Optimal Transport and Theano for diffeomorphic registration

A presentation to the Asclepios Inria team.

Jean Feydy
June 27, 2017

Écoles Normales Supérieures de Paris et Paris-Saclay
Jean Feydy (sept. 2016 - aug. 2019):

- PhD student under the supervision of Alain Trouvé.
- Caïman at the ENS.
Jean Feydy (sept. 2016 - aug. 2019) :

- PhD student under the supervision of Alain Trouvé.
- Caïman at the ENS.

Two main points today :

- **Optimal Transport** as a data attachment term.
- **theano** as a development tool.
Supplementary material

Further references available online:

www.math.ens.fr/~feydy/

Research and Teaching tabs, look for:

- *Culture Mathématique*, chap. 9-10.
- *Introduction à la Géométrie Riemannienne par l’Étude des Espaces de Formes*.
Table of contents

1. Procustes Analysis

2. Optimal Transport

3. The diffeomorphic framework
 Shooting on spaces of diffeomorphisms
 An iterative matching algorithm
 Let’s read some code
 Results

4. Conclusion
Procustes Analysis
Figure 1: Matching the blue wing on the red one. (Wikipedia)
Figure 2: Anatomical landmarks on a tuna fish.
From *A morphometric approach for the analysis of body shape in bluefin tuna: preliminary results*, Addis and al.
Let $X, Y \in \mathbb{R}^{M \times D}$ be two labeled point clouds. Let $S_{\tau, \nu}$ denote the rigid-body transformation of parameters τ (translation) and ν (rotation + scaling). Then, try to find

$$\tau_0, \nu_0 = \arg \min_{\tau, \nu} \| S_{\tau, \nu}(X) - Y \|_2^2$$

(1)

$$= \arg \min_{\tau, \nu} \sum_{m=1}^{M} | \nu \cdot x^m + \tau - y^m |^2.$$

(2)
Typical run on polygons

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)
Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)
Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)
Typical run on polygons

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)
Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)
Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)
Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)
Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)
Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)
Pros and cons of Procustes analysis

Pros:

• Simple and robust
• Parameters make sense
• Miracle results for populations of triangles (Kendall, 1984)
Pros and cons of Procustes analysis

Pros:

- Simple and robust
- Parameters make sense
- Miracle results for populations of triangles (Kendall, 1984)

Cons:

- Max. number of $2 \cdot D$ explicative parameters
- Unable to capture subtle shape deformations
Pros and cons of Procrustes analysis

Pros :

• Simple and robust
• Parameters make sense
• Miracle results for populations of triangles (Kendall, 1984)

Cons :

• Max. number of $2 \cdot D$ explicative parameters
• Unable to capture subtle shape deformations

This model is a standard pre-processing tool. However, it is too limited to allow in-detail analysis.
Optimal Transport
Image matching as a mass-carrying problem

Figure 4: Optimal transport between two curves seen as mass distributions: from a déblai to a remblai.
Figure 4: Optimal transport between two curves seen as mass distributions: from a déblai to a remblai.
Figure 4: Optimal transport between two curves seen as mass distributions: from a déblai to a remblai.
Dynamic formulation

Let: \((x^1, \ldots, x^I)\) and \((y^1, \ldots, y^J)\) be two point clouds and \((\mu_1, \ldots, \mu_I), (\nu_1, \ldots, \nu_J)\) the associated (integer) weights, such that \(\sum \mu_i = M = \sum \nu_j\).
Dynamic formulation

Let: \((x^1, \ldots, x^I)\) and \((y^1, \ldots, y^J)\) be two point clouds and \((\mu_1, \ldots, \mu_I), (\nu_1, \ldots, \nu_J)\) the associated (integer) weights, such that \(\sum \mu_i = M = \sum \nu_j\).

Then, find a collection of paths \(\gamma^m: t \in [0, 1] \mapsto \gamma^m_t\) minimizing

\[
\ell^2(\gamma) = \sum_{m=1}^{M} \int_{t=0}^{1} \|\dot{\gamma}^m_t\|^2 \, dt,
\]

under the constraint that for all indices \(i\) and \(j\),

\[
\# \left\{ m \in [1, M] : \gamma^m_0 = x^i \right\} = \mu_i, \quad (4)
\]

\[
\# \left\{ m \in [1, M] : \gamma^m_1 = y^j \right\} = \nu_j. \quad (5)
\]
Dynamic formulation

Let: \((x^1, \ldots, x^I)\) and \((y^1, \ldots, y^J)\) be two point clouds and \((\mu_1, \ldots, \mu_I), (\nu_1, \ldots, \nu_J)\) the associated (integer) weights, such that \(\sum \mu_i = M = \sum \nu_j\).

Then, find a collection of paths \(\gamma^m: t \in [0, 1] \mapsto \gamma_t^m\) minimizing

\[
\ell^2(\gamma) = \sum_{m=1}^{M} \int_{t=0}^{1} \|\dot{\gamma}_t^m\|^2 \, dt,
\]

under the constraint that for all indices \(i\) and \(j\),

\[
\# \left\{ m \in [1, M] \mid \gamma^m_0 = x^i \right\} = \mu_i, \tag{4}
\]

\[
\# \left\{ m \in [1, M] \mid \gamma^m_1 = y^j \right\} = \nu_j. \tag{5}
\]

\(\gamma\) is the optimal transport path between the two measures

\[
\sum_{i=1}^{I} \mu_i \delta_{x^i} = \mu \xrightarrow{\gamma} \nu = \sum_{j=1}^{J} \nu_j \delta_{y^j}. \tag{6}
\]
If we relabel the unit masses \((x^1, \ldots, x^M)\) and \((y^1, \ldots, y^M)\), find a permutation \(\sigma : [1, M] \rightarrow [1, M]\) minimizing

\[
C^{X,Y}(\sigma) = \sum_{m=1}^{M} \left\| x^m - y^{\sigma(m)} \right\|^2.
\]

\(\sigma\) is an optimal labeling.
Independent particles should always go in **straight lines**:

If we denote $c_{i,j} = \|x^i - y^j\|^2$, find an optimal transport plan $\Gamma = (\gamma_{i,j})_{(i,j) \in [1,I] \times [1,J]}$ minimizing

$$C^{X,Y}(\Gamma) = \sum_{i,j} \gamma_{i,j} c_{i,j} \quad (8)$$

under the constraints:

$$\forall i, j, \gamma_{i,j} \geq 0, \quad \forall i, \sum_j \gamma_{i,j} = \mu_i, \quad \forall j, \sum_i \gamma_{i,j} = \nu_j. \quad (9)$$
Independent particles should always go in straight lines:
If we denote $c_{i,j} = \|x^i - y^j\|^2$, find an optimal transport plan $\Gamma = (\gamma_{i,j})_{(i,j) \in [1,I] \times [1,J]}$ minimizing

$$C^{X,Y}(\Gamma) = \sum_{i,j} \gamma_{i,j} c_{i,j}$$

under the constraints:

$$\forall i,j, \gamma_{i,j} \geq 0, \quad \forall i, \sum_j \gamma_{i,j} = \mu_i, \quad \forall j, \sum_i \gamma_{i,j} = \nu_j.$$

