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Introduction

THE ^-theory of complex vector bundles (2, 5) has many variants and
refinements. Thus there are:

(1) ^-theory of real vector bundles, denoted by KO,
(2) ^"-theory of self-conjugate bundles, denoted by KC (1) or KSC (7),
(3) JT-theory of G-vector bundles over (?-spaces (6), denoted by KQ.

In this paper we introduce a new ^-theory denoted by KR which is,
in a sense, a mixture of these three. Our definition is motivated partly by
analogy with real algebraic geometry and partly by the theory of real
elliptic operators. In fact, for a thorough treatment of the index problem
for real elliptic operators, our KR-theory is essential. On the other hand,
from the purely topological point of view, KR-theory has a number
of advantages and there is a strong case for regarding it as the primary
theory and obtaining all the others from it. One of the main purposes of
this paper is in fact to show how i£.R-theory leads to an elegant proof of
the periodicity theorem for XO-theory, starting essentially from the
periodicity theorem for JT-theory as proved in (3). On the way we also
encounter, in a natural manner, the self-conjugate theory and various
exact sequences between the different theories. There is here a consider-
able overlap with the thesis of Anderson (1) but, from our new vantage
point, the relationship between the various theories is much easier to see.

Recently Karoubi (8) has developed an abstract Z'-theory for suitable
categories with involution. Our theory is included in this abstraction but
its particular properties are not developed in (8), nor is it exploited to
simplify the iTO-periodicity.

The definition and elementary properties of KR are given in § 1. The
periodicity theorem and general cohomology properties for KR are
discussed in § 2. Then in § 3 we introduce various derived theories—
KR with coefficients in certain spaces—ending up with the periodicity
theorem for KO. In § 4 we discuss briefly the relation of KR with
Clifford algebras on the lines of (4), and in particular we establish a
lemma which is used in § 3. The significance of KR-thsory for the
topological study of real elliptic operators is then briefly discussed in § 5.
Q u i t . J. Mmth. Oxford (2), 17 (1966), 367-86.
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This paper is essentially a by-product of the author's joint work with
I. M. Singer on the index theorem. Since the results are of independent
topological interest it seemed better to publish them on their own.

1. The real category
By a space with involution, we mean a topological space X together

with a homeomorphism T: X -> X of period 2 (i.e. T* = Identity). The
involution T is regarded as part of the structure of X and is frequently
omitted if there is no possibility of confusion. A space with involution
is just a Z2-space in the sense of (6), where Z% is the group of order 2. An
alternative terminology which is more suggestive is to call a space with
involution a real space. This is in analogy with algebraic geometry. In
fact if X is the set of complex points of a real algebraic variety it has a
natural structure of real space in our sense, the involution being given
by complex conjugation. Note that the fixed points are just the real
points of the variety X. In conformity with this example we shall
frequently write the involution T as complex conjugation:

T(X) = x.

By a real vector bundle over the real space X we mean a complex vector
bundle E over X which is also a real space and such that

(i) the projection E ->- X is real (i.e. commutes with the involutions
on E, X);

(ii) the map Ex^> Et is anti-linear, i.e. the diagram

commutes, where the vertical arrows denote the involution and
C is given its standard real structure (T(Z) = z).

It is important to notice the difference between a vector bundle in the
category of real spaces (as denned above) and a complex vector bundle
in the category of Zg-spaces. In the definition of the latter the map

is assumed to be complex-linear. On the other hand note that if E is a
real vector bundle in the category of Zj-spaces its complexification can
be given two different structures, depending on whether

Ex-* ET<X)

is extended linearly or anti-linearly. In the first it would be a bundle in
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the real category, while in the second it would be a complex bundle in
the .Za-category.

At a fixed point of the involution on X (also called a real point of X}
the involution on E gives an anti-linear map

with T | = 1. This means that Ex is in a natural way the complexification
of a real vector space, namely the + 1-eigenspace of rx (the real points of
Ex). In particular if the involution on X is trivial, so that all points of X
are real, there is a natural equivalence between the category <?(X) of
real vector bundles over X (as space) and the category &(X) of real
vector bundles over X (as real space) :f define £(X) -*• ^{X) by
E t-*-E <8>R C (C being given its standard real structure) and 1?(X) -*• &{X)
by F h->- FR (FR being the set of real points of F). This justifies our use of
'real vector bundle' in the category of real spaces: it may be regarded as
a natural extension of the notion of real vector bundle in the category
of spaces.

