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INTRODUCTION 

THIS PAPER developed in part from an earlier version by the last two authors. It. is presented 
here, in its revised form, by the first two authors in memory of their friend and collaborator 
ARNOLD SHAPIRO. 

The purpose of the paper is to undertake a detailed investigation of the role of Clifford 
algebras and spinors in the K&theory of real vector bundles. On the one hand the use of 
Clifford algebras throws considerable light on the periodicity theorem for the stable ortho- 
gonal group. On the other hand the use of spinors seems essential in some of the finer points 
of the KO-theory which centre round the Thorn isomorphism. As far as possible we have 
endeavoured to make this paper self-contained, assuming only a knowledge of the basic 
facts of K- and KO-theory, such as can be found in [3]. In particular we develop the theory 
of Clifford algebras from scratch. The paper is divided into three parts. 

Part I is entirely algebraic and is the study of Clifford algebras. This contains nothing 
essentially new, though we formulate the results in a novel way. Moreover the treatment 
given in 54 l-3 differs slightly from the standard approach: our Clifford group (Definition 
(3.1)) is defined via a ‘twisted’ adjoint representation. This twisting, which is a natural 
consequence of our emphasis on the grading, leads, we believe, to a simplification of the 
algebra. On the group level our definitions give rise in a natural way to a group7 Pin(k) 
which double covers O(k) and whose connected component Spin(k) double covers SO(k). 
This group is very convenient for the topological considerations of $0 13 and 14. In 4 4 we 
determine the structure of the Clifford algebras and express the results in Table 1. The 

basic algebraic periodic&y (8 in the real case, 2 in the complex case) appears at this stage. 
In 8 5 we study Clifford modules, i.e. representations of the Clifford algebras. We introduce 
certain groups A,, defined in terms of Grothendieck groups of Clifford modules, and tabu- 
late the results in Table 2. In 5 6, using tensor products, we turn A, = xkPO Ak into a graded 

ring and determine its structure. These groups A, are an algebraic counterpart of the 
homotopy groups of the stable orthogonal group, as will be shown in Part III. 

Part II, which is independent of Part I, is concerned essentially with the ‘difference 
bundle’ construction in K-theory. We give a new and more complete treatment of this topic 

t This joke is due to J-P. Serre. 
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(see [4] and [7] for earlier versions) which includes a Grothendieck-type definition of the 
relative groups K(X, Y) (Proposition (9.1))-and a product formula for difference bundles 
(Propositions (10.3) and (10.4)). 

In Part III we combine the algebra of Part I with the topology of Part II. We define in 
FJ 11 a basic homomorphism 

UP* - A, + Itit 

where P is a principal Spin(k)-bundle over X, V = P x Spin&k, and X” is the Thorn complex 
of V. One of our main results is a product formula for up (Proposition (11.3)). Applying 
this in the case when X is a point gives rise to a ring homomorphism 

a : A, --t c KOsk(point). 
kS0 

Using the periodicity theorem for the stable orthogonal group, as refined in [6], we then 
verify that c1 is an isomorphism (Theorem (11.5)). It is this theorem which shows the sig- 
nificance of Clifford algebras in K-theory and it strongly suggests that one should look for a 
proofof the periodicity theorem using Clifford algebras. Since this paper was written a proof 
on these lines has in fact been found by R. Wood?. It is to be hoped that Theorem (11.5) 
can be given a more natural and less computational proof. 

Using c(,, for general X gives us the Thorn isomorphism (Theorem (12.3)) in a very pre- 
cise form. Moreover the product formula for clp asserts that the ‘fundamental class’ is 
multiplicative-just as in ordinary cohomology theory. Developing such a Thorn iso- 
morphism with all the good properties was one of our main aims. The treatment we have 
given is, we claim, more elementary, as well as more complete, than earlier versions which 
involved heavy use of characteristic classes. 

In [7] another approach to the Thorn isomorphism is given which has certain advantages 
over that given here. On the other hand the multiplicative property of the fundamental 
class does not come out of the method in [7]. To be able to use the advantages of both 
methods it is therefore necessary to identify the fundamental classes given in the two cases. 

This is done in $4 13 and 14. 

Finally in Q 15 we discuss some other geometrical interpretations of Clifford modules. 
These throw considerable light on the vector-field problem for spheres. 

Although the main interest in this paper lies in the KO-theory, most of what we do applies 

equally well in the complex case. It is one of the features of the Clifford module approach 
that the real and complex cases can be treated simultaneously. 

$1. Notation 

PART I 

Let k be a commutative field and let Q be a quadratic form on the k-module E. Let 

T(E)=x,zoTiE=k@E@EQE@ . . . be the tensor algebra over E, and let I(Q) be the 
two-sided ideal generated by the elements x @ x - Q(x)* 1 in T(E). The quotient algebra 

p See also the proof given in: J. MILNOR: Morse Theory, Ann. Muds. Stud. 51, (1963). 
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T&)/Z(Q) is called the Clifford algebra of Q and is denoted by C(Q). We also define 

io : E+ C(Q) to be the canonical map given by the composition E+ T(E) + C(Q). Then 

the following propositions relative to C(Q) are not difficult to verify: 

(1.1) ia : E-+ C(Q) is an injection. 

(1.2) Let 4 : E+A be a linear map of E into a k-algebra with unit A, such that for all 

XEE, the identity 4(x)” = Q(x)1 is valid. Then there exists a unique homomorphism 

4 : C(Q) + B, such that 6 *iQ = 4. (We refer to 4 as the ‘extension’ of $.) 

(1.3) C(Q) is the universal algebra with respect to maps of the type described in (1.2). 

(1.4) Let FpT(E) = cisq T’E be the filtered structure in T(E). This filtering induces a 

filtering in C(E), whose associated graded algebra is isomorphic to the exterior algebra 

AE, on E. Thus dim&(Q) = 2dimE, and if (ei} (i = 1, . . ., n) is a base for i,(E), then 1 

together with the products e,, .e,, . . . ei,, i, < iz < . . . < ik, form a base for C(Q). 

(1.5) Let Co(Q) be the image of xi=: T”(E) in 

of cz T”+‘(E) in C(Q). Then this decomposition 

That is: 

C(Q) and set C’(Q) equal to the image 

defines C(Q) as a Z,-graded algebra. 

(a) C(Q) = i=T, C'(Q); 

(b) If Xi E d(Q), yj E C’(Q), then 

XiYj E C”(Q), k=i +jmod2. 

That the graded structure of C(Q) should not be disregarded is maybe best brought out 

by the following: 

PROPOSITION (1.6). Suppose that E = El 0 E, is an orthogonaI decomposition oj‘ E 
relative to Q, and let Qi denote the restriction of Q to Ei. Then there is an isomorphism 

ti : C(Q) g C(Qi> 8 C(QJ 

of the graded tensor-product of C(Q1) and C(Q,) with C(Q). 

Recall first, that the graded tensor product of two graded algebras A = ~a=O,IAOL, 

B = xa= o,l B”, is by definition the algebra whose underlying vector space is cn,s = o,, A” @ BB, 
with multiplication defined by : 

(U OXi).(~jo V) = (-I)“uY~~x,v, XiECi(Q), YjEC’(Q). 

This graded tensor product is denoted by A 6 B; and is again a graded algebra: 

(A &I B)k = CA’@ Bj (i +j = k(2)). 

Proof of the proposition. Define II/ : E+ C(Q,) 6 C(Q2) by the formula, IC/(e) = 

e, 0 1 + 10 e2, where e, and e, are the orthogonal projettions of e on El and Ez. Then 

ti(e)’ = (er 0 1 + 16 e2)2 = tQ,<ed + Qz(e2>>(l 0 1) = Q<e)(l 0 1). 

Hence $ extends to an algebra homomorphism $ : C(Q) -+ C( Qr) 6 C( Q2), by (1.2). Checking 

the behavior of $ on basis elements now shows that $ is a bijection. Note that the graded 

structure entered through the formula (er @ 1 + 1 @ e2)2 = e: @ 1 + 1 @ et which is valid 

as ei E C’(Qi). 
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The algebra C(Q) also inherits a canonical antiautomorphism from the tensor algebra 
T(E). Namely if x = x1 0 x2 . . . @I x, E Tk(E), then the map x -+ x’, given by 

x,~x,~...~x,~x,~....~x,~x, 

clearly defines an antiautomorphism of T(E), which preserves I(Q) because 
{x @ x - Q(x). l}’ = x 8 x - Q(x)* 1. Hence this operation induces a well defined anti- 
automorphism on C(Q) which we also denote by x + x’ and refer to as the transpose. The 
transpose is the identity map on i&E) c C(Q). 

The following two operations on C(Q) will also be useful: 

DEFINITION (1.7). The canonical automorphism of C(Q) is defined as the ‘extension’ of 
the map Q : E + C(Q), given by a(x) = - io(x). (It is clear that {cc(x)}~ = Q(x)1 and so a is 
well-defined by (1.1)). We denote this automorphism by a. 

DEFINITION (1.8). Let x -+ .Z be defined by the formula x + a(x’). This ‘bar operation’ is 
then an antiautomorphism of C(Q). 

Note. (1) The identity a(x’) = (a(x)}f holds as both are antiautomorphisms which 
extend the map E + C(Q) given by x -+ - i&x) ; 

(2) The grading on C(Q) may be defined in terms of a: d(Q) = (xe C(Q)\a(x) = 
(- l)‘x}, i = 0, 1. 

$2. The algebras Ck 

We are interested in the algebras C(Qk), where Qk is a negative definite form on k-space 
over the real numbers. Quite specifically, we let Rk denote the space of k-tuples of real 
numbers, and define Qk(xl, . . . . xk) = - cx?. Then we define C, as the algebra C(Qk) 
and identify Rk with i,,Rk c C, and R with R* 1 c C,. Fork = 0, C, = R. 

PROPOSITION (2.1). The algebra C1 is isomorphic to C (the complex numbers) considered 
as ‘an algebra over R. Further 

Ck z C, 6 Cl 6 . . . & Cl (k factors). 

Clearly C1 is generated by 1 and er, where 1 denotes the real number 1 in R’. Hence 
e: = -1. The formula C, EZ C,@) . . . 0 C1 now follows from repeated application of 
Proposition (1.6). 

We will denote the k-tuple, (0, . . . . 1, . . . . 0) with 1 in the ith position by ei. The e, 
i < k then form a base of Rk c C,. 