This is textbook linear programming.
Under marginal constraints \(\Gamma 1 = \mu, \ 1^T \Gamma = \nu^T \), minimize

\[
C_{\varepsilon}^{X,Y}(\Gamma) = \sum_{i,j} \gamma_{i,j} c_{i,j} - \varepsilon \cdot H(\Gamma) \tag{10}
\]

with entropy \(H(\Gamma) = -\sum_{i,j} \gamma_{i,j} (\log(\gamma_{i,j}) - 1) \).

Figure 5: Image borrowed to Gabriel Peyré.
The regularized transport problem

Schrödinger problem:
How much do ε-Brownian bridges get mixed together?
Equations satisfied by the optimal transport plan

Entropic transport is a scaling problem

The optimal transport plan can be written

\[
\Gamma = \text{diag}(a) \cdot K \cdot \text{diag}(b) = (a_i b_j k_{i,j}),
\]

with \(k_{i,j} = e^{-c_{i,j}/\varepsilon}, \quad a \geq 0, \quad b \geq 0. \)
Entropic transport is a scaling problem

The optimal transport plan can be written

$$\Gamma = \text{diag}(a) \cdot K \cdot \text{diag}(b) = (a_i b_j k_{i,j}), \quad (11)$$

with

$$k_{i,j} = e^{-c_{i,j}/\varepsilon}, \quad a \geq 0, \quad b \geq 0. \quad (12)$$

Sinkhorn theorem \Longrightarrow this scaling problem is tractable.
The Sinkhorn algorithm

We want:

$$\text{diag}(a) \cdot K \cdot \text{diag}(b) \cdot 1 = \mu$$ and $$\nu^T = 1^T \cdot \text{diag}(a) \cdot K \cdot \text{diag}(b),$$

Sinkhorn algorithm:

1. start with $$a = 1^I$$, $$b = 1^J$$.
2. Apply repeatedly $$a \leftarrow \mu K b$$, $$b \leftarrow \nu^T K^T a$$.

(13)
The Sinkhorn algorithm

We want:

$$\text{diag}(a) \cdot K \cdot \text{diag}(b) \cdot 1 = \mu \quad \text{and} \quad \nu^T = 1^T \cdot \text{diag}(a) \cdot K \cdot \text{diag}(b),$$

i.e. $$\text{diag}(a) \cdot Kb = \mu \quad \text{and} \quad \nu = \text{diag}(b) \cdot K^Ta,$$
The Sinkhorn algorithm

We want:

$$\text{diag}(a) \cdot K \cdot \text{diag}(b) \cdot \mathbf{1} = \mu$$ and $$\nu^T = \mathbf{1}^T \cdot \text{diag}(a) \cdot K \cdot \text{diag}(b),$$
i.e.

$$\text{diag}(a) \cdot Kb = \mu$$ and $$\nu = \text{diag}(b) \cdot K^T a,$$
i.e.

$$Kb = \frac{\mu}{a}$$ and $$\frac{\nu}{b} = K^T a,$$

Sinkhorn algorithm:

1. start with $$a = \mathbf{1}, b = \mathbf{1}.$$
2. Apply repeatedly $$a \leftarrow \mu Kb,$$ $$b \leftarrow \nu K^T a.$$ (13)
The Sinkhorn algorithm

We want:

\[\text{diag}(a) \cdot K \cdot \text{diag}(b) \cdot 1 = \mu \quad \text{and} \quad \nu^T = 1^T \cdot \text{diag}(a) \cdot K \cdot \text{diag}(b), \]

i.e.

\[\text{diag}(a) \cdot Kb = \mu \quad \text{and} \quad \nu = \text{diag}(b) \cdot K^Ta, \]

i.e.

\[Kb = \frac{\mu}{a} \quad \text{and} \quad \frac{\nu}{b} = K^Ta, \]

i.e.

\[a = \frac{\mu}{Kb} \quad \text{and} \quad b = \frac{\nu}{K^Ta}. \]
We want:

\[\text{diag}(a) \cdot K \cdot \text{diag}(b) \cdot 1 = \mu \quad \text{and} \quad \nu^T = 1^T \cdot \text{diag}(a) \cdot K \cdot \text{diag}(b), \]

i.e. \[\text{diag}(a) \cdot Kb = \mu \quad \text{and} \quad \nu = \text{diag}(b) \cdot K^T a, \]

i.e. \[Kb = \frac{\mu}{a} \quad \text{and} \quad \frac{\nu}{b} = K^T a, \]

i.e.

\[a = \frac{\mu}{Kb} \quad \text{and} \quad b = \frac{\nu}{K^T a}. \]
The Sinkhorn algorithm

We want:

\[
\text{diag}(a) \cdot K \cdot \text{diag}(b) \cdot \mathbf{1} = \mu \quad \text{and} \quad \nu^T = \mathbf{1}^T \cdot \text{diag}(a) \cdot K \cdot \text{diag}(b),
\]

i.e.

\[
\text{diag}(a) \cdot Kb = \mu \quad \text{and} \quad \nu = \text{diag}(b) \cdot K^T a,
\]

i.e.

\[
Kb = \frac{\mu}{a} \quad \text{and} \quad \frac{\nu}{b} = K^T a,
\]

i.e.

\[
a = \frac{\mu}{Kb} \quad \text{and} \quad b = \frac{\nu}{K^T a}.
\]

Sinkhorn algorithm:

1. start with \(a = \mathbf{1}_i \), \(b = \mathbf{1}_j \).
The Sinkhorn algorithm

We want:

\[
\text{diag}(a) \cdot K \cdot \text{diag}(b) \cdot 1 = \mu \quad \text{and} \quad \nu^T = 1^T \cdot \text{diag}(a) \cdot K \cdot \text{diag}(b),
\]

i.e.

\[
\text{diag}(a) \cdot Kb = \mu \quad \text{and} \quad \nu = \text{diag}(b) \cdot K^T a,
\]

i.e.

\[
Kb = \frac{\mu}{a} \quad \text{and} \quad \frac{\nu}{b} = K^T a,
\]

i.e.

\[
a = \frac{\mu}{Kb} \quad \text{and} \quad b = \frac{\nu}{K^T a}.
\]