If E is a real vector bundle over the real space X then the space F(E)
of cross-sections is a complex vector space with an anti-linear involution:
if a e T(E), S is denned by

a(x) = s(x).

Thus T(E) has a real structure, i.e. T(E) is the complexification of the
real vector space T(E)R.

If E, F are real vector bundles over the real space X a morphism
<f>: E -> F will be a homomorphism of complex vector bundles com-
muting with the involutions, i.e.

E<g>cF and H.omc(E,F) have natural structures of real vector
bundles. For example if j>x e Homc(£'I, Fx) we define <f>x e Homc(^4, Ft)
b y £ > ) = (£S) (ueEs).

It is then clear that a morphism <f>: E -»• F is just a real section of
B.omc(E, F), i.e. an element of (rB.omc(E, F))R.

If now X is compact then exactly as in (3) [§ 1] we deduce the homo-
topy property of real vector bundles. The only point to note is that a real
section a over a real subspace Y of X can always be extended to a real
section over X; in fact if t is any section extending a then lt{t-\-i) is a real
extension.

t The morphisms in ̂ (X) will be defined below.
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Suppose now that X is a real algebraic space (i.e. the complex points of
a real algebraic variety) then, as we have already remarked, it defines in
a natural way a real topological space X^ i-»- Xtop. A real algebraic
vector bundle can, for our purposes, be taken as a complex algebraic
vector bundle TT: E -*• X where X, E, n, and the scalar multiplication
C X E -v E are all denned over R (i.e. they are given by equations with
real coefficients). Passing to the underlying topological structure it is
then clear that Etav is a real vector bundle over the real space Xtop.

Consider as a particular example X = P(Cn), (ra—1)-dimensional
complex projective space. The standard line-bundle H over P(Cn) is
a real algebraic bundle. In fact H is denned by the exact sequence of
vector bundles o ^ l ^

where E c XxCn consists of all pairs ((z), u) e l x C " satisfying
J,uizi = 0.

Since this equation has real coefficients E is a real bundle and this then
implies that H is also real. Hence H defines a real bundle over the real
space P(Cn).

As another example consider the afifine quadric

Since this is affine a real vector bundle may be denned by projective
modules over the affine ring A+ = 'R[z1,...,zn]l( 2Z?+1)- Now the
intersection of the quadric with the imaginary plane is the sphere

the involution being just the anti-podal map y v-*- —y. Thus projective
modules over the ring A + define real vector bundles over Sn~x with the
anti-podal involution. If instead we had considered the quadric

then its intersection with the real plane would have been the sphere with
trivial involution, so that projective modules over

. Rfo zn]

— (T3=ir
define real vector bundles over S*1"1 with the trivial involution (and so
these are real vector bundles in the usual sense). The significance of S"-1

in this example is that it is a deformation retract of the quadric in our
category (i.e. the retraction preserving the involution).
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The Grothendieck group of the category of real vector bundles over a
real space X is denoted by KR(X). Restricting to the real points of X we
obtain a homomorphism

KR(X) -+ KR(XR) a* KO(XR).

In particular if X = XR we have

KR(X) s KO(X).

For example taking X = P(O) we have XR = P(Rn) and hence a
restriction homomorphism

KR{P(Cn)) -+ KR(P(Rn)) = KO{P(Rn)).

Note that the image of [E] in this homomorphism is just the standard real
Hopf bundle over P(Rn).

The tensor product turns KR(X) into a ring in the usual way.
If we ignore the involution on X we obtain a natural homomorphism

If X = XR then this is just complexification. On the other hand if E is
a complex vector bundle over X, E @ T*E has a natural real structure
and so we obtain a homomorphism

If X = XR then this is just 'realization', i.e. taking the underlying real
space.

2. The periodicity theorem
We come now to the periodicity theorem. Here we shall follow care-

fully the proof in (3) [§ 2] and point out the modifications needed for our
present theory.

