Let us introduce functions Ωi = Ωi(Γ) : Γ→ Z2 = {0, 1} (i = 1, 2) by setting

Ω1(A) =

{
0 for

∑
i,j∈{1,2}

(hij)# < 0,

1 otherwise,
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and

Ω(A) = Ω1(A) + Ω2(A) =

{
0 for h12 = h21 = 0,

1 for h11 = h22 = 0.

We can readily see that Ω1 induces ω1
P and that Ω is a homomorphism inducing a

homomorphism ω0
P : H1(P#,Z2)→ Z2. By ω2

P we denote the Arf function ω1
P +ω0

P

generated by Ω2.

An N = 2 super Riemann surface P is said to be non-twisted if ω0
P = 0. By its

topological type we mean the topological type (g, δ, kα) of the Arf function ω1
P = ω2

P .
For ω0

P 6= 0, the Riemann surface is said to be twisted. By its topological type we
mean the topological type (g, δ1, δ2, kαβ) of the pair of Arf functions (ω1

P , ω
2
P ),

where δi = δ(P#, ωi) and kαβ is the number of holes ci of the surface P# such that
ω1(ci) = α and ω2(ci) = β [47], § 8.

2. An N = 2 superanalogue of the group Ãut(Λ) is the group Ãut(Λ2S) gener-
ated by Aut(Λ2S) together with the map σ : (z | θ1, θ2) 7→ (−z | θ1, θ2). We extend

#: Aut(Λ2S) → Aut(Λ) to a homomorphism #: Ãut(Λ2S) → Ãut(Λ) by assum-

ing that #(σ) : z 7→ −z. A subgroup Γ̃ ⊂ Ãut(Λ2S) is called a real N = 2 super

Fuchsian group if Γ = Γ̃∩Aut(Λ2S) is an N = 2 super Fuchsian group, Γ̃ 6= Γ, and

Λ#/Γ# is a compact surface. In this case, the pair (Λ2S/Γ, Γ̃/Γ) is called a real
algebraic N = 2 supercurve.

Real N = 2 supercurves (Λ2S/Γ1, Γ̃1/Γ1) and (Λ2S/Γ2, Γ̃2/Γ2) are assumed to

be equal if there is an h ∈ Ãut(Λ2S) such that Γ̃2 = hΓ̃1h
−1. The projection

# sends a real supercurve (P, τ) = (Λ/Γ, Γ̃/Γ) into the real curve (P#, τ#) =

(Λ#/Γ#, Γ̃#/Γ#).

Let (P, τ) = (Λ2S/Γ, Γ̃/Γ) be a real N = 2 supercurve and let C ⊂ Γ correspond
to an oval or to an invariant contour c (disjoint from the ovals). Replacing Γ by a
conjugate group, we may assume that C(z | θ1, θ2) = (λz | h1θj , h

2θ3−j). In this case

the group Γ̃ contains an element SC of the form SC(z | θ1, θ2) = (−ρz | l1θi, l2θ3−i),
where ρ# > 0 and `1`2 = ρ2, ρ = 1 if c is an oval, and (SC )2 = C if c is an invariant
contour. We set µ(c) = 0 for i = 1 and µ(c) = 1 for i = 2.

If ω1 = ω2 (where ωi = ωiP ), then µ(c) is the same for all ovals and invariant
contours c (disjoint with the ovals). This enables us to define the invariant µ(P, τ) =
µ(c).

If ω1 6= ω2, then the kernel of the homomorphism Ω: Γ→ Z2 forms a subgroup

Γ∗ of index two. On the surface P#
∗ = Λ#/Γ#

∗ the involutions in the set {F =

SC |µ(c) = µ} generate the involution τ#
µ (µ ∈ Z2). We set ρµ(P, τ) = ε(P#

∗ , τ
#
µ ).

Let M(g, ε) be the set of all real algebraic N = 2 supercurves (P, τ) such that
g(P#) = g and ε(P#, τ#) = ε ∈ Z2. The structure of an N = 2 supercurve defines
two Arf functions ωi = ωiP : H1(P#,Z2) → Z2. We set χ(P ) = 0 if ω1 = ω2 and
χ(P ) = 1 if ω1 6= ω2. The invariant χ ∈ Z2 decomposes M(g, ε) into the subsets
M(g, ε, χ) = {(P, τ) ∈M(g, ε) |χ(P ) = χ}.