Sinkhorn algorithm:

1. start with \(a = 1_i, \ b = 1_j \).
2. Apply repeatedly

\[
a \leftarrow \frac{\mu}{Kb}, \quad \quad \quad b \leftarrow \frac{\nu}{K^T a}. \quad \quad \quad (13)
\]
Implementation details

We use

\[a \leftarrow \frac{\mu}{K b}, \quad b \leftarrow \frac{\nu}{K^T a}. \] \hfill (14)

• Very efficient scheme for squared distances on a grid.
• Otherwise, we work in the log-domain:

\[u = \varepsilon \log(a) \quad \text{and} \quad v = \varepsilon \log(b) \] \hfill (15)
We use
\[a \leftarrow \frac{\mu}{Kb}, \quad b \leftarrow \frac{\nu}{K^\top a}. \] (14)

- Very efficient scheme for squared distances on a grid.
- Otherwise, we work in the log-domain:
 \[u = \varepsilon \log(a) \quad \text{and} \quad v = \varepsilon \log(b) \] (15)
so that the iterations read
\[u \leftarrow u + \varepsilon \log(\mu) - \varepsilon \log \left(\sum_j \exp \left(\frac{u_i + v_j - c_{i,j}}{\varepsilon} \right) \right) \] (16)

\[v \leftarrow v + \varepsilon \log(\nu) - \varepsilon \log \left(\sum_i \exp \left(\frac{u_i + v_j - c_{i,j}}{\varepsilon} \right) \right). \] (17)
Figure 6: Measures to match.
Figure 6: Monge transport, $\sqrt{\varepsilon} = 0$.
Figure 6: Diffuse transport, $\sqrt{\varepsilon} = .01$.
Figure 6: Diffuse transport, $\sqrt{\varepsilon} = .03$.
Pros and cons of Optimal Transport

Pros:

- Well-posed, convex problem
- Global and precise matchings
- Light-speed numerical solvers at hand (Cuturi, 2013)
Pros and cons of Optimal Transport

Pros:

• Well-posed, convex problem
• Global and precise matchings
• Light-speed numerical solvers at hand (Cuturi, 2013)

Cons:

• Discards topology: **tears** shapes apart
Pros and cons of Optimal Transport

Pros:

- Well-posed, convex problem
- Global and precise matchings
- Light-speed numerical solvers at hand (Cuturi, 2013)

Cons:

- Discards topology: tears shapes apart

This model is mathematically and numerically appealing. However, it does not provide any smoothness guarantee.
Can we build a rich and practical model for smooth deformations?
The diffeomorphic framework
Spoiler alert: yes indeed, but it won’t be *convex* anymore.
Spoiler alert: yes indeed, but it won’t be convex anymore

Figure 7: Target.
Spoiler alert: yes indeed, but it won’t be convex anymore.

Figure 7: OT matching.
Spoiler alert: yes indeed, but it won’t be convex anymore

Figure 7: LDDMM matching.
The diffeomorphic framework

Shooting on spaces of diffeomorphisms
Riemann: conveniently working with arbitrary geometries

(a) As a deformed square.
(b) Embedded in \mathbb{R}^3.

Figure 8: The donut-shaped torus.
Problem: Match two shapes X and Y.

Simple solution: Try to find a sensible diffeomorphic trajectory φ_t such that

$$\varphi_0 = \text{Id}_{\mathbb{R}^d} \quad \text{and} \quad \varphi_1 \cdot X \simeq Y. \quad (18)$$
Natural curves on the space of diffeomorphisms

Problem: Match two shapes X and Y.

Simple solution: Try to find a **sensible** diffeomorphic trajectory φ_t such that

$$\varphi_0 = \text{Id}_{\mathbb{R}^d} \quad \text{and} \quad \varphi_1 \cdot X \simeq Y. \quad (18)$$

$\varphi_t = v_t$ is a vector field on the ambient space \mathbb{R}^d.

Two main models:

Log-demons φ_t is a one-parameter subgroup $\rightarrow v_t$ is constant.

LDDMM φ_t is a **geodesic** on the group of diffeomorphisms seen as a manifold endowed with a right-invariant metric given by a euclidean norm $\|v_t\|_k$

$\rightarrow (\varphi_t, v_t)$ obeys a geodesic equation.
Sometimes, we can compute geodesics explicitly...

(1 − t) · a + t · b

(a) The Euclidean plane.
(b) The Poincaré disk.

Figure 9: Explicit geodesics on homogeneous manifolds.
(b) is adapted from www.pitt.edu/~jdnorton/.
Figure 10: Geodesics on the Duhem’s bull, embedded in \mathbb{R}^3. Taken from www.chaos-math.org.
The exponential map

In both models, we get an exponential map:

Log-demons Fast exponentiation of \((\text{Id} + \frac{v}{256})^{256}\),

\[
\text{Exp} : v \in V \mapsto \varphi_1 \in \text{Diff}(\mathbb{R}^d). \tag{19}
\]
The exponential map

In both models, we get an exponential map:

Log-demons Fast exponentiation of \((\text{Id} + \frac{v}{256})^{256}\),

\[
\text{Exp} : v \in V \mapsto \varphi_1 \in \text{Diff}(\mathbb{R}^d). \tag{19}
\]

LDDMM Euler-like integration of the Hamiltonian geodesic equations:

\[
\begin{aligned}
q_{t+0.1} &= q_t + 0.1 \cdot K_{q_t} p_t \\
p_{t+0.1} &= p_t - 0.1 \cdot \partial_q (p_t, K_{q_t} p_t)(q_t)
\end{aligned} \tag{20}
\]

so that

\[
\text{Exp}_{q_0} : p_0 \in T_{q_0}^* \mathcal{M} \mapsto q_1 \in \mathcal{M}. \tag{21}
\]
It works!

(a) 2D parametrization.

(b) Embedded in \mathbb{R}^3.

Figure 11: Geodesics on the donut-shaped torus.
Influence of the kernel width, $\sigma = .35$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 12: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .35$.
Influence of the kernel width, $\sigma = 0.35$

(a) Kernel matrix k_{qt}.

(b) Shoted cloud (q_t, p_t).

Figure 12: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 0.35$.

27
Influence of the kernel width, $\sigma = .35$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 12: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .35$.
Influence of the kernel width, $\sigma = .35$

Figure 12: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .35$.

(a) Kernel matrix k_{qt}.

(b) Shoted cloud (q_t, p_t).

\begin{align*}
 \text{(a) Kernel matrix } k_{qt}. \\
 \text{(b) Shoted cloud } (q_t, p_t). \\
 \text{Figure 12: Geodesic shooting, } k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2), \\
 \sigma = .35.
\end{align*}
Influence of the kernel width, $\sigma = .35$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 12: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .35$.
Influence of the kernel width, $\sigma = .35$

Figure 12: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$,

$\sigma = .35$.