If E is a real vector bundle over the real space X then P{E), the projec-
tive bundle of E, is also a real space. Moreover the standard line-bundle H
over P{E) is a real line-bundle. Then the periodicity theorem for KR
asserts:

THBOBEM 2.1. Let Lbea real line-bundle over the real compact space X,
E the standard real line-bundle over the real space P(L © 1). Then, as
a KR(X)-algebra, KR(P(L © 1)) is generated by H, subject to the single

relation ([ff]-[l])([£][ff]-[l]) = 0-
M85.2.17 B b
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First of all we choose a metric in L invariant under the involution. Th&
unit circle bundle 8 is then a real space. The section z of TT*{L) denned
by the inclusion 8 -»- L is a real section. Hence so are its powers zk. The.
isomorphism #* ^ (i,*-*,£-*) [(3)2.5]

is an isomorphism of real bundles. Finally we assert that, if / is a real
section of Hom(w*^°, 77*£°°) then its Fourier coefficients ak are real
sections of Hom(L* ® E°, E™). In fact we have

dt(x) = ak(x) = —2^-\f*zik~1 dzt

1 f 7~/~»_i_! J~ (since the involution reverses the-
2TT\ J £ £ orientation of S)

fxzx
k~1 dzx (since/ and z are real)

Sx

= <**(*)•

I t may be helpful to consider what happens at a real point of X. The>
condition that fx is real then becomes

which implies at once that the Fourier coefficients are real.
Since the linearization procedure of (3) [§ 3] involves only the ak and

and the zk it follows that the isomorphisms obtained there are all real,
isomorphisms.

The projection operators Q° and Q™ of (3) [§ 4] are also real, provided
p is real. In fact

Si

= 2 ^ J ^Pi)

= ——. p ~1 dpx, since p is real.
2irt J

Sx

Similarly for Qx. The bundle Vn(E°,p, E") is therefore real and (4.6) is.
an equation in KR(P). The proof in § 5 now applies quite formally.

We are now in a position to develop the usual cohomology-type theory,
using relative groups and suspensions. There is, however, one new feature
here which is important. Besides the usual suspension, based on R with
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trivial involution, we can also consider R with the involution x \-y —x.
It is often convenient to regard the first case as the real axis R c C and
the second as the imaginary axis i R c C , the complex numbers C always
having the standard real structure given by complex conjugation. We
use the following notation:

RV.Q = Rff©tRp,

IP* = unit ball in

Sv* = unit sphere in
Note that R"* ^ O . Note also that, with this notation, S™ has
dimension p-\-q—1.

The relative group KR(X, Y) is defined in the usual way as KR(X/Y)

where KR is the kernel of the restriction to base point. We then define
the (p, q) suspension groups

KRT'"{X, Y) = KR(X X &>*, X x Bv* U 7 x -B™).
Thus the usual suspension groups KR-o are given by

As in (2) one then obtains the exact sequence for a real pair (X, Y)
... -* KR-^X) -• KR-^Y) -• KR(X, Y) -• KR(X) -• KR(Y). (2.2)

Similarly one has the exact sequence of a real triple (X, T, Z). Taking
the triple (X x B"-°, X X £p-° U 7 X BP-°, X X <Sp-°) one then obtains an
exact sequence

... -* KR?-\X) -> KE?-\Y) -> KR"-°(X, Y) -+ K&>-0(X) -> KR?-°{Y)
for each integer p > 0.

The ring structure of KR(X) extends in a natural way to give external
products

KRP-O(X, Y) ® KRP'*(X', Y') -> KRP+^-^(X", Y"),
where X" = X x X', Y" = X X 7 ' U X' X 7. By restriction to the
diagonal these define internal products.

We can reformulate Theorem 2.1 in the usual way. Thus let
b = [H]-l eKR^ipoini) = KR(B™, 8™) = Zi2(P(C2))

and denote by /9 the homomorphism
KBP*[X, Y) -+ KRP+^+1(X, Y)

given by x i-»- 6.x. Then we have

THEOREM 2.3. £: KRf-o(X, Y) -• ZiJP+^+HX, 7) w an isomorphism.
Note also that the exact sequence of a real pair is compatible with the

periodicity isomorphism. Hence if we define
KRP(X, Y) = KR?-°(X, Y) forp^O
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it follows that the exact sequence (2.2) for (X, Y) can be extended to
infinity in both directions; Moreover we have natural isomorphisms

We consider now the general Thorn isomorphism theorem as proved
for iT-theory in (2) [§2.7]. We recall that the main steps in the proof
proceed as follows:

(i) for a line-bundle we use (2.1),
(ii) for a decomposable vector bundle we proceed by induction using

(2-1),
(iii) for a general vector bundle we use the splitting principle.

