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Abstract

To model interactions between points, a simple option is to rely on weighted
sums known as convolutions. Over the last decade, this operation has become a
building block for deep learning architectures with an impact on many applied
fields. We should not forget, however, that the convolution product is far from
being the be-all and end-all of computational mathematics.

To let data scientists explore new research directions, we present robust, efli-
cient and principled implementations of three underrated operations:

1. Generic manipulations of distance-like matrices, including kernel matrix-
vector products and nearest-neighbor searches.

2. Optimal transport, which generalizes sorting to spaces of dimension D > 1.

3. Hamiltonian geodesic shooting, which replaces linear interpolation when no
relevant algebraic structure can be defined on a metric space of features.

Our PyTorch/NumPy routines fully support automatic differentiation and scale
up to millions of samples in seconds. They generally outperform baseline GPU
implementations with x10 to x1,000 speed-ups and keep linear instead of quadratic
memory footprints. These new tools are packaged in the KeOps (kernel methods)
and GeomLoss (optimal transport) libraries, with applications that range from
machine learning to medical imaging. Documentation is available at:

www.kernel-operations.io/keops and /geomloss.

This work intends to level the playing field between mainstream convolutional
architectures and other methods. To complement the standard textbooks in data
sciences, which cover statistics and optimization theory very well, we focus our
presentation on geometric intuitions and computational efficiency. Appendices left
aside, this manuscript should be accessible to all researchers, students and engineers
with a background in mathematics, physics, data sciences or imaging.


https://www.kernel-operations.io
https://www.kernel-operations.io/geomloss




Foreword

This manuscript sums up three years of work at the interface between medical imaging,
machine learning and optimal transport theory. It is written with a strong emphasis put on
geometric intuitions and low-level programming, to the detriment of analytic proofs. As we
push this “editorial line” to an extent that is rather unusual for a thesis in applied mathematics,
let us briefly explain our reasoning and motivations.

We’re all studying the same algorithms. When students skim through the literature in data
sciences, they often get overwhelmed by the amount of ideas that proliferate in researchers’
minds. Scratching beyond the surface though, most impactful works implement variations
around ever-present algorithmic themes: kernel matrix algebra in statistics, cascading convolu-
tions in image processing, auction-like iterations for optimal transport, etc.

This numerical stability is mostly due to the design of silicon chips. The hardware industry
puts a strong emphasis on parallel schemes and contignous memory accesses, effectively creating
a computational bottleneck that shapes the research landscape. Scientific programming languages
follow suit: since the very first Fortran releases, they prioritize the support of tensorized
computations, sparse matrices and convolutions to the detriment of other algorithmic structures.
Put together, these constraints bias research in data sciences towards a small set of scalable (and
nearly-algebraic) methods.

One method, ten interpretations. Surprisingly, in sharp contrast to the relative stability
of the underlying numerics, the theorical literature in our field presents an ever-changing
landscape. As described in the introduction of (Mallat, 1999), schools of thought generally
emerge, discover a few pearls and disband (or move on to greener pastures) in cycles that span
a decade or two. Throughout the literature, the theoretical frameworks that are devised to
study similar numerical schemes thus vary greatly from one applied field to another. Critical
insights often get scattered across non-overlapping communities, confusing most outsiders and
students.

Exaggerating a little bit, we could say that theoretical data sciences is all about shedding
new lights on well-known algorithms to unleash their full potential. As statisticians, geometers
and computer scientists work on different aspects of the same problem, they progressively
converge towards optimal implementations. At the end of each cycle, the main contributions
of a research community are then summarized in well-documented toolboxes and companion

textbooks, which provide building blocks for higher-level projects.

Where do we stand? In the last decade, medical shape analysis and computational optimal
transport have expanded in a bubbling way. Going way beyond the handful of seminal works
that achieved widespread recognition - e.g. (Beg et al., 2005; Mérigot, 2011; Cuturi, 2013) -
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v Foreword

strings of remarkable papers have brought key contributions. Unfortunately though, with the
notable exception of (Younes, 2010; Pennec et al., 2019) and (Peyré and Cuturi, 2017), a lack
of accessible textbooks has also made our literature harder to understand by outsiders. Usually
written with specific applications in mind (neuroanatomy, fluid mechanics, two-samples testing,
etc.), most theoretical advances have been overlooked by the general public.

State-of-the-art codebases have followed the same dynamics, and are now too intricate to
be modified without weeks of preliminary training. Unable to catch up with an ever-growing
list of (essential) computational tricks, most researchers in the field have given up on genuine
performance: a thriving literature is dedicated to the study of theoretical convergence rates
or to the tuning of high-level Python scripts, but few papers ever discuss the substantial gains
that can be brought by dedicated C++ implementations. This is unfortunate, as a trick which
enables a x10 speed-up is just as valuable to end-users as a key theoretical contribution.

Acknowledging these harmful trends in the community, the present work is all about
lowering the barrier of entry to state-of-the-art results. In order to do so, we first take the time
to write down some of the oral “folklore” that glues together advances in the field, without
ever being made explicit in research papers. Second, leveraging new intuitions and cross-field
insights, we propose improved algorithms and back them with theoretical guarantees that put
an emphasis on robustness. Finally, and most crucially, we provide efficient implementations of
our methods and endow them with well-documented, user-friendly interfaces.

Reaching out engineers is our priority. As we package our methods in a way that is most
convenient for practitioners, we hope to bridge the gap between cutting-edge research and
real-life applications. But should academics really spend so much time popularizing their work
instead of focusing on what is supposedly their core business: proving theorems?

Distilling years of expertise, some research teams have succeeded in pushing industry
boundaries “on their own”. In neurosciences alone, we may cite the Insight ToolKit (Yoo
et al., 2002), FreeSurfer (Fischl, 2012), Dartel (Ashburner, 2007), Elastix (Klein et al.,
2009b), Ants (Avants et al., 2009) or the Scikit-learn package (Pedregosa et al., 2011).

Realistically though, in medical imaging as in most mature fields, mathematicians and
computer scientists cannot have a meaningful impact if they stay by themselves. Developing
and maintaining software that tackles real-life challenges is a job which is hardly compatible with
an academic career. In this context, if new ideas are to make their way from our blackboards
to genuine MRI scans, they must first be understood and accepted by engineers. Focusing our
message on concepts that are valuable to the healthcare industry - sometimes to the detriment
of mathematical good taste and conventions - is a necesary compromise.

Personal note. The general tone of this manuscript is a direct consequence of personal
interactions with engineers and radiologists. After months of internship at Siemens Healthcare,
numerous contacts with the booming Parisian tech scene (Therapixel, Owkin, etc.) and key
discussions at Miccai conferences, I am slowly starting to understand the needs of our colleagues
in the industry, who work under severe time constraints but always impress me with their
scientific endeavour.

Unfortunately, after three years of PhD, I still lack the writing skills and scientific maturity
that are needed to write an accessible textbook. I hope, nevertheless, that this introduction to
our field will be valuable to readers from all backgrounds.



Extended abstract

Convolutions: strengths and limitations. Geometric data analysis is all about leveraging
information on proximity and distance between samples. In a way that mimics Newton’s
gravitational laws, the simplest way of doing so is to rely on convolutions and model interactions
between particles as sums of weighted contributions. These are parameterized by a kernel
function that is set according to a model or estimated from the data.

Implemented with efficient low-level routines, the convolution product is at the heart of
the deep learning revolution. Thanks to a massive investment from industry players (Nvidia,
Google, Facebook, etc.), high-level Python libraries now allow researchers to write convolution-
based algorithms - neural networks - easily, without compromising on performances. In the last
decade, thousands of authors have thus proposed ways of combining and tuning convolution
kernels to reach state-of-the-art performances in imaging or natural language processing.

Crucially though, other operations are also worth studying. Sorting (and its high-
dimensional generalization, optimal transport), nearest-neighbor search, shape or image defor-
mation are all relevant to many applied fields. Allowing them to reach a wide audience is the
main purpose of this work: we provide robust, highly efficient and easy-to-use implementations
of these fundamental operations, with new theoretical guarantees.

Map-reduce computations. In the first part of this manuscript, we review the foundations
of deep learning numerics: GPU programming and automatic differentiation. Acknowledg-
ing the limitations of mainstream libraries, we introduce the new concept of semi-symbolic
LazyTensor: distance- or kernel-like matrices that are not sparse in the traditional sense, but
can nevertheless be encoded efficiently using a mathematical formula and small data arrays.
Our C++ KeOps (Kernel Operations) library provides a comprehensive support for this new
abstraction and comes with transparent PyTorch, NumPy, R and Matlab interfaces.

The KeOps engine allows Python scripts to scale up to graphics-like performances. It relies
on a collection of efhicient CUDA schemes that we combine with a custom just-in-time compiler
and a versatile math engine that fully supports automatic differentiation. Scripts that encode
distance or kernel matrices with KeOps LazyTensors outperform standard TensorFlow and
PyTorch GPU implementations by one or two orders of magnitude while keeping a linear instead
of quadratic memory footprint. As an example of application to Gaussian Process regression,
the seamless switch to a KeOps backend by the developers of the GPytorch library resulted in
a x30 to x100 speed-up.

The KeOps package is freely available on the PyPi repository (pip install pykeops).
An extensive documentation and numerous tutorials are online at:

www.kernel-operations.io.


https://www.kernel-operations.io

vi Extended abstract

Optimal transport. Having laid down the computational foundations of our work, we focus on
measures: a mathematical abstraction that unifies soft sets, weighted point clouds, segmentation
maps and random vectors within a common framework. We start by a cross-field presentation
of four major families of tools that can be used to compare measures with each other:

1. Pointwise f-divergences, such as the relative entropy and the total variation.

2. Projection-based Hausdorff and chamfer distances.

3. Convolution-based Sobolev, kernel norms and maximum mean discrepancies.

4. Optimal transport costs, also known as Wasserstein or earth mover’s distances, which rely

on the solutions of generalized sorting problems.

Focusing on the entropic regularization of optimal transport, we show that de-biased
Sinkhorn divergences define convex, positive and definite loss functions that metrize the con-
vergence in law and behave as low-freguency Wasserstein distances. To solve the associated
transportation problems, we propose a symmetric, multiscale Sinkhorn loop that can be
understood as a smooth and high-dimensional generalization of the Quicksort algorithm.

Our implementation outperforms the standard Auction, Sinkhorn and SoftAssign algo-
rithms by one to three orders of magnitude (for applications to machine learning and shape
analysis, respectively), scaling up to millions of samples in seconds. It allows us to define af-
fordable loss functions that exhibit desirable geometric properties for the processing of random
vectors, point clouds, curves, meshes and brain tractograms.

We package our solvers and functionals as simple PyTorch layers in the companion
GeomLoss (Geometric Loss functions) library, which is freely available on the PyPi repository
(pip install geomloss). Documentation and tutorials are online at:

www.kernel-operations.io/geomloss.

Riemannian geometry for shape analysis. Finally, we focus on the topology-aware metrics
that can be defined on spaces of (anatomical) shapes. Reviewing the theories that underly
registration pipelines in medical imaging, we identify some key shortcomings of the standard
LDDMM framework. To tackle these issues in a way that is compatible with the advent of
machine learning in computational anatomy, we propose an affordable and principled way of
normalizing shape metrics to enforce geometric axioms.

Thanks to the KeOps and GeomLoss packages, scalable shape analysis pipelines can now be
implemented using modular Python scripts. As the processing of texture is progressively being
solved through the use of convolutional neural networks, these new tools will be valuable to
researchers who work on the next open challenge in (medical) image analyis: the data-driven
processing of shapes.

Limitations and future works. Please note that all the tools presented in this manuscript
rely on the extrinsic metric of an ambient feature space, with pairwise distances given through
explicit formulas. We may leverage mesh structures to compute feature vectors, such as triplets
of (position, orientation, curvature) coordinates. But crucially, we never consider the intrinsic
mesh distance that is central to elastic models and other graph-based methods. In years to come,
we plan to work primarily on the interplay between these two descriptions of geometric data,
with applications to medical imaging.


https://www.kernel-operations.io/geomloss
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Glossary

Positive measures — see Section 3.1.3.

Ground cost function. Typically, C(z,y) = 1|z — y|*.

Inverse of a metric tensor. Fundamental quantity for geodesic shooting.
Translating some human-readable program into an optimized binary code.
Central Processing Unit, standard sequential processor.

Low-level programming language, standard for high-performance computing.

Dirac mass at location = € X, defined Eq. (3.9).

List of triangle faces that make up a surface mesh.
Differential of F at z applied to h, as discussed Eq. (2.3)
Gradient operator of F' at x¢, defined Eq. (2.8)

Dual potentials for the OT problem - see Eq. (3.170).
De-biased potentials for the OT, problem - see Eq. (3.209).
Domain that contains our samples; typically, a subset of RP.

Riemannian metric.

Locally straight curve.

Package for computational optimal transport, presented in Section 3.3.4.
Graphics Processing Unit, massively parallel computing chip.

Hamiltonian function, defined Eq. (5.21).

Kernel matrix or Riemannian cometric.

Kernel Operations library, presented in Chapter 2.

Function that attributes a weight to a distance or to a pair of points.
Kullback-Leibler divergence, discussed in Section 3.2.1.

List of line segments that make up a discrete curve.
Semi-symbolic matrix, encoded using a formula and small data arrays.
Penalty that measures the discrepancy between two objects.

Combination of a function and a reduction (e.g. a distance and a minimum).
Distribution of mass. Abstraction for random vector, segmentation map, etc.

SoftMin operator, defined Eq. (A.33).

Generalization of sorting to high-dimensional spaces.
Regularized optimal transport cost, defined in Section 3.3.1.
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T~ (m;) € RYM  Optimal transport plan, solution of Eq. (3.168,3.187,3.214).
Python High-level programming language, popular among data scientists.
PyTorch Deep learning Python library, popular among academics.

RP  Vector space of dimension D.
Riemannian metric  Point-dependent scalar product that encodes an adaptive geometry.
SP Unit sphere of dimension D, embedded in RP*1,
Se(a, B) De-biased Sinkhorn divergence, defined in Section 3.3.2.

TensorFlow Deep learning Python library, industry standard.
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Chapter 1

Introduction

Key points - Shape analysis is relevant to medical imaging:

1.

This work is motivated by applications to computational anatomy: we aim to generalize
standard statistical tools for population study to anatomical (shape) data.

Over the last decade, the data-driven optimization of convolution filters has revolution-
ized imaging sciences. Pattern detection and tissue segmentation are now tackled by
algorithms that leverage the texture of input images.

Unfortunately, the “deep learning revolution” has not yet happened for geometry process-
ing and shape analysis: in computational anatomy, data-driven approaches do not yield
significantly better results than decades-old baseline models.

To make a breakthrough in the field, researchers have to combine statistical learning methods
with domain-specific algorithmic structures.

Contributions - Enabling large-scale machine learning for geometric data:

5.

We provide first-rate support for point clouds on the GPU, with a differentiable Python inter-
face. Our routines allow researchers and data scientists to reach graphics-like performances
with a convenient deep learning interface.

. Throughout this work, we put an emphasis on robustness. To enforce an invariance to

re-sampling and re-meshing, we encode our shapes as weighted point clouds - measures
- and restrict ourselves to well-defined, homogeneous operations. This prevents our algo-
rithms from paying too much attention to contingent encoding choices, such as the discrete
triangulation of a surface mesh, and let them focus instead on meaningful geometric features.

. We discuss the different types of metrics that can be defined to compare shapes with each

other - from Procrustes analysis to diffecomorphic registration. Hausdorff, kernel and
Wasserstein distances now scale up to high-resolution shapes in fractions of a second. Going
further, we propose new methods to make sure that data-driven deformation models satisty
key geometric axioms.
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1.1 Medical imaging and geometry

Medical imaging. Providing quality healthcare at an affordable price is a concern for all
societies. Over the last forty years, in Western countries, a key force driving the increase of
health standards has been the sustained improvement of imaging devices. Benefitting from
decades of research, medical doctors now acquire 3D pictures of their patients’ inner workings
In minutes.

Major industry players produce thousands of MRI, CT and ultrasound scanners per year:
gradually, modern imaging techniques have thus become available to an ever-increasing number
of patients. Unfortunately, the number of skilled radiologists able to interpret these images
cannot grow accordingly: as far as global access to healthcare is concerned, the scarcity of
human resources is now the main bottleneck to resolve.

As mathematicians, can we help? Researchers working towards a semi-automation of clinical
exams encounter numerous challenges: from the acquisition of MRI volumes to the global
estimation of population trends, turning raw sensor data into a meaningful piece of information
is an arduous process, illustrated Figure 1.1. In this thesis, we discuss a specific segment of this
considerable pipeline: the analysis of anatomical data.

Starting from clean 3D scans provided by our colleagues upstream, we focus on extracting
geometric information in a way that is relevant for ulterior analyses. Our job is to provide
meaningful, reproducible, high-level representations of a patient’s anatomy, to be used
by medical doctors and statisticians. In this specific branch of imaging sciences, we can identify
three major types of problems - illustrated Figure 1.2:

1. Feature detection: spot tumors, calcifications or fractures on 2D and 3D images.

2. Shape analysis: quantify anatomical deformations and variations of organs’ geometries.
3. Biomechanical simulation: leverage prior knowledge of the human body to extract
physiological information out of a mere grayscale image.

Computational anatomy. This thesis is dedicated to the “intermediate” problem of medical
shape analysis, illustrated Figure 1.2.b. We may sometimes tackle general questions related to
multiple research fields; but ultimately, our efforts always lean towards the settings and ranges
of problems that are relevant to the processing of medical data.
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Figure 1.1: Illustrating the medical imaging pipeline with images courtesy of Tom Boeken from
the Pompidou Hospital and (Ptrump16, 2019; Ecabert et al., 2011). Medical imaging is a mature and
structured field, with well-defined specialities. Physicists, engineers, computer scientists, mathematicians
and technicians all team up to bridge the gap between a patient’s anatomy and a doctor’s diagnosis.

baseline image 2 year follow-up image

1000

0.0

(a) Spot patterns. (b) Analyze geometric variations. (c) Fit models.

Figure 1.2: Three challenges for computational anatomy, from (Conner-Simons and Gordon, 2019;
Ledig et al., 2018; Chnafa et al., 2014). (a) In a medical setting, feature detection algorithms may
be used to spot fractures, screen for breast cancer and semi-automate countless other clinical exams.
(b) Assessing the shape of a patient’s organs with respect to population trends is a key step in the
diagnosis of many pathologies, including Alzheimer’s disease. (c) Finally, geometric information can
be combined with a strong physiological prior to create biomechanical models of a patient’s anatomy.
Over the last decade, this ambitious strategy has been successfuly applied to blood flow simulation: it
now powers major medical tech companies such as Arterys and Heartflow, with applications to the
detection of cardiac diseases and surgical planning.


https://www.arterys.com/
https://www.heartflow.com/
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1.1.1 The deep learning revolution

In the wake of (Krizhevsky et al., 2012), statistical learning techniques have had a major impact
on imaging sciences. Before introducing the questions that motivate this thesis, we discuss
briefly the main features of the “deep learning” framework that currently shapes the landscape
in biomedical research.

Supervised learning. Most applications of learning theory to medical imaging stem from a
simple remark: instead of tuning the parameters of our algorithms by hand, we should leave
this task to standard optimization routines - and focus instead on the global architectures of
our programs.

In practice, scientists train their models by choosing a vector of parameters that optimizes
an empirical performance score. Let us assume that we are to regress a functional relationship
“z — y” between two variables  and y: say, an image and a medical diagnosis. If (z;, i)iep1 N
is a dataset of input-output pairs labelled by experts, and if “F : (6;x) — y” is a suitable
parametric model, we use gradient-based descent schemes to pick a value of the vector of
parameters 6 that roughly minimizes the training error:

Cost(d) = + SN Loss(F(0;2:), yi) + Reg(d), (1.1)
where “Loss” and “Reg” are the so-called data attachment and regularization penalties.

As illustrated Figure 1.3, the usual setting of polynomial regression corresponds to the case
where F(6; x) is a polynomial function of x with coefficients in 6, and Loss(z,y) = |z — y/|?
is a quadratic penalty. Alternatively, when F(6; ) is given as a composition of matrix-vector
products and pointwise non-linearities, we speak of multi-layer perceptrons or fully connected
neural networks.

The curse of dimensionality. Generic regression or interpolation strategies work best when
the training database (2, y;);q1 5] covers well the space of input configurations. Without any
prior knowledge of the problem’s structure, statistical learning algorithms can then create
efhicient “hash tables” that approximate any given function.

Unfortunately, such strategies can not be applied directly to imaging problems. In these
settings, the high-dimensional space of input configurations is way too large to be sampled
comprehensively: no dataset will ever contain a dense sampling of the set of all brain MRIs, as
measured by the standard Euclidean distance. Structuring modelling hypotheses - priors - are
therefore required to let programs extrapolate - generalize - outside of training databases in a
sensible way.

Convolutional neural networks. Since the early days of imaging research, an algorithmic
structure stands out: the composition of cascading convolutions. Iterated filterings can be
used to define feature maps at all scales, through affordable combinations of neighboring pixel
values. Over the years, variants of this idea have been described as e.g. Laplacian pyramids
(Burt and Adelson, 1983), part-based models (Felzenszwalb et al., 2009) or wavelet transforms
(Mallat, 1989), as illustrated Figure 1.4.

This algorithmic framework strikes a good balance between power and simplicity. At an
affordable cost, it allows researchers to “hard-code” fundamental priors in image processing
pipelines: translation-invariance, locality, multiscale integration of intermediate representations.
As illustrated in Figures 1.5 and 1.6, the key idea behind convolutional neural networks is then
to combine the regression paradigm of Eq. (1.1) with this domain-specific architecture.
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Figure 1.3: “Supervised learning” generalizes “linear regression” to complex models.

(a) We depict a dataset of input-output pairs (z;,y;) in R x R. As discussed Eq. (1.1), supervised
learning is all about fitting a parametric model “F(6; z) ~ y” to the data by finding a suitable value
of the vector of parameters 6. A simple way of doing so is to minimize the mean squared error
Cost(0) = Z?I:l |F(6;2;) — yi|? by gradient descent with respect to 6.

(b) In the simplest of all settings — linear regression — we consider a linear model parameterized by a slope
a and an offset b. We represent the positive correlation between = and y as a red segment linking the
input node to the output. (c-d) A simple way of getting a closer fit to the data is to consider higher-order
polynomials: quadratic parabolas, cubic or quartic curves, etc.

(e) Alternatively, we may introduce intermediate parametric variables, which allow us to generate
complex behaviors using simple operators - say, affine scalings and pointwise applications of the
“REctified Linear Unit” or “positive part” ReLU : z — z . (f) These computer-friendly models are easy
to extend and combine with each other. Out-of-the-box, the so-called multi-layer perceptrons encode
piecewise-linear models with a prescribed number of bendings.
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Figure 1.4: A typical wavelet decomposition, adapted from (Mallat, 2016). Filtering - convolution -
and sub-sampling - pooling - have a rich history in image processing. The theory of wavelets, discussed
at length in (Mallat, 1999), describes efficient multiscale transforms with prescribed mathematical
properties. These rely on finely engineered high- and low-pass convolution filters to produce sparse
feature maps at all resolutions. To keep things simple in this introduction, we speak here of “micro-”,
“meso-" and “macro-scopic” scales, that correspond to superficial and deeper layers of the transform.
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Figure 1.5: Architecture of a convolutional neural network, from (Peemen et al., 2011). For appli-
cations to medical imaging and computer vision, data-driven convolution filters outperform explicit
wavelet coeflicients by a wide margin. In practice, researchers define imaging pipelines parameterized
by tunable convolution filters. The latter are then optimized by gradient descent on classification or
segmentation tasks, and provide high-quality feature maps at all scales. For historical reasons, these
algorithms are usually described using a pseudo-biological vocabulary: convolution filters are called
nenral weights, while neural networks refer to parametric transforms. As discussed Figure 1.3, the training
process refers to the gradient-based resolution of a regression problem.
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Figure 1.6: Visualization of CNN features at different scales, from (Wei et al., 2017). Today, re-
searchers scale up the training of convolutional neural networks to billions of images. Modern models
involve thousands of convolution filters and are usually described using concise block diagrams. As
discussed for instance in (Olah et al., 2017), the features associated to these filters can be visualized
and still roughly fit within the multiscale framework of Figure 1.4. Please note, however, that gener-
ating “good-looking” visualizations of CNN features requires a fair amount of specific regularization
tricks. These appealing images allow researchers to get an intuition of their models, but are not faithful

reflections of their inner structures.
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1.1.2  Strengths and limitations of convolutional neural networks

The first convincing model for texture. In computer vision, data-driven CNN features
have now replaced hand-made descriptors for object detection and recognition. In biomedical
imaging, as illustrated Figure 1.9, segmentation networks outperform traditional methods in
most settings and open a whole new range of applications. Most impressively, as illustrated in
Figures 1.7 and 1.8, CNNs can advantageously replace wavelet transforms for many processing
tasks - including the synthesis of texture.

A major culture shift. An essential contribution of deep learning research is the new-found
emphasis put on cross-field interactions and expert-labeled datasets, as tedious manual com-
putations (gradients, explicit filter coefhicients, etc.) get abstracted away progressively. Applying
the same blueprint to medical fields, we can hope to combine four types of expertise:

1. Medical doctors provide valuable input through well-curated datasets.

2. Statisticians select data-driven values for the parameters of a given pipeline.

3. Software engineers implement the building blocks of research codes on Graphics Pro-
cessing Units (GPUs) to leverage the power of modern hardware.

4. Mathematicians and computer scientists hard-code their insights on the problems to
solve in the architectures of their programs. This modelling work allows algorithms to
generalize well even in high-dimensional settings.

Artificial intelligence? The bio-inspired vocabulary which is prevailing in our field comes
from the strong historical ties between research on convolutional “neural networks” and actual
neurosciences (Fukushima, 1980). The design of CNNSs is partly motivated by biological
insights on the structure of the visual cortex (Hubel and Wiesel, 1962, 1968), and many
researchers still dream of emulating, one day, full human brains on silicon chips. We should
refrain, however, from attributing human-like qualities to algorithms which are little more
than finely tuned compositions of filtering operations.

From a computational perspective, convolutional networks are closely related to classic
algorithms, such as the fast wavelet transform that powers the JPEG-2000 compression standard
for digital cinema (Skodras et al., 2001). The pyramidal structures of CNNs allow researchers
to make sure their images are not processed as generic vectors of dimension 512x256 (Ulyanov
et al., 2018). But expecting high-level behaviours to “emerge” out of the simple algorithms in
use today would be unreasonable: stacking convolution layers on top of each other has not
paved the way towards general intelligence.