COROLLARY (2.2). The ei, i = 1, . . ., k, generate C, multiplicatively 
relations 

(2.3) e*=-1 j 9 eiej + ejei = 0; i#j. 

and satisfy the 

C, may be identified with the universal,algebra generated over R by a unit, 1, and the symbols 
ei, i = 1, . . . . k, subject to the relations (2.3). 

$3. The groups, Ik, Pin(k), and Spin (k) 

Let C,* denote the multiplicative group of invertible elements in Ck. 
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DEFINITION (3.1). The Clij%rd group r, is the subgroup of those elements XE C,* for 
which y E Rk implies rx(x)yx- 1 E RR. 

It is Clear enough that rk is a subgroup of Ck, because a is an automorphism. We also 
write a(x)Rkx-’ c Rk for the condition -defining r,. As u and the transpose map Rk into 
itself, it is then also evident that we have: 

PROPOSITION (3.2). The maps x + u(x), x + x’ preserve r,, and respectively induce an, 
automorphism and an antiautomorphism of rk. Hence x -+ Z is also an antiautomorphism 

Of rk. 

The group rk comes to us with a ready-made homomorphism p : IT, + Aut(Rk). By 
definition p(x), for x E r,, is the linear map Rk + Rk given by p(x) *Y = IX(X)YX-‘. We refer 
to p as the twisted adjoint representation of r, on R k. This representation p turns out to be 
nearly faithful. 

PROPOSITION (3.3). The kernel of p : r, + Aut(Rk) is precisely R*, the multiplicative 
group of nonzero multiples of 1 E C,. 

Proof. Suppose XE Ker(p). This implies 

(3.4) a(x)y = Yx for all Y E Rk. 

Write x = x0 + x1, xi E C,$ Then (3.4) becomes 

(3.5) xoy = yxo 

(3.6) x’y = - yxl. 

Let e,, . . . . e, be our orthonormal base for Rk, and write x0 = a0 •t elb’ in terms of this basis. 
Here a0 E Ct does not involve e, and b’ E Cl does not involve e,. By setting y = e, in (3.5) 
we get a0 + e,b’ = elaoe;’ + efb’e;’ = a, - e,b’. Hence b’ = 0. That is, the expansion 
of x0 does not involve e,. Applying the same argument with the other basis elements we see 
that x0 does not involve any of them. Hence x0 is a multiple of 1. Next we write x1 in the 
same form: x1 = a’ -I- elbo and set y = e,. We then obtain a1 + elbo = -{elale;’ + efb’e;‘} 

1 =a- elbo. We again conclude that x1 does not involve the ej. Hence x1 is a multiple 
of 1. On the other hand x1 E Ci whence x1 = 0. This proves that x = x0 E R and as x is 
invertible x E R*. Q.E.D. 

Consider now the function N : C, + C, defined by 

(3.7) N(x) =x-E. 

Ifx~R~,thenN(x)=x(-x)= -x2 = - Q,(x). Thus N(x) is the square of the length 
in Rk relative to the positive definite form - Qk. 

PROPOSITION (3.8). If x E rk then N(x) E R*. 

Proof We show that N(x) is in the kernel of p. Let then x E rk, whence for every 
y E Rk we have 

a(x)yx_ 1 = y’, y’ = p(x)veRk. 

Applying the transpose we obtain: (as Y’ = Y) 

(x? - ’ ya(x)’ = e(x>yx- 1 
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whence ~~cr(x’)x = x’a(xly. This implies that c@)x is in the kernel of p, and hence in R* 
by (3.3). It follows that X%(X) E R*, whence N(x’) E R*. However X+X’ is an antiauto- 
morphism of F,, by (3.2). Hence N(F,) c R*. 

PROPOSITION (3.9). N : I?, + R* is (I homomorphism. Moreover N(ax) = N(x). 

Proof. N(xy) = xy jZ = xN(y)X = N(x) *N(y), N(a(x)) = a(x)x’ = aiV(x) = N(x). 

PROPOSITION (3.10). p(F,) is contained in the group of isometries of Rk. 

Proof. Using (3.9) and the fact that Rk - (0) c Fk we have 

N@(x) *u> = N(MY x- ‘) = N(cr(x))N(J$V(x-‘) = N(Y). 
Q.E.D. 

THEOREM (3.11). Let Pin(k) be the kernel of N: rk + R*, k 3 1, and let O(k) denote 
the group of isometries of Rk. Then plPin(k) is a surjection of Pin(k) onto O(k) with kernel 
Z2, generated by - 1 E F,. We thus have the exact sequence 

l+Z,-+Pin(k)%O(k)+l. 

Proof. We show first that p is onto. For this purpose consider e, E Rk. We have 
N(e,) = - erer = + 1, and 

a(el)eie; l = ( -ei if i=l 

ei if ifl. 

Thus e, E Pin(k), and p(eI) is the reflection in the hyperplane perpendicular to e,. Applying 
the same argument to any orthonormal base {ei} in Rk, we see that the unit sphere 

{x~R~lN(x)= i} 

is in Pin(k) whence all the orthogonal reflections in hyperplanes of Rk are in p(Pin(k)}. 
But these are well known to generate O(k). Thus p maps Pin(k) onto O(k). Consider next 
the kernel of this map, which clearly consists of the intersection Kcr p n {N(x) = 1). Thus 
the kernel of pjPin(k) consists of the multiples 1.1, with N(I1) = 1. Thus 1,’ = + 1 which 
implies I = + 1. 

DEFINITION (3.12). FOP k > 1 let Spin(k) be the subgroup of Pin(k) which maps onto 
SO(k) under p. 

The groups Pin(k) and Spin(k) are double coverings of O(K) and SO(k) respectively. 
As such they inherit the Lie-structure of the latter groups. One may also show that these 
groups are closed subgroups of C,* and get at their Lie structure in this way. 

PROPOSITION (3.13). Let Pin(k)’ = Pin(k) n CL. Then Pin(k) = Ui=o,l Pin(k)‘, and 
Spin(k) = Pin(k)‘. 

Proof. Let x E Pin(k). Then p(x) is equal to the composition of a certain number of 
reflections in hyperplanes : P(F) = RI 0 . . . o R,. We may choose elements xi E Rk, such that 
p(Xi) = Ri. Hence, by (3.11), x = &XIX, . . . x,, and is therefore either in Ci or in Ci. 
Finally x is in Spin(k) if and only if the number n in the above decomposition of p(x) is 
even, i.e. if and only if x E Pin(k)‘. 

PROPOSITION (3.14). When k > 2, the restriction of p to Spin(k) is the nontrivial double 
covering of SO(k). 
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Proof. It is sufficient to show that + 1, - 1, the kernel of plSpin(k), can be connected 
by an arc in Spin(k). Such an arc is given by: 

1:t+cost+sint*e,e, o<ttrc. 

COROLLARY (3.15). When k 2 2, Spin(k) is connectedand, when k > 3, simply-connected. 

This is clear from the fact that SO(k) is connected for k > 2, and that 7cn,{SO(k)} =Z, 
ifk33. 

We note finally that Spin(l) = Z,, while Pin(l) = Z,. 

All the preceding discussion can be extended to the complex case. We define IX, t on 

C,O,C by 
cL(X 8 z) = a(x) 0 z 

(x @ z)’ = x’ @ z 

and we take the bar operation and N to be defined in terms of a, t as before. 

DEFINITION (3.16). l-i is the subgroup oj’ invertible elements x E C, Qp C for which 

y E Rk imphes cr(x)yx-’ E Rk. 

Propositions (3.2)-(3.10) go through with R* replaced by C* and (3.11) becomes: 

THEOREM (3.17). Let Pin’(k) be the kernel of N : l-i + C*, k > 1, then we have an exact 
sequence : 

(3.18) 1 --f U(1) --f Pin”(k) + O(k) + 1 

where U(1) is the subgroup consisting of elements 1 Q z E C, QR C with lz/ = 1. 

COROLLARY (3.19). We have a natural isomorphism 

Pin(k) x z2 U(1) + Pin’(k), 

where Z, acts on Pin(k) and U(1) as { + I}. 

Proof. The inclusions Pin(k) c C,, U(1) c C induce an inclusion 

Pm(k) X z2 U(1) -+ c, @II c, 

and it follows from the definitions that this factors through a homomorphism: 

$ : Pin(k) x x2 U(1) + Pin’(k). 

Now we have an obvious exact sequence 

(3.20) 0 + U(1) -+ Pin(k) x z2 U(1) -+ Pin(k)/,, + 1 

and II/ induces a homomorphism of (3.20) into (3.18). The 54emma and (3.11) now com- 
plete the proof. 

We define Spin’(k) as the inverse image of SO(k) in the homomorphism 

Pin’(k) + O(k). 

Then from (3.19) we have 

Spin’(k) z Spin(k) x z2 U(1). 

The groups Spin’(k) are particularly relevant to an understanding of the relationship 
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between spinors and complex structure, as we proceed to explain. The natural homomor- 
phism 

j : U(k) + SO(2k) 

does not lift to Spin(2k), as one easily verifies. However the homomorphism 

I : U(k) + SO(2k) x U(1) 
defined by 

1(T) = j(T) x det T 

does lift to Spin’(2k). This follows at once from elementary topological considerations and 
the fact that 

det : U(k) --f U(1) 

induces an isomorphism of fundamental groups. 

Explicitly the lifted map 

7 : U(k) + Spinc(2k) 

is given as follows. Let T E U(k) be expressed, relative to an orthonormal base fi, . ..,fk 

of C’, by the diagonal matrix 

I 
exp it, 

exp itz ** I kxp itk 

Let e,, . . . . e,, be the corresponding base of Rzk, so that 

ezj-1 =fj e2j = ifj 

Then 

i(T) = fi 
j=l 

( COS t,/2 + sin tj/2*f?2j-lt?2j j x exp(?). 

54. Determination of the algebras ck 

In the following we will write R, C, and H respectively for the real, complex and 
quarternion number-fields. If F is any one of these fields, F(n) will be the full n x n matrix 
algebra over F. The following are well known identities among these: 

i 

F(n) E R(n) c&F, R(n) &R(m) r R(nm) 

(4.1) 
C@,,CZC@C 

H&C 2 C(2) 
H&H z R(4). 

To compute the algebras C, one now proceeds as follows: Let CL be the universal 
R-algebra generated by a unit and the symbols ef (i = 1, . . ., k) subject to the relations 
(ef)” = $1; eie; + e;ei = 0, i # j. Thus CL may be identified with C(- &). 

PROPOSITION (4.2). There exist isomorphisms: 

(4.3) 
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Proof. Denote by Rik the space spanned by the e: in Ci. 