An examination of the proof in (2) [§ 2.7] shows that the only point
requiring essential modification is the assertion that a vector bundle is
locally trivial and hence locally decomposable. Now a real vector bundle
has been denned as a vector bundle with a real structure. Thus it has
been assumed locally trivial as a vector bundle in the category of spaces.
What we have to show is that it is also locally trivial in the category of real
spaces. To do this we have to consider two cases.

(i) x e X a real point. Then Ex ^ O in our category. Hence by the
extension lemma there exists a real neighbourhood U of x such
that E | U ̂  U X Cn in the category.

(ii) x =£ x. Take a ccinp'ex isomorphism Ex ^ Cn. This induces an
isomorphism Ex ^ Cn. Hence we have a real isomorphism

where Y = {x,x}. By the extension lemma there exists a real
neighbourhood U of Y so that E\U ^UxCn.

Thus we have

THEOREM 2.4 (Thom Isomorphism Theorem). Let E be a real vector
bundle over the real compact space X. Then

<j>:KR{X)-+KR(XE)

is an isomorphism where <f>(x) = \B. x and XE is the element of KR{XE)
defined by the exterior algebra of E.

Among other results of (2) [§ 2.7] we note the following:
KR{Ix P(O)) ^ KR(X)[t]Jt*-\

We leave the computation of KR for Grassmannians and Flag mani-
folds as exercises for the reader. The determination of KR for quadrics
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is a more interesting problem, since the answer will depend on the
signature of the quadratic form.

We conclude with the following observation. Consider the inclusion

-R01 = R X C = BP-.

This induces a homomorphism

t) ^ .S^point)

Since i*[H] is the real Hopf bundle over P(R2) it follows that

v = i*(b) = i*([H] — 1) is the reduced Hopf bundle over P(R2).

3; Coefficient theories

K 7 is a fixed real space then the functor X H>- KR(X X T) gives a new
cohomology theory on the category of real spaces which may be called
KR-theory with coefficients in 7. We shall take for Y the spheres Sp-°
(where the involution is the anti-podal map). A theory F will be said to
have period q if we have a natural isomorphism F ^ F~^. Then we have

PROPOSITION 3.1. KR-theory with coefficients in Spfi has period

2 ifp = 1,

4 ifp = 2,

8 ifp = 4.

Proof. Consider RP as one of the three fields R, C, or H (p — 1, 2, or 4).
Then for any real space X the map

^ : X x S** X -B0-" -*• X x Sp>0 X R"-0

given by fj.p(x,s,u) = (x,s,8u), where su is the product in the field, is a
real isomorphism. Hence it induces an isomorphism

/xj : KR*>A(X X S"-0) -+ KR°-i>(X X &>>°).

Replacing X by a suspension gives an isomorphism

£: KRP-«(X x <Sp-°) -> KRW+<i(X X 8"-°).

Taking q = p and using the isomorphism

p>: KR - • KRP-P

given by Theorem 2.1, we obtain finally an isomorphism

fi*p>: KR(X x S*-0) - • KR°*>{X X
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Remark, fi* is clearly a ^iJ(X)-module homomorphism. Since the
same is true of £ this implies that the periodicity isomorphism

yp = fi$p>: KB(X X Sp-°) -+ KR-^{X X &-0)

is multiplication by the image cp of 1 in the isomorphism

KR(S*>-°) -

This element cp is given by

For any Y the projection X x Y -> X will give rise to an exact coeffi-
cient sequence involving KR and KR with coefficients in Y. When Y
is a sphere we get a type of Gysin sequence:

PROPOSITION 3.2. The projection TT: SP-° -+ point induces the following
exact sequence

4 ^ KR-*(X X i

where x is the product toith (—IJ)P, and 17 e Z-R-^point) ^ KR(P(R*)) is
the reduced real Hopf bundle.

Proof. We replace TT by the equivalent inclusion 5p>0 ->• B*1-0. The
relative group is then KR"^(X). To compute x w© use the commutative
diagram

Let 6 be the automorphism of Kip'p+<l{X) obtained by interchanging the
two factors RP0 which occur. Then the composition x ^ is just multi-
plication by the image of bv in

Z-R"-P(point) ->- Zit°-P(point).

But this is just -q". I t remains then to calculate 6. But the usual proof
given in (2) [§ 2.4] shows that 6 = (-1)" ' = (-1)".