Limitations of convolution-based algorithms. Image processing and computer vision have
gone a long way since the first works on Laplacian pyramids (Burt and Adelson, 1983) and
SIFT descriptors (Lowe, 1999). Ultimately though, even after an expensive tuning of their
coeflicients, CNNs remain heavily biased towards texture analysis and pattern detection. As
illustrated Figure 1.10, state-of-the-art models for image classification still roughly behave as
advanced bag-of-features models (Sivic and Zisserman, 2003; Nowak et al., 2006) and pay little
attention to the shapes that structure input images.

Realistically, to tackle the next generation of open problems in medical imaging, researchers
are thus going to need new geometric ideas alongside compute power and curated datasets.
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(a) Leaves. (b) Windows. (c) Peppers.

Figure 1.7: Texture synthesis with wavelets, from www. cns.nyu.edu/~1cv/texture. Inalandmark
paper, (Portilla and Simoncelli, 2000) proposed to compute texture signatures as statistical correlation
scores between wavelet feature maps. Starting from a reference image (center squares), we can compute
its “texture id” and optimize a noisy background (border) to make it fit this prescribed signature. The
process allows researchers to generate textured wall-papers using nothing but explicit convolution filters.
This example does not involve any kind of “learning” procedure, and illustrates the close historical
connection between convolutional architectures and the processing of texture.

(7

(d) Style 2.

(h) Cat 2.

Figure 1.8: The deep art algorithm adapts the Portilla-Simoncelli method to the deep learning era
(Gatys et al., 2016). All cat and style images come from (Nikulin and Novak, 2016). (a-b) A well-trained
CNN provides high-quality feature maps. Starting from a painting and a photo, we can thus create a
synthetic signature that encodes the same “style” as the former and the same “content” as the latter.
Optimizing by gradient descent an image to make it fit the prescribed signature, we retrieve a good-
looking synthetic “painting”. (c-j) This algorithm generates impressive results, which played a great part
in the development of a media bubble around “artificial intelligence” from 2015 onwards.


https://www.cns.nyu.edu/~lcv/texture/
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Figure 1.9: The U-net segmentation network (Ronneberger et al., 2015). (a) The fine-to-coarse-to-fine
architecture of the U-net allows this model to compute and re-use feature maps at all scales. It can be
trained to segment biomedical slices from pairs of raw images and expert-labelled color masks: here,
glioblastoma-astrocytoma brain cancer cells (b-c) and HeLa cells (d-e). In practice, this model works
off-the-shelf in all settings where the objects to segment have a texture which is distinct from that of
the background. As far as biomedical imaging is concerned, this application of CNNs to segmentation
tasks is, without a shadow of a doubt, the most significant advance of the last decade.
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Figure 1.10: Images mis-classified as “king penguin”, “starfish” and other standard image classes
by a well-trained CNN, from (Nguyen et al., 2015). The multiscale, convolution-based architecture of
a CNN is ideally suited to the processing of texture but is not relevant to geometry or shape analysis.
As a consequence, modern image classification algorithms tend to rely on the detection of patterns and
can be fooled with meaningless images known as adversarial examples.

Understanding this phenomenon precisely is a major open problem in computer vision and image
processing. As for us, we interpret this “texture bias” as a fundamental limitation of convolution-based
networks, that motivates the study of other algorithmic structures.
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Figure 1.11: Deformations are easy to encode with point clouds (Ashburner, 2007; Glaunes, 2005).
(a) Implementing the free-form deformation of a bitmap image comes with many caveats: combining data-
driven insights with an accurate advection scheme is no mean feat. (b) In sharp contrast, deformations
of point clouds or surface meshes can be implemented using simple operations on coordinates. This
encoding is most convenient for shape analysis and is discussed throughout this thesis.

1.1.3 Working with point clouds, meshes and curves

Implicit vs explicit coordinates. Unfortunately, doing geometry with “bitmap” images is rela-
tively cumbersome: simple operations such as rotation and scaling rely on ad hoc interpolation
schemes. Going further, free-form deformation or advection routines must be implemented
with care: naive schemes may quickly destroy the topology of a picture or introduce interpola-
tion artifacts (Staniforth and Coté, 1991; Beg et al., 2005). As illustrated Figure 1.11, encoding
anatomic data with explicit point clouds is a sensible choice: geometry is easier to study with
Langrangian than with Eulerian coordinates.

A somewhat neglected area. The large-scale study of anatomical shapes should be tractable:
Graphics Processing Units were initially designed for the processing of surface meshes, and the
support of convolutional architectures only came as an afterthought to hardware constructors.
As showcased on a daily basis by modern video games, efficient geometry management has
been on the cards since the first “Toy Stories”. Surprisingly though, throughout the last decade,
geometric problems have been relatively neglected by the deep learning community.

A reason for this is the focus of engineering curriculums on scripting languages: most
researchers are not familiar with the intricacies of low-level GPU programming, and are unable
to develop their own tools. Naturally, the literature thus leans towards problems that can be
tackled with off-the-shelf libraries whose developers - Google and Facebook - have always
prioritized imaging and natural language processing to the detriment of other fields.

This picture is evolving slowly. A bit confusingly though, modern works on geomerric
deep learning (Bronstein et al., 2017) focus on the extraction of features on graphs and often
ignore the challenges encountered in the processing of anatomical data: the questions of
robustness to re-meshing, topological noise and heterogeneous sampling, the generation of
realistic deformations, etc. As of 2020, the field is not yet mature enough to fulfill its potential
in medical imaging: addressing these concerns will be a necessary first step.
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1.2 Geometric data analysis

Shapes are not vectors. Coming from data sciences and statistics, the main specificity of shape
analysis is the absence of the usual algebraic operations “+” and “x”. Taking the sum of two
brains is essentially meaningless, and no canonical heart model can truly replace the neutral
element “0” of a vector space.

A geometric theory for geometric data. Fortunately, however, distances can still be defined:
saying that two skulls are “close” or “far away” from each other could definitely make sense. A
primary problem of interest in computational anatomy is thus to define metric structures on
spaces of shapes which are:

1. Anatomically relevant, and make sense from a medical perspective.

2. Mathematically principled, to enable robust analyses downstream.

3. Computationally affordable, scaling up do real-life 3D data.

1.2.1 Kendall’s sphere of triangles

Procrustes analysis. The simplest of all such metrics is the one that deals with labeled polygons
defined up to a similarity. If x = (x1,22,...,2x) and y = (y1,¥2, - ., yn) in RV*P are two
point clouds which are non-degenerate (i.e. not collapsed to a single location), we say that
and 3 have the same shape in the sense of Procrustes if there exists a translation vector 7 € RP,
a rotation matrix R € O(D) € RP*P and a scaling coefficient A > 0 such that:

y=XA-Rax+ 7, Le. Vie[l,N], s = A - Rx; + 7. (1.2)

We then define the full Procrustean distance between two non-degenerate point clouds as:

df. MIny g - |[ARZ +7 — yll2 g, MINAR,r \/Z?I:l IARz; + 7 — ;|3
dprocrustes (xa y) = Scale(y) = = —
i1 Hyz - yHQ

, (1.3)

where 7 = & Y1, y; is the mean value of y in RP. This geometry is associated to the simple
notion of rigid alignment or registration, a common pre-processing in imaging sciences. It is
symmetric, satisfies the triangle inequality and vanishes to zero if and only if = and y have
the same shape. Going further, if 2/ and 3/’ can be put in correspondance with z and y using
similarities, then:

dProcrustes (x/7 y/) = dProcrustes(xv y) * (1'4)

The sphere of triangles. This metric endows the guotient space of Procrustean shapes with a
remarkable structure (Kendall, 1977, 1984, 1989). A first example is that of triangles in the
Euclidean plane (N = 3 and D = 2): there exists an explicit isometry f between the space of
non-degenerate triangles and a sphere of radius 1/2 in R?, with:

V%,y € R3X2 \ {(p,p,p), pe RZ}; dProcrustes(xvy) = Hf(x) - f(y)”]R5 : (15)

As illustrated from Figure 1.12 to 1.15, this canonical embedding makes sense from topological,
geometric and statistical perspectives. The theory can then be generalized to large point clouds
in R? or R? and has become a staple of biomedical imaging (Dryden and Mardia, 1998).
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(a) Cornwall. (b) Land’s End. (c) Menbhirs.

Figure 1.12: Simulating the ley hunter (Broadbent, 1980; Kendall and Kendall, 1980). The first
motivation for the development of the modern theory of shapes laid, quite remarkably, with archeology.
(a) At the western-most tip of Great Britain, in Cornwall, lies the peninsula of “Land’s End”. (c) A
famous tourist attraction in the UK, this 10km-by-15km piece of land is home to a considerable collection
of megaliths. (b) Looking at their coordinates on a map, archeologists soon started to wonder if these
standing stones had been placed “at random” by pre-historic Britons, or if we could try to read more
into alignments of stones - ley lines - that evoked, to some enthusiasts, a cosmic compass of sorts.

To provide an answer to this question, Simon Broadbent proposed to consider all triplets of menhirs
on the map. He could then compare this set of triangle shapes with a “random” uniform distribution,
and detect (or not) an abnormally large number of quasi-flat triangles: structured alignments. Overall,
this research did not truly settle the debate in archeology... but had a significant legacy in biomedical
imaging, which is fine too!

(a) Procrustes analysis. (b) The plane of triangles.

Figure 1.13: Working with shapes defined “up to similarities” in the 2D plane.

(a) As showcased in this illustration from (Klingenberg, 2015), Procrustes analysis is all about quotienting
out the degrees of freedom associated to scale, position and orientation. There are 4 of them in dimension
D = 2, and 7 in dimension D = 3.

(b) The space of triangles ABC in the plane can be identified with C3 ~ RS. If we remove the degenerate
triangle (A = B = () and identify with each other all triangles that can be put in correspondence
using a similarity (translation + rotation + scaling), we end up with the two-dimensional space of
triangle shapes. In this simple chart, we use small glyphs to display, at every location z € C, the
triangle (A = —1, B = 1,C = z). This allows us to represent exactly one specimen for every shape
of triangle, bar the special case of the semi-degenerate triangle shape “A = B # C”, which is rejected
at infinity. We highlight in red the set of flat triangles (Im(z) = 0); in regal blue, the set of triangles
which are isosceles at vertex C' (Re(z) = 0); in cyan, the set of triangles which are isosceles at vertex B
(|z — 1| = 2); in green, the set of triangles which are isosceles at vertex A (|z + 1| = 2).
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(a) Global view. (b) From the equator.

Figure 1.14: Kendall’s sphere of triangles. The set of triangle shapes, charted Figure 1.13.b, can
be identified with a sphere of radius 1/2. As displayed here, there exists an explicit correspondence
between the space of triangle shapes “up to similarities” and the sphere S?(0,1/2) C R3, with at least
three important theoretical properties.

First, all the symmetries of the space of triangles have natural geometric counterparts. The “North”
and “South” poles correspond to the direct and indirect equilateral triangles, respectively; the set of flat
triangles is identified with the equator (in red); the three sets of isosceles triangles correspond to three
equidistant meridians (in blue, cyan, green). These four great circles cut the sphere in 12 “identical”
domains, which can be identified with each other under the action of the 6 permutations of the vertices
A, B, C, plus the reflexion with respect to any straight line in the plane.

Second, as detailed Eq. (1.5), the chord distance on the sphere (embedded in R?) corresponds to the
natural quotient of the Euclidean metric on C* ~ R® under the action of the similarity group.
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(a) Isotropic Gaussian. (c) Slightly anisotropic. (e) Very anisotropic.

(b) Isotropic Gaussian. (d) Slightly anisotropic. (f) Very anisotropic.

Figure 1.15: Canonical distributions on Kendall’s sphere of triangles. Finally, and perhaps most
surprisingly, this canonical representation of the shape space of triangles also has remarkable statistical
properties. (a) When the three vertices 4, B, C are drawn independently according to an isotropic
Gaussian law, the shape of the triangle ABC follows a uniform law on the sphere. (b) In other words,
if the draw 3 - 10k vertices according to a normal Gaussian law, the corresponding empirical histogram
on the sphere has constant density up to statistical fluctuations: each bin gathers a number of triangles
ABC that is roughly proportional to its area. (c-d) If we draw the vertices A, B, C according to an
anisotropic Gaussian law, the corresponding density on the sphere still retains some structure: it is an
explicit function of the distance to the equator. (e-f) With vertices drawn according to a Gaussian bell
that becomes more and more degenerate, the law of our random triangle shape converges towards a
uniform distribution on the equator of flat triangles. Plot rendered with Plot. 1y (Inc., 2015).
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1.2.2 Endowing spaces of shapes with a metric structure

The ideal theory of triangles acts as a strong motivation for mathematical research in the field.
The dream pursued by the “shapes” community over the last thirty years has been to define
distances on spaces of brains or bones that could be as elegant as the Procrustes metric, but
also relevant from a medical perspective (Grenander and Miller, 1998).

Procrustes analysis. How do researchers proceed? First of all, we notice that thanks to
its strong algebraic structure, Kendall’s theory can be interfaced with standard statistical
tools (Jayasumana et al., 2013; Ben Tanfous et al., 2018) or extended to spaces of continuous,
parameterization-free curves (Srivastava and Klassen, 2016). As illustrated Figure 1.16, per-
forming dictionary learning “up to similarities” is now perfectly do-able (Song et al., 2019).
Crucially though, Procrustes analysis remains focused on position, orientation and scale: in
most real-life settings, we must go further.

Linear deformation models. When shape data is labeled and concentrated around a mean
template shape, a good baseline is provided by linear deformation models. If 1, ..., 2" isa
collection of pre-registered point clouds in RN*P, we may compute an explicit average template
a* = & 34 _; 2* and identify each subject with the deviation to the mean v* = 2% — 2%, a
vector field in RN*P supported by the vertices of 2*. We can then compare subjects with each

other using a Euclidean metric in the mould of:

do- (2, 27) i =0 (0t — 0l TR 0 — i) (1.6)
where K+ is some relevant symmetric and positive N-by-N or ND-by-ND matrix.

As discussed Section 5.1.2, a standard choice for the cometric K+ is the Thin Plate Spline
(TPS) kernel matrix associated to the template 2* (Bookstein, 1991): it penalizes tearings
and is fully invariant to affine changes of coordinates. Alternatively, letting K+ be equal
to (a robust modification of) the covariance matrix of the v%’s in RN*P is also a sensible
choice (Mahalanobis, 1936). This method was discussed as early as (Mahalanobis, 1925) for
anthropometric population studies, and is now commonly understood through the normalized
“PCA” space associated to a Principal Component Analysis of the population.

Main challenges in the field. As illustrated Figure 1.17, the “Procrustes + Splines/PCA”
toolbox is good enough for simple population studies in biology. In practice, research in
computational anatomy has thus focused on providing answers to the two following problems:

1. Parameterization invariance. Can we define metrics between unlabeled point clouds?
Robust algorithms should process surface meshes and volumes without ever being biased
by local variations of the sampling density: defining landmark-free metrics on spaces of
shapes is a priority.

2. Non-linear deformations. Linear PCA-like models tend to break down as soon as
datasets become a bit too wide. If diverse poses or classes are present in a population,
topological properties may stop being preserved and a large number of PCA modes be-
come required to describe the data. Consequently, we strive to define metrics and models
that can deal with large deformations while preserving a low intrinsic dimensionality.
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Figure 1.16: Dictionary learning in Kendall’s shape space, from (Song et al., 2019). In the 2D plane,
landmarks can be represented as complex numbers; similarities are then simply given through affine
transformations z — Ae?® 2 + 7. (Song et al., 2019) takes advantage of this algebraic structure to extend
the common concept of dictionary to the non-linear space of Procustes shapes: dictionary learning with
a Procustes loss can be tackled using standard matching pursuit algorithms (Mairal et al., 2014).

This example is more or less at the limit of what quasi-linear models can handle: research on non-linear
deformations is motivated by the need to process datasets with a wide variety of modes or poses... as
encountered for instance with 3D scans of the hand (Von-Tycowicz et al., 2015) !
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(a) Landmarks. (b) Standard PCA with TPS.

Figure 1.17: A typical morphometric study, from (Addis et al., 2010). The Thin Plate Splines frame-
work for shape analysis, discussed at length in (Bookstein, 1991), is now part of the standard toolbox in
biomedical imaging. (a) In favourable cases, well-identified anatomical landmarks can be located on
the input shapes: they are encoded as point clouds in RN*2 or RN*3. We then strive to define relevant
metric structures on these ad hoc parameters.

(b) Linear deformation models are usually called splines and parameterized by a kernel function. The
Thin Plate Spline (TPS) kernel is a canonical choice in 2D and 3D, which penalizes tearings and makes
the processing invariant to affine deformations. Off-the-shelf R and Python toolboxes now allow prac-
titioners to perform Principal Component Analyses (PCA) with strong guarantees, and identify the
main modes of variation of their datasets. In this specific instance, a significant discrepancy between
tunas fished in 2008 (circles) and 2009 (triangles).
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1.2.3 Statistics without a “+”

Answers to these two questions are discussed throughout this work. As detailed for instance in
(Pennec, 2008), this research is primarily motivated by the needs of statisticians: a high-quality
metric d(x, y) on a shape space S can act as a substitute for a vector structure (0, +, X ), paving
the way for anatomical population studies.

Fréchet means. To see this, we first come back to the definition of the mean as a solution of a
least-square problem (Legendre, 1805; Gauss, 1809). If 2, ..., 2N is a collection of shapes, we
define its Fréchet mean of order p through:

* s 1 N )
xr € arg min N et d(z, )P . (1.7)

»

The usual mean and median respectively correspond to the cases where “p = 2” and “p = 1
(Fletcher et al., 2008)... But beware: in general, such minimizers may not be unique or even
well-defined - we refer to (Charlier, 2011) for an overview.

Geodesics. Going further, geodesic curves are defined as continuous paths v : ¢ € [0,1] —
7(t) € S that minimize length locally - but not necessarily between their end points, due to
curvature and non-uniqueness. Simply put: geodesics are generalized straight lines.
Assuming that (S,d) is a Riemannian manifold - i.e. that it is locally equivalent to a
Euclidean vector space, just like a sphere is locally equivalent to its tangent planes - we can
then show that all geodesics satisfy an ordinary differential equation of order 2 (Lee, 2006). As
discussed in detail Section 5.2.1, this implies that a geodesic is entirely described by its value
and derivative at time “t = 0”: its initial position and velocity, as in Newtonian mechanics.

Geodesic regression, longitudinal models. Identifying geodesics with straight curves, we can
then generalize linear regression to spaces of shapes (Fletcher, 2011). Going further, we can
parameterize the geodesic segment 7¢ between a template #* and a subject 2! through its initial
velocity v' = (¢t = 0). This allows us to perform statistical studies such as PCA in the
tangent space T,+S to the shape space S at location z*, a well-understood vector space of latent
codes for our dataset (Fletcher et al., 2004; Sommer et al., 2010).

A typical morphometric study is showcased Figure 1.18. Note that in many clinical settings,
the problem of interest is to compare the trajectory of a patient with the global trend of its group.
Consequently, as illustrated Figure 1.19, the study of time-dependent longitudinal models on a
Riemannian manifold is bound to become an important topic: we refer to (Durrleman et al.,
2013; Schiratti et al., 2015; Koval et al., 2017) for an introduction.

Interfacing geometry with statistics. Overall, the field of computational anatomy is now
pretty well structured. As geometers, our main job is to provide statisticians with reliable and
effective metrics on spaces of shapes: at a mild theoretical cost, anatomical data can then be put
in the same framework as other physiological measurements.

We must stress that in this context, robustness and reproducibility trump accuracy. If
our work is to bring real value to clinical applications, it should uphold the same standards of
reliability as any commercial drug or medical device. Acknowledging our limitations as far
as clinical trials are concerned, we see our field as a team effort that must involve engineers,
statisticians and medical doctors on an equal footing. To enable these interactions, interpretable
pipelines are thus preferable to end-to-end blackboxes.
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(a) Optical Coherence Tomography (Huang et al., 1991) is a common imaging technique for ophthalmology. By
measuring light interferences using a sort of “optical echograph”, medical doctors can now acquire 3D images of
the retina at a micrometric resolution.

(b) Typical thickness maps from an OCT dataset. (c) An explicit manifold model.

Figure 1.18: An application of metamorphoses to the detection of glaucoma (Lee et al., 2017).
(a) Modern imaging devices allow us to acquire micrometric thickness maps of a patient’s retina in a
neighborhood of the optic nerve. (b) Glaucoma is a widespread disease, associated to a slow deterioration
of the retina. It can be diagnosed by the observation of a thinning of the tissue along the main blood
vessels of the ocular globe, following a pattern that varies with the vascularization of each patient. (c) To
quotient-out this “innate” anatomic variability and perform a meaningful population study, we can
decompose the variability of a dataset into geometric and functional deviations to a mean template. In
practice, this processing allows us to perform population studies in a robust and interpretable linear
space of “latent codes”, identified with a tangent space to the manifold of retinas.
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(a) Scalar data. (b) Shape data, from (Mansi et al., 2011).

Figure 1.19: Computational anatomy brings together statistics and shape analysis.

(a) Throughout the XX™ century, statisticians have developed principled methods to process scalar and
vector data. Say, the height and weight of a child, tracked over the years and compared with an expected
growth curve. (b) Computational anatomy is all about generalizing this approach to geometric data,
which does not come with a canonical vector structure. As illustrated Figure 1.18, a typical strategy is to
endow spaces of shapes with a non-linear - Riemannian - metric and reformulate standard statistical tools
using nothing but geometric primitives. We can then find significant correlations between anatomical
features: here, the Body Surface Area (BSA) and the shape of the right ventricle, in a population study
focused on the tetralogy of Fallot (Mansi et al., 2011).
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1.3 OQutline of this thesis

Shape analysis and registration. Throughout the last twenty years, a thriving community has
gathered around the idea that shape metrics can be defined in relation to registration algorithms.
IfD = 2or3and ¢ : RP — RP is a mapping that turns a source shape A into a target
¢(A) = B, the discrepancy between ¢ and the identity mapping Id : z € RP s 2 € RP can
be used as a tractable shape distance d(A, B). Conversely, plausible deformations ¢ can be
understood as geodesics that gradually turn Id(A) = A into ¢(A) = B by following, in some
sense, a least-effort trajectory in a space of deformations.

As discussed Chapter 5, standard shape models either rely on elastic meshes for biomedical
simulation (Montagnat et al., 2001; Srivastava et al., 2010) and computer graphics (Kilian et al.,
2007; Von-Tycowicz et al., 2015) or on advanced imaging techniques. In the fields of cardiac-
and neuro-anatomy, standard baselines are provided by the B-splines (Rueckert et al., 1999)
and diffeomorphic SVF (Arsigny et al., 2006) or LDDMM (Beg et al., 2005) frameworks.

A reference textbook on the subject has recently been compiled, with applications to
statistics (Pennec et al., 2019): we recommend this well-curated collection of tutorials for

background on the field.

A pivotal moment. Crucially though, as of 2020, the community seems to have reached
the limits of what can be achieved using nothing but explicit equations and Matlab or C++
codebases. If we are to perform large-scale population studies on modern datasets, such as the
long-awaited UK Biobank (Ollier et al., 2005), we must resolve the following bottlenecks:

1. Speed. Using iterative algorithms to register volumetric images takes minutes or at
best, seconds (Brunn et al., 2019). The impressive Dartel (Ashburner, 2007) and Ants
(Avants et al., 2009) packages have become standard pre-processing tools in neurology...
but if we are to use them as atomic sub-routines in higher-level pipelines, we should speed
up their runtimes by at least two or three orders of magnitude.

2. Anatomical relevance. Today, few models can extrapolate outside of training datasets
in a way that is meaningful: splines, SVF or LDDMM geodesics rely on simple regu-
larization priors that do not make much sense from a medical perspective. Meanwhile,
biomechanical models rely on clean meshes that are notoriously hard to combine with
noisy clinical data. Improving our geometric models would have a major impact on
statistical analyses downstream - but this is easier said than done!

Going beyond explicit models. To bring an answer to these questions, researchers have mostly
focused on multiscale (Durrleman et al., 2014) and low-frequency implementations (Zhang and
Fletcher, 2019) of standard algorithms, implicit regularization priors (Arguillere et al., 2016;
Gris et al., 2018) and hybrid CNN-SVF architectures (Yang et al., 2017; Krebs et al., 2019;
Balakrishnan et al., 2019; Shen et al., 2019).

In favourable settings such as neuroanatomy, computing sensible deformations in fractions
of a second now seems within reach. Unfortunately though, no fully satisfying answer has yet
been provided to the problem of anatomical relevance: the quest for data-driven yet robust
shape metrics remains the Holy Grail for researchers in the field.



Figure 1.20: Atlas registration or anatomy transfer, from (Ali-Hamadi et al., 2013). A task of
interest in medical imaging is to transfer knowledge from a high-quality reference atlas (left) to the
body silhouettes of patients (right) - statues and cartoon characters, in this specific occurence! Putting
patients in a reference frame of coordinates is a necessary first step for population studies in neurology
(Klein et al., 2009a). It can also allow researchers to build meaningful representations out of a collection
of raw segmentation masks.

Throughout this work, we discuss the theory that underlies state-of-the-art registration methods in
neuro-anatomy. The main ambition of this thesis is to provide algorithmic and theoretical tools for the
next generation of data-driven deformation models, without ever compromising on robustness and
interpretability.

1.3.1 An accessible introduction to the field.

Written under the supervision of Alain Trouve, this thesis presents algorithmic and theoretical
tools that ease the development of shape models. Combining deep learning methods with
registration algorithms pushes existing frameworks to the limit, and revisiting the foundations
of computational anatomy is a necessary first step.

Keeping it simple. Clarity is our priority: this manuscript should read as an introduction to
the field for a new generation of students. Back in the 90’s, pioneers of medical imaging tended
to have a background in electrical engineering or mathematics. .. But the demographics of the
community is evolving fast. Having graduated in the deep learning era, a majority of students
now come into the field with a skillset focused on data sciences and computer vision.

This culture shift brings fresh ideas to medical imaging but comes with a new challenge:
the preservation of expert knowledge. Classic papers in the field assume familiarity with
mathematical concepts that generally confuse modern students: Sobolev norms, spectral
decompositions, etc. If they are not quickly re-formulated in a simpler way, key advances of
the last decades run the risk of drifting out of the mainstream toolbox.