Consider the linear map y? : Rfk” + C, 0 C; defined by 

11 

2<i,<k 
l<i<2. 

Then it is easily seen that + satisfies the universal property (1.1) for CL and hence extends to 
an algebra homomorphism $ : CL+, 4 C, 0 C;. As the map takes basis elements into basis 
elements and the spaces in question have equal dimension, it follows that $ is a bijection. 
If we now replace the dashed symbols by the undashed ones and apply the same argument 
we obtain the second isomorphism. 

Now it is clear that 

c, = c, CiZR@R 
C2 z H, C; z R(2). 

Hence (4.1) and repeated application of (4.3) yields the following table: 

k ck c'k ck@Rc=~k@RC 

C R@R C@C 
H R(2) C(2) 
H@H cc3 C(2) 0 C(2) 
H(2) H(2) C(4) 
C(4) H(2) 0 H(2) C(4) 0 C(4) 
R(8) H(4) C(8) 
R(8) 0 R(8) C(8) 
Rv-3 R(16) 

y,Q W3) 

TABLE 1 

Note that (4.2) implies C, zz Ci ; Ck + 4 E’ Ck @ C, ; C,, s E’ Ck 0 C, ; further C, z R(l6), 
whence if C, z F(m) then, Ck+s E F(16m). Thus both columns are in a quite definite sense 
of period 8. If we move up eight steps, the field is left unaltered, while the dimension is 
multiplied by 16. Note also the considerably simpler behavior of the complexifications of 
these algebras, which of course can be interpreted as the Clifford algebra of Qk over the 
complex-numbers. Over the complex field, the period is 2. 

45. Clifford modules 

We will now describe the set of R- and C- modules for the algebras Ck. We write 
M(C,) for the free abelian group generated by the irreducible Z,-graded C,-modules, and 
N(C,O) for the corresponding group generated by the (ungraded) Ci-modules. The cor- 
responding objects for the complex algebras Ck ORC are denoted by M’(C,) and N’(Cz). 

PROPOSITION (5.1). Let R : MHM~ be the functor which assigns to a graded C,-module 

M = MO @ M’ the Cf-module MO. Then R induces isomtirphisms 

(5.2) M(C,) Z N(C,o). 
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Proof. If M” is a Cz-module, let 

S(MO) = Ck 0 co, MO. 

The left action of C, on C, then defines S(M’) as a graded C,-module. We now assert that 
S O R and R O S are naturally isomorphic to the identity. In the first case the isomorphism is 
induced by the ‘module-map’ C, Q MO + M, while in the second case the map MO + 1 @ MO 
induces the isomorphism. 

We of course also have the corresponding formula : 

(5.3) M’(C,) E N’(C,o). 

PROPOSITION (5.4). Let 4 : Rk + Cf+l be defined by &ei) = eiek+l, i = 1, . . . . k. Then 
4 extends to yield an isomorphism C, z Cz + 1. 

Proof. 4(eJ2 = eiek+leiek+l = - 1. Hence 4 extends. As it maps distinct basis elements 
onto distinct basis elements the extension is an isomorphism. 

In view of these two propositions and Table 1, we may now write down the group 
M(C,) etc., explicitly. This is done in Table 2, where we also tabulate the following 
quantities : 

Let i : C, + C,,, be the inclusion which extends the inclusion Rk + Rkfl, let 
i* : M(C,+,) + M(C,) be the induced homomorphism, and set A, = cokernel of i*. Simi- 
larly define A; as Mc(Ck)/i*{Mc(Ck+,)} and finally define &[a;] as the R[C]-dimension of 
MO when M is an irreducible graded module for ck[Ck OR C]. 

TABLE 2 

k ck M(Ck) A, ak MC(&) A$ a% 
--~ 

1 C(l) Z Za 1 Z 0 
2 H(l) Z ZZ 2 Z@Z z 
3 H(l) 0 H(l) Z 0 4 Z 0 
4 H(2) zoz z 4 zgz z 
5 C(4) Z 0 8 Z 0 
6 R(8) Z 0 8 Z@Z z 
7 R(8) 0 R(8) Z 0 8 Z 0 
8 W6) Z@Z Z 8 Z@Z z 

M kf8 = - Mk, Ak+s g Ak, akf8 = l&k 

Mf,, E MS, Ai+2 z Ai, af+2 = 2a;. 

Most of the entries in Table 2 follow directly from Table 1, because the algebras F(n) 
are simple and hence have only one class of irreducible modules, the one given by the 
action of F(n) on the n-tuples of elements in F. The only entries which still need clarification 
are therefore A,, and A;,,. 

Before explaining these entries observe that if M = MO @ Ml, then M* = M’ @ MO. 
i.e. the module obtained from M by merely interchanging labels, is again a graded module. 
This operation therefore induces an involution on M(C,) and M’(C,) which we again 
denote by *. 
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PROPOSITION (5.5). Let x and y be the classes of the two distinct irreducible graded 
modules in M(C,,). Then 

(5.6) x* = y, y* = x.. 

COROLLARY (5.7). A,, g Z. 

Indeed if z generates M(Cbn+i), th en z* = z as there is only one irreducible graded 

module for C,, + i. Hence as (i*z)* = i*(z*) we see that i*z = x + y, by a dimension count. 

To prove (5.5) we require the following lemma which is quite straight-forward and will 
be left to the reader. 

LEMMA (5.8). Let y E Rk, y # 0 and denote by A(y) the inner automorphism of C, in- 
duced by y. Thus A(y) * w = ywy - ‘. We also write A(y) for the induced automorphism on 
M(C,). Similarly A’(y) denotes the restriction of A(y) to C,“, as well as the induced automor- 
phism on N(Ci). Then we haue 

A(Y). x = x* x E M(ck) 

(5.9) A’(y).R(x) = R(x*), 

AO(e&(w) = +(a(w)>. 

Here R : M(C,)I+N(C~) is the functor introduced earlier, and fj~ : ck_, -+ ck, the map intro- 
duced in (5.4), while a is the canonical automorphism of Ck. 

It now follows from these isomorphisms, that * on M(C,,) corresponds to the action 
of a on the ungraded modules of Cbn_i. Now the centre of C4n-1 is spanned by 1 and 
w = elez . . . e4n-1. Further w2 = + 1. Hence the projections of C4”-r on the two ideals 
which make up C4n-1 are (1 i- w)/2 and (1 - w)/2. Hence K interchanges these, and there- 
fore clearly interchanges the two irreducible C4n-1 modules. 

Finally, the evaluation A”,, z Z proceeds in an entirely analogous fashion. 

Actually in the complex case there is a relation with Grassmann algebras which we 
shall now describe. Give Ck the standard Hermitian metric. Then the complex Grassmann 
algebra 

A(Ck) = jio A’(C”) 

inherits a natural metric. In terms of an orthonormal basis fi, . . . . fk of CL the elements 

fix Afi, * .-. A.Lfi, i, < i2 < . . . < i, 

form an orthonormal basis of A(Ck). For each v E Ck let d, denote the (vector space) 
endomorphism of A(Ck) given by the exterior product: 

d,(w) = u A w, 

and let 6, denote its adjoint with respect to the metric. We now define a pairing 

(5.10) Ck 0 IIA(Ck) + A(Ck) 

by 

One verifies that 
u @ w -+ d,(w) - 6,(w). 

(d, - S,,2w = -+~~*w 
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so that (5.10) makes A(Ck) into a complex module for the Clifford algebra C,, (identifying 
Ck with RZk as usual) i.e. into a module for C,, @aC. Moreover A(@ has a natural Z2- 
grading 

AQ =CAZ? 

A’ = c AZr+l 
compatible with (5.10). A dimension count then shows that A(C”) must be one of the two 
irreducible Z,-graded modules for C2k @a C. Now if u = iv we see that 

(d, - &J(d, - 0(l) = - Wl12(l) 1 E A”(Ck). 

Hence A(C”) is a (-i)k-module, and so we get 

fiOPOSITION (5.11). 

Remark. Using the 
verify the commutativity 

Here A is the functorial homomorphism, i is the inclusion and cr is the homomorphism 

A(Ck) is a graded Czk @I,, C-module defining the class 

( - l)“(p’)k E A;. 

explicit formula for I : U(k) + Spin’(2k) given in 93 it is easy to 
of the following diagram 

U(k) ’ - Spin’(2k) 

Ii IQ 
End(Ck) L End(A(CS) 

induced by the action of C2k @a C on A(C”) defined above. 

56. The multiplicative properties of the Clifford modules 

If M and N are graded Ck and Ci modules, respectively, then their graded tensor 
product M&I N is in a natural way a graded module over Ck 6 C,. By definition 
(M@N)“=Mo@No@M’@N1 and (M&IN)~=M~@N~OM’@N~, the action of 
C, 6 CI on M & N being given by: 

(6.1) (x~y).(mOn)=(-1)4’(x.m)O(y.n), YECf, m E M’(q, i = 0, 1). 

We also have the isomorphism &l: C,,, + ck &I c, defined by the linear extension 
of the map 

l<i<k 
k<i<k+l. 

The operation (M, N)H M &I NI-+ d&(M @I N) is easily seen to give rise to a pairing 

WC,) 0 2 WC,) + WC, i-r) 

and thus induces a Z-graded ring structure on the direct sum M* = c: M(C,>. We denote 
this product by (u, V) + U*V. It is clearly associative. 

PROPOSITION (6.2). The following formulae are valid for u E M(C,), u E M(C,) 

(6.3) (u’u)*= ff*2)* 

(6.4) 
if kl is even 
if kl is odd. 
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(6.5) If i* : M(C,) + M(C,_t) is the restriction homomorphism, as defined in 55, then 

u-i*0 = i*(u - 0) kZ 1. 

The formulae (6.3) and (6.5) follow immediately from the definitions. 

Proof of (6.4). We have the diagram: 

c,&c,&c,+, 

where T is the isomorphism x @ y + (- l)P4y 8 X, x E C[, y E Cf. Now the composition 

4 ;: J.&,&M-G+, is an automorphism (r of Ck+,, which clearly is the linear ex- 
tension of the map which permutes the first k elements of the basis {eJ with the last I 
elements 

C(Z?J = 
l<i<k 
k<i<k+l 

Thus cr is the composition of inner automorphisms by elements in Rk - (0). It follows 
therefore from (5.9) that the effect of cr on M(Ck) is equal to the effect of the operation (*) 
applied kl times. If we combine this with the fact that T*(N & M) g M 6 N, whence 

&$‘J 6 M) g e* 0 &‘(M 6 N), 

we obtain the desired formula. 