By Theorem 3.2, the number of ovals c with the properties ωi(c) = 0 has
the parity of g + 1. For (P, τ) ∈ M(g, 0, 0), denote by kα(P, τ) the number
of ovals c such that ω1(c) = ω2(c) = α ∈ Z2. We decompose the set M(g, 0, 0)
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into the subsets

M(g, 0, 0, kα, δ, µ)

=
{

(P, τ) ∈M(g, 0, 0) | kα(P, τ) = kα, δ(ω1) = δ(ω2) = δ, µ(P, τ) = µ
}
.

For (P, τ) ∈M(g, 0, 1) we denote by kµαβ(P, τ) the number of ovals c ⊂ P τ such
that

ω1(c) = α, ω2(c) = β, µ(c) = µ ∈ Z2.

We set

M(g, 0, 1, kµαβ, δi, ρi)

=
{

(P, τ) ∈M(g, 0, 1) | kµαβ(P, τ) = kµαβ, δ(ωi) = δi, ρi(P, τ) = ρi
}
.

By [7] and [35], we have M(g, 0, 1, kµαβ, δi, ρi) = 0 for ρ1 = ρ2 = 1 and also for

k0
01 + k0

10 + k1
01 + k1

10 > 0 and ρ1 + ρ2 > 0.
Let (P#, τ#) be a real algebraic curve such that ε(P#, τ#) = 1 and suppose that

ω : H1(P#,Z2)→ Z2 is an Arf function with ω(τ#a) = ω(a) for all a ∈ H1(P#,Z2).

The ovals c1, . . . , ck decompose P# into components P#
1 and P#

2 . We set

ηω(P#, τ#) = δ(P#
1 , ω

′),

where ω′ is the restriction of ω to P#
1 . In particular, ηω(P#, τ#) = 0 if there is an

oval c such that ω(c) = 1.
Let

M(g, 1, 0, kγα, η, µ)

=
{

(P, τ) ∈M(g, 1, 0) | kγα(P#, τ#, ω1) = kγα, ηω1(P, τ) = η, µ(P, τ) = µ
}
.

Assume now that (P, τ) ∈M(g, 1, 1). We denote by k0µ
αβ(P, τ) (by k1µ

αβ(P, τ)) the

number of ovals ci that are similar to c1 with respect to ω1 (that are not similar
to c1 with respect to ω1, respectively) and such that ω1(ci) = α, ω2(ci) = β, and
µ(ci) = µ. The set of numbers kγµαβ = kγµαβ(P, τ) is defined up to a permutation

kγµαβ 7→ k1−γ,µ
αβ related to the choice of c1. We set

M(g, 1, 1, kγµαβ, ηi) =
{

(P, τ) ∈M(g, 1, 1) | kγµαβ(P, τ) = kγµαβ, ηωi(P, τ) = ηi
}
.

Thus, we obtain the following theorem.

Theorem 13.1 [46]. 1) The set M(g, ε, 0) of real supercurves (P, τ) of genus g
with the property ω1(P ) = ω2(P ) decomposes into the subsets

M(g, 0, 0, kα, δ, µ), M(g, 1, 0, kγα, η, µ),

where

α, γ, δ, η, µ ∈ Z2, 0 6 k0 + k1 6 g, 1 6
∑
αγ

kγα 6 g + 1,

∑
αγ

kγα ≡ g + 1 (mod 2), k0 ≡ g + 1 (mod 2), k0
0 + k1

0 ≡ g + 1 (mod 2)

and η = 0 for k0
1 + k1

1 > 0.

Among these subsets, only M(g, 1, 0, kγα, η, µ) and M(g, 1, 0, k1−γ
α , η, µ) coincide.
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2) The set M(g, ε, 1) of real supercurves (P, τ) of genus g with the property
ω1(P ) 6= ω2(P ) decomposes into the subsets

M(g, 0, 1, kµαβ, δi, ρi), M(g, 1, 1, kγµαβ, ηi),

where

α, β, γ, µ, i, δi, ρi, ηi ∈ Z2, 0 6
∑
αβµ

kµαβ 6 g,

1 6
∑
αβγµ

kγµαβ 6 g + 1,
∑
αβγµ

kγµαβ ≡ g + 1 (mod 2),

∑
µβ

kµ0β ≡
∑
µα

kµα0 ≡
∑
γµβ

kγµ0β ≡
∑
γµα

kγµα0 ≡ g + 1 (mod 2),

ρ1 + ρ2 < 2, ρ1 = ρ2 = 0 for k0
01 + k1

01 + k0
10 + k1

10 > 0,

η1 = 0 for
∑
βγµ

kγµ1β > 0 and η2 = 0 for
∑
αγµ

kγµα1 > 0.

Among these subsets, only M(g, 1, 1, kγµαβ, ηi) and M(g, 1, 1, k1−γ,µ
αβ , ηi) coincide.