Acknowledging this danger, we refrain from using jargon whenever possible. We introduce
all relevant theoretical concepts “from scratch”, and generally favour eloquent examples over
abstract definitions. We hope that this thesis will help our colleagues to blend together old and
new ideas for the future of computational anatomy.
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1.3.2 Designing robust geometric methods

Our contributions are detailed at the very beginning of this manuscript, in the extended abstract.
To conclude this introduction, we now put our results in their context, at the intersection
between machine learning and computational anatomy.

Chapter 2: computational tools. First of all, we focus on laying the numerical foundations
of our work: deep learning libraries have revolutionized the way we code, but only support
a limited range of operations. In order to let researchers tackle geometric problems with a
convenient interface, we improve them with a first-rate support for distance-like matrices.

Our routines are packaged in the KeOps library, an extension for PyTorch, NumPy, R and
Matlab: KeOps modules are differentiable, easy to integrate in existing codebases and fully
documented. They have been developed in collaboration with Joan Glaunés and Benjamin
Charlier and provide sizeable performance boosts to many applications.

Chapter 3: from kernels to optimal transport theory. We then proceed to study weighted
sets: measures, in mathematical jargon. This abstraction may be used to work with segmentation
maps in medical imaging, surface meshes in computer graphics or random variables in data
sciences.

After a gentle introduction to measure theory, we discuss the metrics that can be used to
compare these objects with each other. Focusing on optimal transport distances, we present
a new multiscale Sinkhorn algorithm that can be understood as a smooth, high-dimensional
Quicksort. This work results from a collaboration with Thibault S¢journé, Frangois-Xavier
Vialard and Gabriel Peyré: it is packaged in the GeomLoss library for PyTorch and comes with
theoretical guarantees. In practice, Wasserstein distances are now as affordable and easy-to-use
as standard kernel norms - with improved geometric properties.

Chapter 4: applications to shape analysis. The theory of measures is well suited to geometry
processing: the encoding of a surface as a discrete measure (i.e. as a weighted point cloud) is
intrinsically robust to re-parameterizations and re-meshings.

Building upon the general results of the previous chapter, we explain how our progresses
in optimal transport theory can benefit the medical imaging community. In collaboration
with Pierre Roussillon and Pietro Gori, we show how to use the GeomLoss routines to drive
registration algorithms, transfer labels between two distributions or compute geometric shape
templates at an affordable computational cost.

Chapter 5: continuous deformations. A key limitation of optimal transport is that it only
models the displacement of independent particles. In most clinical settings, we must consider
stronger metrics that guarantee the preservation of our shapes’ topologies.

As explained throughout this introduction, designing metrics on spaces of shapes that hit a
sweet spot between robustness, affordability and clinical relevance is an important problem in
medical imaging. To conclude this thesis, we provide an overview of the classic approaches to
this question - from elastic meshes to fluid mechanics. We present a model-agnostic method to
enforce geometric axioms on shape metrics, and discuss the impact of modern numerical tools
on the future of computational anatomy.
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1.3.3 Future works

Two solid results. The work presented in Chapters 2 and 3 is now relatively mature. Some
theoretical questions have been left unanswered, but our main results are now well-packaged,
documented and already bring value to practitioners. Our implementations are bound to be
improved upon, but the LazyTensor abstraction and multiscale Sinkhorn architecture will
certainly stand the test of time.

Real-life applications. Contrastingly, the ideas presented in Chapter 4 are still very much
work in progress. Our experiments on toy datasets suggest that optimal transport could provide
answers to several problems in medical imaging... but validating these theoretical claims in a
clinical setting will take at least a couple of years. We stop short of making any overzealous
statement, and look forward to working with translational researchers on these questions.

Long-term target. Going further, the quest for data-driven shape models is still wide open.
We deem it to be the key challenge of the 2020’s for computational anatomy, and wrote this
thesis accordingly. Relieving our colleagues from the burden of low-level programming has
been our priority, motivating our focus on numerical routines and loss functions. From 2020
onwards, we should now be free to focus on the design of sensible anatomical models.

With the advent of fully automatic segmentation networks, extracting a clean “biomechani-
cal” mesh out of a 3D image is becoming easier by the day. This key advance should enable
the widespread use of pseudo-physical models (Montagnat et al., 2001) and intrinsic feature
extractors (Bronstein et al., 2017) in computational anatomy. Adaptive models are bound
to supersede homogeneous metrics, as in e.g. (Shen et al., 2019): we believe that the tools
presented in this thesis will prove worthwhile to this research program, and intend to work on
the topic in years to come.






Chapter 2

Designing efficient computational tools

in collaboration with Benjamin Charlier (University of Montpellier)

and Joan Alexis Glauneés (Paris 5 University).

Key points - The untapped potential of GPUs, or why PyTorch is not the panacea:

1.

Initially designed for video game consoles, Graphics Processing Units (GPUs) have revolu-
tionized imaging sciences. Scientists can now take advantage of their parallel computing
power with efficient “CUDA” codes and experience x100-10,000 speed-ups compared with
baseline implementations.

Modern deep learning frameworks (Theano, TensorFlow, PyTorch...) provide a conve-
nient interface for scientific computing. These Python libraries combine a GPU backend
with a semi-symbolic engine for automatic differentiation and have the potential to super-
sede Matlab and NumPy in the applied maths community.

However, as of 2020, these major frameworks still keep a narrow focus on (convolutional)
neural networks. As they only provide superficial support for mathematical operations
outside of bitmap convolutions and linear algebra routines, TensorFlow and PyTorch can
be vastly outperformed by custom CUDA codes on a wide collection of problems.

Contributions - Graphics-like performances with a transparent interface:

4

Our KeOps CUDA library implements efficient map-reduce schemes on the GPU, for
arbitrary mathematical formulas: large quadratic operations such as nearest neighbors
searches and kernel dot products now scale up to millions of samples in seconds, with a
linear memory footprint. KeOps also supports automatic differentiation.

The PyKeOps package provides a transparent NumPy/PyTorch interface for the KeOps
routines and is freely available on the PyPi repository (pip install pykeops). Matlab
and R bindings are also available - with a Julia interface coming soon.

KeOps brings graphics-like performances to the machine learning and medical imaging
communities: it allows users to benefit from a x30 speed-up compared with vanilla PyTorch
GPU implementations - i.e. x10,000 compared with standard NumPy CPU routines. An
in-depth documentation, numerous examples and tutorials are provided on our website:
www.kernel-operations.io

23
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2.1 Autodiff and GPU: the winning combination

Modern deep learning frameworks. As discussed in section 1.1.1 (The deep learning revo-
lution), recent advances in “artificial intelligence” have been driven by the diffusion of two
pieces of software:

1. Automatic differentiation. Computing libraries rely on symbolic “historical records”
that are attached to the program’s variables to implement transparent .grad() operators.

2. GPU backends for tensor-based computations. Benefitting from the long-term invest-
ment of Nvidia, recent frameworks provide backends for convolutions and linear algebra
operators that harness the parallel computing power of modern hardware.

These components enable the large scale tuning of the weights that parameterize convo-
lutional neural networks. They were first paired together in a Python package by the Theano
library (Al-Rfou et al., 2016), developed between 2007 and 2018 by the MILA institute. Today,
using the Google and Facebook-backed TensorFlow and PyTorch libraries (Abadi et al., 2015;
Paszke et al., 2017), tens of thousands of users routinely optimize massive objective functions
using gradient descent strategies.

In less than ten years, these frameworks have allowed “GPU” and “backpropagation” to
become buzzwords in applied sciences. However, outside of the graphics (Fernando et al.,
2004) and autodiff (Hascoét and Pascual, 2013) communities, few researchers make the effort
of understanding the inner workings of these convenient black-boxes. In a world where
fast runtimes make or break the popularity of research fields, this oversight has effectively
surrendered most of the scientific initiative in machine learning and image processing to the
lead developers of TensorFlow and PyTorch.
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(a) Subsampled model, with 11,102 triangles. (b) Full model, with 871,414 triangles.

Figure 2.1: Illustrating the gap between the performances of machine learning and graphics routines
with subsampled copies of the Stanford dragon (Curless and Levoy, 1996). (a) Due to intrinsic limi-
tations of the tensor-centric paradigm implemented by TensorFlow and PyTorch, modern Gaussian
processes packages cannot scale to datasets with more than 10,000 samples without making significant
approximations (Gardner et al., 2018) or mobilizing high-end GPU chips for days (Wang et al., 2019).
(b) Relying on a tailormade CUDA backend, the KeOps library allows mathematicians to catch-up with
the state-of-the-art and handle large datasets (i.e. point clouds) with a convenient interface.

A key limitation: the narrow focus on CNNs. Since the days of Theano and its Lasagne
extension, deep learning frameworks have always prioritized the support of stacked convo-
[ution and fully connected layers - to the detriment of other algorithmic structures. Among
mathematicians, this lack of investment in general purpose frameworks has led to a strong
underrating of modern hardware: let’s just cite the common belief, held in the machine learning
community, that the ceiling for exact kernel methods on a single device lies around 10* samples
(Hensman et al., 2013)... At a time when off-the-shelf graphical engines render millions of
triangles at 60 frames per second on gaming laptops - see Figure 2.1.

Our contribution: stepping outside of the tensor-centric paradigm. Bringing graphics-like
performances to our fellow mathematicians is the main goal of this thesis: in 2020, researchers
should be allowed to stay creative without having to compromise too much on performances.

After a brief, high-level crash-course on backpropagation and the intricacies of GPU
programming, we present our most important contribution to the field: the KeOps library,
developed in collaboration with Benjamin Charlier and Joan Alexis Glaunés from 2017 onwards.

Through a convenient symbolic abstraction, the “LazyTensor” wrapper, this Python-
Matlab-R package provides efficient support for kernel and distance-like matrices, without
ever compromising on usability. Allowing researchers to play with algorithms that do not solely
rely on convolutions and tensor manipulations, this toolbox lies at the heart of our progresses
in optimal transport theory and computational anatomy.
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2.1.1 What is a GPU?

Before going any further, we take some time to answer three questions on Graphics Processing
Units, the workhorses of modern data sciences:

1. What is, precisely, a GPU?
2. How does GPU programming differ from standard (sequential) coding?
3. How much time and money does it take to benefit from this hardware revolution?

Parallel computing. At first glance, GPUs can be described as clusters of cheap but efficient
workers that are sold by the thousands on affordable chips. Modern devices come with 4,000+
computing cores, 10+ Gigabytes of memory and can be bought for less than 1,5008$: they
are able to compute large matrix-vector products at a fraction of the cost of a traditional high
performance platform. As shown Figure 2.2, hardware constructors focus their communication
around a simple message: the “GPU revolution” is that of an economy of scale.

Memory management. As soon as we start diving into the specialized literature, however,
things become murkier: extracting peak performances from a pool of 4,000+ workers is no
mean feat. Crucially, just like administrators of XIX™ century bureaus, hardware designers
have to enforce guidelines on the behavior of their cores and hard-code structuring constraints
in the circuitry of their devices. Abstracted through the CUDA memory model, the main rules
of GPU programming are illustrated in Figure 2.3 and can be summarized as follows:

1. GPU threads are organized in interchangeable blocks of up to 1,024 workers, which can
be identified to the many teams of a large State department.

2. Far from lying scattered in the device memory, information is finely managed and stored
in several layers of hardware. In practice, pushing aside some technicalities, scientific
CUDA programs may rely on four different types of memory:

1. The Host memory, i.e. the usual RAM of the computer that is managed by the main
CPU program. It is located far away from the GPU’s computing circuits, which
cannot access it directly. In our XIX'h century analogy, it would be represented by
the heaps of documents stored in other State offices, possibly overseas.

2. The Device memory, which plays the role of a local RAM chip embedded on the
GPU. This is the library of our State office, where information is stored before
being processed by workers: depending on the model, recent GPUs may be able to
store up to 32 Gigabytes of data in this convenient storage location.

3. The Shared memory which is, well, shared by all threads in a CUDA block. This
small buffer may only store up to ~96 Kilobytes of data and can be compared to
the office shelf of Figure 2.3.c. Crucially, its latency is much lower than that of the
Device memory: optimizing its usage in the KeOps library was the key to a x50
speed-up for all kernel-related operations.

4. The Register or Thread memory, a very low-latency buffer that is uniquely at-
tributed to each worker - a bit like sheets of scrap paper on a desk. A maximum of
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(b) Mythbusters demo GPU wversus CPU, from the
Nvidia YouTube channel.

Figure 2.2: Promotional material taken from the Nvidia website. Most sensibly, hardware constructors
focus their marketing strategy on the raw computing power of GPUs and brush under the carpet the
key specificity of CUDA programming: finely grained memory management.
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Figure 2.3: Abiding by the same con-
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GPUs (a) closely resembles that of
XIXh century State departments (b-
c) which had to keep track of account-
ing records for large overseas empires.
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transfers (3,4) to prevent traffic jams
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2. Device Memory
ADMIRALTY AND WAR OFFIGES

arouno.

=1
|
T

mri1rry
wirrTy

B—=—

WHITEHALL.

(b) Ground plan of the Admiralty and War Offices, built in 1884.

(c) Inside view of a computational block.


www.nvidia.com

N N R W N =

28 Chapter 2 Designing efficient computational tools

~256 Kilobytes per block may be attributed this way: values in excess are stored in
the (high-latency) Local memory by the compiler.

3. To leverage modern GPUs to the best of their abilities, eficient algorithms should thus
obey to four guiding principles:

1. Promote block-wise parallelism. Threads can interact with each other during the
execution of a program, but may only do so inside their own CUDA block.

2. Reduce Host«+>Device memory transfers. Incessant back-and-forth copies be-
tween the “CPU” and “GPU” RAMs may quickly become the bottleneck of mod-
ern research codes. Fortunately, the TensorFlow and PyTorch APIs now allow
users to store and manipulate their data on the device, without ever coming back
to the Host memory chip.

3. Reduce Device<>Shared/Register memory transfers. Due to the (relatively)
high latency of the Device memory, programmers should refrain from storing and
handling intermediate buffers outside of the Shared memory of a CUDA block.
Unfortunately, the high-level APIs of modern deep learning libraries do not allow
users to get such a fine-grained control on their computations: this is the main
limitation that the KeOps package strives to mitigate, with minimal impact on users’
existing codebases.

4. Promote block-wise memory accesses. GPUs’ memory circuits are wired in a
way that promotes contiguous, page-wise exchanges between the Device and the
Shared memories. Initially designed to process triangles and textures at ever faster
rates, GPUs are thus somewhat ill-suited to the processing of sparse matrices which
rely on rare but random memory accesses.

The CUDA development toolkit. Once these constraints are understood and taken into
account, CUDA programming is suprisingly easy. Well aware that the promising “Al computing’
GPU market would never boom without a strong investment, Nvidia devoted an impressive
amount of effort to the creation of a comfortable development environment: an eflicient
compiler, good profiling tools, robust libraries. .. and a comprehensive documentation! To
get started with GPU programming, a perfect introduction is the series of tutorials written by
Mark Harris on the Nvidia devblog:

2

devblogs.nvidia.com/even-easier-introduction-cuda

In a nutshell, typical CUDA C++ files look like:

// Import your favorite libraries:
#include <tostream>
#include <math.h>

// The __global__ keyword indicates that the following code is to
// be ezecuted on the GPU by blocks of CUDA threads, in parallel.
// Pointers refer to arrays stored on the Device memory:


https://devblogs.nvidia.com/even-easier-introduction-cuda/
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8 __global__
9 void My_CUDA_kernel(int parameter, float *device_data, float *device_output) {
10

11 // The indices of the current thread and CUDA block should be

12 // used to assign each worker to its place in the computation plan:
13 int i = blockIdx.x * blockDim.x + threadldx.x;

14

15 // The Shared memory is accessed through a raw C++ pointer:

16 extern __shared__ float shared_mem[];

17

18 // Local variables may be declared as usual.

19 // They'll be stored in the Thread memory whenever possible:

20 float some_value = 0O;

21

2 // Transfers of information are handled with a transparent interface:
23 some_value = device_datal[il; // Thread memory <- Device memory

24 shared_mem[i] = device_datal[il; // Shared memory <- Device memory

25

26 // Whenever required, programmers may create checkpoints for all threads
27 // in a CUDA block. Needless to say, this may impact performances.

28 __syncthreads () ;

29

30 // Computations are written in standard C++ and ezecuted in parallel:
31 for(int k = 0; k < parameter; k++) {

32 // Blablabla

33 }

34

35 // Finally, results can be written back to the Device memory with:

36 device_output[i] = some_value; // Device memory <- Thread memory
37}

38

39

40 // The main C++ program, ezecuted by the CPU:
41 int main(void) {

42 int N = 1024; float *host_data, *host_out, *device_data, *device_out;

43

44 // Allocate memory on the device — the API %is a bit heavy:

45 cudaMalloc((void#**) &device_data, N#*sizeof(float));

46 cudaMemcpy (device_data, host_data, N*sizeof (float), cudaMemcpyHostToDevice);
47

48 // Set the parameters of the CUDA block and run our kernel on the GPU:

49 int block_size = 128; int grid_size = N / block_size;

50 int shared_mem_size = 2 * block_size * sizeof(float);

51 My_CUDA_kernel<<<grid_size, block_size, shared_mem_size>>>(...);

52

53 cudaDeviceSynchronize(); // Wait for the GPU to finish its job...

54 cudaMemcpy (host_out, device_out, N*sizeof (float), cudaMemcpyDeviceToHost) ;
55 ... // Do whatever you want with the result "output array”...

56 cudaFree(device_data); // And don't forget to free the allocated memory!
57 return O;

58}
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How much is this going to cost? Assuming some level of familiarity with C++ programming,
designing a CUDA application is thus relatively easy. Thanks to the recent availability of
modern - and incredibly convenient - Python/C++ interfaces such as Pybind11 (Jakob et al.,
2017), the path that takes scientists from CUDA 101 tutorials to fully-fledged open source
libraries is now well trodden. But how expensive are these solutions for academic users?

Nvidia’s de facto monopoly. Due to the costly nature of hardware design, the GPU market
is an oligopoly with no more than three constructors in business:

1. Intel, which produces integrated graphics chips for the mass-consumer market;
2. Nvidia, the established producer of high-end devices;
3. AMD, the eternal competitor of Nvidia on the gaming and cryptocurrency markets.

Unfortunately for academics, out of those three players, Nvidia is the only one that invests
seriously in the “AI” and “scientific computing” segments, backing up its hardware with state-
of-the-art computing libraries. As far as researchers are concerned, GPU computing is thus a
captive market, with two ranges of products to pick from:

1. The GeForce gaming range, with a flagship model sold for ~1,500% and slightly defective
or more compact chips marketed at lower prices. As of 2020, the GeForce RTX 2080 Ti
provides the best value for money for generic academic purposes.

2. The data center series, whose slightly more versatile chips are typically sold for ~10,000$
per unit. This higher price is justified by a larger Device memory (from 11 Gb to 32
Gb), efficient support of float64 computations, marginal improvements in the circuits’
architectures... and a recently updated license agreement (2018 +) for the CUDA drivers,
which forbids data centers from relying on GeForce devices.

Cloud solutions. Dedicated machines are must-buys for deep learning research teams who
intend to use their GPUs full-time for the training of neural architectures. However, for
theorists and mathematicians who only ever need to use the latest hardware once a month
to produce figures and benchmarks, a smarter option may be to rely on cloud rental services.
At affordable rates of ~1-3$ per hour - which correspond to amortization periods of one or
two months of 24/7 usage - Google, Amazon or Microsoft let customers access their latest
machines, free of any maintenance hassle.

Google Colab. Most interestingly, Google provides free GPU sessions to all “GMail” accounts
at colab.research.google.com. The constraints that are put on these sessions are clear: 12
hours shelf-life of the virtual machines, privacy concerns when working with real data... But
they’re absolutely worth trying out for “casual” students and researchers.

This work. For the sake of reproducibility and ease of use, we made sure that all the packages
and experiments presented in this thesis run out-of-the-box on free Colab sessions. Usu-
ally, typing “!'pip install pykeops[full]” in a Colab cell is everything it takes to try our
software online: so please play around with these tools, they’re free as in freedom for everything
that’s explained here, and free as in beer for the rest!


https://colab.research.google.com
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2.1.2 Automatic differentiation: the backpropagation algorithm

Now that the main rules of GPU programming have been exposed, let us recap the funda-
mentals of backpropagation or reverse accumulation AD, the algorithm that allows Automatic
Differentiation (AD) engines to differentiate scalar-valued computer programs F : R" — R
efliciently. As we uncover the methods that are hidden behind the transparent “. grad ()” calls
of modern libraries, we will hopefully allow the reader to understand the rules and limitations
of automatic differentiation engines.

Differential. First of all, let us make our notations precise by recalling the mathematical
definition of the differential of a smooth function.

Definition 2.1 (Differential). Let (X, || - |[x) and (Y, || - ||y") be two normed vector spaces. A
function F': X — Y is said to be (Fréchet) differentiable at 29 € X if there exists a continuous
linear operator £ : X — Y such that:

Vér e X, F(xg+ox)=F(xo)+ L(0x)+ o(||0x] x) (2.1)

or equivalently:

li (20 +02) — F(zo) — L(62)[ly
11m
520 6] x

= 0. (2.2)

If it exists, such a linear operator £ is unique. It is called the differential of F' at x and is
denoted by £ = d; F(x(). We use a dot symbol to denote the application of £, as in

L(dz) = dy F(xp) - ox . (2.3)

Jacobian matrix. Let us consider the spaces X = R™ and Y = R™ endowed with their usual
(Euclidean) metric structures. Given a function F' = (F!, ... F™) that is differentiable at
a location z( in R", the matrix of the linear operator d, F'(zy) in the canonical basis is the
Jacobian matrix of partial derivatives:

1 1
95+ (o) o (w0)
I GO & 24
ot (o) o g (o)

Gradient vector. When F' is scalar-valued (m = 1), the Jacobian matrix is a line: to retrieve a
column gradient vector in R™, one usually considers its transpose. To define this manipulation in
a way that is coordinate-free, independent of the choice of a reference basis, we must assume
that X is a Hilbert space, i.e. that its metric structure is complete and comes from an inner
product(-, <)y : X x X — R. Then, we can write:

Definition 2.2 (Gradient vector). Let (X, (-, -)y) be a Hilbert space, x( a reference location
in X and F' : X — Rafunction that is differentiable at ;9. As its differential d, F'(z) : X — R
at x is a continunous linear form, the Riesz representation theorem ensures that there exists a
unique vector V,F(zg) € X, the gradient of F at 2 such that

Vére X, dyF(zg)-dx=(VyF(z0), 0x)y . (2.5)
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Computing gradients: finite differences are not a good solution. A naive approach to
the computation of gradient vectors, the so-called finite differences scheme, is to use a Taylor
expansion of F' around ¢ and write that for small enough values of dt,

0,1 F(x0) F(zg+dt-(1,0,0,...,0)) — F(xq)
0,2 5t - -

V. F(zy) = . }?(xo) N % F(zo+ ot - (0, 1,(:), ,0)) — F(x0) | 2.6)
On F () F(zo+ 6t-(0,0,0,...,1)) — F(xq)

This idea is simple to implement, but also requires (n + 1) evaluations of the function F' to
compute a single gradient vector! As soon as the dimension n of the input space exceeds 10
or 100, this stops being tractable: just like inverting a full matrix A is not a sensible way of
solving the linear system “Ax = b”, one should not use finite differences - or any equivalent
forward method - to compute the gradient of a scalar-valued objective.

Generalized gradient. To go beyond this simple scheme, we need to work with the gradient
of vector-valued applications. Once again, coordinate-free definitions rely on scalar products:

Definition 2.3 (Generalized gradient). Let (X, (-, -)y) and (Y, (-, -)y-) be two Hilbert
spaces, and let ' : X — Y be a function that is differentiable at xy € X. The adjoint:

(do F)*(z0) : Y* — X* 2.7)
of the differential induces a continuous linear map:
d) F(zo): Y - X (2.8)

through the Riesz representation theorem, called the generalized gradient of F' at 2 with
respect to the Hilbertian structures of X and Y.

Calculus. The generalized gradient appears in the infinitesimal development of scalar quantities
computed from F'(z) around a reference location xg. Let o € Y™ be a continuous linear form
on Y, identified with a vector a € Y through the Riesz representation theorem:

VyeY, (a,y) = aly) = (a,y)y- (2.9)
Then, for any increment dz € X, we can write that:

(o, F(zg 4 02)) = (a, F(x0)) + ( «, dzF(x9)-0x) + o(||dz]x) (2.10)
= (a,F(20)) + ((daF)"(20) -, 6z) + o([oz]x)  (2.11)
ie. (a,F(zo+0z))y = (a,F(xo))y + ( d)F(xo)-a, 6z )x + of||oz]lx). (2.12)

Fundamental example. If X and Y are respectively equal to R™, R and are endowed with the
standard L2-Euclidean dot products:

n
(2,3 g = > i} and v,y e = yy, (2.13)
=1
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the matrix of d] F(zo) : R — R in the canonical basis is equal to the vector V,F(z) of
directional derivatives:

VaF(z0) = d) F(xo) - 1. (2.14)

Going further, the matrix of the generalized gradient in the canonical basis coincides with
the transpose of the Jacobian matrix whenever the scalar products considered are equal to the
“canonical” ones. Everything is consistent.

Generalized gradients stress the influence of the metric structure. Chain rule. This
generalized “metric” definition of the gradient has two major advantages over the simple notion
of “vector of partial derivatives”:

1. It stresses the fact that a gradient is always defined with respect to a metric structure, not a
basis. In high-dimensional settings, as the equivalence of norms stops being effective, the
choice of an appropriate descent metric becomes a key regularization prior for first-order
optimization schemes. Encoded through a change of variables on the parameters that
we strive to optimize, this modelling choice usually has a strong impact on machine
learning pipelines (Amari, 1998; Ulyanov et al., 2018; Surace et al., 2018); we discuss it
in section 5.2.3, for shape registration.