(a) Kernel matrix k_{qi}.

(b) Shoted cloud (q_t, p_t).
Influence of the kernel width, $\sigma = .35$

Figure 12: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .35$.

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).
Influence of the kernel width, $\sigma = .35$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 12: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .35$.
Influence of the kernel width, $\sigma = .35$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 12: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .35$.
Influence of the kernel width, $\sigma = .35$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 12: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .35$.
Influence of the kernel width, $\sigma = .35$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 12: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .35$.
Influence of the kernel width, $\sigma = .50$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 13: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .50$.
Influence of the kernel width, $\sigma = 0.50$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 13: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 0.50$.
Influence of the kernel width, $\sigma = .50$

Figure 13: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .50$.

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).
Influence of the kernel width, $\sigma = .50$

Figure 13: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .50$.

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).
Influence of the kernel width, $\sigma = .50$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 13: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .50$.
Influence of the kernel width, $\sigma = .50$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 13: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .50$.
Influence of the kernel width, $\sigma = .50$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 13: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .50$.

28
Influence of the kernel width, $\sigma = 0.50$

Figure 13: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 0.50$.

(a) Kernel matrix k_{qi}.

(b) Shoted cloud (q_t, p_t).
Influence of the kernel width, $\sigma = .50$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 13: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .50$.
Influence of the kernel width, $\sigma = .50$

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 13: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = .50$.
Influence of the kernel width, $\sigma = 0.50$

Figure 13: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 0.50$.

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).
Influence of the kernel width, $\sigma = 1$.

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 14: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 1$.
Influence of the kernel width, $\sigma = 1$.

Figure 14: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 1$.

(a) Kernel matrix k_{qi}.

(b) Shoted cloud (q_t, p_t).

29
Influence of the kernel width, $\sigma = 1$.

Figure 14: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 1$.
Influence of the kernel width, $\sigma = 1$.

Figure 14: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 1$.
Influence of the kernel width, $\sigma = 1$.

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 14: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 1$.
Influence of the kernel width, $\sigma = 1$.

Figure 14: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 1$.

(a) Kernel matrix k_{qt}.

(b) Shoted cloud (q_t, p_t).
Influence of the kernel width, $\sigma = 1$.

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 14: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 1$.

29
Influence of the kernel width, $\sigma = 1$.

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 14: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 1$.

Influence of the kernel width, $\sigma = 1$.

(a) Kernel matrix k_{q_t}.

(b) Shoted cloud (q_t, p_t).

Figure 14: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 1$.

29
Influence of the kernel width, $\sigma = 1$.

Figure 14: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 1$.

(a) Kernel matrix k_{qt}.

(b) Shoted cloud (q_t, p_t).

Influence of the kernel width, $\sigma = 1$.

(a) Kernel matrix k_{qt}.

(b) Shoted cloud (q_t, p_t).

Figure 14: Geodesic shooting, $k(x - y) = \exp(-\|x - y\|^2 / 2\sigma^2)$, $\sigma = 1$.
We have now presented the *Large Deformation Diffeomorphic Metric Mapping*, or LDDMM setting:

- **OT** ($\sigma = 0$) $\xrightarrow{\sigma^{++}} G_k$ $\xrightarrow{\sigma^{++}} (\sigma = +\infty)$ Translations
- Deformations computed through *geodesic shooting*
Conclusion

We have now presented the Large Deformation Diffeomorphic Metric Mapping, or LDDMM setting:

- OT $(\sigma = 0) \xrightarrow{\sigma^{++}} G_k \xrightarrow{\sigma^{++}} (\sigma = +\infty)$ Translations
- Deformations computed through geodesic shooting

The (basic) framework relies on three pillars:

- Hamilton’s theorem $(g_q \rightarrow K_q)$
- The current availability of GPUs (parallelism)
- The Reduction Principle $((q_t, p_t) \longleftrightarrow \varphi_t)$
The diffeomorphic framework

An iterative matching algorithm
Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation $\varphi \in G_k$ such that:

$$X \xrightarrow{\varphi} \varphi(X) \leftrightarrow Y \text{ with minimal dissimilarity } \|\varphi(X) - Y\|^2.$$
Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation $\varphi \in G_k$ such that:

$$X \xrightarrow{\varphi} \varphi(X) \leftrightarrow Y$$

with minimal dissimilarity "\(\| \varphi(X) - Y \|^2\)".

As dissimilarity, one can use generic kernel or wasserstein distances between measures, such as:

$$\| \varphi(X) - Y \|_s^2 = \| \mu - \nu \|_s^2 = \| B_s \ast (\mu - \nu) \|_{L^2(\mathbb{R}^D)}^2. \quad (22)$$
Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation $\varphi \in G_k$ such that :

$$X \xrightarrow{\varphi} \varphi(X) \leftrightarrow Y$$

with minimal dissimilarity "$\|\varphi(X) - Y\|^2$".

As dissimilarity, one can use generic kernel or wasserstein distances between measures, such as :

$$\|\varphi(X) - Y\|^2_s = \|\mu - \nu\|^2_s = \|B_s \ast (\mu - \nu)\|_{L^2(\mathbb{R}^D)}^2. \quad (22)$$

Ideally, we are looking for

$$p^\perp_s (Y \to G_k \cdot X) = \arg \min_{\varphi \in G_k} \|\varphi(X) - Y\|^2_s. \quad (23)$$
However, in practice:

- G_k is not well understood
- We want $d_k(X, \varphi(X)) = d_{G_k}(\text{Id}_{\mathbb{R}^D}, \varphi) \leq C < +\infty$
However, in practice:

- G_k is not well understood
- We want $d_k(X, \varphi(X)) = d_{G_k}(\text{Id}_{\mathbb{R}^D}, \varphi) \leq C < +\infty$

We settle for the minimization over the deformation φ of:

$$\text{Cost}(\varphi) = \gamma_{\text{reg}} \cdot d_k^2(X, \varphi(X)) + \gamma_{\text{att}} \cdot \|\varphi(X) - Y\|_s^2. \quad (24)$$
Regularized matching problem

However, in practice:

\begin{itemize}
 \item G_k is not well understood
 \item We want $d_k(X, \varphi(X)) = d_{G_k}(\text{Id}_{\mathbb{R}^D}, \varphi) \leq C < +\infty$
\end{itemize}

We settle for the minimization over the deformation φ of:

\[
\text{Cost}(\varphi) = \gamma_{\text{reg}} \cdot d_k^2(X, \varphi(X)) + \gamma_{\text{att}} \cdot \|\varphi(X) - Y\|_S^2. \quad (24)
\]