§ 14. The moduli space of the real algebraic N = 2N = 2N = 2 supercurves

1. Let (P, τ) be real algebraic curves. By a double Arf function on (P, τ) we
mean a pair (ω, α), where ω : H1(P,Z2) → Z2 is an Arf function on (P, τ) and
α : H1(P,Z2) → Z2 is a homomorphism such that ατ = α. Double Arf functions
(ω1, α1) and (ω2, α2) on (P1, τ1) and (P2, τ2) are said to be topologically equivalent
if there is a homeomorphism ϕ : P1 → P2 such that ϕτ = τϕ, ω1 = ω2ϕ, and
α1 = α2ϕ.

By § 13, a real algebraic N = 2 supercurve gives rise to a double Arf function
(ωP , αP) = (ω1

P , ω
0
P ) on (P#, τ#).

Theorem 14.1 [46]. Real algebraic N = 2 supercurves P1 and P2 give rise to
topologically equivalent double Arf functions if and only if the topological types of
P1 and P2 coincide or differ from each other by a simultaneous replacement of µ
by 1− µ, kµαβ by k1−µ

αβ , and kγµαβ by kγ,1−µαβ .

Proof. All the topological invariants associated with a supercurve P , except for
µ(c) for ovals and invariant contours c, are uniquely determined by a pair of Arf

functions (ω1
P , ω

2
P ), and hence are preserved under homeomorphisms ϕ : P#

1 → P#
2

that agree with τ#
i . Thus, the topological equivalence of the double Arf functions

(ω1
Pi
, ω0

Pi
) implies the conditions on the types of P1 and P2 indicated in the theorem.

In the case ε(P#
i , τ

#
i ) = 1 the proof of the converse assertion repeats the proof

of Theorem 11.3. Let us prove the converse assertion for curves (P#
i , τ

#
i ) of type

(g, k, 0). We consider standard bases (which exist by Theorem 1.1)

{aij, bij (i = 1, . . . , 2r), cij, d
i
j (i = 1, . . . , s)} ∈ H1(P#

j ,Z2),
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where

(P#
i )τ

#
i =

k⋃
j=1

cij, s− k 6 1,

τ#
i (aij) = ai2r+1−j, τ#

i (bij) = −bi2r+1−j ,

τ#
i (cij) = cij , τ#

i (dij) = −dij + ci;

here ci =
∑s
j=1 c

i
j and

τ#
i (dis) = −dis + ci + cis for s > k.

By Theorem 11.2, these bases can be chosen so that

ω1
P1

(d1
j) = ω1

P2
(d2
j)

for all j 6 s. Under the conditions of Theorem 14.1, we can renumber cij and dij so
that

ωmP1
(c1j ) = ωmP2

(c2j ), ωmP1
(d1
j) = ωmP2

(d2
j)

for all j and for m = 1, 2. Moreover, by [47], Theorem 8.1, under the conditions
of Theorem 14.1 we can pass to a basis of the same form so that cij and dij are
preserved and

ωmP1
(a1
j ) = ωmP2

(a2
j) and ωmP1

(b1j) = ωmP2
(b2j)

for all j. Then a homeomorphism ϕ : P#
1 → P#

2 that maps one of the bases into
another generates a topological equivalence of the double Arf functions.

2. We recall the description of the moduli space of N = 2 super Riemann surfaces
[47], § 14.

Let 2t be the topological type of a Riemann N = 2 supersurface of genus g̃ with
k holes. By M we denote the set of all such supersurfaces. It is “uniformized” by
the space

T 2t = T̃ 2t/Aut(Λ2S),

where T̃ 2t is the space of monomorphisms ψ : γg̃,n → Aut(Λ2S) (where n = g̃ + k)
such that ψ(vg̃,n)# is a sequential set of type (g, k), Λ2S/ψ(γg̃,n) ∈ M2t, and
the group Aut(Λ2S) acts by conjugation [47], § 14. According to [47], § 14, T 2t is
strongly diffeomorphic to

R(p|q)/Z2 = R(8g̃+4k−b(2t)|8g̃+4k−8)/(Z2)2,

where b(2t) = 8 for the surface of twisted type and b(2t) = 7 otherwise. Moreover,

M2t = T 2t/Mod2t,

where Mod2t is a discrete group.

3. Let us pass now to the description of the moduli space of real algebraic N = 2
supercurves.
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Theorem 14.2 [46]. 1) The moduli space M(g, ε, 0) of real algebraic N = 2 super-
curves (P, τ) of genus g with ω1(P ) = ω2(P ) decomposes into the connected com-
ponents

M(g, 0, 0, kα, δ, µ), M(g, 1, kγα, η, µ),

where

α, γ, δ, η, µ ∈ Z2, 0 6 k = k0 + k1 6 g, 1 6
∑
αγ

kγα 6 g + 1,

k =
∑
αγ

kγα ≡ g + 1 (mod 2), k0 ≡ g + 1 (mod 2),

k0
0 + k1

0 ≡ g + 1 (mod 2) and η = 0 for k0
1 + k1

1 > 0.