COROLLARY (6.6). Let 1 E M(C,) be the class of an irreducible module of C,. Then 
muhiphcation by 2 induces an isomorphism: M(ck) ES M(C,+,). 

Proof: This follows from our table of the a,‘, in all cases except when k = 4n. In that 
case let x, y be the generators corresponding to the two irreducible graded modules of C,. 
Then we know that x* = y. Now 2.x E M(C,+ *) is the class of one of the irreducible graded 
modules of Ck+s by a dimension count. Hence by (6.4) I*y = 1(x*) = (LX)* corresponds to 
the other generator. 

COROLLARY (6.7). The image of i* : M* + M* is an ideal, and hence the quotient ring 
A, = cg Ak inherits a ring structure from M*. 

This follows from (6.5). The element ,l above projects into a class-again called II- 
in A,, and we clearly have : 

PROPOSITION (6.8) Multiplication by /z induces an isomorphism A, z Ak+8, k >, 0. 

The complete ring-structure of A, is given by: 

THEOREM (6.9). A, is the anticommutative graded ring generated by a unit 1 E A,,, 
and by elements r E AI, p E Ad, 1 E A8 with relations: 2r = 0, r3 = 0, p2 = 42. 

Proof As A, E Z,, it is clear that 2l= 0. From the fact that a, = 1, and a, =2, we 
conclude that [f generates A,. There remains the computation of p2. To settle this case we 
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introduce a notion which will be of use later in any case. Let k = 4n, and let o = er . . . e4,,. 
Then as we have already remarked, the centre of Ci is generated by 1 and CD, whence, as 
0’ = + 1, the projection of Ct on its two ideals is given by (19 0)/2. It follows that if M 
is an irreducible graded C,-module, then o acts on M” as the scalar E = f 1. In general we 
call a graded module for C, an s-module, (E = + 1) if o acts as E on MO. Now because 
e&U = - oer, it follows immediately that if M is an s-module, then M* is a (- s)-module, 
i.e., o acts as --E on M’, and finally, that if M is an s-module and M’ an &‘-module for 
Ck then M& M’ is an s&‘-module for CZk. 

With this understood, let Jo be the class of an irreducible C,-module M in A4. Then 
M is of type E. Hence M @ M is of type s2 = + 1 in Cs. Now if L E A, is chosen as the class 
of the irreducible (+ I)-module W of Cs it follows that M @ M s 4 W by a dimension count, 
and so finally that p2 = 4rl. \ 

The corresponding propositions for the complex modules are clearly also valid. Thus 
we may dehne Mi and AC,, and now already the generator pc corresponding to an irreducible 
C, &C-module yields periodicity. In fact the following is checked readily. 

THEOREM (6.10). The ring A’, is isomorphic to the polynomid ring Zw]. 

We consider again the element o = er . . . e, E C,. For k = 21 we have o2 = (- 1)‘. 
Hence if M is an irreducible complex graded C,-module then o acts on MO as the complex 
scalar E = +i’. We call a complex graded C,-module an s-module if o acts as E on MO. 
Let pLf E M”(C,,) denote the generator given by an irreducible ii-module. Then & = w)’ 
where ~“1 = pc. 

Comparing our conventions in the real and complex cases we see that if M is a real 
s-module for C,,, then M&C is a complex (- 1)” s-module for C,,. Now we choose p E A, 
to be the class of an irreducible (- I)-module. Then in the homomorphism A, + A’; given 
by complexification p + 2($)2. From (6.9) and (6.10) we then deduce 

(6.11) J + (Pc)4 

under complexification. 

PARTII 

$7. Sequences of bundles 

In this and succeeding sections we shall show how one can give a Grothendieck-type 
definition for the relative groups K(X, Y). This will apply equally to real or complex vector 
bundles and we will just refer to vector bundles. For simplicity we shall work in the cate- 
gory of finite CW-complexes (and pairs of complexes). 

For Y c X we shall consider the set %‘JX, Y) of sequences 

E=(O-+E,~+E,_i-=-+...-+E1 AEo-+O) 

where the Ei are vector bundles on X, the bi are homomorphisms defined on Y and the 
sequence is exact on Y. An isomorphism E + E’ in %?” will mean a diagram 
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-Ei~Ei_i---t 

I I 
+E;~E&--+ 

in which the vertical arrows are isomorphisms on X and the squares commute on Y. 

An elementary sequence in %,, is one in which 

Ei = Ei-1, (Ti = 1 for some i 
Ej = 0 for j # i, i - 1. 

The direct sum E @ F of two sequences is defined in the obvious way. We consider now the 
following equivalence relation : 

DEFINITION (7.1). EN F-there exist elementary sequences Pi, Qj E %” so that 

EOP’O...OP’rFOQ1O...OQS. 

In other words this is the equivalence relation generated by isomorphism and addition of ele- 

mentary sequences. The set of equivalence classes will be denoted by L,,(X, Y). The operation 

@ induces on L,, an abelian semi-group structure. If Y = @ we write L,,(X) = L”(X, a). 

If E E $?,, then we can consider the sequence in %“+1 obtained from E by just defining 

E n+l = 0. In this way we get inclusions 

%r+%~+...-+V”’ 

and we put V = V, = lirnq”. These induce homomorphisms 

L1+Lz+...+L,+ 

and it is clear that 
L=L,=limL, 

3 

is obtained from %’ by an equivalence relation as above applied now to sequences of finite 
but unbounded length. 

LEMMA (7.2). Let E, F be vector bundles on X and f: E + F a monomorphism on Y. 

Then if dim F > dim E + dim X, f can be extended to a monomorphism on X and any two 

such extensions are homotopic rel. Y. 

Proof. Consider the fibre bundle Mon(E, F) on X whose fibre at x E X is the space of 
all monomorphisms E, + -F,. This fibre is homeomorphic to GL(n)/GL(n - m) where 
n = dim F, m = dim E, and so it is (n - m - I)-connected. Hence cross-sections can be 
extended and are all homotopic if 

dimX<n-m-l=dimF-dimE-1. 

But a cross-section of Mon(E, F) is just a global monomorphism E --) F. 

LEMMA (7.3). L,(X, Y) + L,+,(X, Y) is an isomorphism for n 2 1. 

Proof. Let 9n+l denote the subset of ‘is,+ r consisting of sequences E such that 

dim E,, > dim E,, 1 + dim X. (1) 
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Ifn>l thengivenanyEE(iSn+l we can add an elementary sequence to it so that it will 

satisfy (1). Hence %?,,+I 4 L,+l is surjective. Now let EE %?“+I, then by (7.2) CT.+~ can be 
extended to a monomorphism aA + 1 on the whole of X. Put Ei = Coker o:,,, let P denote 

the elementary sequence with P,,+l = P,, = E,,+l, and let 

E’=(O-+E:,~E,_l On-’ ~En-z+...-%EO-+O), 

where p:, is defined by the commutative diagram on Y: 

En---E; 

’ I 

(1” P’n 

\ 
\En-i 

A splitting of the exact sequence on X 

O--rE”,l u’n+‘ ~E”+.E:,-+O 

then defines an isomorphism in %‘,,+r 

PeElgEE. 

If 4+1 is another extension of o,,, 1 leading to a sequence E”, then by (7.2) E,’ g E,J and 

this isomorphism can be taken to extend the given one on Y, i.e., the diagram 

E:, 
P’n 

‘En-1 

I 

I pltn ,I 
1 

E,” G-I 

commutes on Y. Hence E’ z E” in %,, and so we have a well-defined map EH.E’ from the 

isomorphism classes in @” + r to the isomorphism classes in %Z”. Moreover, if 

Q=@-+Qn+,-+Qn+0), R=(O--*Ri-,Ri_,40) (i < n) 

are elementary sequences, then 

(E @ Q)’ g E’, (E@R)‘s’E’@R. 

Hence the class of E’ in L, depends only on the class of E in L,+l. Since en+, -+ L,, 1 is 
surjective it follows that E --* E’ induces a map L,,+ 1 + L.. From its construction it is im- 
mediate that its composition in either direction with L, + L,,, is the identity, and this 

completes the proof. 

From (7.3) we deduce, by induction on n, and then passing to the limit: 

PROPOSITION (7.4). The homomorphisms L,(X, Y) + Ln(X, Y) are isomorphisms for 

l<nfCD. 
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$8. Euler characteristics 

DEFINITION (8.1) An Euler characteristic for %,, is a natural homomorphism (i.e. anatural 
trarxformation of functors) 

x : L”(X, Y) + K(X, Y) 

which for Y = $3 is given by 

X(E) = ,gO (- l)‘Ei. 

Remark. It is clear that, if Y = 0, E H c(- 1)‘Ei gives a well-defined map 

&l(X) + K(X). 

LEMMA (8.2). Let x be an Euler characteristic for VI then 

x : J%m + aa 

is an isomorphism. 

Proof. x is an epimorphism by definition of K(X). Suppose x(E) = 0, then 
El @ F ?! E, 0 F for some F (in fact F can be taken trivial). Hence if 

P:O--,F+F+O 

is the elementary sequence defined by F, E 0 P is isomorphic to the elementary sequence 
defined by El @ F. Hence E - 0 in %i(X) and so E = 0 in L,(X). To conclude we need the 
following elementary lemma : 

LEMMA (8.3). Let A be a semi-group with an identity element 1, B a group, 4 : A + B 
an epimorphism with 4-i(1) = 1. Then C$ is an isomorphism. 

Proof. It is sufficient to prove that A is a group, i.e., has inverses. Let a E A, then 
from the hypotheses there exists a’ E A so that 

4(a’) = 45(a)-‘. 
Hence 

cb(a.a’) = $(a).qS(a’) = 1, 

and so aa’ = 1 as required. 

LEMMA (8.4). Let x be an Euler characteristic for %?I, and let Y be a point. Then 

x : LW, 8 --f K@, r> 

is an isomorphism. 

Proof. Consider the diagram 

0 - L,(X, Y) -J%(X) 8, L,(Y) 

lx lx lx 
o- K(X, Y) - K(X) -K(Y). 

By (8.2) and (8.3) and the exactness of the bottom line it will be sufficient to show the 
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exactness of the top line. Now /Ia = 0 obviously and so we have to show 

(9 a-‘(O) = 0; 

(ii) if B(E) = 0 then EEIm a. 

We consider (ii) first. Since Y is a point, and x : L,(Y) z K(Y), B(E) = 0 is equivalent to 

dim E,(Y = dim E,jY. 