2. Tt allows us to compose gradients without reserve. Indeed, if X, Y, Z are three Hilbert
spacesand if F = Ho G withG : X — Y and H : Y — Z, then for all 2y € X, the
chain rule asserts that

doF(z0) = dyH(G (o)) 0 doG (o) . (2.15)
With the usual flip for the composition of adjoint (i.e. transposed) operators, we get:
[de F'(20)]" = [dxG(20)]" 0 [dy H(G(x0))]" (2.16)
ie. d; F(zo) = d,G(zo) o d,H(G(x0)). (2.17)
Backpropagation. In practice, the function F' : R” — R to differentiate is defined as a

composition F' = F,0---0 Fy o I} of elementary functions F; : RNi-1 — RNi where Ng = n
and N,, = 1: the lines of our program.

b} ho8 . F,
R = RNo RN RN2 e RN> = R

To keep the notations simple, we now assume that all the input and output spaces R are
endowed with their canonical L?-Euclidean metrics. The gradient vector V. F(z¢) that we
strive to compute, at an arbitrary location xy € R", is the image of 1 € R by the linear map:

d! F(z0) : R — R". (2.18)
Thanks to the chain rule, we can write that:

d; F(z0) - 1 = d; Fi(0) o dy Fa(Fi(w0)) o -- o dy Fy( Fpoa (- (Fi(wp)))) - 1 (2.19)
= d Fi(zo) - dy Fa( 1 ) oo dy By Tpo1 )-1 (2.20)
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where the x;’s = F; o -+ o Fi(z) denote the intermediate results in the computation of
zp = F(x0). Assuming that the forward and backward operators:

F, :  RN1 o RN
x = Fi(x) (2.21)
i dlF o« RNt xRNi 5 RN (2.22)
(z,a) — dFi(z)-a ’

are known and encoded as computer programs, we can thus compute both F(z() and
V. F(zo) = d] F(x0) - 1 with a forward-backward pass through the following diagram:

R" RNo RN RN2 - RNr = R
input v F Yom YL Fy u; (o)
0 0 { [ output 7 0
output input
T T T T
dxF(:IZ()) 1 “ dxFl - szQ o dpr * 1
0 1 2 Lp
m m m m
R]\], RN[ R\_; ]R\]p

In a nutshell. The backpropagation algorithm can be cut in two steps that correspond to the
two lines of the diagram above:

1. Starting from o € R" = RNo, compute and store in memory the successive vectors
z; € RNi, The last one, zp € R, is equal to the value of the objective F(zo).

2. Starting from the canonical value of zj, = 1 € R, compute the successive dual vectors:
T
x; = dy Fipa(xg) - w7y (2.23)

The last one, zf; € R", is equal to the gradient vector V. F(z0) = d,) F(x0) - 1.

Implementation and performances. This forward-backward procedure can be generalized to
all acyclic computational graphs. Hence, provided that the forward and backward operators
defined Egs. (2.21-2.22) are implemented and available, we can compute automatically the
gradient of any symbolic procedure that is written as a succession of elementary differentiable
operations: the F}’s.

In practice, the backwards of usual operations are seldom more costly than 4-5 applications
of the corresponding forward operators: differentiating a polynomial gives us a polynomial,
logarithms become pointwise inversions, etc. Ergo, if one has enough memory at hand to
store the intermediate results zo, ..., 2,1 during the forward pass, the backpropagation
algorithm is an automatic and time-effective way of computing the gradients of generic
scalar-valued functions, with runtimes that do not exceed that of four or five applications
of the forward program. This statement may come as a shock to first-time users of deep
learning frameworks; but as we are about to see, it is both true and effective.
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2.1.3 Working with high-level computational libraries

To provide a transparent interface for the backpropagation algorithm, deep learning libraries
rely on three core modules:

1. A comprehensive list of operations provided to end-users, with forward and backward
routines implemented next to each other.

2. Efficient CPU and GPU backends for those routines, which allow users to take advan-
tage of their hardware without having to write a single line of C++.

3. A high-level graph manipulation engine for symbolic computations, which executes
the backpropagation’s “backward pass” whenever a gradient value is required.

A minimal working example. Let us illustrate the underlying mechanics of PyTorch - the
most popular framework among academics - in a simple case: the computation of the Gaussian
squared kernel norm:

1 N
H(q,p) = i.zlk(qi—Qj) (pi»pj)gp  where  k(z) = exp(—||lz[|*/20%) (2.24)
i,j=
1

= 5(;0, KgqD)gpnxo where  (Kyq)i; = k(g —q5) , (2.25)

and of its gradients with respect to the input arrays (¢;) € RN*P and (p;) € RN*P. Using the
standard (tensorized) PyTorch interface, programmers may write:

import torch # GPU + autodiff library
from torchviz import make_dot # See github.com/szagoruyko/pytorchviz

# With PyTorch, using the GPU is that simple:

use_gpu = torch.cuda.is_available()

dtype = torch.cuda.FloatTensor if use_gpu else torch.FloatTensor
# Under the hood, this flag determines the backend that is to be
# used for forward and backward operations, which have all been

# implemented both in pure CPU and GPU (CUDA) code.

# Step 1: Define numerical tensors (from scratch or numpy) —-——-————————————————=-
N, D = 1000, 3 # Work with clouds of 1,000 points in 3D

# Generate arbitrary arrays on the host (CPU) or device (GPU):

= torch.rand(N, D).type(dtype) # random tensor of shape (N,D)

torch.rand(N, D).type(dtype) # random tensor of shape (N,D)
torch.Tensor([2.5]) .type(dtype) # deviation "sigma" of our kernel

n o Q
I

Step 2: Ask PyTorch to keep track of q and p's children ————————————————————-
In this demo, we won't try to finme tune the kernel and

do not need any derivative with respect to sigma:

.requires_grad = True

.requires_grad = True

T Q o oH R
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# Step 3: Actual computations

# Every PyTorch instruction is executed on-the-fly, but the graph API
# 'torch.autograd' keeps track of the operations and stores in memory
# the intermediate results that are needed for the backward pass.

None,:] # shape (N,D) -> (N,1,D)

L. = qlls,
a_j

A%

q[None,:,:]

# shape (N,D) -> (1,N,D)
D_ij = ((g_i - q_j) ** 2).sum(dim=2)
K_ij = (- D_ij / (2 * s**2) ).exp()

K_ij | p # matriz multiplication. (N,N) @ (N,D) = (N,D)

# Finally, compute the kernel nmorm H(q,p):

H = .5 * torch.dot( p.view(-1), v.view(-1) ) # .5 * <p,v>

# Display the computational graph in the figure below, annotated by hand:

make_dot(H, {'q':q, 'p':p}).render(view=True)
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Encoding formulas as tree-like objects. With PyTorch, tensor variables are much more than
plain numerical arrays. Any tensor that descends from a differentiable variable (marked with
the flag .requires_grad = True) possesses two essential attributes:

1. A .data pointer which refers to a C++ array that may be stored in either Host (CPU)
or Device (GPU) memories.

2. A .grad_fn recursive tree-like object, which records the computational history of the
tensor and can be used whenever a backward pass is required by the . grad () operator.

In the picture above, we displayed the “H. grad_fn” attribute of our kernel norm using the
GraphViz Dot program (Gansner and North, 2000). This acyclic graph is the exact equivalent
of the second “backward” line of the backpropagation diagram that we presented page 34:

White nodes stand for backward operators d;) Fj 1 : (z;, 27 1) o
The green leave is the first covariable 3, € R, the “gradient with respect to the output”
that is initialized to 1 by default.

« %k

Red leaves are the covariables “z(;”, the gradients that we are about to compute.
Blue leaves are the stored values z; that were computed during the forward pass.

A well-packaged backropagation engine. Thanks to the groundwork done by the PyTorch
symbolic engine, computing gradients is now as simple as writing:

grad_q, grad_p = torch.autograd.grad( H, [q, p]l ) # pair of (N,D) tensors

That’s it - and it goes pretty fast! As should be evident by now, the blend of semi-symbolic
calculus and parallel performances that deep learning frameworks provide is a game changer for
applied mathematicians. Before going any further, we strongly advise readers to try out these
scripts on their machines and go through the “Matlab/NumPy to PyTorch” migration guide,
which is available at:

pytorch.org/tutorials/beginner/pytorch_with_examples.html

Custom operators, higher-order differentiation. As explained in this tutorial, creating new
pairs of (forward, backward) PyTorch operators is easy. The “torch.autograd.Function”
module allows users to inject their own C++ code in a PyTorch program and is a conve-
nient interface for the developers of PyTorch_Geometric (Fey and Lenssen, 2019), GPytorch
(Gardner et al., 2018) and other contributed extensions to the vanilla framework.

Please note that the PyTorch engine also supports the computation of high-order gradients
through the “create_graph = True” optional argument of the . grad () operator. Even though
full Hessian matrices may not be computed efficiently using backprop-like strategies - they’re
typically way too large anyway - formulas that involve gradients may themselves be understood
as “vector computer programs” and differentiated accordingly. In practice, developers of
contributed libraries just have to make sure that their backward operators rely on well-defined
forward routines, thus allowing the autograd engine to bootstrap the computation of high-
order derivatives.


https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
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2.2 Going beyond tensor-based computations with the KeOps CUDA library

Memory usage, performances. Out of the box, the tensor-centric interfaces of PyTorch,
TensorFlow, Matlab and NumPy strike a good balance between power and simplicity: explicit
matrices allow users to implement engineering tools with a code that stays close to the maths.

But there is a limit to what full matrices can handle: whenever the operators involved
present some structure, baseline matrix-vector products can be vastly outperformed by
domain-specific implementations. Some examples of this rule are well-known and supported
by major frameworks through dedicated methods and “layers”:

® In image processing, convolutions, Fourier and wavelet transforms rely on ad hoc
schemes that do not involve circulant or Vandermonde matrices.

® On graph or mesh data, sparse matrices are encoded as lists of indices plus coeflicients
and provide support for local operators: graph Laplacians, divergences, etc.

KeOps: adding support for symbolic tensors. Surprisingly, though, little to no effort has
been made to support generic mathematical or “symbolic” matrices, which are not sparse in
the traditional sense but can nevertheless be encoded compactly in memory using a symbolic
formula and some small data arrays.

Allowing the users of kernel or distance matrices to bypass the transfer and storage of
superfluous quadratic buffers is the main purpose of the KeOps library. As a bite-sized example
of our interface, the program below is a revision of the script presented page 36 that scales up
to clouds of N = 1,000,000 samples in less than a second on modern hardware, with a
linear memory footprint - remark the absence of any N-by-N buffer in the graph.

from pykeops.torch import LazyTensor # Semi-symbolic wrapper for torch Tensors
g_i = LazyTensor( q[:,None,:] ) # (N,D) Tensor -> (N,1,D) Symbolic Tensor
q_j = LazyTensor( q[Nomne,:,:] ) # (N,D) Tensor -> (1,N,D) Symbolic Tensor

D_ij = ((q_i - q_j) ** 2).sum(dim=2) # Symbolic matriz of squared distances
K_ij = (- D_ij / (2 * s*x2) ).exp() # Symbolic Gaussian kernel matriz
v = K_ij @p # Genuine torch Tensor. (N,N) @ (N,D) = (N,D)

# Finally, compute the kernel morm H(q,p):

H = .5 * torch.dot( p.view(-1), v.view(-1) ) # .5 * <p,v>

# Display the computational graph in the figure below, annotated by hand:
make_dot(H, {'q':q, 'p':p}).render(view=True)
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2.2.1 The key to high performances: symbolic LazyTensors

Current state of the art. This level of performance may surprise readers who grew accustomed
to the limitations of tensor-centric frameworks. As discussed in Section 2.1, common knowledge
in the machine learning community asserts that “kernel” computations can not scale to large
point clouds with the CUDA backends of modern libraries: N-by-N kernel matrices stop fitting
contiguously on the Device memory as soon as N exceeds some chip-dependent threshold in
the 10,000-50, 000 range.

Focusing on the key operation involved, the kernel dot product or discrete convolution:

KP RMXD % RNXD % RNXE — RMXE

((:), (y5), (b)) —  (a;) with a; = Z?le k(zi,9;) b; (2.26)

most authors are tempted to introduce an M-by-N kernel matrix K;; = k(z;,y;) and implement
the operation above as a matrix dot product

KP((x:), (), (bj)) = (Kij) - (bs) - (2.27)

To accelerate computations, a flourishing literature has then focused on the construction of low-
rank approximations of the linear operator (K;;) as detailed Eq. (2.56). Common methods
rely on random sampling schemes, multiscale decompositions of the data or take advantage of
specific properties of the kernel function k - in our case, a convenient Gaussian blob.

Our focus: exact Map-Reduce computations. As discussed in detail in Section 2.3.3 (Future
works) these approximation strategies have a long history and a clear intrinsic value. Never-
theless, acknowledging the fact that progresses can also be made through low-level software
engineering, we decide to tackle this problem in a completely different way. Brushing aside the
elegant but inefficient matrix decomposition of Eq. (2.27), the KeOps package directly optimizes
the kernel sum of Eq. (2.26), understanding it as a Map-Reduce composition of the operators:

Map : RP xRP xRE —  RE

(r.9.0) > k(zy)b (2.28)

. mE E E
and Reduce : R" x ER — R / (2.29)
(a,a’) +— a+a
over the indexing indices i € [1, M] and reduction indices j €1, N].

Parenthesis: are we re-packaging the wheel? This approach is common in the computer
graphics literature but tends to be strictly limited to C++/CUDA programming guides: with
an emphasis put on real-time rendering and explicit models, the graphics community never felt
the need to develop high-level libraries that would be suited to machine learning research.

In this context, our scientific contribution does not lie in any new theorem or algorithm.
Described in the next few pages, the tools on which our package relies (the backpropagation
algorithm, online Map-Reduce CUDA schemes and symbolic variadic templating) are all well-
known in their respective communities. Our original effort is to combine them in a versatile
framework, endowed with a transparent interface and a comprehensive documentation: this
allows them to reach a much wider audience and have, hopetully, a fertilizing impact.
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A generic framework that suits the needs of researchers. The seminal Theano library com-
bined the flexibility of high-level Python frameworks with a first-class support of convolutional
architectures on the GPU. In the same vein, the KeOps package puts the spotlight on Map-
Reduce schemes for (off-grid) sampled data, an algorithmic structure that we deem to be relevant
in many fields that are related to data sciences and shape analysis.

Removing all the Python sugar coating, the workhorse of our library is a Generic Reduc-
tion (Genred) operator that supports a wide family of formulas. Let us assume that we have:

1. A collection p*,p?, ..., p" of vectors.

2. A collection z}, 22, ..., 2% of vector sequences, indexed by an integer i in[1, M].

3. A collection yjl-, y]2-, . ,y}/ of vector sequences, indexed by an integer j in[1, N].

4. A vector-valued formula F(p!,p?, ...z} 22,. .. ,y]l, y]z, ... ) on these input vectors.
5. A Reduction operation that may be a sum, an arg-min, a log-sum-exp, etc.

Then, referring to the p’s as parameters, the z;’s as i-variables and the y;’s as j-variables, a
single KeOps “Genred” call allows users to compute efficiently the expression

a; = R?;i}lct%\cl)n [F(pl,pQ,...,acil,a:%,...,y]l,yjz,...)] for i =1,...,M, (2.30)
alongside its derivatives with respect to all variables and parameters. As discussed in Sec-
tion 2.3.2 (Applications), this level of generality allows KeOps to handle K-nearest-neighbors
classification, K-means clustering, Gaussian mixture model-fitting and many other tasks.

The LazyTensor abstraction. Implementation details are covered in the next few pages but
probably won’t interest most mathematicians. Wary of making users step outside of the
convenient tensor-centric paradigm, we give a matrix-like interface to the unusual computation
of Eq. (2.30): through a new “LazyTensor” wrapper for NumPy arrays and PyTorch tensors,
users can specify formulas F' without ever leaving the comfort of a NumPy-like interface.

As discussed page 38, KeOps LazyTensors embody the concept of “symbolic” tensors
that are not sparse in the traditional sense, but can nevertheless be handled more efficiently
than large M-by-N arrays if we use:

1. A symbolic mathematical formula F, the “. formula” attribute that is encoded as a

well-formed string, manipulated with Python operations and parsed at reduction time.

2. A collection of “small” data arrays p, = and y, the “.variables” list of parameters, i-

and j-variables that are needed to evaluate the formula F.
Coming back to the example of page 38, we can display the LazyTensor “K_ij” using:

>>> print(K_ij)

KeOps LazyTensor
formula: Exp((Minus(Sum(Square((Var(0,3,0) - Var(1,3,1))))) / Var(2,1,2)))
shape: (1000, 1000)

Here, the “Var (index, dimension, [il|jl|parameter])” placeholders refer to the data
arrays q_1i, q_j and 1/ (2*s**2) that are stored in the list of K_ij.variables. As we call a
supported reduction operator such as the matrix dot-product “@” on K_i j, this information is
fed to the Genred engine and a result is returned as a genuine, differentiable PyTorch tensor:
things just work smoothly, with full support of operator broadcasting and batch dimensions.
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2.2.2 Efficient map-reduce schemes on the GPU

But how does KeOps handle symbolic formulas on the GPU? How can its routines outperform
the CUDA backends of deep learning frameworks by such a wide margin?

Architecture of the KeOps repository. To answer these questions, we need to dive into
the mixed C++/Python/Matlab codebase of the KeOps package, whose structure can be
summarized as follows:

- The pykeops/ folder, with common/, numpy/ and torch/ subfolders contains our
Python wrappers and relies on the fantastic PyBind11 library (Jakob et al., 2017).

- The keopslab/ folder provides a collection of entry points for Matlab scripts.

- The keops/ folder contains our C++ files and the associated compilation scripts. The
generic KeOps engine that we are now about to discuss is implemented in the core/
subfolder which contains:

- The 1link_autodiff.cpp and link_autodiff.cu “main” C++ files, which define
the methods that binding libraries may use to create high-level modules.

- The pack/ subfolder, which defines abstract types for lists and tuples within the
C++ templating system. Using advanced concepts that were introduced with the
C++11 revision, this file allows us to drive the nvce compiler with declarative
“variadic templating” and generate routines that manipulate an arbitrary number of
parameters, i- and j-variables.

- The autodiff/ subfolder, which defines the primitives of the KeOps symbolic
syntax: variables, abstract unary and binary operations, indexing methods.

- The mapreduce/GpuConv*_*.cu CUDA files, which implement our massively
parallel Map-Reduce schemes. These files contain the core logic of the KeOps
library.

- Themapreduce/CpuConv*_x* . cpp C++ files, which implement simple Map-Reduce
schemes using “for” loops. They can be used to test the correctness of our parallel
implementations and provide a fall-back mode to users who do not have access to
GPU chips on their machines.

- The reductions/ subfolder, which implement the supported Reduction opera-
tions: sum, arg-min, log-sum-exp, etc.

- The formulas/ subfolder, which implement the atomic operations that users may
combine to define vector-valued formulas F'. These headers define the parsing
grammar for the “.formula” attribute of LazyTensors, which is understood as
an abstract recursive type by the C++ compiler.

As evidenced here, the KeOps engine is heavily reliant on modern features of the C++
language: every time Genred encounters a new instance of Eq. (2.30) (up to the values of M,
N and the data arrays which are free to change between every call), the string that specifies a
generic formula is parsed by the compiler and a new “.d11” or “. so” shared object is generated
before being executed on the relevant Python, R or Matlab tensors.
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(a) Simple, ideal scheme: each thread i« computes (b) Due to the importance of the Shared memory and
one of the a;’s by looping over the reduction block-wise memory accesses, (a) is cut in K-by-K tiles to
index j and eating-up the values of F' on-the-fly. ensure an optimal management of the y;’s.

Figure 2.4: The default 1D Map-Reduce scheme used by the KeOps Genred engine can be described as
a simple loop over the reduction index “;” (a) that is optimized for GPU chips (b).

1D Map-Reduce scheme. The most important piece of code in the KeOps package is the one-
dimensional, heavily templated Map-Reduce scheme that can be found in the GpuConviD. cu
CUDA file. Used as a default backend by the Genred operator, this distributed algorithm relies
on principles that are exposed in the reference CUDA programming guide:

docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

In a nutshell, this scheme can be described as a tiled “for” loop on the reduction index j,
parallelized over the sole index i - hence the “1D” denomination - which reduces the computed
values of F(p', ..., z{,...,yj,...) on-thely, without ever storing or sending them to the
Device memory.

The algorithm. More precisely, as illustrated in Figure 2.4 with the standard C++ convention

of indexes that range “from 0 to N — 1”, we can decompose the instructions executed by our
CUDA blocks as follows:

1. Each block of K threads is attributed an index A that ranges between 0 and [M/K] — 1.
This number may exceed the physical number of blocks that run simultaneously on the
GPU chip, but the nvcc compiler abstracts these technicalities away.

2. In every block, the K threads are indexed by an integer k£ € [0, K[ = [0,K — 1]. The
k-th thread is assigned to a fixed value of i = k + AK. It loads the relevant values of
pt,...,pPand z}, ..., 7 from the Device to the Thread memory or register, taking
advantage of the speed-up for contiguous memory accesses: threads in the same block
read neighboring memory adresses. Once again, the compiler handles the distribution of
K virtual workers on a fixed number of physical CUDA cores.


https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

2.2 Going beyond tensor-based computations with the KeOps CUDA library 43

3. Each thread is instructed to compute a single value a; = ajax through a “for” loop
on the values of j in[1,N]. To minimize the transfers between the Device and Shared
memories while maximizing the amount of contiguous memory accesses (as discussed
page 28), this j-loop is cut in blocks of size K: the large M-by-N plane of (i, j) indices
is effectively cut in small K-by-K tiles, following a standard CUDA procedure. Having
initialized a temporary buffer “a” (in the Thread memory) to the neutral element of the
Reduction - 0 if it is a sum, 400 if it is a minimum, etc. — the k-th thread of the block
loops over values of the tile index B in [0, [N/K] — 1]:

a. Being assigned to an index ji = k + BK, the worker loads the relevant values of
Yir- - ,y]k from the Device to the Shared memory. This task is performed in
conjunction with the other threads of the block and comes down to a contiguous
transfer of a slice “j € [BK, BK + K[” of the y-data arrays from the “library” of
the State department to the shared “office shelf” of Figure 2.3.c.

b. The thread waits for latecomers and synchronizes with all workers in the same
block: we don’t want to start the computing job if some of the y;’s have not yet
been loaded properly in the Shared memory!

c. Making a loop over the reduction index j in [BK, BK + K[, the worker:

i. Loads the relevant values of the y;’s from the Shared to the Thread memory.

ii. Computes the value of F(p',... z}, ..., y] , ... ), with all variables standing

close to the computing core in the Thread memory.
iii. Reduces this value onto the running buffer a, in the Thread memory.

d. Once again, the thread synchronizes with the other workers.

4. Once this large outer loop has been completed, the buffer a associated to the k-th thread
contains our final value a4 ak. It is then saved from the Thread to the Device memory
in an appropriate “output” array, alongside the other values in the “i € [AK, AK + K[”
range that have been computed by the block.

Performances. As most efficient CUDA programs, the algorithm presented above is pretty
verbose: a full page of tedious memory transfers surrounds what is, at heart, a good old
“for-for” loop. Crucially though, our efforts pay off: as evidenced by the benchmarks of
Figure 2.12, KeOps typically provides ax30/x10,000 speed-up when compared with tensorized
PyTorch-GPU/NumPy-CPU implementations of the same kernel dot product, while keeping a
linear (instead of quadratic) memory footprint.

This efficiency mostly comes down to the fact that instead of storing the M-by-N com-
puted values of F'(pt,...,z}, ..., y] , ... ) in superfluous quadratic buffers (such as the “kernel
matrix”), generating at least 2MN high-latency transfers between the Thread and the Device
memories, KeOps maximizes the use of the Shared memory and consumes the relevant values
of F(pt,...,x}, ..., yj , ... ) on-the-spot, in the registers of the CUDA cores.

This level of performance could 7ot have been achieved with high-level Python code:
PyTorch and TensorFlow variables always refer to arrays that are stored in the Device mem-
ory. Writing C++ CUDA programs is the only way of getting an explicit access to the Shared
and Thread memories. As discussed in Section 2.2.4, supporting generic formulas and reduc-
tions with KeOps thus required the implementation of a fully fledged symbolic math engine,
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2.2.3 2D parallelization scheme, block-sparse reductions

2D scheme. The “GPU_1D” algorithm that we just presented is efficient whenever M is larger
than the number of CUDA cores available on the chip: no thread stays idle. This is generally
the case in shape analysis and data sciences, where the support of batch processing by KeOps
allows programmers to fully saturate their GPUs with large input tensors.

Nevertheless, to provide cover for cases where the number of “indexing lines” M is much
smaller than the size of the “reduction range” N, KeOps also implements a 2D Map-Reduce
scheme in the GpuConv2D.cu CUDA file. Assigning the K-by-K tiles of Figure 2.4.b one-by-
one to the CUDA blocks - instead of using a line-wise grouping method - this algorithm
requires the allocation of intermediate buffers but makes sure that no block stays idle during
the computation.

Complexity of the KeOps routines. Notwithstanding their clever management of memory,
the “GPU_1D” and “GPU_2D” schemes have a quadratic time complexity: if M and N denote
the numbers of i and j variables, the time needed to perform a generic reduction scales
asymptotically in O(MN). This is most evident in the benchmark displayed Figure 2.12, where
all the kernel coefhcients:

Kij = k(zi,yj) = exp(~||lz; —y;|* / 207) (2.31)
are computed to implement the Gaussian convolution of Eq. (2.26):

N
(a:)) = (Ky)- (i) ie.  ai = Y k(zi,y;)-b  forie[l,M]. (2.32)
=

Can we do better? To break through this quadratic lower bound, a simple idea is to skip some
computations, using a sparsity prior on the kernel matrix. For instance, we could decide to skip
kernel computations when points z; and y; are far away from each other. But can we do so
efficiently?

Sparsity on the CPU. On CPUs, a standard strategy is to use sparse matrices and encode our
operators through lists of non-zero coeflicients and indices. Schematically, this comes down to
endowing each index ¢ € [1, M] with a set J; C[1, N] of j-neighbors and to restrict ourselves
to the computation of:

ai = Y k(wiy;)- b,  forie[1,M]. (2.33)
JjE€J;

This approach is well suited to matrices which only have a handful of nonzero coefhcients per
line, such as the intrinsic Laplacian of a 3D mesh. But on large, densely connected problems,
sparse encodings run into a major issue: as they rely on non-contiguous memory accesses,
they scale poorly on GPUs.

