
6 Brownian Lamination & Homeomorphism Theorem

Exercise 6.1 (Brownian Lamination). Let e : [0, 1] −→ [0,+∞) be a normalized Brownian

excursion. Recall that we proved that the local minima of e are almost surely distinct. We

associate a random closed subset of the closed unit disk D to e by the following device. Recall

the definition of the pseudo-distance associated to e: for a, b ∈ [0, 1] we put

de(a, b) = e(a) + e(b)− 2 inf
�
e(u) : u ∈ [a ∧ b, a ∨ b]

�
.

Let Le be the union of all segments [xy] where x = exp(2iπa) and y = exp(2iπb) with de(a, b) = 0.

A segment [xy] with endpoints on S1 is called a chord. If two chords [xy] and [x
�
y
�
] are such

that (xy) ∩ (x
�
y
�
) = ∅ we say that the chords are non-crossing. A closed subset of D which can

be written as a union of non-crossing chords is called a lamination.

1. Show that Le is a closed subset of D.

2. Show that a.s. if a, b, c, d ∈ [0, 1] such that de(a, b) = de(c, d) = 0 then

either [e
2iπa

e
2iπb

] = [e
2iπc

e
2iπd

] or (e
2iπa

e
2iπb

) ∩ (e
2iπc

e
2iπd

) = ∅.

Conclude that a.s.Le is lamination.

3. Show that a.s. the connected components of D\Le are open triangles with vertices on S1.

4. Show that a.s.Le is maximal for the inclusion relation among laminations.

We define a relation on D using e: if x, y ∈ D, we put x ∼e y if x and y belong to a chord

[e
2iπa

e
2iπb

] with de(a, b) = 0 or if x and y belong to the closure of some open triangle of D\Le.

5. Prove that ∼e is a closed equivalence relation and that the quotient space D/ ∼e is home-

omorphic to the R-tree Te coded by e.

Reminder on quotient topology: If X is topological space and ∼ an equivalence relation on

X, we endow X/ ∼ with the finest topology for which the canonical projection π : X → X/ ∼ is

continuous. Equivalently, a set A ⊂ X/ ∼ is open if and only if π
−1

(A) is open. We say that ∼ is

closed if the set {(x, y) ∈ X×X : x ∼ y}, is closed. We admit (or we prove) that if X is a compact

metric space and ∼ is closed then X/ ∼ is an Hausdorff space and then compact.

6. Show that the local minima of e are dense in [0, 1] and deduce that Le has an empty

interior.

Exercise 6.2 (Homeomorphism Theorem). We now consider, together with e, the Head of the

Brownian snake Z driven by e. We can do exactly the same procedure for Z (in particular we

admit that the local minima of Z are distinct). Thus Z furnishes an equivalence relation ∼Z on

D is a similar manner as to e. We consider S2 the standard Euclidean sphere of radius 1 in R3

and put

H+ =
�
(x1, x2, x3) ∈ R3

, x
2
1 + x

2
2 + x

2
3 = 1 and x3 � 0

�
,

for the closed North hemisphere of S2 and similarly H− denotes the closed South hemisphere.

The stereographic projections from the North and South poles enable us to identify H+ and H−
with D. We will associate the function e (resp.Z) to the North (resp. South) part of the ball,

hence we can define ∼e on H+ and ∼Z on H−.

1. Check that H+/ ∼e is still homeomorphic to Te.
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We put a relation on x, y ∈ S2 by x ∼ y if and only if x, y ∈ H+ and x ∼e y or x, y ∈ H− and

x ∼Z y. We admit the following fact about the process (et, Zt)t∈[0,1]. Almost surely, for every

s ∈ ]0, 1[ such that for some ε > 0 if we have

es = min
r∈[s−ε,s]

er or es = min
r∈[s,s+ε]

er

then

Zs > min
r∈[s−δ,s]

Zr, for every 0 < δ < s and Zs > min
r∈[s,s+δ]

Zr, for every 0 < δ < 1− s.

2. Prove that a.s.∼ is a closed equivalence relation.

Theorem 6.1 (Moore (1925)). Let ∼ be a closed equivalence relation on the two dimensional

sphere S2. Assume that every equivalence class of ∼ is a compact path-connected subset of the

sphere whose complement is connected. The quotient space S2/ ∼ is homeomorphic to S2.