We proceed to consider in more detail each of the theories in (3.1).
For p = 1, iS"-0 is just a pair of conjugate points {+1, —1}. A real vector
bundle E over I x { + 1 , - 1 ) is entirely determined by the complex
vector bundle E+ which is its restriction to X X {+1}. Thus we have

PROPOSITION 3.3. There is a natural isomorphism

KR(X X S1-0) a* K(X).
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Note in particular that this does not depend on the real structure of X

T)ut just on the underlying space. The period 2 given by (3.1) confirms
what we know about K(X). The exact sequence of (3.2) becomes now

... ->- KR^(X) 4- KR-<{X) £ K-«(X) X KR*^(X)^ ... (3.4)

where x is multiplication by — 77 and 77* = c is complexification. We
leave the identification of 8 as an exercise for the reader. This exact
sequence is well-known (when the involution on X is trivial) but it is
always deduced from the periodicity theorem for the orthogonal group.
Our procedure has been different and we could in fact use (3.4) to prove
the orthogonal periodicity. Instead we shall deduce this more easily
later from the case p = 4 of (3.1).

Next we consider p = 2 in (3.1). Then KR~*(X X S2-0) has period 4.
We propose to identify this with a self-conjugate theory. If X is a real
space with involution T a self-conjugate bundle over X will mean a
complex vector bundle E together with an isomorphism a: E -v r*E.
Consider now the space X x <S*-° and decompose S^° into two halves
S\° and S2? with intersection {±1}.

si-0

-1

si,o

It is clear that to give a real vector bundle F over X X S2-0 is equivalent
to giving a complex vector bundle F+ over X X S^0 (the restriction of F)
together with an isomorphism

But X X { + 1} is a deformation retract of X X S*+° and so [cf. (3) 2.3] we
have an isomorphism

8:F+\Xx{-l} -+ F+\Xx{+l}

unique up to homotopy. Thus to give <f> is equivalent, up to homotopy, to
giving an isomorphism . ™ -j-w

where E is the bundle over X induced from F+ by x \-*- (x, 1) and

a i = 0(2,-1) <Ax,l>

In other words isomorphism classes of reed bundles over X x Stfi corre-
spond bijectively to homotopy classes of self-conjugate bundles over X.
Moreover this correspondence is clearly compatible with tensor products.
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Now let KSC(X) denote the Grothendieck group of homotopy classes of
self-conjugate bundles over X. If T is trivial this agrees with the defini-
tions of (1) and (7). Then we have established

PROPOSITION 3.5. There is a natural isomorphism of rings

The exact sequence of (3.2), with p = 2, then gives an exact sequence

... - * KB?-*{X) 4 KR-<{X) ^ KSC-o{X) X K&-*{X) -»-... (3.6)

where x is multiplication by TJ* and IT* is the map which assigns to any
real bundle the associated self-conjugate bundle (take a = r). The
periodicity in KSC is given by multiplication by a generator of

Finally we come to the case p = 4. For this we need

LEMMA 3.7. Let 77 e iT.ff-1(point) be the element defined in § 2. Then
rf = 0.

Proof. This can be proved by linear algebra. In fact we recall [(4)
§ 11] the existence of a homomorphism a: Ak -> iT.R-k(point) where the
Ak are the groups defined by use of Clifford algebras. Then 77 is the
image of the generator of Ax ^ Zz and Az = 0. Since the homo-
morphisms afc are multiplicative [(4) § 11.4] this implies that 77s = 0.

COBOLLABY 3.8. For any p ^ 3 we have short exact sequences

0 -• KR-«{X) C KR^(X X £p>0) -I KRP+^X) -*• 0.

Proof. This follows from (3.7) and (3.2).
According to the remark following (3.1) the periodicity for

KR(X x S*'°) is given by multiplication with the element

ct = ,xJ(6M) e KR-*(S*'°).

Now recall [(4) Table 2] that A8 ^ Z, generated by an element A
(representing one of the irreducible graded modules for the Clifford
algebra C8). Applying the homomorphism

a:AB-+KR-a(point)

we obtain an element a(A) e iT.R~8(point). The connexion between c4

and a(A) is then given by the following lemma:

LEMMA 3.9. Let 1 denote the identity of KR{S^). Then

c4 = «(A).l eKR^S1-0).

The proof of (3.9) involves a careful consideration of Clifford algebras and
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is therefore postponed until § 4 where we shall be discussing Clifford
algebras in more detail.