Block-sparse reductions. As explained page 28, GPU chips are wired to rely on coalesced
memory operations which load blocks of dozens of contiguous bytes at once. Instead of allowing
the use of arbitrary indexing sets J; for all lines of our sparse kernel matrix, we should thus
restrict ourselves to computations of the form:
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Gaussian dot product in 3D (RTX 2080 Ti GPU)
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Figure 2.5: Benchmarking NumPy, PyTorch and KeOps on the Gaussian kernel product of Eq. (2.26)
in dimension D = 3 with a scalar signal of dimension E = 1. As we let the number N = M of points
increase, we observe a 10,000 and 30 to 1 ratio in favor of the KeOps routines, which also keep a linear
memory footprint. As evidenced here, the default “GPU_1D” backend of KeOps is extremely competitive
for datasets of 10% to 10° samples. With a GPU chip bought for ~1,500$ in 2020 - the GeForce RTX
2080 Ti - large 10°-by-10° quadratic operations can now be performed in around 10ms, without making
any approximation and with a native support of automatic differentiation. Extended benchmarks
are provided page 56.

(a) Clouds (x;) - spiral - and (y;) - Gaussian. (b) Coarse boolean mask of cluster-to-cluster interactions.

Figure 2.6: Illustrating block-sparse reductions with 2D point clouds. When using an M-by-N “kernel”
matrix to compute an interaction term between two datasets, a common approximation strategy is to
skip terms which correspond to clusters of points that are far away from each other. Through a set
of helper routines and optional arguments, KeOps allows users to implement these pruning strategies
efficiently, on the GPU. (a) Putting our points in square bins, we compute the centroid of each cluster.
Simple thresholds on centroid-to-centroid distances allow us to decide that the 43rd “cyan” cluster of
target points (z;) should only interact with neighboring cells of source points (y;), highlighted in
magenta, etc. (b) In practice, this decision is encoded in a coarse boolean matrix that is processed by
KeOps, with each line (resp. column) corresponding to a cluster of « (resp. y) variables. Here, we higlight
the 43rd line of our mask which corresponds to the cyan-magenta points of (a).
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Sy end!—1

a; = Z Z k(zi,y;) - bj, for i € [starty,end,[ and ¢ €[1,Q], (2.34)

=1 j=start}
where:

1. The [starty, end,[ intervals form a partition of the set of -indices [1, M]:

Q
[1,M] = |_| [startq, end,[ . (2.35)
q=1

2. For every segment ¢ € [1, Q], the S; intervals [start], end] [ encode a set of neighbors as
a finite collection of contiguous ranges of indices:

Sq
Vi € [starty,endy[, J; = | | [start],end]] . (2.36)
=1

By encoding our sparsity patterns as block-wise binary masks made up of tiles
Tf = [starty,end,[ x [start/,end/[ C [1,M] x[1,N] , (2.37)

we can leverage coalesced memory operations for maximum efficiency on the GPU. As long as
our index ranges are wider than the CUDA blocks, we should get close to optimal performances.

Going further. This scheme can be generalized to generic formulas and reductions. For
reductions with respect to the i axis, we simply have to define transposed tiles

U = [start],end][x [starty,end,[ C [1,M] x[1,N] (2.38)
and restrict ourselves to computations of the form:

q
Sq endl -1

bj = Z Z k(zi,y;) - ai, for j € [starty,end,[ and ¢ €1, Q] . (2.39)

I=1 i=start]

A decent trade-off. This block-wise approach to sparse reductions may seem a bit too coarse,
as some negligible coeflicients get computed with little to no impact on the final result... But
in practice, the GPU speed-ups on contiguous memory operations more than make up for it:
implemented in the GpuConv1D_ranges.cu CUDA file, our block-sparse Map-Reduce scheme
is the workhorse of the multiscale Sinkhorn algorithm showcased in Section 3.3.3.

As explained on our website, the main user interface for KeOps block-sparse reduction
is an optional “.ranges” attribute for LazyTensors which encodes block-sparsity masks.
In practice, as illustrated in Figure 2.6, helper routines allow users to specify tiled sparsity
patterns from clustered arrays of samples x;, y; and coarse cluster-to-cluster boolean matrices.
Implementing Barnes-Hut-like strategies (Barnes and Hut, 1986) and other approximation
rules is thus relatively easy, up to a preliminary sorting pass which ensures that all clusters are
stored contignously in memory.
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2.2.4 Generic formulas, automatic differentiation

The three previous sections have higlighted the need for efficient Map-Reduce GPU routines
in data sciences. To complete our guided tour of the inner workings of the KeOps library, we
now explain how generic reductions and formulas are encoded within our C++ codebase.

Developing versatile CUDA libraries. As discussed at the end of Section 2.2.2, supporting
generic reductions and automatic differentiation within KeOps was a daunting challenge.
Let us briefly explain why.

The overwhelming majority of deep learning frameworks and contributed packages follow
a simple “one Python operation = one CUDA program” development paradigm - with
the notable exception of projects such as TensorComprehensions (Vasilache et al., 2018).
Following the usual practice, each PyTorch operation is linked to a pre-compiled binary
program that implements a specific computation: a sum, a matrix-vector product or whatever.
With every Python instruction, these routines are simply executed on the “.data” attributes
(raw C++ arrays) of the relevant variables.

Back in 2017, in early KeOps releases, this is how we first implemented the Gaussian
kernel dot product and its derivatives of order 1 and 2 : with explicit “gaussian_dot.cu”,
“gaussian_dot_grad_x.cu”, “gaussian_dot_grad_xx.cu” CUDA files. Once the basics
are understood, writing by hand an ad hoc CUDA program for every instance of Eq. (2.30) is
not too diflicult.

The KeOps symbolic engine. On the other hand, allowing KeOps users to define and reduce
their own formulas without having to write a single line of C++ code is a much more challenging
target. One way or another, the specification of a new symbolic computation in a Python
(LazyTensor) script has to result in the injection of lightweight, efficient C++ code right inside

As of 2020, supporting the dynamic generation of efficient CUDA code for deep learning
scripts is the major challenge that the TensorFlow (Google) and PyTorch (Facebook) devel-
opment teams strive to tackle. Usually referred to as Just In Time (JIT) compilation, this
feature is now partially supported by the latest versions of PyTorch and TensorFlow, through
an “Accelerated Linear Algebra” (XLA) backend. Asking users to accept some restrictions on
the structure of their Python scripts, experimental JIT compilers attempt to fuse consecutive
CUDA routines in order to optimize the use of resources and buffers.

With limited means - three part-time developers, mathematicians by trade - KeOps achieves
this target in the controlled setting of symbolic Map-Reduce schemes, defined by Eq. (2.30).
The well-documented constraints that are put on the development of academic software projects
guide our main design decisions:

- To ensure the portability and long-term maintainability of the KeOps library, we
perform the syntactic analysis of user-defined formulas without any dependency on
external “math processing” engines.

- To make sure that KeOps is able to reach users outside of our own microcosm, its core
logic must be written in pure C++ - without any hard dependency on Python. Today,
most KeOps users access it through its PyTorch and NumPy interfaces... But future R or
Julia bindings may well have a more lasting impact.
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Working with variadic templates. To achieve our goals whilst abiding by these constraints,
we chose to rely on the power of modern C++/CUDA compilers. Leveraging expressive
meta-programming instructions that were introduced by the C++11 revision, the keops/core/
folder effectively implements a small but robust math engine within the C++ templating
system.

Letting a general-purpose tool such as nvcc or clang handle the parsing and (most of)
the low-level optimization of our code may look like a rash decision. But in practice, the
graph-based optimizers of modern C++ compilers are now so efficient that we never felt limited
in any way: with the help of a few simplification rules - encoded as template specializations -
the binaries generated by the KeOps generic engine perform just as well as clever hand-written
CUDA kernels. With foundations that rely on standard, well-tested tools that are now too big
to fail, we expect to be able to maintain KeOps for many years to come.

Key files. As detailed in page 41, our parsing grammar for symbolic formulas is described in
terms of abstract C++ types in the keops/core/formulas/*/*.h headers. These files provide
a comprehensive list of mathematical operators and rely on the primitives implemented in
the keops/core/pack/ and keops/core/autodiff/ subfolders: abstract unary and binary
operators, tuples of variables and parameters, integer constants, indexing methods.

In practice. To give a glimpse of how KeOps works under the hood, let us present an excerpt
from the formulas/maths/Log.h header - the declaration of the Log<. . .> operator:

// 1. Declare a new Unary Operation - the pointwise logarithm:
template < class F >
struct Log : UnaryOp<Log,F> {

// 2. Declare a new attribute: dimension of Log(F) = dimension of F:
static const int DIM = F::DIM;

// 3. Utility method: pointwise Logarithm should be displayed as "Log":
static void PrintIdString(std::stringstream& str) { str << "Log"; }

// 4. Actual C++ implementation of our operator:
static HOST_DEVICE INLINE void Operation(__TYPE__ *out, __TYPE__ *outF) {
for(int k = 0; k < DIM; k++)
out [k] = log( outF[k] );
}

// 5. Define a new alias for the "backward" operator of F...
template < class V, class GRADIN >
using DiffTF = typename F::template DiffT<V,GRADIN>;

// 6. And use it to implement the "backward" of Log(F):
template < class V, class GRADIN >
using DiffT = DiffTF<V, Mult< Inv<F>, GRADIN> >;
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As evidenced here, the implementation of a new operator goes through six compulsory steps:

1.

The declaration of a new operation as an instance of the abstract Unary0Op or BinaryOp
templates. These are defined in the keops/core/autodiff.h header with a set of
standard methods and attributes. The operand F of Log<F> is an arbitrary formula,
recursively encoded as a templated structure.

. The specification of a few standard attributes. Here, the dimension of the vector Log (F)

- accessed as Log<F>: : DIM in typical C++ fashion - is equal to that of F. Our logarithm
is applied pointwise and does not affect the shape of the underlying vector.

. The specification of some utility methods. Here, the string identifier PrintIdString

may be used to access the formula that is encoded within any KeOps C++ template.

. The actual implementation of our operator, that is to be executed within the Thread

memory of each CUDA core. As specified in the abstract definition of Unary0Op, the
inline method Operation takes as input a C++ array outF, the vector-valued output of
our operand F. It computes the pointwise logarithms using a standard CUDA routine
and stores them in a new out buffer of size Log<F>: :DIM. In practice, modern C++
compilers may simplify this operation as an in-place modification of the values stored in
outF.

. Prepare the chain rule by defining an alias for the adjoint “backward” operator of

the operand F with respect to an arbitrary differentiation variable V. As explained in
Eq. (2.22), the new operator dy F is a formal expression that takes as input the variables
“v=(p',... 2}, ... ,yjl», ...)” of F and a new vector “a” of size F: :DIM, the gradient
vector GRADIN or “z” that is backpropagated through the whole computational graph.
Understood as the adjoint or “transpose” of the differential of F, the application of this
operator is encoded within KeOps as a new templated expression F: :DiffT<V,GRADIN>

that should implement the computation of dy F" - GRADIN.

. Implement the chain rule recursively, using the templated expression above: DiffTF

= F::DiffT<V,GRADIN>. Here, the C++ declaration:
Log<F>::DiffT<V,GRADIN> = F::DiffT<V, Mult< Inv<F>, GRADIN> > (2.40)

simply encodes the well-known fact that with pointwise computations,

GRADIN

dy [log oF | (p, zi,y;) - GRADIN = dy F(p, s, y;) - = .
V[ g ](p zyj) v (p zyj) F(p,-l'i,yj)

(2.41)

Contributing with a new operation. Advanced users may wish to extend the existing engine
with home-made operators, injecting their C++ code within the KeOps Map-Reduce kernel.
Doing so is now relatively easy: having implemented a custom instance of the UnaryOp or
BinaryOp templates in a new keops/core/formulas/*/*.h header, contributors should
simply remember to add their file to the list of includes keops/keops_includes.h and write
a LazyTensor method in the pykeops/common/lazy_tensor.py module. To get merged
in the main KeOps repository, which is hosted on GitHub, writing a simple unit test in the
pykeops/test/ folder and a description in the pull request should then be enough.



50 Chapter 2 Designing efficient computational tools

Reductions. Following the same design principles, Reduction operators are implemented in
the keops/core/reductions/*.h headers. Taking as input an arbitrary symbolic formula
F, Reduction<F> templates encode Map-Reduce schemes in the mould of Eq. (2.30) and
implement a few standard routines. In the case of the simple Sum reduction (sum.h header),
these can be described as:

1. An InitializeReduction method, which fills up the running buffer “a” of page 43 - a
vector of size F: :DIM - with zeros before the start of the loop on the reduction index j.

2. A ReducePair method, which takes as input a pointer to the running buffer a, a pointer

to the result F; ; = F(p', ...z}, ... ,yjl-, ... ) and implements the in-place reduction:

a <+ a+ Fij. (2.42)

3. A FinalizeOutput method, which post-processes the buffer a before saving its value in
the output array. This is a useful step for argmin-like reductions; but in the case of the
sum, no post-processing is needed.

The online Log-Sum-Exp trick. KeOps also supports accurate summation schemes on floating-
point numbers (Kahan, 1965). Going further, the max_sumshiftexp.h header implements an
online version of the Log-Sum-Exp trick: a factorization of the maximum in:

N N
logZeXp(Fi,j) =m; + logZexp(FM — my), with m; = %XFM (2.43)
=1 -

i=1 !

that ensures the computation of this important quantity - the linchpin of maximum likelihood
estimators and entropic optimal transport solvers - without numeric overflows.

Merging the content of our C++ header and of the Python post-processing step implemented
in pykeops/common/operations.py, assuming that F; ; = F(p',...,z},... ,yjl., ...)isa
scalar quantity, we may describe its behaviour as follows:

1. The InitializeReduction method ensures that our running buffer a is a vector of size 2
that encodes the current value of the inner summation as an explicit (exponent, mantissa)
or “(maximum, residual)” pair of float numbers: at any stage of the computation, the
pair (m, 1) encodes the positive number €™ - r with the required precision. We initially
set the value of a to (—00,0) ~e™> - 0.

2. The ReducePair method takes as input a pointer to the result F; ; of the computation,
a pointer to the running buffer @ = (m,r) ~ ™ - r and implements the in-place update:

Fiyjfm f 2 E -
(myry (Mo TH e . ) ifm > £ (2.44)
(Fj, 14+7-em ") otherwise.
This is a numerically stable way of writing the sum reduction:
m Fij—m ifm>F, .
€M i emer 4 elfii = GF (r+ e P ) itm 7 (2.45)
efii . (147 -em i) otherwise.

3. FinalizeOutput post-processes the buffer a = (m,r) ~ ™ - r by applying the final
“log” operation: it returns a value of m + log(r) for the full reduction.
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Backpropagation through a KeOps call. Last but not least, KeOps fully supports automatic
differentiation. Most of the magic required is implemented by the F: :DiffT<V,GRADIN>
attributes of KeOps formulas and reductions, as discussed in previous pages.

Then, to implement the PyTorch backward of the KeOps Genred operator, we simply
have to remember that if (g;) € RM*E is a “gradient to backpropagate” with respect to the
output (a;) € RM*E of 3 Genred call with a Sum reduction, we can write that for all variations
(0p, 6xi, dy;) of the parameters, i- and j-variables, at order 1:

N
< > F(p+8p, i+ dxi,yj + 6y5) — F(p, i, y5) gz‘>RMXE (2.46)
j=1
M N
2y (& FC) - g0.0p) + (dLF() - gindwe) + (dg, P - girdyy) - (247)
Consequently, performing the appropriate permutations of sums:
- N - N
A [ S Py -9) = Y (4 [F.2099)] - 9) (2.48)
Jj=1 j=1
N M
dy. [ S F(p,wiy)] - (9:) = (dy; [P 25,95 - 9:) (2.49)
Tj=1 i=1
N M N
dy [ Y F,aiy)| - () = Y3 (dy [Fo.7iw:)] - 01) - (2.50)
1 i=1j=1

=
Similarly, when (a;) is given through a Log-Sum-Exp reduction:

N
= log > exp F(p,z,y;) (2.51)
j=1
straightforward computations show that:
N N
4], [log Y exp F(p.zinyy)| - (9) = e )= (d] [F(p,xiy)] - gi) . (252)
j=1 j=1

d;j {logzN:exp F(p,xiayj)} (9:) = Fpwiys)=ai . (d; {F(p, acz‘,yj)} 'gz') , (2.53)

||Mz

j=1
d;[logzN:exp F(p,xi,y;) } ZZN:eF(p’m“y” T (d;)r [F(p, :L‘i,yj)} -gl-) . (2.54)
j=1 i=1j=1

In other words, a backward pass through a Genred call that involves a Sum or a Log-Sum-Exp
reduction can always be written as a symbolic Map-Reduce computation, fitting Eq. (2.30).

Bootstrapping derivatives of arbitrary order. Applying these commutation rules between
the differential operator dy and the Sum or Log-Sum-Exp reductions, the pykeops/torch/
generic/generic_red.py module provides full compatibility between KeOps LazyTensors
and the torch.autograd package. Thanks to recursive calls to the Genred operator and to
our symbolic math engine, everything works just fine - even high-order derivatives.
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2.3 The PyKeops package: a powerful tool with a transparent interface

The previous section uncovered the inner workings of the LazyTensor module. After fifteen
pages of technical derivations, time has now come to reap the reward of this year-long investment
in low-level software engineering and present the user interface of the KeOps package.

Our starting point: computational anatomy. Back in 2017, we started working on the
KeOps library to give to our colleagues of the (medical) shape processing community an easy
access to the CUDA routines of the fShapes toolkit (Charlier et al., 2017a) - a Mat1ab toolbox
that relies extensively on Gaussian kernel products. This initial target was reached pretty
quickly: today, the reference Deformetrica software (Bone et al., 2018) - maintained by the
Aramis Inria team at the ICM Institute for Brain and Spinal Cord, www.deformetrica.org -
is fully reliant on the PyTorch+KeOps framework. Most of our collaborators use one of the
KeOps bindings to implement their shape processing pipelines.

As discussed in Section 5.2.3, modern “LDDMM?” codebases for statistical shape modelling
are ten times slimmer (and easier to maintain!) than they were just three years ago: graduate
students can now get started in days instead of months. We expect to witness many progresses
in the field as research teams get relieved from the burden of low-level C++ development. As
far as our specialized community of mathematicians is concerned, with more than 1,000
downloads per month on the PyPi repository, KeOps is already a success.

Reaching a wider audience. In 2018-2019, after several interactions with colleagues in machine
learning and optimal transport conferences, we realized that our generic Map-Reduce engine
could be used to solve problems that go way beyond neuro-anatomy. Provided that some
effort was made to improve the general user experience, KeOps LazyTensors could be a game
changer for engineers and researchers in many applied fields.

Today, after months of patient re-packaging and documentation, KeOps is a fully-fledged
open source library (MIT License) whose development can be tracked on GitHub (github. com/
getkeops/keops). It fully supports Matlab, R, NumPy and PyTorch. The Python bindings
are easy to install through the PyPi repository (pip install pykeops), with numerous
examples available on our website:

www.kernel-operations.io

2.3.1 Supported reductions and formulas

As discussed in our introductory tutorials, LazyTensors can be built from any valid NumPy
array or PyTorch tensor and support a wide range of mathematical operations. Generic,
broadcasted computations define valid programs:

import torch
from pykeops.torch import LazyTensor

A, B, M, N, D=7, 3, 100000, 200000, 10

x_i = LazyTensor( torch.randn(A, B, M, 1, D) ) # "i"-variable
1_i = LazyTensor( torch.randn(1, 1, M, 1, D) ) # "i"-variable
y_j = LazyTensor( torch.randn(i1, B, 1, N, D) ) # "j"-variable
s = LazyTensor( torch.rand( A, 1, 1, 1, 1) ) # parameter


www.deformetrica.org
https://github.com/getkeops/keops
https://github.com/getkeops/keops
www.kernel-operations.io
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F_ij = (x_i %+ 1.6 + y_j / 1_i).cosQ) # Algebraic expression
Fij = F_ij - (x_i | y_j) # Scalar product
F_ij =F_ij + (x_il:,:,:,:,2] * s.relu() * y_j) # Indexing, ReLU activation

a_j = F_ij.sum(dim=2) # a_j.shape = [7, 3, 200000, 10]

LazyTensors fully support automatic differentiation - up to arbitrary orders - as well as
a decent collection of reduction operations. On top of the .sum(), “@” (matrix multipli-
cation) and .logsumexp() operators which have already been discussed in depth, users
may rely on .min(), .argmin(), .min_argmin(), .max(), .argmax(), .max_argmax(),
.Kmin(K=...), .argKmin(K=...) or .min_argKmin(K=...) methods to implement their
algorithms. We refer interested readers to our website, where tutorials and examples cover
most use cases.

Linear solver. KeOps provides support for the resolution of large “mathematical” linear
systems - a critical operation in geology (Kriging), imaging (splines), statistics (Gaussian
process regression) and data sciences (kernel regression). Assuming that the LazyTensor
“K_xx” encodes a symmetric, positive definite matrix K, the .solve() method:

a_i = K_xx.solve(b_i, alpha=alpha)

returns the solution:

a* = argmin|| (aIld4+K.z)a — b3 = (ald 4+ K,;)7'b, (2.55)
a
of the linear system “(aId + K,;)a = b”, computed with a conjugate gradient scheme.

Using KeOps as a backend for high-level libraries. Going further, as discussed in Figure 2.9.c
and Figure 2.11.b, LazyTensors can be neatly interfaced with the high-quality solvers of the
Scipy (Jones et al., 2001) and GPytorch (Gardner et al., 2018) libraries. Preliminary results
with the maintainers of the latter already show remarkable improvements to the state-of-the-art:
re-running the benchmarks of (Wang et al., 2019) with a new KeOps backend, exact Gaussian
process regressions that took 7 hours to train on a cluster of 8 top-drawer V100 GPUs (3DRoad

dataset, N = 278,319,D = 3) can now be performed in 15 minutes on a single gaming chip,
the GeForce RTX 2080 Ti.

2.3.2 Gallery of examples

Displayed on our website, in Figures 2.7 to 2.11 and in the subsequent chapters of this
manuscript, our gallery of tutorials showcases an eclectic collection of applications to ma-
chine learning, statistics, optimal transport theory and computational anatomy.

We carry on working towards a closer integration with the Python scientific stack (Van
Der Walt et al., 2011; Hunter, 2007; Pedregosa et al., 2011) and plan to implement Julia
bindings in months to come. By making our routines freely available to the general public, we
hope to help the applied maths community to catch up with the state-of-the-art in computer
science: in 2020, bruteforce quadratic algorithms should have no problem scaling up to millions
of samples in minutes; clever approximation schemes are only needed if users intend to perform
real-time analysis or scale to Gigabytes of data.
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Figure 2.7: Thanks to an embryonic support of tensor variables (and not just vectors), KeOps provides a
clean interface for the specification of generic mixture models. Depending on the shape of the “inverse
covariance matrix” ¥ 7! of multivariate Gaussian laws, users may specify: (a) uniform kernel products as
in Eq. (2.32); (b) kernel products with a scalar radius o j that depends on the source point y;; (c) kernel
products with a diagonal covariance matrix that varies with the source point y;; (d) kernel products
with arbitrary symmetric positive definite covariance matrices that change with y;.

Density, iteration 100

Density, iteration 0 Density, iteration 10 Density, iteration 500

(a) it = 0 (b) it = 10 (c) it = 100 (d) it = 500

Figure 2.8: Combining the expressive syntax of Fig. 2.7 with the power of automatic differentiation,
KeOps users can fit generic mixture models to large datasets using off-the-shelf optimization schemes.

In this example, a Gaussian mixture model with a sparsity-inducing penalty on the class weights is
fitted to a 2D point cloud using the Adam optimizer (Kingma and Ba, 2014).

(b) Kriging in 2D.

(c) GPytorch integration.

(a) Kernel regression in 1D.

Figure 2.9: Kriging, also known as kernel or Gaussian process regression is a fundamental tool in
data sciences that relies on the resolution of large kernel linear systems - see page 89. (a-b) Out-of-the-box,
KeOps provides a conjugate gradient solver for LazyTensors that allows users to scale up to datasets
with 10? to 105 high-dimensional samples in seconds or minutes. (c) Going further, we are working
with the authors of the GPytorch library (Gardner et al., 2018), and provide a KeOps backend for their
collection of efficient pre-conditioned solvers.
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(a) K-NN classifier in 2D. (b) K-NN on the MNIST dataset.

10,000 data points, 1NN classifier, 3NN classifier,
1,000,000 grid point: = = 0.035
o8

10-NN classifier, 20-NN classifier, 50-NN classifier,
t=0.03s t=0.03s t=0.06s

Figure 2.10: Supported by KeOps LazyTensors, the .argkmin(K=...) reduction allows users to
implement bruteforce K-nearest neighbors classification in no more than four lines of code. (a) Thanks
to the linear memory footprint of KeOps routines, users may compute large 1,000,000-by-10,000 queries
without having to worry about memory overflows. (b) The KeOps engine has no problem scaling up to
high-dimensional feature spaces. Performing a 3-NN classification on the full MNIST dataset (LeCun
and Cortes, 1998) - a 10,000-by-60,000 NN-search in dimension 728 - yields a 3% error rate and takes
roughly 10s on a RTX 2080 Ti chip, without any pre-processing.
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(a) K-means in 2D. (b) Spectral coordinates in 3D.

Figure 2.11: With KeOps, users can quickly implement classic machine learning (ML) algorithms
using a code that is both scalable and modular. (a) With five lines of high-level Python code, K-means
clustering can scale up to large datasets without any pre-processing. As displayed here, performing 10
iterations of the K-means loop on N = 10,000 points in dimension D = 2, with K = 50 clusters takes
10-2ms on a RTX 2080 Ti chip. In a setting that is closer to standard ML applications, performing 10
iterations of the K-means loop with N = 1,000,000 points in dimension D = 100 withK = 1,000
clusters takes 10-1.8s. (b) To help users implement advanced schemes such as spectral clustering,
KeOps LazyTensors provide a clean interface to the solvers of the scipy.sparse.linalg package:
eigenvalue problems, linear systems, etc. Combined with the support of block-sparsity masks, this
feature allows users to compute spectral coordinates on very large point clouds (N = 1,000,000) in
minutes, without having to introduce arbitrary cutoffs on the number of neighbours per sample.
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Figure 2.12: Benchmarking KeOps on common machine learning problems.

Timings performed on a gaming Nvidia RTX 2080 Ti GPU, available for < $1,500 as of 2020. R-KeOps
scripts for kernel and geometric applications generally outperform their standard R counterparts (Ven-
ables and Ripley, 2002) by several orders of magnitude. On modern hardware, they scale up to clouds
of N > 1,000,000 samples in seconds and keep a linear memory footprint. Unfortunately though,
R still stores data on the “CPU” Host memory: peak performances are obtained with our PyKeOps
interface for PyTorch which allows users to define Device-only processing pipelines on the GPU.