That is, minimize over the shooting momentum p_0:

\[
\text{Cost}(p_0) = \gamma_{\text{reg}} \cdot p_0^T K q_0 p_0 + \gamma_{\text{att}} \cdot \|q_1 - Y\|_S^2. \quad (25)
\]
However, in practice:

- G_k is not well understood
- We want $d_k(X, \varphi(X)) = d_{G_k}(Id_{\mathbb{R}^D}, \varphi) \leq C < +\infty$

We settle for the minimization over the deformation φ of:

$$\text{Cost}(\varphi) = \gamma_{\text{reg}} \cdot d_k^2(X, \varphi(X)) + \gamma_{\text{att}} \cdot \|\varphi(X) - Y\|_s^2. \quad (24)$$

That is, minimize over the shooting momentum p_0:

$$\text{Cost}(p_0) = \gamma_{\text{reg}} \cdot p_0^T K q_0 p_0 + \gamma_{\text{att}} \cdot \|q_1 - Y\|_s^2. \quad (25)$$

If $\gamma_{\text{reg}} \ll \gamma_{\text{att}}$, q_1 should be good enough.

Figure 15: Matching from the source X to the target Y, constrained to the golden sphere $G_k \cdot X$.
Here, $\gamma_{\text{reg}} \ll \gamma_{\text{att}}$: the geodesic length $d^2_k(X, \varphi(X))$ is much less constrained than the dissimilarity $\|\varphi(X) - Y\|_s^2$.
Gradient descent on finite-dimensional manifolds

Figure 15: Matching from the source X to the target Y, constrained to the golden sphere $G_k \cdot X$.

Here, $\gamma_{\text{reg}} < \ll \gamma_{\text{att}}$: the geodesic length $d_R^2(X, \varphi(X))$ is much less constrained than the dissimilarity $\|\varphi(X) - Y\|_S^2$.
Figure 15: Matching from the **source** X to the **target** Y, constrained to the **golden sphere** $G_k \cdot X$.

Here, $\gamma_{\text{reg}} << \gamma_{\text{att}}$: the geodesic length $d^2_k(X, \varphi(X))$ is much less constrained than the dissimilarity $\|\varphi(X) - Y\|^2_s$.

Gradient descent on finite-dimensional manifolds
Gradient descent on finite-dimensional manifolds

Figure 16: Matching from the source X to the target Y, constrained to the golden torus $G_R \cdot X$.
Here, $\gamma_{\text{reg}} \ll \gamma_{\text{att}}$: the geodesic length $d_R^2(X, \varphi(X))$ is much less constrained than the dissimilarity $\|\varphi(X) - Y\|_2^2$.
Figure 16: Matching from the source X to the target Y, constrained to the golden torus $G_K \cdot X$.
Here, $\gamma_{\text{reg}} \ll \gamma_{\text{att}}$: the geodesic length $d^2_K(X, \varphi(X))$ is much less constrained than the dissimilarity $\|\varphi(X) - Y\|_S^2$.
Gradient descent on finite-dimensional manifolds

Figure 16: Matching from the source X to the target Y, constrained to the golden torus $G_K \cdot X$.

Here, $\gamma_{reg} \ll \gamma_{att}$: the geodesic length $d^2_K(X, \varphi(X))$ is much less constrained than the dissimilarity $\|\varphi(X) - Y\|_S^2$.
The diffeomorphic framework

Let’s read some code
Theano

1. # Import the relevant tools
2. import time # to measure performance
3. import numpy as np # standard array library
4. import theano # Autodiff & symbolic calculus library:
5. import theano.tensor as T # - mathematical tools;
6. from theano import config, printing # - printing of the Sinkhorn error.

Theano:

- Is a python library
- Symbolic computations → efficient CPU/GPU binaries
- Auto-differentiates expressions
Import the relevant tools

```python
import time  # to measure performance
import numpy as np  # standard array library
import theano  # Autodiff & symbolic calculus library:
import theano.tensor as T  # - mathematical tools;
from theano import config, printing  # - printing of the Sinkhorn error.
```

theano:

- Is a **python** library
- Symbolic computations \implies efficient CPU/GPU binaries
- Auto-differentiates expressions
- *It changed my life...* Let’s see why.
Part 1 : kinetic energy on the phase space (Hamiltonian) ===============

def _squared_distances(x, y):
 "Returns the matrix of |x_i-y_j|^2."
 x_col = x.dimshuffle(0, 'x', 1)
 y_lin = y.dimshuffle('x', 0, 1)
 return T.sum((x_col - y_lin)**2, 2)

def _k(x, y, s):
 "Returns the matrix of k(x_i,y_j)= 1/(1+|x_i-y_j|^2)^{1/4}, with a heavy tail."
 sq = _squared_distances(x, y) / (s**2)
 return T.pow(1. / (1. + sq), .25)

def _cross_kernels(q, x, s):
 "Returns the full k-correlation matrices between two point clouds q and x."
 K_qq = _k(q, q, s)
 K_qx = _k(q, x, s)
 K_xx = _k(x, x, s)
 return (K_qq, K_qx, K_xx)

def _Hqp(q, p, sigma):
 "The hamiltonian, or kinetic energy of the shape q with momenta p."
 pKqp = _k(q, q, sigma) * (p.dot(p.T)) # Use a simple isotropic kernel
 return .5 * T.sum(pKqp) # H(q,p) = \frac{1}{2} \cdot \sum_{i,j} k(x_i,x_j)p_i.p_j
Part 2 : Geodesic shooting

The partial derivatives of the Hamiltonian are automatically computed!

```python
def _dq_Hqp(q,p,sigma):
    return T.grad(_Hqp(q,p,sigma), q)

def _dp_Hqp(q,p,sigma):
    return T.grad(_Hqp(q,p,sigma), p)

def _hamiltonian_step(q,p, sigma):
    "Simplistic euler scheme step with dt = .1."
    return [q + .1 * _dp_Hqp(q,p,sigma),
            p - .1 * _dq_Hqp(q,p,sigma)]

def _HamiltonianShooting(q, p, sigma):
    "Shoots to time 1 a k-geodesic starting (at time 0) from q with momentum p."
    # We use the "scan" theano routine, which can be understood as a "for" loop
    result, updates = theano.scan(fn = _hamiltonian_step,
                                   outputs_info = [q,p],
                                   non_sequences = sigma,
                                   n_steps = 10 ) # hardcode the "dt = .1"
    
    # We do not store the intermediate results,
    # and only return the final state + momentum :
    final_result = [result[0][-1], result[1][-1]]
    return final_result
```