Using (3.9) we are now ready to establish

THEOEEM 3.10. Let A e 4 8 , a(A) e iLR-^point) be as above. Then
multiplication by a(X) induces an isomorphism

KR(X) -+ KRS(X)
Proof. Multiplying the exact sequence of (3.8) by a(A) we get a commu-

tative diagram of exact sequences

0 -». KR^(X) -> KR-*{X x S*-0) -* KR^(X) -> 0
\ \ \

0 -»• KR-*-*{X) -> KR^-B(X x S1-0) -*• KR~3^(X) -• 0.
By (3.9) we know that tpg coincides with the periodicity isomorphism y4.
Hence <f>q is a monomorphism for all q. Hence ^ ^ in the above diagram
ia a monomorphism, and this, together with the fact that if/Q is an iso-
morphism, implies that <f>g is an epimorphism. Thus <f>g is an isomorphism
as required.

Remark. If the involution on X is trivial, BO that KR(X) = K0{X),
this is the usual 'real periodicity theorem'.

By considering the various inclusions Sqfi -*• Sp-° we obtain interesting
exact sequences. For the identification of the relative group we need

LEMMA 3.11. The real space (with base point) SvfijS'1'0 is isomorphic to

Proof. SP'°—5«'0 is isomorphic to 5p-«'oxii«-0. Now compactify.

COBOLLARY 3.12. We have natural isomorphisms:

KR(X x £p-°, X x <S«-°) ^ KR°*(X x Sp-<>-0).
In view of (3.8) the only interesting cases are for low values of p, q.

Of particular interest is the case p = 2, q = 1. This gives the exact
sequence [cf. (1)]

... -• K~\X) - • KSC(X) -v K{X) -> K(X) -> ... .

The exact sequence of (3.8) does in fact split canonically, so that
(for p > 3)

KR-«(X x S»-°) ^ KR-*(X) ®KRP+1-«(X). (3.13)
To prove this it is sufficient to consider the case p = 3, because the
general case then follows from the commutative diagram (p ^ 4)

0 -• KR(X) -». KR(X x

i I
0 -y KR(X) -• KR(X x
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obtained by restriction. Now S3-0 is the 2-sphere with the anti-podal

t
involution and this may be regarded as the conic J z\ = 0 in P(C8).

o
In § 5 we shall give, without proof, a general proposition which will imply
that, when T is a quadric,

KR(X)-+KR(XxY)

has a canonical left inverse. This will establish (3.13).

4. Relation with Clifford algebras

Let Cliff( •#"•«) denote the Clifford algebra (over R) of the quadratic
form

on Rp*. The involution (y,x) h-v (—y,x) of RP* induces an involutory
automorphism of Cliff (i?^) denoted byf a \->d.

Let M = M° ©Jtf1 be a complex Z2-graded Cliff(.RP-«)-module. We
shall say that M is a real Z2-graded Cliff(.R^-module if M has a real
structure (i.e. an anti-linear involution m \-*-m) such that

(i) the Z2-grading is compatible with the real structure, i.e.

M< = Mi (i = 0,1),

(ii) am = dm for a e Cliff(.R^0) and m e M.
Note that if p = 0, so that the involution on Cliff(J?p'<?) is trivial, then

MR = M°R QMR = {m e M\rh = m}

is a real Z2-graded module for the Clifford algebra in the usual sense
[a C8-module in the notation of (4)].

The basic construction of (4) carries over to this new situation. Thus
a real graded Cliff(i2P-o)-module M = M°@M1 defines a triple
(M°, M1, a) where o: S"-" X M° -v Sp-Q X M1 is a real isomorphism given by

a(a,m) = (8, am).

In this way we obtain a homomorphism

h: M(p,q) -• Z-RP-^point)

where M(p,q) is the Grothendieck group of real graded Cliff(.Rp'<?)-
modules. If M is the restriction of a Cliff(i^-fl+1)-modu]e then a extends
over SP'Q+1. Since the projection

t This notation diverges from that of (4) [§ 1] where (for q = 0) this involution
is called a and 'bar' is reserved for an anti-automorphism.
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is an isomorphism of real spaces (S+ denotes the upper hemisphere with
respect to the last coordinate) it follows that if defines the zero element
of i?ifr''9(point). Hence, defining A (p, q) as the cokernel of the restriction

we see that h induces a homomorphism

a: A(jp,q) -

Moreover, as in (4), a is multiplicative. Note that for p = 0 this a
coincides essentially with that defined in (4), since