But then we can certainly find an isomorphism 

6: E,IY--+E,IY, 

showing that E E Im(or). Finally we consider (i). Thus let 

E = (0 -E,_e,E,-0) 

be an element of ql(X, Y) and suppose cc(E) = 0 in L,(x). Then xa(E) = 0 in K(X), and 
hence, if we suppose dim Ei > dim X (as we may), there is an isomorphism 

t:E,-E, 

011 the whole of X. Then or-l E Aut(E,l Y). Since Y is a point this automorphism is 
homotopic to the identity? and hence can be extended to an element p E Aut(E,,). Then 
it : E1 + E, is an isomorphism extending G. This shows that E represents 0 in L,(X, Y) as 

required. 

LEMMA (8.5). Let x be an Euler characteristic for WI, then x is an equivalence of functors 

L1+K. 

Proof. Consider, for any pair (X, I’), the commutative diagram 

-&(X/Y, Y/Y) -x, IV/Y, Y/Y) 

Since rc/ is an isomorphism (by definition) and x on the top line is an isomorphn by 

(8.4) it will be sufficient (by (8.3)) to prove that 4 is an epimorphism. Now any element 

5 of L,(X, Y) can be represented by a sequence 

E = (0 -E,-e,E,---+O) 

where ,!& is a product bundle. But then we can define a ‘collapsed bundle’ Ei = E,/o over 
X/ Y and a collapsed sequence E’ E %‘,(X/ Y, Y/ Y) defining an element g’ E L,(X/ Y, Y/Y). 
Then t = 4(c’) and so 4 is an epimorphism. 

LEMMA (8.6). Let x, x’ be two Euler characteristics for %?I. Then x = XI. 

proof. Let T = x’x-l (which is well-defined by (8.5)). This is a natural automorphism 
of K(X, Y) which is the identity when Y = a. Replacing X by X/Y and considering the 
exact sequence for (X/Y, Y/Y) we deduce that T = 1, i.e., that x’ = x. 

t This argument needs modification in the real case since GL(n, R) is not connected: we replace fi by 
it @ 1 and 0,~ by D 69 1, 7 63 (-1). 
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From (8.6) and (7.4) we deduce 

LEMMA (8.7). There is a bijective correspondence (xl c + x,) between Euler character- 
istics for WI and $I?,, such that the diagram 

L, ----+ L, 

/ 
XI 

./ 

Xn 

K” 

commutes. 

These lemmas show that there is at most one Euler characteristic. In the next sectiou 
we shall prove that it exists by giving a direct construction. 

99. The difference bundle 

Given a pair (X, Y) define Xi = X x {i}i = 0, 1, A = X0 uy X, (obtained by identifying 
y x (0) and y x (1) for all y E Y). Then we have retractions 

Iii : A + xi 

so that we get split exact sequences: 

0 - K(A, Xi) pli K(A) -$+ K(XJ + 0 

Also, if we regard the index i E Z,, the natural map X -+ Xi gives an inclusion 

9i : Cx, y)+ CA, xi+ 119 

which induces an isomorphism 

+* : K(A, xi+ 1) + K(X, Y). 

Now let EE %?i(X, Y), 

E=(O+E,~E,,+O), 

and construct the vector bundle F on A by putting Ei on Xi and identifying on Y by (T. 
It is clear that the isomorphism class of F depends only on the isomorphism class of E in 
Ur(X, Y). Let Fi = nf(Ei). Then FIXi g Fi and SO F - Fi E Kerjr. We define an element 

d(E) o K(X, Y) by 
&J;)- ’ d(E) = F - Fl. 

It is clear that d is additive: 

d(E @I E’) = d(E) + d(E’). 

Also if E is elementary F r Fl so that d(E) = 0. Hence d induces a homomorphism 

d : L1(X, Y) + K(X, Y) 

which is clearly natural. Moreover if Y =@, A = X0 + Xl, F = E,, x (0) + El x { 1) 
(disjoint sum), Fi = E, x (0) + E, x (1) and so 

d(E) = E, -El. 
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Thus d is an Euler Characteristic in the sense of $8. The existence of this d together with 
the lemmas of $8 lead to the following proposition: 

PROPOSITION (9.1). For any integer n with 1 < n < 00 there exists a unique natural homo- 

morphism 

x : J-G, Y) --* WX, Y) 
which, for Y = $3, is given by 

X(E) = i (-l)‘E,. 
i=O 

Moreover x is an isomorphism. 

The unique x given by (9.1) will be referred to as the Euler characteristic. From (8.6) 
we see that we may effectively identify the x for different n. 

Two elements E, FE U,(X, Y) are called homotopic if they are isomorphic to the 
restrictions to X x 10) and X x (1) of an element in %,,(A x Z, Y x Z). 

PROPOSITION (9.2). Homotopic elements ill %J_X, Y) define the same elements in 

LAX, Y). 

Proof. This follows at once from (9.1) and the homotopy invariance of K(X, Y). 

Proposition (9.1) shows that we could take &(A’, Y) (for any n 2 1) as a dejinition of 
K(X, Y). This would be a Grothendieck-type definition. 

We shall now give a method for constructing the inverse of j : ,5,(X, Y) + L”(X, Y). 
If E E: %JX, Y), then by introducing metrics we can define the adjoint sequence E* with 
maps 0: : Ei_l + Ei. Consider the sequence 

F=(O-+F1~Fo--‘O) 

where F, = @ Ezi, Fl = @ Ezi+l and 
I I 

r(el, e3, es, . . . ) = (are,, cr:e2 + cr3e3, ~72 e3 + e5e5, . . . ). 

Since, on Y, we have the decomposition 

E2i = 02i+ l(E,i+ 1) @ afi(E,i- 1) 

it follows that FE gl(X, Y). If E E VI then E = F. Since two choices of metric in E are 
homotopic it follows by (9.2) that F will be a representative for j-‘(E). 

$10. Products 

In this section we shall consider complexes of vector bundles, i.e., sequences 

O--+E,+E,_l on-1 , . . . -E, - 0 

in which bi_icri = 0 for all i. 

LEMMA (10.1). Let E,, . . . . E, be vector bundles on X, 

O-E,~E,_l--+...--+Eo----+O 

a complex on Y. Then the bi can be extended so that this becomes a complex on X. 
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Proof. By induction on the cells of X - Y it is sufficient to consider the case when X 
is obtained from Y by attaching one cell. Thus let 

X=Yu,ek 

where f: Sk- ’ + Y is the attaching map. If Bk denotes the unit ball in Rk, with boundary 
Sk-‘, then Xis the quotient of Y + Bk by an identification map z induced byf. The bundle 
71*Ei is then the disjoint sum of E,] Y and a trivial bundle Bk x Vi. The homomorphism 
Gi : Ei~ Ei_l on Y lifts to give a homomorphism Zi : Sk-l X Vi-,Sk-’ X Vi-1, i.e. a 
map Sk-” + Hom(Vi, Vi-J. Extend each zi to Bk by defining 

zi(“> = II u IlOi(u> UEBk. 

This induces an extension of the ci to X preserving the relations Ci_i Ci = 0, as required. 

We now introduce the set C@JX, Y) of complexes of length n on Xacyclic (i.e. exact) on 
Y. Two such complexes are homotopic if they are isomorphic to the restrictions to X x (0) 
and X x (1) of an element in g”(X x Z, Y x I). By restricting the homomorphisms to Y 
we get a natural map 

0 : 9,(X, Y) + %qx, Y). 

LEMMA (10.2). Q : 9,, + %T,, induced a bijective map of homotopy classes. 

Proof. Applying (10.1) we see that CD itself is surjective. Next, applying (10.1) to the 
pair 

we see that 
(X x I, x x (0) u x x (1) u Y x Z) 

CD(E) homotopic to 42(F) =z. E homotopic to F 

which completes the proof. 

If EE g”(X, Y), FE g,,,(X’, Y’) then E@ F is a complex on X x X’ acyclic on 
X x Y u Yx x’ so that 

E @ FE~~+,,,(X x X’, X x Y’u Y x X’). 

This product is additive and compatible with homotopies. Hence it induces a bilinear pro- 
duct on the homotopy classes. From (10.2) and (9.2) it follows that it induces a natural 
product 

L”(X, Y) @ L,(X’, y’) + L”,,(X x X’, x x Y’ u Y x X’). 

PROPOSI~ON (10.3). The tensor product of complexes induces a natural product 

L”(X, Y) @I LJX’, Y’) ---t Ln+JX x X’, x x Y’ u Y x X’) 

and 

x(ab) = x(a)x(b) 

where x is the Euler characteristic. 

(1) 

Proof. The formula (1) is certainly true when Y = Y’ = @. On the other hand there is a 
unique natural extension of the product K(X) @ K(X) + X(X x X’) to the relative case 
(cf. [3]). Hence, by (9. l), formula (1) is also true in the general case. 

Remark. This result is essentially due to Douady (SPminaire Bourbaki (1961) No. 223). 
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PROPOSITION (10.4). Let 

E = (0 -E,--%E, ---)O)E~I(X, y> 

E’=(O -E;“L,E; - 0) E 9,(X’, Y’) 

and choose metrics in all the bundles. Let 

F=(O--+F,-J-+F,---+ O)ESSI(X x x’, x x Y’ u Y x X’) 

be dejined by 
F,=E,@E;@E,@Eb 

F,=Eo@EEbOE,@E: 

( 
18 o’, 081 Z= 
0*01, -l@O’* > 

where u*, o’* denote the adjoints of o, 6’. Then 

x(F) = x(E)*x(E’). 

Proof. By (10.3) x(E)*@‘) = x(E@ E’). Now the construction of $9 for the inverse 
of j, : L, -+ L, turns E @ E’ into F and so x(E @ E’) = x(F). 

PART III 

$11. Clifford bundles 

In this section and the next we shall consider the Thorn complex of a vector bundle. 
If V is a (real) Euclidean vector bundle over X (i.e. the fibres have a positive definite inner 
product) we denote by XV the one-point compactification of V and refer to it as the Thorn 
complex of V. It inherits a natural structure of CW-complex (with base point) from that of 
X. An alternative description which is also useful is the following. Let B(v), S(V) denote 
the unit ball and unit sphere bundles of V, then XV may be identified with B(v>/S(V). A 
technical point which arises here is that (B(V), S(V)) is not obviously a CW-pair. However 
the following remarks show that there is no real loss of generality in assuming that 
(B(V), S(V)) is a C W-pair. 