Geodesic shooting
def _ot_matching(q1_x, q1_mu, xt_x, xt_mu, radius):
 """
 Given two measures q1 and xt represented by locations/weights arrays,
 outputs an optimal transport fidelity term and the transport plan.
 """
 # The Sinkhorn algorithm takes as input three Theano variables :
 c = _squared_distances(q1_x, xt_x) # Wasserstein cost function
 mu = q1_mu ; nu = xt_mu

 # Parameters of the Sinkhorn algorithm.
 epsilon = (.02)**2 # regularization parameter
 rho = (.5) **2 # unbalanced transport (Lenaic Chizat)
 niter = 10000 # max niter in the sinkhorn loop
 tau = -.8 # Nesterov-like acceleration
 lam = rho / (rho + epsilon) # Update exponent

 # Elementary operations ...
 def ave(u,u1):
 "Barycenter subroutine, used by kinetic acceleration through extrapolation."
 return tau * u + (1-tau) * u1
 def M(u,v):
 "M_{ij} = (-c_{ij} + u_i + v_j) / \epsilon"
 return (-c + u.dimshuffle(0,'x') + v.dimshuffle('x',0)) / epsilon
 lse = lambda A : T.log(T.sum(T.exp(A), axis=1) + 1e-6) # prevents NaN
Actual Sinkhorn loop ..
Iteration step :

```python
def sinkhorn_step(u, v, foo):
    u1 = u  # useful to check the update
    u = ave(u, lam * ( epsilon * ( T.log(mu) - lse(M(u,v)) ) + u ) )
    v = ave(v, lam * ( epsilon * ( T.log(nu) - lse(M(u,v).T) ) + v ) )
    err = T.sum(abs(u - u1))
    # "break" the loop if error < tol
    return (u, v, err), theano.scan_module.until(err < 1e-4)

# Scan = "For loop" :
err0 = np.arange(1, dtype=config.floatX)[0]
result, updates = theano.scan(fn = sinkhorn_step,  # Iterated routine
                              outputs_info = [(0.*mu), (0.*nu), err0],  # Start
                              n_steps = niter  # Number of iters
                              )
U, V = result[0][-1], result[1][-1]  # We only keep the final dual variables
Gamma = T.exp( M(U,V) )  # Transport plan g = diag(a)*K*diag(b)
cost = T.sum( Gamma * c )  # Simplistic cost, chosen for readability
if True:  # Shameful hack to prevent the pruning of the error-printing node...
    print_err_shape = printing.Print('error : ', attrs=['shape'])
    errors = print_err_shape(result[2])
    print_err = printing.Print('error : ')
    err_fin = print_err(errors[-1])
    cost += .00000001 * err_fin
return [cost, Gamma]
```

OT fidelity, part 2
def _kernel_matching(q1_x, q1_mu, xt_x, xt_mu, radius):
 """
 Given two measures q1 and xt represented by locations/weights arrays,
 outputs a kernel-fidelity term and an empty 'info' array.
 """
 K_qq, K_qx, K_xx = _cross_kernels(q1_x, xt_x, radius)
 q1_mu = q1_mu.dimshuffle(0,'x') # column
 xt_mu = xt_mu.dimshuffle(0,'x') # column
 cost = .5 * (T.sum(K_qq * q1_mu.dot(q1_mu.T)) \
 + T.sum(K_xx * xt_mu.dot(xt_mu.T)) \
 -2*T.sum(K_qx * q1_mu.dot(xt_mu.T)))

 [...] # error-tracking stuff
 return [cost, ...]

def _data_attachment(q1_measure, xt_measure, radius):
 """Given two measures and a radius, returns a cost (Theano symbolic variable)."""
 if radius == 0 : # Convenient way to allow the choice of a method
 return _ot_matching(q1_measure[0], q1_measure[1],
 xt_measure[0], xt_measure[1],
 radius)
 else :
 return _kernel_matching(q1_measure[0], q1_measure[1],
 xt_measure[0], xt_measure[1],
 radius)
Actual cost function

Part 4 : Cost function and derivatives

```python
def _cost(q, p, xt_measure, connec, params):
    ""
    Returns a total cost, sum of a small regularization term and the data attachment.
    .. math ::
    
    C(q_0, p_0) = .1 * H(q0,p0) + 1 * A(q_1, x_t)
    
    Needless to say, the weights can be tuned according to the signal-to-noise ratio.
    ""
    s, r = params  # Deformation scale, Attachment scale
    q1 = _HamiltonianShooting(q, p, s)[0]  # Geodesic shooting from q0 to q1
    # Convert the set of vertices 'q1' into a measure.
    q1_measure = Curve._vertices_to_measure(q1, connec)
    attach_info = _data_attachment(q1_measure, xt_measure, r)
    return [ .1* _Hqp(q, p, s) + 1.* attach_info[0] , attach_info[1] ] # [cost, info]
```

The discrete backward scheme is automatically computed :
```python
def _dcost_p(q, p, xt_measure, connec, params):
    """The gradients of C wrt. p_0 is automatically computed.""
    return T.grad(_cost(q, p, xt_measure, connec, params)[0], p)
```
Minimization script, part 1

def perform_matching(Q0, Xt, params, scale_momentum = 1, scale_attach = 1) :
 """ Performs a matching from the source Q0 to the target Xt,
 returns the optimal momentum P0. """
 (Xt_x, Xt_mu) = Xt.to_measure() # Transform the target into a measure
 q0 = Q0.points ; p0 = np.zeros(q0.shape) # Null initialization for the momentum

 # Compilation ---
 print('Compiling the energy functional.')
 time1 = time.time()
 # Cost is a function of 6 parameters :
 # The source 'q', the starting momentum 'p',
 # the target points 'xt_x', the target weights 'xt_mu',
 # the deformation scale 'sigma_def', the attachment scale 'sigma_att'.
 q, p, xt_x = T.matrices('q', 'p', 'xt_x') ; xt_mu = T.vector('xt_mu') # types

 # Compilation. Depending on settings specified in the ~/.theanorc file or
 # given at execution time, this will produce CPU or GPU code under the hood.
 Cost = theano.function([q,p, xt_x,xt_mu],
 [_cost(q,p, (xt_x,xt_mu), Q0.connectivity, params)[0],
 _dcost_p(q,p, (xt_x,xt_mu), Q0.connectivity, params),
 _cost(q,p, (xt_x,xt_mu), Q0.connectivity, params)[1]],
 allow_input_downcast=True)
 time2 = time.time()
 print('Compiled in : ', '{0:.2f}'.format(time2 - time1), 's')
Display pre-computing ---
connec = Q0.connectivity ; q0 = Q0.points ;
g0,cgrid = GridData() ; G0 = Curve(g0, cgrid)
Given q0, p0 and grid points grid0 , outputs (q1,p1,grid1) after the flow
of the geodesic equations from t=0 to t=1 :
ShootingVisualization = VisualizationRoutine(q0, params)

