1.– Nicolas Addington pointed out to us that the example in Section 5.4.2 of the published version is wrong. The equation should be
\[x_1^3 + x_2^3 + x_3^3 + x_1^2 x_2 + x_2^2 x_3 + x_2 x_4 x_5 + x_3^2 x_1 + x_1 x_2 x_3 + x_1 x_2^2 + x_1^2 x_4 + x_2 x_5^2 + x_2^2 x_5 \\
+ x_4 x_5 + x_4 x_5^2 + x_3 x_6^2 + x_3 x_6 + x_4 x_6 + x_4 x_6^2 + x_5 x_6 + x_5 x_6^2 + x_4 x_5 x_6 = 0. \]
It defines a smooth cubic fourfold \(X \subset \mathbb{P}_{\mathbb{F}_2}^5 \), the only \(\mathbb{F}_2 \)-line contained in \(X \) is the line \(\langle (0, 0, 0, 0, 1, 1), (0, 0, 0, 1, 0, 1) \rangle \), and \(X \) contains 13 \(\mathbb{F}_2 \)-points.

2.– Kiran Kedlaya spotted an error in the published version of the proof of Theorem 5.2 and provided a correction which led to an improved statement. He also kindly provided Proposition 5.5 and its proof.

The arxiv version (which is a slightly expanded version of the published text) was corrected.