1. If X is a differentiable manifold then (B(V), S(v)) is a manifold with boundary 
and hence triangulable. 

2. Every vector bundle over a finite complex is induced by a map of the base space 
into a differentiable manifold (namely a Grassmannian). 

There are of course more satisfactory ways of dealing with this point but a lengthy dis- 
cussion would be out of place in this context. 

With our assumption therefore we have the isomorphism 

&XV) g MNV, S(O) 

where k? denotes K modulo the base point. 

Since each fibre V, of V is a vector space with a positive definite quadratic form Q,, 
we can form the Clifird bundIe C(V) of V. This will be a bundle of algebras whose fibre at 
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x is the Clifford algebra C(- Q,). Contained in C(V) are bundles of groups, Pin(V) and 
Spin(V). All these bundles are associated to the principal &%)-bundle of V by the natural 
action of O(k) on C,, Pin(k), Spin(k). 

By a graded Clifford module of V we shall mean a &-graded vector bundle E (real 
or complex) over X which is a graded C(V)-module. In other words E = E” 0 E’ and we 
have vector bundle homomorphisms 

V ORE0 + E’, V ORE1 + E” 

(denoted simply by 2) @ e + v(e)) such that 

u(v(e)) = - jjvlj*e (1) 

For notational convenience we shall consider real modules only. The complex case is 
entirely parallel. 

Let E = E” @ E’ be a graded C( V)-module. Then E” is a Spin(V)-module and by integration 
over the fibres of Spin(V) we can give E” a metric invariant under Spin(V). This can then 
be extended to a metric on E invariant under Pin(V) and such that E” and E’ are orthogonal 
complements. If now v E V, and v # 0 then u/llull E Pin(V,). Hence we deduce, for all 
voV,andeoE,, 

II4 = lbll - Ml. 
This, together with (I), implies that the adjoint of 

v: Ez-+ Ei is -v: E+E,O. 

Let rr : B(V) --) X be the projection map and let 

a(E) : n*E’ -+ n*E” 

be given by multiplication by -v, i.e. 

a(E),(e) = -ve. 

Then 
O-+rr*E1%~*Eo-O (2) 

is an element of 91(B(V), S(V)) and hence defines an element x”(E) of M@(V), S(V)), or 

equivalently an element of fi(X”). If the C(V)-module structure of E extends to a 
C(V0 I)-module structure (1 denoting the trivial line-bundle) then the isomorphism a(E) 

extends from S(V) to S+(V @ 1) the ‘upper hemisphere’ of S(V @ 1). Since the pairs 

(B(V), S(V)> and (S+(VO 1), S(V)) are clearly equivalent it follows that x”(E) will, in this 
case, be zero. 

Following $5, which is the special case X = point, we now define M(V) as the Grothen- 
dieck group of graded C( V)-modules, and we let A(V) denote the cokernel of the natural 
homomorphism 

M(V 0 1) -+ M(V). 

Then the construction described above gives rise to a homomorphism 

xv : A(V) -+ Ii%( 

This homomorphism is of fundamental importance in the theory, and our next step is to 
discuss its multiplicative properties. 
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Let V, W be Euclidean vector bundles over X, Y respectively. 
Then we have a natural homeomorphism 

XV$$YywFzX x Yvow 

which induces a homomorphism (or ‘cup-product’) 

K?(XV) @I K%( Y”) + Z(X x YV@rr). 

If a E K!(X”), b E K?8( Y”) the image of a @ b will simply be written as ub. 

PROPOSITION (11.1). The following diagram commutes 

“+A(V@ W) 

K?i(YW) - 
where p is induced by the graded tensor product of Clifford modules. Thus 

Xv&E (9 F) = XY(E)Xw(F)* 

Proof. Let E, F be graded C(V)- and C( W)-modules and let them, both be given in- 
variant metrics as above. Applying Proposition (10.2) it follows that 

x@).x~(F)EKO(B(V) x B(W), B(V) x S(W) u S(P) x B(W)) 

is equal to x(G) where 

is defined by 
GEM@ x B(W), B(V) x S(W) u S(V) x B(W)) 

Gr = JZ*(E’ @ F’ @ E’ @ F”) 

Go = n*(E” @ F” @ E’ @ F’) 

and r : G1 + Go is given by 

r= 
( 
1 @ 49, o(E) @ 1 
-a(E)@l, l@o(F) 1 

(since o(E)* = -o(E), a(F)* = -o(F)). Thus, at a point u 0 w E V 0 W, z is given by the 
matrix 

r of3w = 
( :;;$-‘:l) = -(i _J(:::::;,) 

where t’, H’ denote module multiplication by v, w. Hence 

r= ; _‘: a(E&F) 
( 1 

On the other hand let B’( V 0 W) denote the ball of radius 2 and let 

S’(V 0 W) = B’(V 0 W) - B(V 0 W), 

(3) 

so that the inclusions 

i : B(V 0 W), S(V 0 W) + B’(V 8 iv), S’(V @ W) 
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j : B(V) x B(W), B(V) x S(w) u S(V) x B(W) --f B’(V 8 W), S’(V 8 W) 

are both homotopy equivalences. Let 

H&i(B’(V 0 IV), S’(V 0 IV)) 

be defined by o(E @ F). Then i*(H) defines the element xVoW(E 6 F), while (3) shows that 
j*(H) and G define the same element of KO(B( V) x B( IV), B(V) x S( IV) u S(V) x B( IV)). 
Hence we have 

as required. 
X”(E) * XwW = Xve w@ 6 F) 

Suppose now that P is a principal Spin(k)-bundle over X, Y = P x +, o..Rk the associ- 
ated vector bundle. If M is a graded C,-module then E = P x Spin Ck$4 will be a graded C( I’)- 
module. In this way we obtain a homomorphism of groups 

p,, : A, + ‘d(V). 

Similarly in the complex case we obtain 

p; : A; + A’(V). 

PROPOSITION (11.2). Let P, P’ be Spin (k), Spin (I> bundles over X, X’ and let 

V=Px Spin (k) Rk, V’ = P’ X spin (Ij R’. Let P” be the Spin(k + &bundle over X x x’ induced 

from P x P’ by the standard homomorphism 

Spin (k) x Spin (I) + Spin(k + 1). 

Then if a E A,, b E A,, we have 

&(a b) = Ma)Mb). 
A similar formula holds for &. 

The verification of this result is straightforward and is left to the reader. 

Let c+. : A, +c(X”) be defined by ap = xVpp. 

Then from Propositions (11.1) and (11.2) we deduce 

PROPOSITION (11.3). With the notation of(ll.2) we have 

c+(ab) = c+(a)+(b), 

and a similar formula for cc:. 

If we apply all the preceding discussion to the case when X is a point (and P denotes 
the trivial Spin(k)-bundle) we get maps 

a : kik + 6(sk) in the real case 
@I . c . A” k -+ @“) in the complex case. 

Proposition (11.3) then yields the following corollary, as a special case: 

COROLLARY (11.4). The maps 

TV : A, + c KOTk(point) 
k,O 

are ring homomorphisms. 

cc : A” * + kFo K-k(point) 
/ 
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Now the rings A, and A”, were explicitly determined in $6 (Theorems (6.9) and (6.10)). 
On the other hand the additive structure of B, = c KOmk(point) and B; = c Kk(point) 
was determined in [5], while their multiplicative structure was (essentially) given in [6]. 
These results may be summarized as follows: 

(i) Bg is the polynomial ring generated by an element x E B,’ corresponding to the 
reduced Hopf bundle on PI(C) = S’; 

(ii) B, contains a polynomial ring Z[y] with y E B,, and y + x4 under the complexi- 
fication map B, + B; ; 

(iii) As a module over Z[y], B, is freely generated by elements 1, a, b, z where a E B,, 
b E B,, z E B4, subject to the relations 2a = 0, 2b = 0. 

If we use Stiefel-Whitney classes then a simple calculation shows that 

w2(a2) # 0 

where we regard a2 E i?(S’). Thus we must have a2 = b. 

Consider now the ring homomorphism 

cIc : A” *--‘Bf. 

It is immediate from the definition of CL’ that CL’($) gives the reduced Hopf bundle on S2. 
Hence from (6.10) we deduce that CI’ is an isomorphism. 

Consider next the ring homomorphism 

CI: A*+B,. 

Because of the commutative diagram 

A,AB, 

the results on CI’ together with (6.11) and (ii) above imply that 

c@) = y. 

Similarly using (6.9) and (iii) above we get 

LX(n) = 2. 

It remains to consider a(r) and a(<‘). But as in the complex case it is immediate that a({) 
is the reduced Hopf bundle on P,(R) = 5”. Since a is the unique non-zero element of Bl 
we must therefore have 

a(t) = a. 

Using (6.9) and (ii), (iii) above it follows that a is an isomorphism. Thus we have established: 

THEOREM (11.5). The maps 
a : A, + c KObk(point) 

kS0 

and 
a’: AC * + ,Fo K-k(polnt) 

are ring isomorphisms. 
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As remarked in the introduction this theorem shows clearly the intimate relation 
between Clifford algebras and the periodicity theorems. It is to be hoped that a less com- 
putational proof of (11.5) will eventually be found and that the theorem will then appear as 
the foundation stone of K-theory. 

We shall conclude this section by taking up again the relation between Clifford and 
Grassmann algebras mentioned in $3. Let V be a complex vector bundle over X, A( P’) its 
Grassmann bundle, i.e. the bundle whose fibre at x E X is the Grassmann algebra A( V,). 
Let 71 : V-P X be the projection and consider the complex 

Av : - n*(M( V)) A n;*(Ar+r(V)) - 

where d is given by the exterior product: 

d,(w) = v A w VE V,, WEA( 

This is acyclic outside the zero-section and hence defines an element 

I E &Xr’) 

On the other hand, if we give V a Hermitian metric, and use the homomorphism 

i: U(k) + Spin’(2k) k=dimcV 

we obtain a principal Spin”(2k)-bundle P over X, and hence a homomorphism 

ap . 
e . A’ Zk -+ &XV). 

The relation between a; and x(A,) is then given by: 

PROPOSITION (11.6). x(Ar) = a;(($)k). 

Proof. Applying the construction at the end of $9 for the inverse of 

j, : L, 4 Lk 

to the complex Ar, we obtain a sequence 

E=(O-+E,“-,E,---,O) 
where 

E ,,=r~*A~@rr*A~-~@... 
E, = #Arc-r @ ?I*A~-~ @ . . . 
o, = d, -I- 6,. 

In fact we could equally well have taken 

IS, = d, - 6, 

in $5. In view of (5. lo), (5.11) and the final remark of $5 this shows that 

I = a%(pc)k) 
as required. 