ZiJ°-«(point) g*

The exterior algebra A*(CX) defines in a natural way a Cliff(.RL1)-

module by »(l) = ze, z(e) = - 2 1

where 1 e A°(C1) and e E A1(C1) are the standard generators. Let
Aj e ^4(1,1) denote the element defined by this module. In view of the
definition of b e JTJR^point) we see that

«(Aj) = - 6

and hence, since a is multiplicative,

Let M be a graded Cnff(iJ4>4)-module representing AJ (in fact as shown
in (4) [§ 11], we can construct M out of the exterior algebra A*(C4)), and
let w = e1eiezet e Cliff(-R4-4) where e^ej,e3,e4 are the standard basis of

Then we have ^ =

wz = zw for z e C4 =

Hence we may define a new anti-linear involution TO I->- m on M by

TO = —um

and we have zro = —wzm = —wzm = — zwm

= zrh.

Thus M with this new involution (or real structure) is a real graded
Cliff(.R0'8)-module, a C8-module in the notation of (4): as such we denote
it by N. From dimensional considerations [cf. (4) Table 2], we see that it
must be one of the two irreducible C8-modules. But on complexification
(i.e. ignoring involutions) it gives the same as M and hence N represents
the element of As denoted in (4) by A.
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After these preliminaries we can now proceed to the proof of Lemma
3.9. What we have to show is that under the map

, x 4 :

the element of KR^^S*-0) defined by M lifts to the element of KR-^S'-0)
denned by N. To do this it is clearly sufficient to exhibit a commutative
diagram of real isomorphisms

S<°xRBxN

SWxWxN^SWx&xM (4.1)

where v is compatible with fit (i.e. v(a, x,y,n) = (a, x -\-iay, m) for some m)
and the vertical arrows are given by the module structures (i.e.
(a, x, y, n) H>- (a, x, y, (x, y)n).

Consider now the algebra Cnff(ii4'0) = C4. The even part CJ is
isomorphic to H ©H [(4) Table 1]. Moreover its centre is generated by
1 and w = ejejege^, the two projections being A(l±w)- To be quite
specific let us define the embedding

£ : H -

2
_ 1+w
- —2~ ei«4-

Then we can define an embedding
T?: S(U) -> Spin(4) c T4

by *?(*) — £(*)+$•(!—">)> where F4 is the Clifford group [(4) 3.1] and
S(H) denotes the quaternions of norm 1. It can now be verified that the
composite homomorphism

S(H) -»• Spin(4) -> <SO(4)

defines the natural action of <S(H) on R* = H given by left multiplica-
tion.f In other words

1?(*)!/7?(5)~1 = *y (« G <S(H), J/ G R*). (4.2)
If we give <S(H) the anti-podal involution then 17 is not compatible with
involutions, since the involution on the even part C\ is trivial.

f We identify 1, t, j , k with the standard base Bj, «,, «,, et in that order.
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Regarding CUff(iJ*-°) as embedded in Clifff-R4-4) in t he natural way
we now define the required map v by

v{8,x,y,n) = (s,x+isy,Tj(s)n).

From the definition of w it follows that

and so rj(—s)fi = ^(—a){—wn) = 77(5)71 = rj(s)n,

showing that v is a real map. Equation (4.2) implies that

7](8)(x,y)n = (x+isy)r)(8)n,

showing that v is compatible with the module structures. Thus we have
established the existence of the diagram (4.1) and this completes the
proof of Lemma 3.9.

The definitions of M(p, q) and A(p, q) given were the natural ones from
our present point of view. However, it may be worth pointing out what
they correspond to in more concrete or classical terms. To see this we
observe that if M is a real (7(.Rp'8)-module we can define a new action [ ]
of It?™ on M by r n . •

J [x,y}m = xm+iym.

Then [x,yfm = {-|N!+||«/||s}m.

Moreover for the involutions we have
[x, y]m = xm-\-iym

= xm+iym (since y = —y)

= [z,y]m.