Among these components, only M(g, 1, 0, kγα, η, µ) and M(g, 1, 0, k1−γ
α , η, µ) coin-

cide. Each of the components M(χ) is of the form T (χ)/Mod(χ), where T (χ) is
strongly diffeomorphic to R(4g−3+µk | 4g−4)/(Z2)2, and Mod(χ) is a discrete group.

2) The moduli space M(g, ε, 1) of real algebraic N = 2 supercurves (P, τ) of genus
g for which ω1(P ) 6= ω2(P ) decomposes into connected components of the form

M(g, 0, 1, kµαβ, δi, ρi), M(g, 1, 1, kγµαβ, ηi),

where

α, β, γ, µ, i, δi, ρi, ηi ∈ Z2, 0 6
∑
αβµ

kµαβ 6 g,

1 6
∑
αβγµ

kγµαβ 6 g + 1,
∑
αβγµ

kγµαβ ≡ g + 1 (mod 2),

∑
µβ

kµ0β ≡
∑
µα

kµα0 ≡
∑
γµβ

kγµ0β ≡
∑
γµα

kγµα0 ≡ g + 1 (mod 2),

ρ1 + ρ2 < 2, ρ1 = ρ2 = 0 for k0
01 + k1

01 + k0
10 + k1

10 > 0,

η1 = 0 for
∑
βγµ

kγµ1β > 0 and η2 = 0 for
∑
αγµ

kγµα1 > 0.

Among these components, only M(g, 1, 1, kγµαβ, ηi) and M(g, 1, 1, k1−γ,µ
αβ , ηi) coincide.

Each of these components M(χ) is of the form T (χ)/Mod(χ), where Mod(χ)
is a discrete group, the space T (χ) is strongly diffeomorphic to the quotient

R(4g−4+k1|4g−4)/(Z2)2, and k1 is equal to
∑
αβγ k

γ1
αβ or

∑
αβ k

1
αβ.

Proof. Let Γ̃ be a real N = 2 super Fuchsian group, let (P, τ) = [Γ̃], let c be an oval
or an invariant contour of the curve (P#, τ#) that does not intersect ovals, and let

C ⊂ Γ = Γ̃∩Aut(Λ2S) be the shift corresponding to it. Replacing Γ̃ by a conjugate

group, we may assume that C(z | θ1, θ2) = (ρz | l1θi, l2θ3−i). By Ĉ ⊂ Γ̃\Γ we denote

an element such that: 1) ĈCĈ−1 = C; 2) Ĉ2 = 1 if c is an oval; 3) Ĉ2 = C if c is
an invariant contour. If µ(c) = 0 and c is an oval, then

Ĉ(z | θ1, θ2) = (−z | ± θ1,±θ2).
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If µ(c) = 0 and c is an invariant contour, then

Ĉ(z | θ1, θ2) = (−√ρ z | ±
√
|`1| θ1,±

√
|`2| θ2).

If µ(c) = 1 and c is an oval, then

Ĉ(z | θ1, θ2) = (−z | hθ2, h
−1θ1).

If µ(c) = 1 and c is an invariant contour, then

Ĉ(z | θ1, θ2) = (−√ρ z | hθ2,
√
ρh−1θ1).

The rest of the proof repeats that of Theorems 12.1 and 12.2 with the space T t

replaced by T 2t and Theorems 11.2 and 11.3 by Theorem 14.1. The single essential
difference arises only when associating a map Ĉi with a shift Ci belonging to the
set

{Ai, Bi (i = 1, . . . , g̃), Ci (i = 1, . . . , m)} = ψ(Vg̃,m), ψ ∈ T 2t.

The above arguments show that if µ(ci) = 0 for a contour ci corresponding to

Ci, then the map Ĉi is determined by the shift Ci with the same arbitrariness
as in the case N = 1 (§ 12). For µ(ci) = 1 the choice of Ĉi depends on a single
additional arbitrary parameter h ∈ L0(R). However, if ci is not an oval, then the

condition Ĉ2
i = Ci fixes one of the parameters in L0(R) on which an arbitrary

element Ci ∈ Aut2(Λ2S) depends. It is this that determines the dimension of the
superlinear spaces that uniformize the connected components of the moduli space
of real N = 2 supercurves.
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