
2 Metric Geometry

Exercise 2.1. Give an example of two (non-compact !) metric spaces X and Y such that
dGH(X,Y ) = 0 but X 6= Y .

Exercise 2.2 (Topology). Suppose that (Xn)n>0 is a sequence of compact metric spaces such
that Xn is homeomorphic to X0 for every n > 0. Show that Xn → X in the sense of dGH does
not imply X homeomorphic to X0.

Exercise 2.3 (Gromov’s Compactness Theorem). The goal of this exercise is to characterize
pre-compactness for Gromov-Hausdorff distance. A collection X of compact metric spaces is
totally bounded if

(i) There exists C > 0 such that for every X ∈ X, the diameter of X is bounded above by C,

(ii) For every ε > 0, there exists N(ε) ∈ Z+ such that every X ∈ X admits an ε-net containing
no more than N(ε) points.

1. Show that every pre-compact collection is totally bounded.

Now, let (Xn)n>1 be a totally bounded sequence of compact metric spaces and denote N(ε) the
minimal number of balls of radius ε needed to cover any space Xi. For every n, denote the
distance in the space Xn by dn and let (x(n)

k,j )k,j>1 be a sequence of points of Xn such that for
every k > 1 the points

x
(n)
k,1 , ..., x

(n)
k,N(1/k), form a 1/k-net in Xn.

2. Show that we can extract a subsequence (ni)i>1 such that for every (k, j), (k′, j′) ∈ Z2
+

lim
n→∞

dn

(
x

(n)
k,j , x

(n)
k′,j′

)
exists.

To simplify notation, we suppose that there is no need to take a subsequence. Consider the
abstract space X = {(k, j)}k,j>1 endowed with ∆((k, j), (k′, j′)) = lim dn

(
x

(n)
k,j , x

(n)
k′,j′

)
.

3. Show that ∆ is a pseudo-metric on X and that the completion X of X with respect to ∆
is compact.

4. Prove that Xn → X in the Gromov-Hausdorff sense.

Exercise 2.4. * Prove that a sequence of length spaces homeomorphic to the two-dimensional
sphere S2 cannot converge to the standard two-dimensional closed ball B2.
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Exercise 2.5. Who are these charming gentlemen ?
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