PyTorch PyTorch-TPU TF-XLA Halide TVM KeOps | CUDA

N = 10k 34ms 10ms 23 ms 5ms 6ms 1.8ms | 1.4ms

N = 100k * * 1,062ms 360ms 282 ms 107ms | 106 ms

N=1M * * * 41.3s 26.5s 10.3s | 10.1s
Lines of code 5 5 5 15 17 5 55
Interface arrays arrays arrays C++  low-level arrays | C++

Figure 2.13: Benchmarking KeOps against similar frameworks. Average runtimes for an N-by-N
Gaussian kernel product in dimension D = 3 over 100 iterations - “*” stand for “out of memory” errors.
For the sake of reproducibility, these timings are performed on a fresh Google Colab session, with a free
Tesla K80 GPU (checked with nvidia-smi). As showcased Figure 2.12, timings with recent gaming
hardware would be ~10x faster across the board.

As discussed page 47, a growing trend in the systems for machine learning literature has been to develop
just in time compilation frameworks that turn high-level scripts into optimized executables. In this
benchmark, run in December 2019, we compare the performances of our KeOps routines against other
notable frameworks: a vanilla PyTorch code run on the GPU and on a Tensor Processing Unit provided
by Google Colab ; a TensorFlow script with Accelerated Linear Algebra compilation (Leary and Wang,
2017) ; a Halide high-level C++ code (Ragan-Kelley et al., 2013) ; a TVM Python script (Chen et al.,
2018) ; a reference CUDA implementation.

In the specific context of kernel-related operations, KeOps is extremely competitive. These timings
are bound to evolve: we expect the impressive TVM, Halide and XLA libraries to catch-up with KeOps
in years to come. Nevertheless, they allow us to illustrate the difference of focus between generalist
frameworks and our library. Developed by mathematicians, KeOps only does one thing - but it does it
well, with a transparent interface and full cross-platform compatibility.
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2.3.3 Future works

Place of KeOps in the scientific ecosystem. The KeOps package has no claim to set the state-
of-the-art in high performance computing: when implemented properly, hand-written CUDA
schemes always outperform naive GPU loops, be it for (approximate) nearest neighbor search
or B-spline interpolation.

However, as it combines a reasonable level of performance with the flexibility of a deep
learning interface, KeOps can unlock research programs by increasing the productivity of
developers. The main ambition of this work was to allow our colleagues in medical imaging
to benefit from the “deep learning revolution” without having to focus exclusively on convo-
lutional neural networks; we now hope that this localized success can be replicated in other

fields.

Long-term goal: fast approximation schemes. In months to come, we plan to implement boil-
erplate features such as row- and column-wise indexing, block-wise definition of LazyTensors
and a full support of tensor variables. Additional low-level profiling should also help us to
converge towards optimal runtimes.

Long-term, our main challenge will be to reconcile KeOps with the rich literature in
numerical mathematics that focuses on fast approximation schemes for kernel dot products,
often referred to as discrete convolutions in computational geometry or discrete integral operators
in physics. To perform efficiently the kernel matrix-vector product of Eq. (2.27), a most
sensible idea is to compute a rank-R approximation of the linear operator K :

Ky, k(zy;) | ~ |A -[B} [ C } (2.56)

where A, B and C are M-by-R, R-by-R and R-by-N matrices respectively. Such decompositions
reduce the complexity of a matrix-vector product with K froma O(MN) toa O((M+R+N) R).
In favorable cases, we should be able to build a decent approximation of K, with a small
rank R, thus securing a dramatic speed-up. But how can we find relevant factors A, B and C?
Historically, five major types of strategies have been proposed to tackle this problem:

1. Singular value decompositions and adaptive cross-approximation algorithms (Bebendorf,
2000; Zhao et al., 2005) iteratively pick the leading rows or eigenvectors of the kernel
matrix K, , to yield explicit numerical arrays A, B and C.

2. Quadrature methods sub-sample the point clouds z; and y; and rely on simple algebraic
rules to correct for over- or under-sampling artifacts. For instance, if we pick R points
Z; among the x;’s, the Nystrém rule asserts that:

Random sampling strategies for the #;’s have been studied extensively in the machine
learning literature (Zhang et al., 2008; Yang et al., 2012).

3. Spline-based decompositions, discussed e.g. in (Cambier and Darve, 2019), are quadra-
ture methods that rely on Lagrange polynomials to bypass the costly inversion of the
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Nystrom rule. The R control points Z; and §j; are generally placed at Chebyshev nodes
(Mastroianni and Occorsio, 2001), and we end up making the approximation that:

Koy ~ Lo Kag Ly g, (2.58)
where L, 7 = [L1(2)| - - - |Lr (z)] denotes the M-by-R matrix of sampled values on the
point cloud x of the polynomial interpolation basis (L1, ..., Ly) associated to the Z;’s.

4. Spectral strategies can be applied whenever &k : (z,y) — k(x — y) is a translation-
invariant kernel: they leverage the Fourier convolution theorem discussed Figure 3.2.
Efficient implementations generally rely on non-uniform FFTs (Dutt and Rokhlin, 1993;
Greengard and Lee, 2004) or random Fourier features (Rahimi and Recht, 2008).

5. Multipole decompositions rely on truncated Taylor developments of the kernel function.
For instance, if:

P-1Q-1

k(z,y) ~ Z Z Tp.q 2Py?, (2.59)

p=0 ¢=0

we may approximate the kernel product a; = Z?I:l k(zi,y;) bj as:
N

a; = Z

j=1

P-1Q-1
P

P-1 Q-1 N
Do Tpgabylby = D x> Tpq D ylb;, (2.60)
q=0 p=0 q=0 Jj=1

which is equivalent to working with the M-by-P and Q-by-N matrices of moments
A= [0z} ]2 and C = [Wlyjil - \y;;_l]T, with a P-by-QQ matrix of Taylor
coeflicients B = (T}, ;) in-between. These strategies have been studied extensively for
applications to physics, e.g. N-body simulation: we refer to (Greengard, 1988; Beatson
and Greengard, 1997; Yang et al., 2003) for an introduction.

Multiscale strategies. When a coarse-to-fine decomposition of the input data is combined
with one of these compression methods, we retrieve efficient block-wise approximations of
the kernel matrix (Barnes and Hut, 1986; Beatson and Greengard, 1997; Hackbusch, 2015).
Dramatic speed-ups can then be achieved even in full-rank cases, as encountered for instance
when dealing with Coulomb or Helmholtz kernels:

1 eiwllz—yl
Tzl and k(x,y) = ———. (2.61)

= yll

k(x7y) -

KeOps interface. In line with recent works in scientific computing (Aussal and Bakry, 2019),
we should be able to reach an O(Nlog N) time complexity with O(N) memory usage in a
wide range of favorable cases. Long-term, we expect to provide an interface to some of these
algorithms through a simple “tolerance” parameter for KeOps LazyTensors: a transparent
“K.tol = 1e-3” statement would be a dream come true!



Chapter 3

Geometry on a space of measures

in collaboration with Frangois-Xavier Vialard (Paris-Est University),

Thibault Séjourné and Gabriel Peyré (Ecole Normale Supérieure).

Key points - Measure theory is a central topic in data sciences:

1. Studying unlabeled distributions of mass or probability is a major problem in applied
sciences. Described in a language that encompasses both weighted point clouds and contin-
uous probability laws, “measures” can be used to model shapes, random vectors or data
samples in arbitrary feature spaces.

2. Restricting ourselves to operations that are parameterization-invariant and homogeneous
with respect to the weights, we may try to define principled distances between measures.
Used as loss functions in model-fitting pipelines, these routines provide gradients that can
be used to match distributions with each other.

3. A general way of metrizing spaces of measures is to rely on dual norms, known as integral
probability metrics or adversarial costs in statistics and machine learning. Historically, three
families of geometries have attracted a considerable interest since the 1950’s: Hausdorff
distances, which rely on nearest-neighbor projections; Kernel norms, which rely on (off-grid)
convolutions; Optimal Transport (OT) costs, which rely on the solutions of generalized
sorting problems.

Contributions - Putting scalable Wasserstein distances on the shelf, with guarantees:

4. We provide a unified overview of Hausdorff, Kernel and OT fidelities from a geometric
perspective. Transport-based loss functions (also known as Wasserstein or earth mover’s
distances) exhibit desirable behaviours, at a high computational cost: designing tractable
approximations of optimal transport is a key problem for geometric data analysis.

5. Focusing on entropic regularization, we show that de-biased Sinkhorn divergences de-
fine convex, positive and definite loss functions that behave as low-frequency Wasserstein
distances. Extensions to the unbalanced setting are handled in a clean, idiomatic fashion.

6. Benefiting from ten years of research on multiscale OT solvers, we propose a symmetrized,
de-biased, multiscale Sinkhorn loop that can be understood as a generalized Quicksort
algorithm. Implemented with the PyKeOps package, our code outperforms standard im-
plementations of the Sinkhorn or Auction algorithms by three orders of magnitude and
scales up to millions of samples in a matter of seconds. It is freely available on the PyPi
repository (pip install geomloss)and on our reference website:

www.kernel-operations.io/geomloss
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3.1 Working with measures - weighted point clouds

The language of measures, or “spatial distributions of mass”, is a central part of the undergradu-
ate curriculum in mathematics. Formalized at the turn of the XX century by Borel, Lebesgue
and others, it allows mathematicians to study discrete sums and continuous integrals within the
same framework. Since the foundational work of Kolmogorov in the 30’s, measure theory is
also the pillar on which relies the modern axiomatization of probabilities.

The two cultures. Unfortunately, the study of this fundamental tool is mostly neglected outside
of pure maths programs. Computer scientists tend to focus on discrete objects, which seem
more suited to the digital age: combinatorics, formal grammars or graph theory. Meanwhile,
calculus and linear algebra make up the bulk of engineering textbooks to the detriment of other
topics: the existence of the Lebesgue integral is often accepted as an axiom of calculus.

Modern progresses in information technologies vindicate our track-based teaching system:
down to earth classes ensure that engineers learn the fundamentals of their trade without getting
lost in technicalities. However, in cross-disciplinary fields such as data sciences and medical
imaging, the lack of a common vocabulary for structures that can 7ot be simply understood as
vectors — such as random variables or 3D meshes - leads to a great deal of misunderstandings
between neighboring sub-communities.

More often than not, theorists and practitioners work on related problems and politely cite
each other, but have a hard time understanding papers written at the other end of their field.
Discussed in Section 3.3.4, an example of the confusion that can then prosper is the uncertainty
that surrounds the “Wasserstein” keyword in the recent machine learning literature.
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Reaching out computer scientists and engineers. This manuscript attempts to bridge the
gap between elegant theorems and efficient implementations. To ensure that our theoretical
and practical results on optimal transportation are understood by all readers, we choose to
focus this chapter on the study of discrete measures in a continuous vector space. Simply put:
weighted point clouds. This restriction allows us to bypass most of the difficulties that come
with continuous optimization, while preserving the overall structure and geometry of the
problem.

Going further, general (and fully rigorous) proofs of our main statements can be found in
the Chapter A of the appendices. They will be of interest to our colleagues, but can be safely
ignored by most readers. By setting up an explicit distinction between geometric intuitions
and analytic proofs, we hope to make our work more palatable to the general public. In applied
mathematics just as in C++ programming, the informal documentation that comes with a new
result matters as much as its demonstration.

3.1.1 A parameterization-invariant encoding of data
Geometers and data scientists work with collections of samples:
r1,%2,..., N € X (3.1)

that belong to a domain-dependant space of features X: typically, a subset of a vector space
RP. The z;’s may encode the positions of points in the ambient space R3, the values of a
multi-variate signal on a population of N subjects, or any other type of vector data. In all cases,
the input dataset can be thought of as a large N-by-D array (z;) € RNV*P,

Parameterization invariance. In most settings, the ordering of the z;’s can not be relied upon.
The rows of “Excel spreadsheets” are often ordered at random, and data scientists take care to
design algorithms that discard this misleading piece of information.

Permutation invariance is usually achieved by restricting computations to symmetric func-
tions of the x;’s (Q1 et al., 2017) or by keeping a strict focus on operations that are well-defined
with respect to the un-ordered set of points:

{1‘1,1‘2,...,:51\1} c X. (3.2)

A typical example is the distance to the point cloud {(z;)}:
N
d(-, {z1,...,2x}) : z€RP — Hl_l{l”.l‘—ZCZH, (3.3)

used by the celebrated izerative closest point algorithm (Besl and McKay, 1992).

Working with measures. From this perspective, a convenient way of taking weights and

multiplicity into account is to introduce the concept of measure: additive distributions of mass

on the feature space X, that can be understood as generalized “soft” subsets of X.
Formally, a (positive) measure 1 on X is defined as a function:

pw:SCX — ulS)eRU{+o0}, (3.4)

that attributes a positive mass to subsets S of X" and satisfies four axioms:



62 Chapter 3 Geometry on a space of measures

1. The domain ¥ of p is a o-algebra. Unfortunately, some important measures can not
be defined rigorously on the full collection P(X) of subsets of X and must be restricted
to a collection ¥ of “measurable” sets. We always assume that the domain ¥ of a measure
p contains the full feature space X', is closed under the complement and is closed under
countable unions.

2. Positivity. For all measurable subset S of X' in X, ;(.S) > 0. We may consider functions
p that do not satisfy this property, but will explicitely refer to them as “signed” measures.

3. Null measure of the empty set. If () denotes the empty set { } C X, then {) € ¥ and
pu@ = 0. (3.5)

4. Additivity. If (Sk)ken is a countable collection of disjoint subsets of X in X,
+00 +o00
p( L) = S s (3.6)
k=0 k=0

The axioms of measure theory encode the intuition that the mass is an extensive quantity,
distributed over the feature space X" according to discrete or continuous laws “1”. Put together,
these properties imply that a positive measure is always non-decreasing:

VS, TeXx ScT = u(S)<u). (3.7)

As a gentle introduction to measure theory, let us now present the fundamental intuitions and
examples that can be associated to the formal definition of Egs. (3.4-3.7).

Probability theory. Probabilists and statisticians focus on measures x that sum up to 1 (i.e.
are such that u(X’) = 1), generally understood as distributions of random variables X that
take their values in the feature space X': we say that X follows the law y, or simply write that
“X ~ p”. For any event S € 3, ;1(S) is identified with the probability that the random vector
X takes its values in the measurable subset S C X’

w(S) = Px (X e8) € [0,1]. (3.8)

Dirac measures. The simplest example of measure is the Dirac distribution d,, fully concen-
trated at an arbitrary location z € X" and formally defined through:

1 ifzes,

. (3.9)
0 otherwise.

5x:SCX»—>{

In words, d,, only puts weight on the singleton {z} and larger subsets of X'. From a probabilistic
perspective, this “atomic” distribution is associated to a deterministic behaviour: X ~ 4, if
and only if X = x almost surely; Px s, (X =z) = 1.

Lebesgue measures. A more refined example is the Lebesgue or “volume” measure on the
ambient space RP, intuitively defined through:

Agp : S CRP /esdx. (3.10)
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Note that presenting a rigorous definition of the Lebesgue measure and of its o-algebra B(RP)
of measurable Borel sets takes a few days of work in undergraduate classes of mathematics.
Defining a functional that generalizes the notions of length, area or volume of simple geometric
sets while avoiding the pitfalls of the Banach-Tarski paradox is no mean feat.

From a probabilistic perspective, the Lebesgue measure encodes the notion of uniform
distribution over a continuous domain. For instance, a univariate random variable X that
follows the law of:

)\[071] : SCR —~ dx (311)
x€SN[0,1]

is said to be uniformly distributed over the unit interval.

Gaussian measures. Our last fundamental example is the Normal or Gaussian distribution,
informally defined in dimension D through:

Ngp : SCRP — exp(—||z|?/2) dz . (3.12)

j /
(27T)D/ 2 x€S
This distribution appears in the central limit theorem and provides a reference point for most
theories in statistics and data sciences. As with all continuous distributions, its rigorous
definition relies on the Lebesgue measure and associated o-algebra of measurable Borel sets.

Algebraic manipulations. Unlike vectors and functions, measures can not be described in
terms of coordinates in a canonical basis. In a Euclidean feature space X C RP, the notions of
“continuous density” (Lebesgue) and “atomic distribution of mass” (Dirac) can only fit within
the same framework through the language of set theory.

Nevertheless, if o and ( are two measures that are respectively defined on collections
¥ and X/ of subsets of X, and if a, b are two scalar weights in R, we may define the linear
combination ac + bf3 as the (signed) measure:

ac+b8 : SexnNY = a-aS) + b-p(9) € R. (3.13)

This operation lets us combine heterogeneous objects: d+Ajo 1] 4+Nr is a well-defined (positive)
measure on the real line. In natural sciences, measures allow physicists to describe pointwise,
surface or volume charge densities with clean and uniform notations.

Weighted point clouds. This chapter is mostly concerned with the study of discrete measures,
written as (finite) linear combinations of atomic Dirac masses. Combining Eq. (3.9) with
Eq. (3.13), we can write that:

N
D pide,  SCX = > pi €R (3.14)
=1 z, €S
is a well-defined measure for any collection z1,...,zN of samples in the feature space X
and weights 11, ..., un in R. In the special case where the y;’s are equal to each other, the

probability measure & S\, 8,, can be understood as a uniform distribution over the discrete
sample (21, ..., zN) that takes multiplicity into account while being invariant to permutations.
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3.1.2 Encoding discrete measures and continuous functions

Integration. The fundamental operation of measure theory is the integration of measurable
functions f, denoted by:

u(f) / fdu € R\ (3.15)

This scalar number should be understood as the total value of the function f evaluated on the
weighted set . It coincides with the usual integral of calculus when p is the Lebesgue measure.
In a simpler setting, if © = 2?1:1 0z, 1s a discrete measure, we write that:

N
[ fan S fw) (3.16)
=1

In functional analysis and probability theory (where measures always have unit mass), the
integral operator is usually called the duality bracket or expected value and is alternatively
denoted by:

(s f) [ pdn 2 B, (700 (.17)

In this manuscript, we favor the left-hand notation “(y, f)” which higlights the bi-linearity of
the integration with respect to both operands, measures and functions:

N N
<;u ) ;u (f(xi) and  (u, f+9) = (u ) + (1, 9)

Duality. A key insight from functional analysis is that the measure-function duality bracket
“(u, f)” is the correct generalization of the “line - column” dot product to spaces of continuous
functions. In a sense that is made rigorous by the many variants of the Riesz-Markov-Kakutani
representation theorem, measures are the “lines” or “co-vectors” that correspond to continuous
functions seen as “column” vectors in a space of infinite dimension.

(a) Weighted point cloud. (b) Density map. (c) Parametric generator.

Figure 3.1: Three different ways of encoding a multivariate Gaussian law.
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Encoding measures and functions on a computer. This geometric point of view on inte-
gration and measure theory underlies most mathematical works in the field, including the
proofs that we present in the Chapter A of this manuscript. For practitioners, these abstract
considerations have one major consequence: general measure-theoretic algorithms can be
implemented in any setting that provides compatible encodings for continuous functions
and distributions of mass, plus a well-defined integral operator or “measure - function dot
product”.

Skimming through the literature, most applied works focus on one out of three archetypal
encodings - illustrated Figure 3.1:

1. In geometry and data sciences, the feature space X’ is a subset of RP and measures are
encoded as weighted point clouds:

N
no= Z:uiél“i’ (3.19)
=1

where (z;) € RN*P and (1;) € RN are large N-by-D and N-by-1 arrays. Functions are
encoded as programs that can be evaluated efficiently at arbitrary locations = € RP: a
good example is the distance function of Eq. (3.3) that can be implemented efhiciently
using the KeOps library of Chapter 2. The duality bracket is performed as:

N
(o ) = > mifi, (3.20)
=1

where (f;) € RN is the vector of sampled values (f(2;));ep1,n evaluated in parallel.

2. In imaging and signal processing, the feature space is a discrete grid of pixels - say,
X =[1,W] x[1,H] - endowed with a reference counting measure:

County & Z dy + S C X — Cardinal(S) . (3.21)

zeX

Since X is a countable (finite) set, the additivity axiom of Eq. (3.6) ensures that measures
pon X are entirely determined by their singleton function:

m:xeX — pu{z}) eR, (3.22)
with . = m County, 1.e.:
= Zm(az)éx :SCX = Zm(x) (3.23)
reX €S

Thanks to the finiteness of the feature space X', measure theory on discrete grids can
thus be implemented using standard vector operations. Measures 1 and functions f are
both encoded through “images” m and f in RW*H, as the integral operator reads:

(p, f) = > m(x) f(z). (3.24)

reX
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3. In machine learning, measures p are understood through random variables X ~ p,
encoded by oracles (X;);cn that can be evaluated at will. This is generally achieved by
picking random lines in a large N-by-D data array, as we implement online variants of
classical algorithms developed in the “geometry and data sciences” setting.

More interestingly, authors who focus on generative modelling and adversarial networks
tend to implement their random variables (X;) as the pushforwards of reference oracles
Xret ~ e through parametric functions - the so-called generative networks. If (X ) ;en
is a process that samples a known probability law - say, a Gaussian N4 on a low-
dimensional latent space RY - and if:

fo : z€RY— fo(x) € RP (3.25)

defines an embedding of R? into the full feature space X = RP, parameterized by a
vector of weights 6, the parametric measure g = 1o f,  is represented by the random
values of the sampler:

X; & foxrhy e X (3.26)

Usually, continuous functions are also encoded with parametric functions:
gp: X =RP - R (3.27)

known as adversarial neural networks or discriminators, and stochastic Monte-Carlo
approximations are used to estimate the values of integrals. If B > 0 is the batch size of
the algorithm,

B

B
(0, 06) = =3 9u(X) = =3 gu(fo(XE). (3.28)
=1 =1

This thesis. This manuscript is written with a focus on the first of these three encodings,
which is well suited to computational anatomy and goes hand-in-hand with our KeOps library.
As discussed in Chapter 4, the manipulation of weighted point clouds fits naturally with the
geometric processing of curves and 3D meshes.

Promoting scientific interactions. Note, however, that most of the ideas presented in these
pages are independent of implementation details and could be relevant in other applied fields.
Our work relies extensively on insights and methods that were introduced by remarkable papers
(Mérigot, 2011; Lévy, 2015; Schmitzer, 2019) in physically motivated settings (fluid mechanics,
PET denoising, etc.), and we strongly believe in the cross-field nature of the topics that we are
about to study.

The (abstract) language of measures is all about letting researchers focus on the big picture,
freed from the burden of low-level programming. We hope that a gentle introduction to the
field will help readers to get a clear understanding of (geometric) measure theory and promote
cross-pollination between physics, computer vision, (medical) imaging and data sciences.
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3.1.3 Notations, technical hypotheses

Before getting to the meat of this chapter, we now state clearly our main assumptions and
provide a comprehensive reference for notations.

Bounded feature space. To ensure that all the quantities that we are about to define are finite
without having to introduce cumbersome hypotheses on the moments of our distributions, we
assume that our feature space X, endowed with a distance function d, is compact.

In practice, we work with measures that have support in some bounded region of a
finite-dimensional feature space: RP endowed with its standard Euclidean metric d(x,y) =
|z — y||. We sometimes refer to X as being “equal” to the full Euclidean space RP, with the
understanding that speaking about explicit balls or hyper-cubes of bounded diameter would be
more appropriate.

Continuous functions, discrete measures. In this work, we draw a clear line between func-
tions and measures on the feature space. The former, denoted by regular letters such as f, g, a
or b always belong to the set C(X) of continuous functions.

On the other hand, measures are denoted by Greek letters o, §, ™ or u and are always
assumed to belong to the set M (X) of finite Borel (and thus Radon) measures on the compact
metric space (X, d). To limit technical digressions, we focus this chapter on the simple case of
discrete measures on a vector space X = RP. a and 3 can be written as weighted point clouds:

N M
a = iy, and B = Bjby, (3.29)
i=1 j=1

with non-negative weights (o;) € RY; and (8;) € RY associated to sampling locations
(z;) € RN*D and (y;) € RM*D.

Outside of Section 3.3.2 (where we briefly discuss extensions of optimal transport theory
to the unbalanced setting), we often assume that our measures o and 3 belong to the set of #nit
mass, probability measures M7 (X). Otherwise said, that:

N M
(a, 1) = > a; =1 and B, 1) => B =1 (3.30)
i=1 j=1

Support of a measure. The support of a positive Radon measure a € M™(X) is defined as
the complement of the largest open set with null o measure. In other words, provided that the
ay’s are positive,

N
Supp(Zaiém> = {z1,...,2n} C X. (3.31)
i=1
Assuming that our feature space X’ is compact, we can generalize the notion of distance
to compact sets: for any reference location € X and continuous function C: X x X — R
defined on pairs of points (z,y), we write that:

Clessuniel) & g, o)
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Densities. When the support of a measure « is included in that of a reference measure 3, we
may sometimes re-write the relationship between the two distributions as a weighted equality:

=%5. e [ f@do@ = [ @ @@ 62

for all measurable function f. If it exists, such a function & 75 © & = Ris uniquely defined
S-almost everywhere and is usually called the Radon-Nikodym derivative or density of o with
respect to 3. In this favorable case, « is said to be absolutely continuons with respect to 3 - a fact
denoted by o < 8 - and we may perform pointwise comparisons between the two measures.
A fundamental example is the density of the normal Gaussian law of Eq. (3.12) with respect to
the Lebesgue measure of Eq. (3.10) :

dNRD
d)\RD
Note that most relationships between measures can 7ot be handled with density functions.

Sometimes, « simply has no density with respect to /3: this is for instance what happens when
one tries to compare discrete measures with continuous distributions.

1

Convergence in law, weak-x topology. Even though measures do not always share a common
support, notions of proximity and “convergence” can still be defined: intuitively, the sequence
of Dirac atoms 4 /,, gets “closer to dp” as n tends to infinity. Going further, picking large
amounts of identically distributed random samples should allow us to “approximate” continuous
probability laws with discrete objects.