L-BFGS minimization ---
from scipy.optimize import minimize

def matching_problem(p0_vec) :
 "Energy minimized in the variable 'p0'."
 p0 = p0_vec.reshape(q0.shape)
 [c, dp_c, info] = Cost(q0, p0, Xt_x, Xt_mu)
 matching_problem.Info = info
 if (matching_problem.it % 1 == 0) and (c < matching_problem.bestc) :
 matching_problem.bestc = c
 q1,p1,g1 = ShootingVisualization(q0, p0, np.array(g0))
 Q1 = Curve(q1, connec) ; G1 = Curve(g1, cgrid)
 DisplayShoot(Q0, G0, p0, Q1, G1, Xt, info,
 matching_problem.it, scale_momentum, scale_attach)
 print('Iteration : ',matching_problem.it,', cost : ',c,' info : ',info.shape)
 matching_problem.it += 1
 # The fortran routines used by scipy.optimize expect float64 vectors
 # instead of gpu-friendly float32 matrices: we need a slight conversion
 return (c, dp_c.ravel().astype('float64'))

matching_problem.bestc=np.inf ; matching_problem.it=0 ; matching_problem.Info=None
Minimization script, part 3

```python
473  time1 = time.time()
474  res = minimize( matching_problem, # function to minimize
475                  p0.ravel(), # starting estimate
476                  method = 'L-BFGS-B', # an order 2 method
477                  jac = True, # matching_problems returns the gradient
478                  options = dict(
479                      maxiter = 1000, # max number of iterations
480                      ftol = .000001,# Don't bother fitting to float precision
481                      maxcor = 10 # Prev. grads. used to approx. the Hessian
482                  ))
483  time2 = time.time()
484
485  p0 = res.x.reshape(q0.shape)
486  print('Convergence success : ', res.success, ', status = ', res.status)
487  print('Optimization message : ', res.message.decode('UTF-8'))
488  print('Final cost after ', res.nit, ' iterations : ', res.fun)
489  print('Elapsed time after ', res.nit, ' iterations : ',
490         '{0:.2f}'.format(time2 - time1), 's')
491  return p0, matching_problem.Info
492
493  def matching_demo(source_file, target_file, params, scale_mom = 1, scale_att = 1):
494      Q0 = Curve.from_file(source_file) # Load source...
495      Xt = Curve.from_file(target_file) # and target.
496      # Compute the optimal shooting momentum :
497      p0, info = perform_matching( Q0, Xt, params, scale_mom, scale_att)
```
The diffeomorphic framework

Results
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 0.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 3.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 4.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 5.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 6.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 7.
Typical run with OT fidelity

Figure 17: Iteration 8.

(a) Momentum p_0.

(b) Shoted model q_1.

45
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 9.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 10.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 11.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 12.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 13.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shotced model q_1.

Figure 17: Iteration 14.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 15.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 16.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 17.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 18.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 19.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 20.
Typical run with OT fidelity

(a) Momentum p_0. (b) Shoted model q_1.

Figure 17: Iteration 21.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shotced model q_1.

Figure 17: Iteration 22.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shot model q_1.

Figure 17: Iteration 23.
Figure 17: Iteration 24.

(a) Momentum p_0.
(b) Shoted model q_1.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 25.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 26.
Typical run with OT fidelity

Figure 17: Iteration 27.

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 27.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 28.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 29.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 30.
Typical run with OT fidelity

Figure 17: Iteration 31.

(a) Momentum p_0.

(b) Shot model q_1.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 32.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shooted model q_1.

Figure 17: Iteration 33.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 34.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shotced model q_1.

Figure 17: Iteration 35.
Typical run with OT fidelity

\[(a) \text{Momentum } p_0. \quad (b) \text{Shot model } q_1. \]

Figure 17: Iteration 36.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shotced model q_1.

Figure 17: Iteration 37.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 38.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 39.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 41.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 42.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 43.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 44.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shotced model q_1.

Figure 17: Iteration 46.
Typical run with OT fidelity

(a) Momentum p_0. (b) Shot model q_1.

Figure 17: Iteration 47.
Typical run with OT fidelity

Figure 17: Iteration 48.

(a) Momentum p_0.

(b) Shoted model q_1.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 49.
Typical run with OT fidelity

Figure 17: Iteration 50.

(a) Momentum p_0.
(b) Shoted model q_1.

45
Typical run with OT fidelity

Figure 17: Iteration 52.

(a) Momentum p_0.
(b) Shoted model q_1.

Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 53.
Typical run with OT fidelity

(a) Momentum \(p_0 \).

(b) Shotted model \(q_1 \).

Figure 17: Iteration 54.
Typical run with OT fidelity

Figure 17: Iteration 55.

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 55.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shooted model q_1.

Figure 17: Iteration 56.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shooted model q_1.

Figure 17: Iteration 57.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 58.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shot model q_1.

Figure 17: Iteration 59.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 60.
Typical run with OT fidelity

Figure 17: Iteration 61.

(a) Momentum p_0.

(b) Shot model q_1.

11x253
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shooted model q_1.

Figure 17: Iteration 62.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 64.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 65.
Figure 17: Iteration 66.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 67.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 68.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 69.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shotted model q_1.

Figure 17: Iteration 70.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 71.
Typical run with OT fidelity

Figure 17: Iteration 72.

(a) Momentum p_0.

(b) Shoted model q_1.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 73.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shot model q_1.

Figure 17: Iteration 74.
Typical run with OT fidelity

Figure 17: Iteration 75.

(a) Momentum p_0.
(b) Shooted model q_1.

Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 77.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 78.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 79.
Typical run with OT fidelity

(a) Momentum p_0. (b) Shoted model q_1.

Figure 17: Iteration 80.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 81.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 82.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 83.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 85.
Typical run with OT fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 17: Iteration 86.
Typical run with OT fidelity

Figure 17: Iteration 87.
(a) Momentum p_0.
(b) Shot model q_1.

Figure 17: Iteration 88.
Typical run with OT fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 17: Iteration 89.
Typical run with OT fidelity

Figure 17: Iteration 90.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 0.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 3.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 4.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 5.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 6.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 7.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 8.
Typical run with kernel fidelity

(a) Momentum p_0. (b) Shoted model q_1.

Figure 18: Iteration 9.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 10.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 11.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 12.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 13.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 14.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 15.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 16.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 17.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 19.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 20.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 21.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 22.
Typical run with kernel fidelity

Figure 18: Iteration 23.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 24.
Figure 18: Iteration 25.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 26.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 27.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 28.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 30.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shooted model q_1.