Remark. The multiplicative property of Grassmann algebras : 

A(V 0 w> E A(V) 8 A(w) 

can be used directly to establish a product formula for x(Ay). This corresponds of course 
to (11.3). 
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$12. The Thorn isomorphism 

We begin with some brief remarks on the Thorn isomorphism for general cohomology 
theories. 

Let F be a generalized cohomology theory with products. Thus F#(X) = c F’r(X) is a 
graded anti-commutative ring with identity and F#(X, Y) is a graded F#(X)-module. 
Moreover the product must be compatible with the coboundary in the sense that 

S(ab) = 6(a)- b + (- 1)=&b 

where c1= deg a and a, b belong to suitable F-groups. 

In P(S) we have a canonical element a” which corresponds to the identity element 
1 = a0 E F’(point) = F”(,!5”) under suspension. P#(S”) is then a free module over 
F#(point) generated by a”. 

Suppose now that I/is a real vector bundle of dimension n over X. We choose a metric 
in V and introduce the pair (B(V), S(V)) (or the Thorn complex XV). For each point P E X 

we consider the inclusion 
. . 
lP * PV---tXV 

and the induced homomorphism 

if : P(XV) ---) F(P’). 

Suppose now that V is oriented, then for each P E X we have a well-defined suspension iso- 
morphism 

s, : FO(P) + F(PV). 

We let o$ = S,(l). We shall say that V is F-orientable if there exists an element pLy E P(X’) 
such that, for all P E X, 

G(uv) = 4. 

A definite choice of such a ,+ will be called an F-orientation of V. Then we have the fol- 
lowing general Thorn isomorphism theorem: 

THEOREM (12.1). Let V be an F-oriented bundle over X with orientation class pv. Then 

F#(X’) is a free F#(X)-module with generator pv. 

Proof. Multiplication by pv defines a homomorphism of the F-spectral sequence of X 
into the P-spectral sequence of Xv which is an isomorphism on E2 (the Thorn isomorphism 
for cohomology) and hence on E,. Hence 

gives an isomorphism F#(X) +F#(X”) as stated.? 

Applying (12.1) to the special theories K, KO we obtaintt : 

THEOREM (12.2). Let V be an oriented real vector bundle of dimension n over X. Then 

(i) if n = 0 mod 2 and there is an element uv E &Xv) whose restriction to &P”) for 

each P E X is the generator, then R*(X”) is a free K*(X)-modulegenerated by ,uv; 

t One can also use the Mayer-Victoris sequence instead of the spectral sequence. 
tt We use K*, KO* to denote the sum of KQ, KOq over the period (2, or 8) in distinction with K* which is 

the sum over all integers. 
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(ii) if n E 0 mod 8 and there is an element pv E K!(X’) whose restriction to each 

K3(Pv) for each P E X is the generator, then K%*(X’) is a free K%*(X)-module 
generated by pv 

Remark. Since K” (point) z KO’(point) z Z these groups are generated by the identity 
element of the ring. This element and its suspensions are what we mean by the generator. 

Suppose now that V has a Spin-structure, i.e., that we are given a principal Spin(n)- 

bundle P and an isomorphism 
V Z P X Spin(njR”* 

Then from $11 we have a homomorphism 

ClP * * A, + K3(Xv). 

Similarly if V has a Spine-structure, i.e. we are given a principal Spin’(n)-bundle P and an 
isomorphism 

VZ P X spin~(n~R” 
then we get a homomorphism 

f . 
ClP . A; ---) iT(X’). 

In the real case assume n = 8k and in the complex case n = 2k, and put 

& = @AJY 

& = 4(WY). 

Then by the naturality of ap, cr; and Theorem (11.1) we see that pv, & define KO and K 
orientations of V and hence (12.2) gives : 

THEOREM (12.3). (i) Let P be a Spin(8k)-bundle V = P x spincskjR8k. Then K%*(Xy) is a 
free KO*(X)-module generated by pv; (ii) Let P be a Spin’(2k)-bundle, V = P x Spinec2kJR2k. 

Then X*(X’) is a free K*(X)-module generated by &. 

Remark. It is easy to see, by considering the first differentials in the spectral sequence, 
that the existence of a Spin (Spine)-structure is necessary for KO(K)-orientability. Theorem 
(12.3) shows that these conditions are also sufficient. 

(12.3) together with (11.3) shows that, for Spin bundles, we have a Thorn isomorphism 
for KO and K with all the good formal properties. It is then easy to show that for Spin- 
manifolds one can define a functorial homomorphism 

fi : KO*( Y) + KO*(X) formaps f: Y-+X, 

and similarly for Spin’-manifolds in K-theory. This improves the results of [2]. 

413. The sphere 

The purpose of these next sections is to identify the generator of K%(Xv) (for a V with 
Spinor structure and dim = 0 mod 8) given in $12 with that given in [7]. Essentially we have 
to study the sphere as a homogeneous space of the spinor group. This actually leads to 
simpler formulae (Proposition (13.2)) for the characteristic map of the tangent bundle 
than one gets from using the orthogonal group. 
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We recall first the existence of an isomorphism 4 : C, -+ Ci+I (Proposition (5.2)) and 
we note that, on C,“, 4 coincides with the standard inclusion C, + C,,,. We introduce 
the following notation: K = Spin&+ l), H = 4(Pin(k)) = Ho + HI, Ho = 4(Spin(k)) 

(where + here denotes disjoint sums of the two components). 

Sk = unit sphere in Rkf ’ 

S+ = Sk n {&+I 2 01, S_ = Sk n &+I < 0) 

Sk-1 = s+ n s-. 

We consider Sk as the orbit space of ek,l for the group K operating on Rk+l by the 
representation p. Thus K/Ho = Sk and we have the principal HO-bundle 

0 K&K/H. 

Let K+ = n-l(S+), K- = n-‘(S_). We shall give explicit trivializations of K, and K_, 
and the identification will then give the ‘characteristic map’ of the sphere. 

We parametrize S+ by use of ‘polar co-ordinates’ : 

(x, t) = cos t.ek+l + Sin t.x 

Now define a map /I+ : S, x Ho --, K+ by 

XESk-l, 0 < t < n/2. 

Since 

P+(x, t, ho) = (-Cos t/2 + Sin t/2.x ek+l)ho. 

p(( -Cos t/2 f Sin t/2. xek+ l)h”)ek+ 1 

= (-Cos t/2 + Sin t/2.xe k+l)ek+I(-Cos t/2 + Sin t/2.xek+l)-’ 

= (-Cos t/2 + Sin t/2.xek+l)2ek+l 

= cos t.ek+l + Sin t.x =(x3 t), 

it follows that p+ is an HO-bundle isomorphism. 

Similarly we parametrize S- by 

(x, t) = -Cos t.e,+, + Sin t.x XESk-l, 0 < t < n/2. 

Note that for points of Sk_, the two parametrizations agree (putting t = 7c/2). Now define 
amapp_:S_ xH1+K-by 

Since 

p-(x, t, h’) = (cos t/2 + Sin t/2.xek+l)h1. 

p((Cos t/2 + Sin t/2- xek+ l)h%k+ 1 

=(cos t/2 + Sin t/2.xek+l )(-ek+l)(cos t/2 + Sin t/2.xek_,.l)-1 

= -(cost/2 + Sin t/2.xek+l)2ek+l = -cm t.ek+, + Sin t.x, 

it follows that P_ is an HO-bundle isomorphism. 

Putting t = 7112 above we get 

/I+(x, n/2, ho) = (- Cos n/4 + Sin n/4. xe,, ,)h” 

p-(x, 7112, h’) = (Cos 7c/4 + Sin 7c/4.xe,+,)h1. 
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These are the same point of K, n K_ if 

h’ = -(Cos 7c/4 - Sin 7r/4.xe,+,)2ho 

=xe,+, . 

Thus we have a commutative diagram 

S,_, x Ho ‘+ bK+nK_ 

khO I 

1 

Sk_, x H’8- K+nK_ 
where 

6(x, ho) = (x, xe,+,h’). (0 

LEMMA (13.1). If we regard Ho as (left) operating on both factors of S+ x H’iand 
S_ x H’, then /.3+ and/l_ are compatible with left operation. 

Proof (9 B+g(x, t, ho) = P+(g(x), t, gh’) 

= (-Cos t/2 + Sin t/2.gxg-‘ek+l)gho 

= gP+(x, t, ho) 

where g E Ho and g(x) = Pk+ 1(g). x = gxg-I. 

(ii) p-g(x, t, h’) = j?_(Cos t/2 + Sin t/2.gxg-‘ek+l)gh’ 

= gp-(x, t, hl). 

Since 4(x) = xe,,, for x E Rk formula (1) above can be rewritten 

6(x, 9) = (x, xg) x E Rk, g E Spin(k). 

Summarizing our results therefore we get: 

PROPOSITION (13.2). The principal Spin(k)-bundle Spin(k + 1) + Sk ix isomorphic to the 
bundle obtainedfrom the two bundles 

S, x Pin’(k) + S, 

S_ x Pin’(k) + S_ 
by the identification 

(x3 g) H (x, xg) for x E Sk-l, g oPin’(k). 

Moreover this isomorphism is compatible with left multiplication by Spin(k). 

Here Pin’(k) = Spin(k) and Pin’(k) are the two components of Pin(k). 

$14. Spinor bundles 

Let P” be a principal Spin(k)-bundle over X and put 

P’ = P” x spinck) Pin’(k), Q = P” X Spin(k) Spin@ + 1) 

Tk = P” x spin(k~Sk = T+ v T-, where 

T+ = PO X Spin(k$+ 3 T- = PO X Spin(k)S- 

n+ : T+--,X, z- : T- + X the projections. 
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Consider now the two commutative diagrams 

P” x spin(k)(S+ x Pin’(k)) 1o.po 

k+-- 4 
L+ --x 

PO x spin(k)(S- x Pin’(k)) 1’ P’ 

I 
T_ n- 

_I 
X. 

where T(p, s, g) = pg, p E PO, s E S,, g EPin’(k), i = 0, 1. 

These allow us to identify the two Spin(k) bundles occurring in the first column with 

x*,(P”) and n?(P’) respectively. Now because of the left compatibility in (13.2) we im- 

mediately get 

PROPOSITION (14.1). The principal Spin(k)-bundle Q --t Tk is isomorphic to the bundle 
obtainedfrom the two bundles 

7c:(P”) -+ T+, n*_(P’) -+ T- 
by the ident$cation 

(P, s, g) - (P, s9 sg) 

for s E Sk-‘, g E Spin(k) andp E PO. 