3. Give an example of a closed equivalence relation � such that the quotient S2/ � is not

homeomorphic to S2.

4. Prove that in our setting ∼ a.s. verifies all hypotheses of Moore’s Theorem and deduce that

almost surely S2/ ∼ is homeomorphic to S2.

5. Does anybody see a link with scaling limits of random planar quadrangulations ?

Exercise 6.3. Who is this charming gentleman / What does represent these nice pictures ?

The third picture is taken from Thurston.
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7 Introduction to the three-point function

The mutli-pointed bijection. Let (Q, s1, s2, s3) be a planar quadrangulation with 3 distinct

distinguished vertices, we call these vertices the sources of the quadrangulation. We also impose

that the graph distance in Q between any of the sources is larger than 2 (that is no sources

are neighbors) and that the sources are not aligned (none of the sources lies on a geodesic path

between the two others). The object (Q, s1, s2, s3) is then called a triply pointed quadrangulation.
Together with the sources we are also given integer delays, τ1, τ2 and τ3. We impose that the

delays satisfy

(�)

�
|τi − τj | < dgr(si, sj), i, j ∈ {1, 2, 3}
τi − τj + dgr(si, sj) is even , i, j ∈ {1, 2, 3}.

1. Show that we can always find delays satisfying (�).

We associate a labeling � to the vertices of the map Q by putting

�(v) = min
i∈{1,2,3}

�
τi + dgr(v, si)

�
.

2. Show that the label of any source is equal to its delays and that two neighboring vertices

in the map Q have labels that differ by 1 or −1.

Hence the faces of the quadrangulation Q can be decomposed into two subsets: The faces such

that the labels of the vertices are (i, i + 1, i + 2, i + 1) or those satisfying (i, i + 1, i, i + 1). We

add a “red” edge in each face following the rule given by the figure below.

i i+ 1

i+ 2i+ 1

i i+ 1

ii+ 1

3. Apply this construction to quadrangulation of Fig. 1. (taken from Bouttier and Guitter).

4. Verify that you are left with a labeled map with 3 faces such that for any i ∈ {1, 2, 3}

min
v incident to face i

�(v) = τi + 1.

Verify also that the labels can vary by −1, 0 or 1 along an edge, we say that the map is

well-labeled. Like in the classical Schaeffer construction, check that if a vertex v is incident

to a face i for i ∈ {1, 2, 3} then

dgr(v, si) = �(v)− τi.

Given the well-labeled map with three faces, how can you reconstruct the original quad-

rangulation? (No proof)

Three-point function.

5. Can you give the pairwise distances between the sources in the quadrangulation associated

to the well-labeled planar map of Fig. 2 without reconstructing the whole quadrangulation?
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Let (Q, s1, s2, s3) be a triply-pointed quadrangulation. Now we choose particular values for the

delays associated to the sources of a triply-pointed quadrangulation. We let τ1, τ2 and τ3 such

that

(♣)






τ1 + τ2 = − dgr(s1, s2),
τ1 + τ3 = − dgr(s1, s3),
τ2 + τ3 = − dgr(s2, s3).

6. Show that these labels satisfy (�).

7. Show that the map with three faces obtained with Miermont’s construction is such that

any two faces have a non-empty boundary and satisfy

(♥)






min
�
�(v) : v incident to face 1

�
= 1 + τ1, min

�
�(v) : v incident to faces 1 and 2

�
= 0

min
�
�(v) : v incident to face 2

�
= 1 + τ2, min

�
�(v) : v incident to faces 1 and 3

�
= 0

min
�
�(v) : v incident to face 3

�
= 1 + τ3, min

�
�(v) : v incident to faces 2 and 3

�
= 0.

Theorem 7.1. The construction presented above is a bijection between on the one hand triply-
pointed quadrangulations with n faces such that the sources s1, s2 and s3 are not aligned and on
the other hand well-labeled planar maps with 3 faces with n edges satisfying (♥) for the delays
related to the distances between the sources by (♣).

8. Let (Qn, s1, s2, s3) a triply-pointed quadrangulation with n faces. How would you show

that the triplet

n−1/4
�
dgr(s1, s2), dgr(s1, s3), dgr(s2, s3)

�
,

converge in distribution as n → ∞?

Exercise 7.1. Who are these charming gentlemen ?
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Fig. 1.

τ1 = 0

τ3 = 2τ2 = 1
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Fig. 2.
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