To formalize this idea, mathematicians rely on the convergence in law - also known as
weak-* topology - and write that:

ap = 0 <= Vfel(X), (an, f) = (oo, f) 1Le. /deanﬁ/xfdaoo. (3.34)

In words: a sequence of measures (v, )nen converges weakly towards a limit distribution a if
and only if we can observe a convergence of the associated integrals with respect to continunous
test functions. Since (0, f) = f(x), the definition above is enough to ensure that:

S1pm I 5y (3.35)

More interestingly, using the well-known theory of Riemann integrals, we can show that:
lfjd Aoy, bethat  Vfec(o1]) Zf /n—>/f de . (3.36)
n & i/n 0,1] »

The notion of weak convergence of discrete measures towards (continuous) limit distributions
is at the heart of statistics (central limit theorem, etc.) and computational geometry (mesh
refinement, etc.). A functional F : M™(X) — R is said to be continuous with respect to the
convergence in law if:

ap, = « implies that  F(a,) — F(a) (3.37)

for any sequence of measures in MT(X). This notion of regularity encodes the idea of
stability with respect to deformations of the measures’ supports and should be satisfied by
all geometric quantities that are computed from measures.
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Product space. To compare measures with each other, we need to consider pairs of points
(z,y) that belong to the Cartesian product X2 = X x X : let us now recall some standard
notations that link the feature space X' to the set of pairs X2

Tensor sum. If f and g are two functions in C(X'), their tensor sum f & g is defined as:

f@g: (z,y) e XxX = f(x)+g(y).

If X = {x1,...,2n} is a discrete space, functions f and g on X are usually encoded through
vectors (f;) and (g;) in RN. In this setting, f ® g is understood as a large N-by-N array,
(fo9)i; = fi + g, Le. feg=7F+g', (3.38)

with a broadcasted “column + line = square” addition.

Tensor product. Similarly, if & and /3 are measures on X, their tensor product o @ f3 is a
measure on the product space X x X’ defined through:

viec@xx), [ fwydas ey = [ [ feyda@dse). (39
XXX xJx

In the discrete setting discussed above, measures are encoded as vectors (;) and (3;) in RN.
Their tensor product is identified with an N-by-N array:

(a®B)ij = ouf Le. a®B = af'. (3.40)

Marginals. Finally, if 7 is a measure on the product space X' x X, we refer to its two marginals
as m1 and 7. If 7 is encoded as a large N-by-N array 7, 71 and 73 respectively correspond to
the vectors of row- and column-wise sums:

™ = 7wl and my = 71, (3.41)
If 7 has density with respect to a tensor product « ® 8, i.e. 7 = p(-, - ) - (¢ ® ), we have that:
am@) = ([ pey)ds) - dat) (.42
yeX
and dmaly) = ([ ploy)da(e)) - ds) (3:43)
reX

Smoothing, convolution. If « is a (positive or signed) measure on X" and if:
E:(r,y) € X xX — k(z,y) =k(y,z) €eR (3.44)

is a symmetric, real-valued continuous function on the product space X2, the smoothing
k% a € C(X) is defined through:

kxa:zeX — /eX k(x,y)da(y) . (3.45)
y

If ¥ = RP is a vector space and if k(z,y) = k(z — y) is a translation-invariant kernel
parameterized by a “filter” k : RP — R, the definition above coincides with the well-known
convolution operator:

Ve eRP, (kxa)(z) & /ye]RD ke —y)da(y) = /yeRD Ky)da(e —y) . (3.46)
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Implementing a convolution. As illustrated Figure 3.2, a convolution k x « can either be
understood as a weighted sum of translated copies of the kernel &, or through a simple scaling
of coefhicients in the (spectral) Fourier domain.

Mirroring the discussion of Section 3.1.2, this fundamental “(function, measure) — function”
operator can be encoded in (at least) three different ways - illustrated Figure 3.3:

1. If v is encoded as a weighted point cloud, the convolution can be understood as a
matrix-vector product with a kernel matrix. Assuming that o = Z?I:l j0y,, the values
of the continuous function f = k x a on a point cloud (y;) € XM can be computed
through:

N
Fy) = (kxa)(y) = D k(yi—zj)ey ie (i) = (Kya))(ag), (3:47)
7=1
where (K, .. ) is the M-by-N matrix of kernel values k(y;, 2;). Going further, as discussed
in Chapter 2, this operation can be implemented efficiently using approximation schemes
or the GPU routines of the KeOps library.

2. If a is encoded as a density map a on a grid of pixels, the convolution “image” k x «
is made up of local averages of the values of the density map (ali, j]) weighted by values
of k stored in the so-called convolution filter (k[i, j]). Efficient implementations generally
rely on explicit evaluations of the sum:

(k*Oé 207]0 Zk’@ j ZO_iajO_j] (348)

when the filter k has a small support, and leverage fast Fourier transforms otherwise.

3. If a is encoded through a random sampler X ~ «, kernel matrices or KeOps routines
can provide Monte-Carlo estimations of the values of kx« at arbitrary sampling locations:
with a batch size B > 0,

1 B
(kxa)(z) ~ §Zk(x—Xi). (3.49)

Alternatively, in settings where functions are best encoded as parametric programs - e.g.
in the GAN literature - authors tend to refrain from including (expensive) smoothing
operators in their neunral architectures. Regularization of the probability measure « is
directly performed through the addition of an independent noise to the samples’ values:
if k = k, 1s a Gaussian kernel of deviation o > 0

1
ko’ X E RD — W eXp(—Hx||2/202) y (350)

adding an independent Gaussian noise B; ~ ANpp to the parametric sampler (X;);en
with:

Y, = X, + oB; (3.51)

allows us to sample the probability law whose density with respect to the Lebesgue
measure Agp is equal to k, * .
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Figure 3.2: The convolution operator. (first line) Assuming that « is a finite, discrete measure, the
convolution k x « is a superposition of weighted and translated copies of the kernel function &.

(second line) Spectral analysis allows us to write functions k and measures « as superpositions of
pure harmonics e, : * € RP s exp(iw - ) € C indexed by wave vectors w € RP : the Fourier
transforms k and @ of our objects can be understood as (infinite) collections of coordinates (k(w)).,cgo
and (@(w)),,cgrp in the orthonormal (Hilbert) basis of trigonometric wave functions. Crucially, in this
convenient system of coordinates, translation-invariant linear operators such as the convolution are
simple diagonal scalings: the Fourier transform of k * « is given by the pointwise product m(w) =
k(w) &(w). When k is a continuous kernel, the convolution product o — k * o can thus be understood

as a lowpass operator that turns discrete (peaked) measures into functions that are “as smooth as k” by
attenuating the high-frequency components of a.

(a) Geometry. (b) Image processing. (c) Machine learning.

Figure 3.3: Three different ways of implementing a convolution. (a) When « is given as a weighted
point cloud, kernel dot products allow us to evaluate k * « at any location « in the feature space X. In
this manuscript, such implicit functions are represented using level sets known as metaballs in computer
graphics (Blinn, 1982). (b) When « is encoded as a density on a grid of pixels, the values of k* & sampled
at the same pixel locations can be computed using efficient convolution layers. (c) When a probability
distribution « is encoded through a random sampler (X;), the addition of an independent perturbation
whose law has density k& with respect to the Lebesgue measure is a simple way of introducing the
convolution k * « in a stochastic algorithm.
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3.2 Defining distances between measures

As discussed in the previous section, measures encode the notion of weighted set and usually
refer to:

1. Weighted point clouds or un-labeled datasets in shape analysis and data sciences.
2. Density maps or segmentation masks in computer vision and medical imaging.
3. Random vectors in statistics and machine learning.

These objects have less structure than raw numerical arrays, but can still be manipulated efh-
ciently. Using encodings that best fit the constraints of real-life applications, programmers may
combine, integrate and convolve measures to let them interact with continuous test functions.

Metrizing a space of measures. Crucially, theorists and practitioners also need to measure
errors between parametric models and empirical datasets. From the 50’s onwards, a major
problem in applied mathematics has thus been to define loss functions that could quantify the
discrepancy between any two measures a and 8 at an affordable computational cost.

Desirable properties. In order to legitimize geometric intuitions, researchers tend to focus on
functionals:

Loss : (a, ) € MT(X) x MT(X) — Loss(a, B) € R (3.52)

that are related to distances on the space of measures: ideally, Loss or v/Loss should satisfy the
triangle inequality. Failing that, suitable loss functions should at the very least be positive and
definite:

Va,B3€ MT(X), Loss(a,3) > 0 and  Loss(a,8) =0 & a=4. (3.53)

Stability. As discussed around Egs. (3.34-3.37), theoretical properties that are related to the
convergence in law allow mathematicians to guarantee that their formulas stay consistent when
practitioners improve their discretizations. A loss function is weakly continuous if:

N M
Loss(a, B) = Loss(Zai(Sm, Zﬂjéyj) (3.54)
i=1 j=1

is stable with respect to the measures” weights and sampling locations. This definition covers
the splitting of Dirac masses in geometry, the up- and down-sampling of density maps in
imaging or changes of the batch sizes N and M in statistics.

Going further, we say that a loss metrizes the convergence in law if:

ap 22Ny <= Loss(an, ) 2225 0, (3.55)

L.e. if it can be relied upon to assess the convergence of discrete samplers to their underlying
continuous distributions. Note that the properties above are minimal requirements, which do
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not guarantee that a loss formula behaves in a way that is compatible with the geometry of the
ambient feature space X'. As we are about to see, the choice of a suitable loss function - among
the large collection of formulas that are positive, definite and numerically stable - can have a
massive impact on the behavior of applied pipelines.

Gradient of a function defined on a space of measures. As discussed in Section 3.1.2, signed
measures are in duality with continuous functions: the associated vector spaces M (X) and C(X)
interact with each other through the integration or duality bracket “(p, f)”. As we are about to
see, this operation plays the same role as the dot products of Definition 2.3 in the definition of
(generalized) gradients for measure-theoretic functionals:

Definition 3.1 (Differentiability on the space of Radon measures). A functional F : M(X) —
R is said to be differentiable at v € M(X) if there exists a continuous function, the gradient of
F at a denoted by VF(«) € C(X) such that:

Ve € M(X), Yt € R, Fla+t€) < F(a) +1 (€, VE(a)) + o(t) (3.56)
— F(a)+t / VE(a) d¢ + o(t) . (3.57)
X
If F is merely defined on the space of probability measures M7 (X), variations £ are such that

Jy d¢ =0 and VF(«) is only defined up to an additive constant - we refer to (Santambrogio,
2015) for a detailed explanation.

Encoding the gradient. In practice, as discussed Section 3.1.2, measures are encoded through

discrete objects such as vector of weights (a;) € RY and tables of sampling locations (z;) €

RN*D_The theoretical continuous gradient f = VF(«) is linked to the actual vectors “V,,F(a)”
and “V,,F(«)” needed by practitioners as follows:

1. In geometry and data sciences. If o is encoded as a weighted point cloud 3N ; ;6.
Vo, F(XN  aiby,) = f(x) and V., F(XN, b)) = i Vf(xi). (3.58)

Note that the second identity involves the spatial gradient V f(z;) € RP of the function
f = VF(a) : X — R on the feature space. It can be shown formally using a permutation
of limits, which is legitimate in all practical use cases.

2. In imaging and signal processing. When « is given through its density a(z) on a grid
of pixels X =[1, W] x [1,H], V,F is also encoded as an image, with:

Va@)F(a-County) = f(z). (3.59)

3. In machine learning. Finally, if « is encoded as the parametric push-forward ag of a
reference measure, f appears as an intermediate step in the chain rule for § — F(ap).
Using the notations of Section 2.1.2:

VoF(ag) = dgayg - d F -1 =djay - f. (3.60)



74 Chapter 3 Geometry on a space of measures

3.2.1 Pointwise divergences: total variation and relative entropy

Total variation. Formally, as detailed in Eq. (3.4), measures are defined as functions ju that
attribute a positive mass p(.S) to subsets S of the feature space X. From this perspective, the
simplest notion of distance that can be defined between two positive measures « and 3 is
therefore the Total Variation:

TV : (o, B) € MT(X) x MT(X) = sup |a(S) - B(S)| € Ry, (3.61)

Scx

which is the maximal discrepancy between the values of « and /5 on measurable subsets - or
events - of X. Focusing on the measure-function duality, we can write the Total Variation as:

TV(a,B) = ”fS”up<1 (a=5,1), (3.62)

where competitors or adversarial test functions f : X — R are measurable and bounded:

1flloo & sup |f(2)] < 1. (3.63)
reX

Relative entropy. Assuming that o has density S—g with respect to 3, we can go further and
define the relative entropy or Kullback-Leibler divergence through:
def.
KL(e, 8) = (a,log$3) — (a, 1) + (5, 1). (3.64)
If ‘di—a cannot be defined, the value of KL(«, /3) is set to +00. As discussed in Section A.3.1, this
(assymetric) loss function is positive, definite and can be written in dual form as:

KL(O‘76) = sup <Oé, f> - <67 ef - 1> . (365)
fec(x)

Invariance to the feature space. Thanks to their point-wise definitions which do not rely on
pair-wise quantities such as the distance ||z — y||, the TV and KL losses are invariant to the
parameterization of the feature space X': applying a change of coordinates to the features z;
and y; of our measures has no impact on the values of TV (¢, 8) and KL(«, 3). As far as the
latter is concerned, this even holds in the continuous case (Bauer et al., 2016).

The robustness of these metrics to the parameterization of the feature space prevents them
from being continuous with respect to the convergence in law, but makes them ideally suited
to the processing of generic histograms. When measures have support on a pre-defined set of
un-related labels such as:

X = {“dog”, “cat”, “bird”} , (3.66)

which is typical for classification taks in machine learning and computer vision, using the TV,
KL or general Csiszar f-divergences (Csiszar et al., 2004) losses is a most sensible choice.
Endowed with a remarkable intrinsic structure, the relative entropy KL lies at the heart
of information theory, with numerous applications to computer science (Shannon, 1948) and
statistics (Kullback, 1997). Derived from the theory of entropic coding, the “.zip” algorithm
(Ziv and Lempel, 1978) is an ubiquitous standard for the compression of binary files, to be
used in situations where the structure of the problem can not be leveraged. This is in constrast
with e.g. the processing of natural images, where the Fourier- and wavelet-based JPEG and
JPEG-2000 algorithms are industry standards (Wallace, 1992; Skodras et al., 2001).
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Fisher-Rao Optimal Transport
(hyperbolic) (Euclidean)
o o2 —

(a) Fisher-Rao metric. (b) Wasserstein-2 metric.

Figure 3.4: Geodesics on the statistical manifold of univariate Gaussian laws N (m, o).

(a) When the metric structure on the ambient space of probability measures is given by the KL divergence,
the 2-dimensional statistical manifold of Gaussian laws is isometric to the Poincaré upper half-plane.
This standard model of hyperbolic geometry corresponds to a local scaling in 1/0 of the Euclidean
distance around each point (m, o), which promotes trajectories that pass through high-variance states.
(b) When the space of probability measures is endowed with the Wasserstein-2 metric discussed in
Section 3.2.4, Gaussian laws can be identified with points (m, o) in the Euclidean upper half-plane.
Images taken from the textbook (Peyré and Cuturi, 2017), where detailed computations can be found.

Statistical manifolds. Going further, the field of information geometry (Amari and Nagaoka,
2007) introduces geometric ideas in statistics by restricting the KL divergence on the “ambient
space” M™(X) to parametric families of probability distributions, seen as surfaces or sub-
manifolds. A motivating example is to consider the family of univariate Gaussian laws N'(m, o),
parameterized by a scalar mean value m € R and a positive deviation o > 0 :

dN(m,o) 1
dAr C oVor
Linearizing the KL formula around a reference measure N'(m, o), we find that for sufhiciently

small deviations (Am, Ac) of the values of the parameters m and o:

%\Am\Q—i— |Ac|?
2

VzeR, exp( —|lz —m||* / 20?) . (3.67)

KL(N(m + Am, o + Ag), N(m,0)) = + o((Am, Ac)?) . (3.68)

g

Remarkably, up to a benign rescaling of m into m/+/2, this quantity coincides with the well-
know hyperbolic Poincaré metric on the upper half-plane R x R+, described in (Cannon
et al., 1997; Charpentier et al., 2010). The “Gaussian mapping” :

N : (m,0) ER xRsg = N(m,o0) € MT(X) (3.69)

can thus be understood as an isometry between the Poincaré model and the family of Gaussian
distributions, endowed with the intrinsic Fisher-Rao metric induced locally by the relative
entropy KL.
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(a) Diffusion Tensor Imaging. (b) Sampling arbitrary distributions.

Figure 3.5: Unexpected applications of information geometry to medical imaging and sampling.
Figure (a) is taken from (Pennec, 2008), and illustrates the need for efficient denoising algorithms on
tensor-valued images - here, a DTT view of the rachis. The restriction of the Fisher-Rao metric to
multi-variate Gaussian laws is affine invariant, and underlies the reference algorithms in the field.
Figure (b) comes from (Bauer et al., 2017) and illustrates Optimal Information Transport. By comput-
ing explicit diffeomorphisms (right) that match a uniform law with an arbitrary density map (top),
researchers can sample continuous distributions with high sample rates (bottom).

Applications. In higher dimensions, multi-variate Gaussian laws are parameterized by mean
vectors and covariance matrices. By restricting the Fisher-Rao metric to this family of probability
measures, researchers can endow the cone of symmetric, positive definite matrices with the
so-called affine-invariant metric (Pennec et al., 2006). Remarkably, this gem of applied geometry
is now routinely deployed on MRI scans: related algorithms provide a robust baseline for the
processing of Diffusion Tensor Images (Pennec, 2008).

Going further, Optimal Information Transport lifts the Fisher-Rao geometry to spaces
of deformations of the ambient space X = RP (Bauer et al., 2015). Associated algorithms may
be used to find diffeomorphic mappings between densities at an affordable cost: applications
to medical imaging and sampling theory are shown in (Bauer et al., 2018). As illustrated in
Figure 3.5, the KL formula has thus applications that go way beyond the cross-entropy layer
used in machine learning to perform logistic regressions.

Geodesics. This is all well and good. But should we pick the KL divergence above any other
formula? To understand the metric structures that we define on spaces of positive measures, a
sensible starting point is to look at geodesics, i.e. continuous paths of minimal length:

v te[0,1] = 3 € MT(X) (3.70)

that join a source distribution vy = « to a target y1 = 3.

Let us focus on the Fisher-Rao geodesic of Figure 3.4.a. We see that according to the
geometry induced by the KL loss, the “least action” transition between confident left- and right-
wing distributions passes through a highly diffuse medium point. This modelling assumption
fits well with e.g. social sciences, where measures could be used to encode personal opinions in
the feature space X of political ideas.
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Discrete measures and relative entropy. Going further, the invariance of the KL formula to
affine changes of coordinates in the feature space X = R allows us to show that:

KL(N(m,0), N(m,0/2)) = KL(WN(m,0/2), N(m,c/4)) (3.71)
= KL(WN(m,o/4), N(m,c/8)) (3.72)
_— (3.73)

At the limit, following Zeno’s paradox, this property implies that discrete Dirac measures
are rejected outside of the domain, infinitely far away from continuous distributions. This
is, at heart, the reason why we must state that KL(c, ) = +00 whenever « has no density
with respect to £.

Geometric loss functions. Putting degenerate distributions out of reach is acceptable for
researchers who only ever need to consider diffuse probability laws. Geometers, however, have
been working with idealized points, curves and surfaces since the days of Euclid: they need to
rely on loss functions that can handle discrete and continuous measures alike.

In the same vein, promoting a default behaviour that is compatible with the linear structure
on the feature space X = RP is often more sensible than dealing with the uneven behaviour of
the Fisher-Rao geodesics, illustrated Figure 3.4.a. We say that a loss function lifts the distance
on the feature space X to the general family of measures M ™ (X) if for all Dirac masses
and 0, :

Loss(dz,0y) = |lz =yl or 3la—yl*, (3.74)

with geodesic vy : t € [0, 1] = §1_p)grsy € MT(X). In words: if a Loss takes “geometric”
values on pairs of atomic measures, identified with points x and y of the ambient space X = RP.

As discussed in Figure 3.4.b, the Wasserstein-2 metric introduced in Section 3.2.4 is arguably
the most appealing of all geometric loss functions: it provides intuitive linear interpolations
and stays defined through an explicit mathematical expression. It should be understood as
a well-defined L?-Euclidean metric on the material, Lagrangian particles that make up our
distributions.

3.2.2 Hausdorff distances: iterative closest points and mixture models

A first idea: nearest-neighbor projections. From a pragmatic perspective though, no fancy
mathematical theory is needed to satisty the lifting condition of Eq. (3.74). The simple formula:

N M
def. M N

ICP(a, 8) = ;) rj@{l\\wi—yj\\z + 32 B min i —y5)? (3.75)
i=1 - j=1 -

used by the iterative closest point algorithm (Besl and McKay, 1992) and its many variants
works just fine. Ubiquitous in 3D point cloud processing, this well-known functional relies on
nearest-neighbor projections. It can be re-cast in the measure-function duality paradigm by
introducing the distance fields to the supports:

a(x) def %d(m, Supp(a))2 and b(x) = %d(m, Supp(ﬁ))2, (3.76)
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two continuous functions a, b : X — R which allow us to write that:
ICP(a,8) = Yo b) + (B, 0) = Lla— B, b—a), (3.77)

since (o, a) = 0 = (3, b). We retrieve a good-looking, quadratic-like formula that involves
the difference of functions (b — a) integrated with respect to the difference of measures (ov — 3).
The expression above is usually called the chamfer distance in computer vision, where the
computation of distance maps a and b — chamfer transforms - to the support of measures v and
[ using fast marching methods is a critical operation (Borgefors, 1984).

SoftMin regularization. Nearest-neighbor projections can be softened by introducing the
SoftMin operator “min.”, defined for any continuous expression f : X — R by:

min, f(x) o log/ exp ( - %f(x)) da(x) . (3.78)
T~ X

Implemented using the efficient and stable Log-Sum-Exp reduction presented around Eq. (2.43),
this operation interpolates between a minimum and a sum. As discussed in Section A.3.2,
we can show that if « is a probability law:

min. f(r) <" nin - f(2) (3.79)
2 o, f) . (3.80)

Gaussian Mixture Models. If o > 0 is a positive regularization scale, the soft distance fields:

def. . def. .
as(y) = ming %Hw — Z/H2 and bo(x) = m1r55 %Hx — y||2 (3.81)
T~ Yr~

associated to a temperature ¢ = o2 are proportional to the negative log-likelihoods of mixture

models, built from our two distributions using a Gaussian kernel &, of deviation o:
a, x —log(kys * ) and be x —log(kysx ) . (3.82)
Generalizing Eq. (3.77) in a principled way, formulas such as:

GMM:-log(ev, 5) = =B, by —a,) = %<a — B, log

ko
bea)

- or asymetric variations in the mould of («, b,) - are extremely popular in statistics and com-
putational geometry: they appear whenever researchers try to maximize the likelihood of a
mixture model or express their algorithms within an Expectation-Maximization framework.
Note, however, that they do nor define positive loss functions.

(3.83)

Hausdorff divergences. Following an established tradition in computer graphics (Bouaziz
et al., 2016), we refer to the formulas discussed in Egs. (3.75,3.83) as soft- or integrated-
Hausdorff loss functions. Detailed in Section A.2, our main proofs on entropic optimal
transport rely on a positive and definite variation of Eq. (3.83), introduced in Eq. (A.40).
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(a) Loss = 3(a, b). | (B) Loss = 3(8, a). | (c) ch>55 =a—-B,b—a).

Figure 3.6: Projections in the Soft-Hausdorff loss function produce localized gradients.

In these pictures, our measures « - in red - and 8 - in blue - are displayed as solid shapes in the unit square
X =[0,1] x [0, 1]. Distance fields a - in red - and b - in blue - are displayed using contour lines and
computed using Eq. (3.81), which generalizes Eq. (3.76). The (opposite) gradients — ==V, Loss(cv, )
of our loss functions with respect to the particles that make up the red measure a are displayed as green
vector fields, while red and blue lines figuratively represent the “springs” that link points z; and y; to
their nearest neighbors in the other point cloud, as suggested by Eq. (3.75).

(a) The first term (v, b) of Hausdorff-like formulas is the integral of « in the distance field generated
by 3. Its gradient Vb(z;) urges particles z; to run straight towards their nearest neighbors in the target
measure 3.

(b) The second term (8, a) is the integral of 5 in the distance field generated by «. Its gradient has a
strong influence on the points x; of « that are close to the target /3, but leaves the other ones untouched.
(c) By combining these two (simple) behaviors, researchers can define affordable Loss functions. Unfor-
tunately though, as illustrated in Figure 3.7, the resulting gradient is of very low quality and can only
be used in optimization pipelines after a heavy-handed regularization step.

Geometric intuitions, gradient flows. As detailed in Figure 3.6, Hausdorff loss functions
rely on nearest-neighbor projections that induce heterogeneous, degenerate gradient fields.
Unfortunately, they are thus somewhat ill-suited to generic measure-fitting problems.
Can we make this statement more specific?

To design illustrative experiments and compare geometric loss functions with each other,
we rely on unregularized, particle-based, “Wasserstein” gradient flows (Santambrogio, 2017).
Working in a reference feature space - the unit interval X = [0,1] C R or the unit square
X =1[0,1] x [0,1] C R? - we sample points (z;) and (y;) according to known probability
laws: in all our experiments, uniform distributions over shape-like domains of X. In practice,
picking N = M = 10,000 points per shape, we work with the discrete probability measures:

1 1 &
a = — E Ou; and g = — E by, (3.84)
N~ Mj:l i

endowed with uniform weights o; = 1/N and 8; = 1/M. We then focus on a typical
optimization problem: the minimization of Loss(«, 3) with respect to the positions (x;) of
the samples that make up the model measure «, as we try to fir a model measure « to the fixed
target distribution [ using an arbitrary loss function.
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(a) t=0. (b) t= .25 (c) t= .50 (d)t=1.00 (e) t=5.00

&)

(ft=o. (g) t = .25 (h) t = .50 (i) t =1.00 (j) t =5.00

Figure 3.7: Gradient flow of the Hausdorff loss function defined Eq. (3.83) in 1D and 2D. The
blurring scale is set to ¢ = 0.10, at around 10% of the configurations’ diameters. Source and target
measures are discretized with N = M = 10,000 samples as we iterate the Euler scheme of Eq. (3.85).
(first line) We start with discrete measures o and 3 sampled uniformly on the intervals [0.0,0.2] and
[0.6,1.0]. Both measures are displayed using kernel density estimations - i.e. convolutions with a small
unit-mass kernel - over the real line and are respectively associated with the red and blue colors.
(second line) We start with discrete measures o and 3 sampled from an ellipse and a saxophone-like
shape in the unit square X = [0,1] x [0, 1]. The samples x;(¢) that make up our model distribution «
are displayed using a rainbow colormap, allowing us to track the trajectories of individual particles.