Now suppose that M = M” @ M1 is a graded C,-module. Then we have a natural 

isomorphism 

M’ E Pin’(k) x spin(k$40. 

Hence 

P’ X Spin(k) MO = PO x Spin(k) Pin’(k) X Spin(k$’ 

= P” x Spjn(k)M1. 

From (14.1) and this isomorphism we obtain: 

PROPOSITION(~~.~). The vector bundle Q x spinCkjMO over Tk is isomorphic to the bundle 
obtainedfrom the two bundles 

n*,(PO x Spin(k)MO) -+ T+, 71r(P” X~pin(k~Ml)--, T_ 

by the identljication 

(P, s, m) - (p, s, sm) for PEP’, s.ES~-‘, meM”. 

Note. Here we have identified z*+(P’) with P” x S+, and zz*+(P’ x spin(k~M') with 

n*,(P”) x spin(k~M’ etc. 

Let us consider now the construction of $11 which assigned to any graded Ck-module 

M and any Spin(k)-bundle P” an element c+(M) E KO(B( v), S(V)) where V = P” x spin(kjRk. 
This construction depended on the ‘difference bundle’ of $9. In our present case the spaces 
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A, X0, X1 of 99 can be effectively replaced by Tk, T,, T_ and we see from (14.2) (and the 

fact that sz = - 1 for s E Sk_,) that the bundle F of 99 is isomorphic to the bundle 

Qx spin(k~M’. Now from the split exact sequence of the pair (Tk, T-) and the isomorphisms 

KO(Tk, r_> z KO(T+, ?-k-r) z KO(B(V), S(V)) 

we obtain a natural projection 

KO( P) -+ KO(B( V), S(V)). 

Then what we have shown may be stated as follows: 

THEOREM (14.3). Let P” be a principal Spin(k)-bundle, M a graded C,-module, 

Q=P” x spi,(k$piIl(k + l), P'= PO X Spin(k) Rk, Tk = Q/Spin(k), E” = Q X spin(kjM’, 

p : KO(Tk) -+ KO(B( V)), S(V) the natural projection, then 

c+(M) = p(E’>. 

If k = 0 mod 8 and M is an irreducible (+l)-module then p(E’) is the element of 

KO(B( 0 S(V)> used in [7] as the fundamental class. Thus (14.3) implies that this class 

coincides with our class /.+. For some purposes, such as the behaviour under our definition 

of pV is more convenient. For others, such as computing the effect of representations, the 

definition in [7] is better. (14.3) enables us to switch from one to the other. 

The proof of (14.3) carries over without change to the complex case, Spin being 

replaced by Spin” throughout. 

$15. Geometric interpretation of Clifford modules 

Consider the data of $11. Thus V is a vector-bundle over X, C(V) the corresponding 

Clifford bundle, and E a graded real Clifford module for V. The construction of xv in that 

section then depended on a particular geometric interpretation of the pairing 

(15.1) V@El+EO 

induced by the C(V)-structure on E. More precisely we passed from (15.1) to the family of 

maps 

(15.2) S(VJ x E,1-+E,O XEX, 

which describe a definite isomorphism along S(V), of E” and E’ lifted to B( I’), and so by the 

difference construction a definite element xv(E) E KO(B( V), S(V)). 

There are two other geometric interpretations of (15.2) which we will discuss here 

briefly. The first one leads to a rather uniform description of the bundles on stunted pro- 

jective spaces, while the second one explains the relation between Clifford modules and 

the vector field problem. 

A. The generalized xv. 

Let V be a Euclidean (real) vector bundle over 1, S(V) its unit sphere bundle. The 

group 2, then acts on S(V) by the antipodal map, and we denote the projective bundle 

S(V)/& by P(V). The projection P(V) + X will be denoted by z, and t(V) shall stand for 

the line bundle induced over P(V) by the nontrivial representation of Z, on R1 : 

t(V) = S(V) xZ2R1 
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Consider now the data at the beginning of this section, in particular the induced family 
of maps: 

S(VJ x E,‘+ E,O XEX. 

We can clearly divide by ZZ on the left due to the bilinearity of the inducing map. Thus we 
obtain maps 

(15.3) S(K) x z$: + J% XEX, 

which may be interpreted directly as an explicit isomorphism 

+(v, E) : t(V) @ IT*@‘) 4 n*(E’). 

We now let W c V be a sub-bundle, and consider a graded C( W)-module E. The bundles 
r(V) 0 z*E’ and n*E” then become explicitly isomorphic along P(W) c P(V) by means of 
+( W, E), and so determine a well-defined difference element x(V, W)E E KO(P(V), P(W)). 

The linear extension of this construction now leads to a homomorphism, 

(15.4) x(V, W) : MW + HO, WV), 

and an analogous homomorphism 

x’(V, W) : ~‘00 -+ qw), wo) 

in the complex case. (15.4) is the desired generalization of the xw in 511. Before justifying 
this assertion, we remark that x( V, W) clearly vanishes on those C( W)-modules which are 
restrictions of C(V)-modules. Hence if we set A(V, W) equal to the cokernel of the restric- 
tion map M(V) 5 M(W), then x( V, W) induces a homomorphism 

(15.5) A(V-9 W) ---, KO(P(V),.P(W)). 

To see that the operation x( V, W) indeed generalizes our earlier x, one may proceed as 
follows : Let V = W@ 1, and let f : B(W) + P(V) be the fibre map which sends w E W,, 

into the line spanned by (w, (1 - l]wll’)) in P(V). Thus f induces an isomorphism of 
B( W)/S( W) withP( V)/P( W). Now one just checks that the following diagram is commutative: 

M(W) x(vsw) + KO(P( V), P(W)} 

(15.6) 
I&) 

f*SS 
-J.=--+ KO(B(W), S(W)). 

It would be possible to extend a considerable portion of our work on xw to x(W, V), 
but this does not seem justified by any application at present. However we wish to draw 

attention to the following property of x(V, W). 

PROPOSITION (15.7). Let X be a point. Then the sequence 

(15.8) M(V) i* M(W) X(“,w) * KO(P( V)P( w)) --, 0 

is exact. A similar result holds in the complex case. 

In other words, over a point, the relation A(V, W) z KO(P(V)/P( W)) holds. As we 
gave a complete survey of the groups Mk and their inclusions in $5, this proposition gives 
the desired uniform description of the KO (and K) of a stunted real projective space. For 
example, taking dim V = k, dim W = 1, we obtain 

K%((P, + 1) E XO(P, - 1, PO)> s z,,, 

where ak is the kth. Radon-Hurwitz number. 



CLIFFORD MODULES 37 

We know of no really satisfactory proof of proposition (15.7), primarily because we 
know of no good algebraic description of the higher KO’ of these spaces. On the other 

hand it is easy to show that A( I’, IV) + KO(P( V), P(W)) is onto. For this purpose consider 
the diagram associated with a triple of vector-spaces W c V’ t V 

0 0 

I 

t 

I 
KO(P( V’), P(W)) +- KO(P( V), P(W)) + KO(P( V), P( V’)) 

(15.9) 

T I I 
OtA(V’, IV) + A(V, IV) +-- A(T/, V’) 

whose horizontal rows are exact; the upper one by the exact sequence of a triple, the lower 
one by the definition of the A-groups. We know, by (15.6), that x(V, W) is a bijection if 
dim V - dim W < 1. Hence, arguing by induction on dim V - dim W we may assume that 
the vertical homomorphisms of (15.9) are also exact. But then the middle homomorphism 
must be onto, proving the assertion for the next higher value of dim W - dim V. 

The proof of proposition (15.7) may now be completed either by obtaining a lower 
bound for the groups in question from the spectral sequence of KO-theory, or by a detailed 
analysis of the sequence (15.9), which unfortunately involves several special cases. In view 
of the fact that a computation of KO(P(k)/P(l)) is now already in the literature [l] we will 
not pursue this argument further here. 

B. Relation with the vector-field problem 

We again consider the pairing 

Vx E’-+E’ 

of 011, but now focus our attention on the induced maps: 

(15.10) v, x zzS(E:) --, E: XEX. 

Note that this is only relevant if E is a real module. 

The geometric interpretation of (15.10) is clear: if rc : P(E”) + X is the projective 

bundle of E” over X, and r is the canonical line bundle over P(E’), then (15.:3) describes a 
definite injection : 

(15.11) w(V, E) : n*V @I 5 --t n’E’. 

It is possible to give (15.11) a more geometric setting if S(V) admits a section, S. One 
may then use w( V, E) to ‘trivialize’ a certain part of the ‘tangent bundle along the fibres’ of 
P(E’). Recall first that this bundle, which we will denote by FF(Eo), is described in the fol- 
lowing manner. The bundle r = &Y”) is canonically embedded in n*(E’), whence z*(EO)/r 
is well defined. Then we have 

(15.12) %(E”) = (x*(E’)/C) @ 5. 

With this understood, let V’ be the quotient of V by the line bundle determined by S: 

o-+1~vYv’~o 
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and let s* : E” + E’ be the isomorphism induced by multiplication by s(x) in E$ It is then 
quite easy to check that the homomorphism s; 1 * o(V, E) : T-C* V@I l+ 7c*E” induces an 
injection 

rc*I” @ < --, n*E’/& 

Tensoring this homomorphism with 5, we obtain the desired injection: 

(15.13) CO@, V, E) : n*V’+ FF(Eo). 

Let us now again restrict the whole situation to a point. Then if dim V = k, dim E” = m, 
V’ will be a trivial bundle of dimension k - 1, and FF(Eo) will be the tangent-bundle of pro- 

jective (m - 1)-space P,_1. 

Applying the results of 95 we conclude that the following proposition is valid: 

PROPOSITION (15.14). Let m = 1 a, where a, is the kth. Radon-Hurwitz number. Then 
the tangent bundle of P,,,_l (and hence of A’,,,_,) contains a (k - 1 )-dimensional trivial bundle. 

The work of Adams [l], gives the converse of this proposition: if the tangent bundle 
of S,,,_, contains a trivial (n - I)-bundle, then m = la,,. 

We remark in closing that on the other hand the generalized vector-field question is 
still open. This question is: let t be the line bundle over P., then what is the maximum 
dimension of a trivial bundle in m& m 2 n. Thus the vector field problem solves this ques- 
tion for m = n. The general solution would, by virtue of the work of M. Hirsch, give the 
most economical immersions of P. in Euclidean space. 
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