Problem 1

Recall that a topological space X is irreducible if it is non-empty and is not the union of two strict closed subsets. In other words, if X_1 and X_2 are closed subsets of X and $X = X_1 \cup X_2$, then $X = X_1$ or $X = X_2$.

a) Let X be a topological space and let $V \subset X$ be a subset (endowed with the induced topology). Prove that V is irreducible if and only if its closure \overline{V} is irreducible.

b) Let X and Y be topological spaces and let $u : X \to Y$ be a continuous map. If X is irreducible, prove that $u(X)$ is irreducible.

Problem 2

Let k be an infinite (not necessarily algebraically closed) field. Let $C \subset k^2$ be the vanishing set $V(X^2 - Y^3)$.

a) Prove that the ideal of C is the ideal in $k[X, Y]$ generated by $X^2 - Y^3$ and that C is irreducible (Hint: use the “parametrization” $k \to C$ given by $t \mapsto (t^3, t^2)$ and express $A(C) = k[X, Y]/I(C)$ as a subring of $k[T]$).

b) Prove that C is not isomorphic to k (Hint: prove that $A(C)$ is not a principal ideal domain).

c) How do these these results generalize to the vanishing set $V(X^r - Y^s)$, where r and s are relatively prime positive integers?

Problem 3

Let k be an infinite (not necessarily algebraically closed) field, let $u : \mathbb{P}^1_k \to \mathbb{P}^3_k$ be the regular map defined by $u(s, t) = (s^3, s^2t, st^2, t^3)$, and set $C := u(\mathbb{P}^1_k)$.

a) Prove that no 4 distinct points of C are contained in a hyperplane in \mathbb{P}^3_k.

b) Prove that any quadric in \mathbb{P}^3_k (i.e., any subset of \mathbb{P}^3_k defined by a non-zero homogeneous polynomial of degree 2) that contains 7 distinct points of C contains C.

c) Prove that C is the vanishing set in \mathbb{P}^3_k of the (homogeneous) ideal I in $k[T_0, T_1, T_2, T_3]$ generated by the homogeneous polynomials $T_0T_2 - T_1T_3$, $T_1T_2 - T_0T_3$, which can be neatly expressed as the 2×2-minors of the matrix

$$
\begin{pmatrix}
T_0 & T_1 & T_2 \\
T_1 & T_2 & T_3
\end{pmatrix}.
$$

d) Prove that the ideal of C is I (Hint: prove that any polynomial $P \in k[T_0, T_1, T_2, T_3]$ is congruent modulo I to a polynomial of the type $A(T_0, T_1, T_3) + T_2B(T_3)$ and that if P vanishes on C, one has $B = 0$; then, use a similar method to show that A is divisible by $T_1^3 - T_0^2T_3$).

e) (Extra credit) How do these results generalize to the regular map $u : \mathbb{P}^1_k \to \mathbb{P}^n_k (n \geq 3)$ defined by $u(s, t) = (s^n, s^{n-1}t, \ldots, st^{n-1}, t^n)$?