Figure 18: Iteration 31.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 32.
Typical run with kernel fidelity

(a) Momentum p_0. (b) Shoted model q_1.

Figure 18: Iteration 33.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 34.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 36.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 37.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shotced model q_1.

Figure 18: Iteration 38.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 39.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 40.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 41.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 42.
Typical run with kernel fidelity

Figure 18: Iteration 44.

(a) Momentum p_0.

(b) Shotced model q_1.

Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 45.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 46.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shooted model q_1.

Figure 18: Iteration 47.
Typical run with kernel fidelity

(a) Momentum \(p_0 \).

(b) Shoted model \(q_1 \).

Figure 18: Iteration 50.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 70.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 90.
Typical run with kernel fidelity

(a) Momentum p_0. (b) Shoted model q_1.

Figure 18: Iteration 110.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 130.
Figure 18: Iteration 150.

(a) Momentum p_0.

(b) Shoted model q_1.

Typical run with kernel fidelity
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 170.
Typical run with kernel fidelity

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 18: Iteration 200.
Typical run with kernel fidelity

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 18: Iteration 240.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .01$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.02$.

Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .03$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .04$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .05$.

Influence of the kernel width

(a) Momentum p_0.
(b) Shooted model q_1.

Figure 19: Final matching, $\sigma = .06$.

Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .07$.
Influence of the kernel width

Figure 19: Final matching, $\sigma = .08$.

(a) Momentum p_0.
(b) Shooted model q_1.

Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .09$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.1$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .11$.

47
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .12$.

47
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .13$.

47
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.14$.

Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .15$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .16$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.17$.

Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .18$.

Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.19$.
Influence of the kernel width

Figure 19: Final matching, $\sigma = 0.2$.

(a) Momentum p_0.
(b) Shoted model q_1.

Influence of the kernel width

(a) Momentum \(p_0 \).

(b) Shoted model \(q_1 \).

Figure 19: Final matching, \(\sigma = .21 \).
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .22$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .23$.

47
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .24$.
Influence of the kernel width

Figure 19: Final matching, $\sigma = .25$.

(a) Momentum p_0.
(b) Shooted model q_1.

Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.26$.

```
Influence of the kernel width

(a) Momentum $p_0$.  
(b) Shoted model $q_1$.

**Figure 19:** Final matching, $\sigma = 0.26$.  
```
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .27$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .28$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .29$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.3$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .31$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shooted model q_1.

Figure 19: Final matching, $\sigma = .32$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .33$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .34$.
Influence of the kernel width

Figure 19: Final matching, $\sigma = .35$.

(a) Momentum p_0.

(b) Shoted model q_1.

Influence of the kernel width

(a) Momentum p_0.

(b) Shooted model q_1.

Figure 19: Final matching, $\sigma = .36$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .37$.

Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .38$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .39$.
Influence of the kernel width

(a) Momentum p_0. (b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .4$.

47
Influence of the kernel width

(a) Momentum p_0.

(b) Shooted model q_1.

Figure 19: Final matching, $\sigma = .41$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shooted model q_1.

Figure 19: Final matching, $\sigma = .42$.
Influence of the kernel width

Figure 19: Final matching, $\sigma = .43$.

(a) Momentum p_0.

(b) Shoted model q_1.

Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .44$.

Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .45$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .46$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .47$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .48$.

\[\text{Figure 19: Final matching, } \sigma = .48.\]
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .49$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.5$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .51$.

Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .52$.

Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .53$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .54$.

47
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .55$.

Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .56$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .57$.

Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .58$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .59$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .6$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shooted model q_1.

Figure 19: Final matching, $\sigma = .61$.

47
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.62$.
Influence of the kernel width

(a) Momentum p_0. (b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .63$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shooted model q_1.

Figure 19: Final matching, $\sigma = .64$.
Influence of the kernel width

(a) Momentum p_0. (b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .65$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.66$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .67$.
Influence of the kernel width

(a) Momentum p_0. (b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .68$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shooted model q_1.

Figure 19: Final matching, $\sigma = .69$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .70$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .71$.

Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.72$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .73$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .74$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .75$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shooted model q_1.

Figure 19: Final matching, $\sigma = 0.76$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .77$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .78$.
Influence of the kernel width

(a) Momentum \(p_0 \).
(b) Shoted model \(q_1 \).

Figure 19: Final matching, \(\sigma = 0.79 \).
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .8$.

47
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .81$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .82$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .83$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.84$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.85$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shooted model q_1.

Figure 19: Final matching, $\sigma = .86$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .87$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .88$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .89$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 0.9$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .91$.

47
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .92$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .93$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .94$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .95$.
Influence of the kernel width

(a) Momentum p_0.

(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .96$.

\[\sigma = .96 \]
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .97$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .98$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = .99$.
Influence of the kernel width

(a) Momentum p_0.
(b) Shoted model q_1.

Figure 19: Final matching, $\sigma = 1.0$.
Conclusion
OT as a fidelity term

Pros:

- Principled globalization trick.
- Versatile: any distance on any feature space will do.
OT as a fidelity term

Pros:

- Principled globalization trick.
- Versatile: any distance on any feature space will do.

Cons:

- Only affordable for large ε diffusion values.
- Can still be tricked in symmetric situations.

Coming soon (say, end of 2017):

- Implementation on 3D dense images.
- Investigate the continuum "RKHS \rightarrow OT".
OT as a fidelity term

Pros:

• Principled globalization trick.
• Versatile: any distance on any feature space will do.

Cons:

• Only affordable for large ε diffusion values.
• Can still be tricked in symmetric situations.

Coming soon (say, end of 2017):

• Implementation on 3D dense images.
• Investigate the continuum “RKHS \rightarrow OT”.

Pros:

- Incredibly versatile and math-friendly.
- Unleash your GPU without getting stuck in CUDA.
- Exact derivative: safer to use with BFGS and line searches.
Pros:

- Incredibly versatile and math-friendly.
- Unleash your GPU without getting stuck in CUDA.
- Exact derivative: safer to use with BFGS and line searches.

Cons:

- Current bottleneck: memory overflows.
- Using BCH formula will require some hack (OpFromGraph...).
theano for image registration

Pros:

• Incredibly versatile and math-friendly.
• Unleash your GPU without getting stuck in CUDA.
• Exact derivative: safer to use with BFGS and line searches.

Cons:

• Current bottleneck: memory overflows.
• Using BCH formula will require some hack (OpFromGraph...).

Stay tuned:

• RAM-GPU memory links coming soon?
• Libraries are moving fast: check TensorFlow, etc.
Questions?