Thus MR is now a real module in the usual sense for the Clifford algebra
CPA of the quadratic form

It is easy to see that we can reverse the process. Thus M(p, q) can equally
well be defined as the Qrothendieck group of real graded Cpa-modules. From
this it is not difficult to compute the groups AiPfg) on the lines of (4)
[§ 4,5] and to see that they depend only on p—q (mod 8) [cf. also (8)].
Using the result of (4) [11.4] one can then deduce that

a: A(p,q) -»- -/LRP-«(point)

is always an isomorphism. The details are left to the reader. We should
perhaps point out at this stage that our double index notation was
suggested by the work of Karoubi (8).
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The map a can be defined more generally for principal spin bundles as
in (4) and we obtain a Thom isomorphism theorem for spin bundles on
the lines of (4) [12.3]. We leave the formulation to the reader.

5. Relation with the index
If $ denotes the Fourier transform of a function <j> then we have

Since the symbol a(P) of an elliptic difiFerential operator P is defined by
Fourier transforms (9) it follows that

£) = a{P){x, -i)

where P is the operator defined by
F<f> = P f

Here we have assumed that P acts on functions so that P<f> is defined.
More generally if X is a real differentiable manifold, i.e. a differentiable
manifold with a differentiable involution x H>- X, and if E, F are real
differentiable vector bundles over X, then the spaces T(E), T(F) of
smooth sections have a real structure and for any linear operator

P: T(E)-^T{F)
we can define F: T{E) ->• F(F) by

Pit) = i^-
If P is an elliptic differential operator then

o(P)(x,£) = a(P)(x, -r*(£)). (5.1)
It is natural to define P to be a real operator if P = P. If the involution
on X is trivial this means that P is a differential operator with real
coefficients with respect to real local bases of E, F. In any case it follows
from (5.1) that the symbol a(P) of a real elliptic operator gives an iso-
morphism of real vector bundles

TT*E -> IT*F,

where IT : S(X) ->• X is the projection of the cotangent sphere bundle and
we define the involution on S(X) by

(z,£)^(x,-T«(f)).
Note that if T is the identity involution on X the involution on S(X) is
not the identity but is the anti-podai map on each fibre. This is the basic
reason why our KR-theory is needed here. In fact the triple

(TT*E, n*F, a(P))
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defines in the usual way an element
[cr(P)]eKR(B(X),S(X)) '

where B(X), the unit ball bundle of S(X), has the associated real
structure, f

The kernel and cokernel of a real elliptic operator have natural real
structures. Thus the index is naturally an element of ^iJ(point). Of
course since r D . . . . p , . ,.

iT.R(point) -> Z(point)
is an isomorphism there is no immediate advantage in denning this
apparently refined real index. However, the situation alters if we con-
sider instead a family of real elliptic operators with parameter or base
space 7. In this case a real index can be defined as an element of KR(Y)
and KR{Y) -+ K(T)
is not in general injective.

All these matters admit a natural extension to real elliptic complexes
(9). Of particular interest is the Dolbeault complex on a real algebraic
manifold. This is a real elliptic complex because the holomorphic map
T : X ->• X maps the Dolbeault complex of £ into the Dolbeault complex
of X. If X is such that the sheaf cohomology groups HQ(X, 0) = 0 for
q > 1, H°(X, 0) ^ C, the index, or Euler characteristic, of the Dolbeault
complex is 1. Based on this fact one can prove the following result:

PROPOSITION. Let f: X -+- Y be a fibering by real algebraic manifolds,
where the fibre F is such that

H«(F, 0) = 0 (q ^ 1, H°(F, <P) s C),

then there is a homomorphism

/„ : KR(X) -+ KR(Y)
which is a left inverse of

The proof cannot be given here but we observe that a special case is given
by taking X = Y X F where F is a (compact) homogeneous space of a real
algebraic linear group. For example we can take F to be a complex
quadric, as required to prove (3.13). We can also take F = S0{2n)\U{n),
or S0(2n)/Tn, the flag manifold of S0(2n). These spaces can be used to
establish the splitting principle for orthogonal bundles. It is then
significant to observe that the real space

{S0(2n)IU(n)}xR°-in

| All thia extends of course to integral (or pseudo-differential) operators.
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has the structure of a real vector bundle. A point of S0(2n)IU(n)
defines a complex structure of i?** and conjugate points give conjugate
structures. For n = 2 this is essentially^ what we used in § 3 to deduce
the orthogonal periodicity from Theorem 2.1.

t In (3.1) we used the 3-sphere S*-°. We could just as well have used the 2-
sphere S3-0. This coincides with SO(4)/U(2).
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