A reference toy problem: Wasserstein gradient flows. In line with the recent literature
in machine learning, we tackle this problem by performing gradient descent on the x;’s
and update the positions of the samples iteratively, starting from our initial configuration at
time ¢t = 0. As discussed in Section 2.1.2 (Automatic differentiation), computing gradients
V., Loss(a, ) is now a mere formality.

Keep in mind, though, that each point x; is associated to a Dirac atom «;0,,, = %5%. whose
influence in the source measure is proportional to the positive weight o;; = 1/N. To define
trajectories which do 7ot vary with the number of samples N, we normalize the velocity fields
by 1/«; and iterate the loop:

1o 1 &
1 E E
Vi 2 0, I‘Z(t + 6t) < .Iz(t) — 0t aivxiLOSS< N — 51’1(t) y Mj:l 6y]. > 5 (3.85)

with a fixed learning rate 6t = 0.01 > 0. These conventions enforce parameterization
invariance and are well-suited to a theoretical analysis. As far as machine learning is concerned,
this toy minimization algorithm corresponds to a model- or network-free optimization,
where a reconstruction error is directly minimized with respect to the samples’ positions.
Referred to as Wasserstein gradient flows in the continuous case, evolution equations in
the mould of Eq. (3.85) have recently become a standard tool for the study of partial differential
equations (Jordan et al., 1998): we refer to (Santambrogio, 2015, 2017) for an overview.
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Hausdorff divergences provide low-quality gradients. Illustrated in Figure 3.7, this simple
experiment allows us to visualize the information encoded by the usual gradient vector:

OLoss(av, B)

Vg, Loss(a, 5) = .

, (3.86)

without any external influence.

What does it say? Unfortunately, as evidenced by the erratic evolution of our densities, the
raw vector field induced by Hausdorfl-like formulas cannot be relied upon to produce smooth,
intuitive interpolations between geometric measures. Following the qualitative analysis of
Figure 3.6, the model measure « tends to be torn apart in two stages: first, some extremal points
are attracted quickly towards the support of 3, in a bid to minimize the “« to 3” interaction
term (3, a); second, regular points z; follow through and go in straight line towards their
nearest neighbors y; at the risk of splitting « into pieces.

In a real pipeline: Riemmanian gradient flows. Needless to say, this naive dynamics is of little
practical interest... But the results of this toy experiment do not imply that HausdorfT distances
are useless. Far from it. Crucially, in most real-life applications, the z;’s are not updated using
the simple rule of Eq. (3.85) but generated as the output of a parametric transform:

@ : (pp) € RN @(pp) = (w3) € RV*P, (3.87)
as we perform gradient descent on the vector of parameters (py) :

Vi >0, pp(t+dt) + pr(t) — 5tV Losso @ (pi(t)) . (3.88)

Sub-Riemannian gradient descent. Let us remark that if ® is differentiable, the chain rule
reads — with the notations of Eq. (2.20) :

Vp.Losso ®(p;) = d];rkLoss o®(pg) - 1 (3.89)
= d;kq)(pk) . dIiLoss -1 (3.90)
= d®(pg)" Va,Loss(z;) (3.91)

where d® denotes the Jacobian matrix of the parametric model ®. Consequently, at order 1 in
dt, the updates on the array (z;) = ®(py) read:

Vit > 0, zi(t +6t) — xi(t) — 6t d®(pg) d®(pg) " Vo, Loss(z;) . (3.92)
K(px)

Real-life gradient descent is all about regularizing the naive gradient vector through the
application of a symmetric, positive, semi-definite operator K that is encoded within the
differential of the generative map ®. In some favorable cases - say, if @ is injective - the tensor
K (pk) can be expressed as a function of the measure « encoded by the z;’s, and we interpret
Eq. (3.92) as a sub-Riemannian gradient descent scheme for the semi-definite pseudo-metric:

I6zil|2, < (6ai) T (K ()" 6y . (3.93)
As discussed in Section 5.2.3, we can indeed remark that in the small-6¢ limit:

x; — 0t K(2;)Vy,Loss(z;) = argmin [Loss(z;) + allzh — @2 ] + o(6t) . (3.94)

3
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(a) Point Cloud Library (Rusu and Cousins, 2011). (b) Sparse ICP (Bouaziz et al., 2013)

Figure 3.8: HausdorfI-like distances are ubiquitous for 3D affine and rigid registration.

Affine shape registration. The regularizing operator K encodes the modelling prior that drives
descent algorithms towards relevant minima and prevents the generated measure o from leaving
the set of acceptable models. Understanding its behavior in complex situations - e.g. when ®
is a convolutional neural network - is a challenging problem (Amari, 1998; Ulyanov et al.,
2018). In simple explicit settings however, the analysis can be straightforward and provide
critical insights: see, for instance, the archetypal example of shape registration with affine
transformations.

In this setting, the 3;’s and y;’s are set and describe some fixed target shape /5 discretized
with M weighted points. The measure «, on the other hand, is generated using a low-rank
transform. A template shape is encoded by a reference set of weights («;) and points T = (Z;),
which allows us to generate the moving samples (z;) using:

D5 : (A,B) € ROP X RUD s () = TA+1B € RN*D | (3.95)

an affine mapping parameterized by a vector p = (A, B) of size D> + D - here, 1 denotes the
constant N-by-1 array whose entries are equal to 1. Computations show that the operator K
associated to this deformation layer has a simple analytic form:

K:veRYP o 2@ +1(170) € RVD, (3.96)

Crucially, K = 7 + 117 is a low-rank symmetric matrix which discards most of the
information encoded within the raw descent direction v = —V,,Loss(x;). With at most
D2 + D non-zero eigenvalues, it can be described as a projection plus scaling operator onto the
low-dimensional space of affine deformations of Z. As long as the gradient vector field v points
roughly in the correct direction, iterative affine registration algorithms should thus be able
to improve their matchings without ever tearing the template shape apart - the deformation
model @4 is just way too constrained.

Conclusion. As illustrated in Figure 3.8, Hausdorf-like loss functions provide the reference
baseline for pose estimation and mesh reconstruction methods. Thanks to the intrinsic robust-
ness of affine and rigid deformation models, authors in the field are now able to post-process
Hausdorff gradients using outlier detection methods (Aiger et al., 2008; Ma et al., 2014) and
tackle extremely challenging configurations - with noise or partial acquisitions - in real-time.
Unfortunately though, performances break down as soon as the generative model ® stops
being as constrained as a low-rank affine deformation. The ideal, unregularized setting of
Eq. (3.85) - where K o Idgnxp - should act as a strong motivation for the development of
high-quality geometric loss functions whose gradients can be relied upon to drive flexible,
possibly learned generative models in situations that are closer to Figure 3.7 than to Figure 3.8.b.
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3.2.3 Kernel methods: Sobolev metrics, MMDs and charged particles

A second idea: using convolutions. How should we proceed? To retrieve a smooth, non-
degenerate gradient flow from the good-looking formula of Eq. (3.77), a simple idea is to
replace distance fields by convolutions. That is, to pick a symmetric kernel function:

E:(zy) e XxX — k(z,y) =k(r—y)eR (3.97)

and work with the influence fields or potential:

a & —kxa and by & k%3, (3.98)

Our quadratic loss function then reads:
Kernel(a, 8) € La— B, by—ar) = LHa—B, kx(a—B)) = La—pl}. (3.99)

Such a formula can be implemented using the tools and routines presented around Figure 3.3.
Assuming that a = "N | @0, and 8 = Z —1 Bj6y; are two discrete measures, we can simply
develop the loss value as a combination of three double sums:

Kernely(a, B) = Lo, kxa) — (o, k*3) + %(ﬂ, k* [3) (3.100)
N N N M M
= %Zzaiaj k(xi7xj) - Zzaiﬁj k‘(xz-,yj %ZZB’LBJ yzay] (3.101)
i=1j=1 i=1j=1 i=1j=1

performed efficiently using the KeOps routines of Chapter 2. Alternatively, when X = RP, we
can leverage the Fourier transform and convolution theorem of Figure 3.2 to write that:

Kernelg(a, ) = L

k(w) |a(w) — B(w)]* dw . (3.102)
2 Juerp

As discussed below, this identity will incite us to focus on kernel functions k whose Fourier
transform k is positive on the spectral domain RP, thus ensuring that Kernely, is a positive and
definite quantity.

Kernel methods. Formulas in the mould of Egs. (3.99-3.101) are ubiquitous in applied
sciences: from physics to machine learning, applying a convolution is the simplest way of
modelling spatial correlations and pair-wise interactions. Unfortunately though, few papers
and textbooks take the time to draw explicit links between fields that have, at first glance,
very little in common. Before going any further, we devote a few pages to a short panorama
around the six major interpretations of Eq. (3.99). As we identify with each other the theories of:

Newtonian gravitation and electrostatics in physics,

blurred squared distances in imaging sciences,

Sobolev norms in functional analysis,

maximum mean discrepancies in statistics,

reproducing kernel Hilbert spaces in machine learning and

Kriging, splines or Gaussian processes in geostatistics, imaging and probabilities,

SR

we will hopefully help the reader to get a deeper understanding of a theory that is central to
modern data sciences.
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First interpretation: generalized electrostatics. Historically, convolutions were first intro-
duced by Newton in his Principia Mathematica to model universal gravitation. When k is the
Coulomb kernel given by:

. 0 fz=y,
k(z,y) & 1 L Y (3.103)
m otherwise ,
the continuous potential:
—kxa : zeRP — — 3.104
o Z NP e

is the gravitational potential generated by the distribution of mass c. Its spatial gradient is the
opposite of the gravitational acceleration vector:

N

§(z) € Vikxal(z) = 3 a

= e — P

i (3.105)

whose norm proverbially decays following an inverse square law of the distances between the
current point x and the mass locations z; in X = R3.

Going further, the classical theory of electrostatics generalizes these equations to signed
distributions. If +« and —f are respectively understood as “positive” and “negative” distri-
butions of electric charges (say, protons +«; and electrons —/3; at locations z; and y;), the
loss formula of Egs. (3.99-3.101) gives the potential energy stored in the global electrostatic
interaction between all pairs of particles. The gradient vector:

E(z;) & —a%vmiKernelk(a,B) = —V[k*(oa—ﬂ)] (x;) (3.106)

=Y« B i (3.107)
Z]Hz JII5 Z"Hy] xi]|?

~ 05, 5 (0, kxa) +0s, (0, kxB)

is the electric field E(x;) applied by the total distribution of charge (o — 3) on the particle z;
of charge 4. It is the superposition of repulsive and attractive terms, respectively generated
by the distributions +« and —f.

In practice, using a kernel loss in the mould of Eq. (3.99) thus amounts to working with a
generalized electrostatic model: the spatial decay of the interaction is encoded by the profile
of the potential k. For instance, a Gaussian kernel:

k(z —1y) def —lle=vl?/20®  ith gradient V,k(z —y) = J”U;de*”mfyHZ/Q‘ﬂ (3.108)

models an interaction that is strong when ||z — y|| ~ o and negligible otherwise.

Applying the particle-based gradient flow of Eq. (3.85) to a kernel loss is akin to simulating
the evolution of a dampened system of charged particles. Known as electrostatic halftoning
(Schmaltz et al., 2010) in some communities, this method provides a simple yet effective baseline
for image stippling. Coupled with higher-level generative models for the z;’s, it is a fundamental
method for shape registration and machine learning, as discussed at the end of this section.
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(a) Raw data. (b) Small kernel. (c) Large kernel. (d) Peak + Heavy tail.

Figure 3.9: Influence of the blurring kernel g on the convolution g * (v — 3) (b-d) computed from
the signed measure (o — 3) (a). (b) When the kernel has a small support, g x & and g x 8 barely interact
with each other: the kernel Loss is little more than a glorified pointwise distance. (c) On the other
hand, large smooth kernels can over-blur the data and effectively prevent measure-fitting or registration
algorithms from reaching a satisfying accuracy level. (d) As far as geometric applications are concerned,
good baselines are provided by kernels that are both pointy and with a wide support: they preserve the
high-frequency content of the input data and allow samples to interact with each other at long range.

Second interpretation: blurred sum of squared distances. Far away from physics, a second
interpretation of the kernel loss comes from imaging. As seen in Figure 3.9,if g : RP — Risa
convolution kernel, the continuous function g * (o« — 3) provide a blurry view on the sharp
input measures v and 3. Its standard L? norm is given by the sum of squared distances formula:

sllg* (a— B)H%Q(RD) = /GRD |lg* (o — ﬁ)](x)Ide (3.109)
= / |G(w)* | a(w) - Bw)|* dw . (3.110)
weRP
We can thus identify this quantity with the kernel norm associated to the symmetric kernel:
ko= (go(a——a2)) xg, (3.111)

whose Fourier transform:

kw) = §)]* = 5w)§w) (3.112)

is real-valued and non-negative. In practice, the introduction of a point spread function g allows
practitioners to create overlap between neighboring samples in o and 5. As image registration
algorithms strive to minimize loss fidelity terms in the mould of Eq. (3.109), they typically
align structures who “see” each other thanks to these cheap (o« — ) — ¢ * (o — ) filtering
passes.

Third interpretation: dual of a Sobolev norm. Kernel losses are fundamental quantities
in physics and imaging. Remarkably, they can also be cast in the measure-function duality
paradigm using sets of smooth adversarial test functions: unit balls in generalized Sobolev spaces.

What does this jargon implies? In functional analysis, for the study of partial differential
equations, mathematicians tend to rely on functions whose derivatives are square-integrable -
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of finite energy - and therefore bounded in a global sense. For instance, on the real line X = R,
the Sobolev space H* = W12 of finite-energy functions with finite-energy derivatives is made
up of all (weakly) differentiable functions f : R — R such that:

+oo +o00
/ |f(2)]?dz < +o0 and / If'(z)?dz < 4o0. (3.113)

—00

It is endowed with the H!-Sobolev norm defined through:

400
17 = [ @P + If @ de < oo, (3.114)

which penalizes large values and large derivatives. The fundamental Sobolev embedding theorem
shows that generalized functions of finite H! norm can be represented as continuons functions:
relying on pointwise evaluations, their integrals with respect to Dirac masses are well-defined
quantities. Mimicking the construction of the Total Variation written Eq. (3.62), we can thus
define the dual H=! norm through:

lo=Bllg— = max (a=4, f), (3.115)

£l <1

for any positive Radon measures a and 8 in M*(R).

Intuitively, restricting the maximization problem above to continuous test functions is a
way of retrieving a geometric behaviour. If we compare a model o = 6 /,, with a target 3 = d,
the Total Variation norm can always pick a step function:

-1 ifz<1/2n,

) (3.116)
+1 otherwise .

f:xGRH{

It then saturates at:

TV(d1/n,00) = (O1/n — 0, f) = f(1/n) = f(0) = 1—(-1) = 2 (3.117)
for any value of n, which is useless. More interestingly, the H ! norm defined above can only
pick test functions f whose derivative is square integrable, with:

+oo
[ 1@ i@k <1, (.118)

Such functions can 7ot make sharp jumps between 1/n and 0: ||d;/,, — dol| z—1 should thus
somewhat reflect the geomerric proximity between the two Dirac masses, as n tends to infinity.

These hand-waving explanations can be made rigorous using Fourier analysis: the H !
norm has a simple closed-form expression as a Kernely, loss. To derive it, we first remark that
using Parseval’s identity:

151 = [ 15@F + 17 @) e G119
x [P + 1 PP (3.120)
= [P + i flo) do (3.121)
= [Tased fera. (3.122)
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Then, using the Fourier expressions of kernel norms from Eq. (3.102), we can re-cast the
optimization problem of Eq. (3.115) as:

+00 —mM8M ———
la—Blg— = frféixk/_oo [a(w) — B(wW)] f(w) dw (3.123)
. +oo NI 2
subject to / (1+w’)|fw)] dw < 1. (3.124)

Introducing a Lagrange multiplier or leveraging the Cauchy-Schwarz inequality, we see that
the optimal Fourier transform f(w) is necessarily proportional to (a(w) — B(w))/(1 + w?).
Direct computations then show that:

400 1 N N
Ha_ﬁ”?f{*l = ‘/_OO m ‘Ot(w)—,B(WMde. (3.125)

Simply put, the H ! norm on the real line X = R is thus equal to the kernel norm associated
to the exponential kernel:

1

T (3120)

k(z) = e 1?l  whose Fourier transform is given by k(w) =
up to the usual multiplicative constants for Fourier transforms.
In the general case, mathematicians work with Sobolev spaces that are defined:

1. For arbitrary differentiation orders m, with high-order terms appended to the high-pass
polynomial in 1 + w? + - - - 4+ w?™.

2. In high-dimensional settings, as X = RP is some arbitrary vector space. Generally,
D = 2 or 3 for applications in fluid mechanics.

Anyway: as long as a Sobolev space H™ satisfies the hypotheses of the embedding theorem
(t.e. if m > D/2), its dual norm H ™" can be understood through the lens of Eq. (3.99), with a
continuous kernel & that becomes smoother as m increases.

Fourth interpretation: maximum mean discrepancies. The theory of Sobolev spaces is at
the heart of modern analysis... But in practice, data scientists have little use for its calculus-
centric formalism. Pragmatically, statisticians prefer to specify the profile of admissible test
functions f using explicit kernel functions & on the feature space X'

Assuming that a kernel & is well-behaved - e.g. continuous, square-integrable and with a
positive Fourier transform - the space of k-smooth functions V is that of all functions f = k*u
such that (u, k % 1) is finite, for arbitrary signed distributions . It is endowed with the dual
metric induced by the deconvolution operator k(=1 x - :

Iy & RED % f, £) S (u kwep) with f=kxp. (3.127)

Computations similar to those of the previous paragraph then show that the kernel norm of
Eq. (3.99) is given through the expected adversarial formulation:

lo—Blk = max_(a—B, f). (3.128)
1A, - <1
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Following a terminology that was coined by (Gretton et al., 2012), kernel norms are generally
called (kernel) Maximum Mean Discrepancies (MMDs) in the machine learning literature: the
maximum refers to the dual optimization problem, the mean to the integral operator in the
duality bracket and the discrepancy to the difference of input measures (o — f3).

The most iconic example of a non-Sobolev MMD is the Gaussian kernel norm. If o > 0 is
the standard deviation of a Gaussian kernel:

1 276 2
ky : 1 €RP —» — — ¢ ll=l?/207 3.129
(ov/2m)P ( )

the Fourier transform k, of k, is simply equal to k; ;. Consequently, the canonical dual norm
on the set of ky-smooth function reads:

oo ow||? Iy 2
£ = [ eIt )P dw, (3.130)
with a penalization of high frequencies in:

,\1 x etllowl?/2 (3.131)
ko (w)

that grows (much) faster than any polynomial in 1+ ||w||?+ - -+||w||*™ induced by the differenti-
ations of a Sobolev norm. In practice, Gaussian kernel norms all but prevent their test functions
from expressing frequencies outside of an admissible lowpass band in the [-3/0, +3 /0] range.

Fifth interpretation: kernel methods. The theory of Reproducing Kernel Hilbert Spaces
(RKHS) generalizes these computations even further, by removing the assumption that the
smoothing operator k * - acts through a translation-invariant kernel k(z,y) = k(z — y).

Formalized by analysts such as Aronszajn and Schwartz in the 1950’s, the theory of RKHS
can be described as the study of Hilbert spaces of functions for whom the pointwise evaluation
is a well-defined, continuous linear form. Tanks to the Riesz representation theorem, this is
equivalent to the study of dot products (-, - )y, that induce a complete metric structure || - ||y,
on spaces Vj, of functions f : X — R and are such that:

Ve eX, 3ga € Vi, VEEV 6n ) € (@) = (go, fv - (3.132)

This axiom implies the existence of a symmetric, continuous function k : X x X — R
that characterizes the dot product (-, - )y, and is such that:

def.

Vaye X, g:.(y) = gy(x) = k(z,y). (3.133)
The kernel k satisfies the so-called reproducing property:

In practice, this abstract theory allows researchers to generalize results proved on X = RP to
general feature spaces, e.g. permutation groups for genomics. From the 90’s onwards, kernel
methods have become a staple of the machine learning literature: we refer to (Shawe-Taylor
et al., 2004) for an extensive overview.
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Sixth interpretation: Gaussian processes. With an ever-widening scope, kernel theory can
be used to specify the “typical regularity” of functions in Hilbert spaces Vj, whose unit balls
then induce the family of Kernely, losses through the dual formulation of Eq. (3.128).

In applications that range from geology - Kriging - to shape analysis - spline registration
- the simplest way of leveraging such an assumption of regularity is to specify a Gaussian prior
on the space of admissible signals. Formally, this comes down to endowing the space L?(RP)
of square-integrable functions with a probability distribution whose density with respect to
the “volume” measure is proportional to:

_Hf‘l%/ /2‘72 3.135
Ty () o VA, (3.135)

In the infinite-dimensional Hilbert space L2(RP), the iso-likelihood sets of this distribution
are given, for t > 0, by the equation:

_ 2_+°°LAw2w
=R = [ el (3.136)

Assuming that k is positive, we recognize an ellipsoid whose principal directions are colinear

to the Fourier harmonics ey, : € RP €™ € C, with axes lengths proportional to \/k(w).

Kernel regression. In practice, data is often provided as a collection of labelled points (z;, f;) €
RP x R for i in[1, N], understood as the sampled values f; at locations ; of an underlying
signal f : RP — R that we strive to infer. Under the regularity assumption of Eq. (3.135), the
most likely candidate is the solution of the quadratic optimization problem:

= arg]rcreli‘gl ||f|]%/k subject to Vie[l,N], f(z;) = fi. (3.137)
k

The optimal competitor is thus a function which is “as k-smooth as possible” while taking the
prescribed values f; at the sampling locations z;.

From a geometric perspective, f* is the orthogonal projection of 0 € Vj, onto the affine
subspace defined by the constraints of Eq. (3.137). Using the representation formula of
Egs. (3.132-3.133), this domain can be rewritten as an intersection of (affine) hyperplanes:

N
Constraints(z;, f;) = [ {f € Vi, (k(zs, ), flv, = fi }- (3.138)
=1

Since f* belongs to its orthogonal for the (-, - )y, dot product:
[Constraints(z;, fi)]J'Vk = Vect(k(z;, ), i €[1,N] ), (3.139)

it can thus be written as a linear combination of the N elementary functions k(z;, - ). Otherwise
said, there exists a vector of weights (11;) € RN such that:

N N
VzeRP, f*(z) = Z,uik‘(m,xi) Le. fr = k*z,ui&;i. (3.140)
i=1 i=1
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The statement above is known as the representer theorem in the machine learning literature.
If we introduce the N-by-N kernel matrix (K ;) j = k(z;, z;), the equality constraints of
Eq. (3.137) imply that:

(f)) = Kou (i) € RY. (3.141)

We can thus solve the kernel or Gaussian process regression problem in two steps:

1. Solve the linear system of Eq. (3.141) to compute the optimal vector of weights:
(hs) = Koz (f) - (3.142)

2. Evaluate f* at any sampling location = € RP using the closed-form solution of Eq. (3.140).

Ridge kernel regression. Alongside N-body simulation, this method has been the major
motivation behind the development of kernel-related routines since the 1950’s, when it was
introduced for geostatistics by Krige and Matheron. Note however that in practice, fitting a
perfectly smooth model to a real-world dataset is not a sensible thing to do: the linear operator
K, is often badly conditioned. Practitioners generally assume that their data is 7oisy and
strive to solve the regularized interpolation problem:

N
N . 1 2
fro=eg i Wl + G 2 @) = il (3.143)

| X
or ¥ = arg min (u, kxp) + EZ|[k*“](xi) _fi‘2, (3.144)

[l | <+oo i1

for some positive value of the regularization parameter «, as we replace the hard equality
constraints of Eq. (3.137) with a smooth quadratic penalty.

This correction was historically introduced to model a nugger effect and allow smooth
terrain models to handle irregular real-life samples. In practice, adjusting the computations of
the last few paragraphs, we can show that solving the regression problem of Eq. (3.143) with
discrete samples is just a matter of replacing Eq. (3.142) in the first step of our algorithm by:

(1) = (ald+ Kuo)~ (f) - (3.145)

In Chapter 2, around Eq. (2.55) and Figure 2.9, we discussed some of the computational
aspects of solving these kernel linear systems. Notably, we explained how the KeOps library
could provide a x30 to x100 speed-up to state-of-the-art solvers in the general case. In some
favorable settings, however, there is no need for such machinery. For instance, when & is a
B-spline kernel sampled on a regular grid of z;’s, the kernel matrix K , has a band-diagonal
structure that can be leveraged with O(N) solvers: we refer to classic papers such as (Takeda
et al., 2007) for an extensive discussion.

Feature maps. The explanations above have allowed us to introduce an important quantity:
the discrete kernel matrix K ; of pair-wise values k(z;, z;). In probability theory, statistics and
machine learning, a large body of work tends to interpret these scalar quantities as correlations
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or dot products in a convenient feature space. Indeed, under technical assumptions on the kernel
k, it is often possible to build a feature map:

o :xe X — px)eF such that k(z,y) = {(p(x), o(y))F , (3.146)

where F' is an arbitrary Hilbert space endowed with a dot-product (-, -)p.

This kernel trick allows researchers to understand the kernel matrix K ; as the Gram
matrix of a point cloud (¢ (;));q1, N> image of our dataset by a domain-dependent feature
extractor. Plugging a kernel matrix into a geometric algorithm to act as a “non-linear Gram
matrix” is thus a legitimate operation. As evidenced by the popularity of kernel-SVM and
other kernelized machine learning algorithms, the combination of robust statistical routines
with custom kernel matrices strikes a good balance between power and simplicity.

Please note that in probability theory and (geo)statistics, F' is often a space of random
variables “X” or “Y"” endowed with the standard dot product:

(X,Y)p = E[X-Y]. (3.147)

In these fields, K, , is thus generally called the covariance matrix while k is the covariance
function or variogram: we refer to (Rasmussen, 2003) for an introduction.

Positivity, universality. All the results and identities presented in this section hold for symmet-
ric, translation invariant, continuous and square-integrable kernels whose Fourier transform is
positive. As discussed in Eq. (3.102), the associated Kernely, loss is a positive, definite functional.
And as detailed around Eq. (3.109), it can be understood as a simple L? norm seen through the
lens of the feature mapping:

op : 2 €RP — gx6, € L*(RP) with Gw) = k). (3.148)

An overwhelming majority of papers in data sciences focus on Gaussian, exponential or Cauchy
kernels that are respectively defined through:

1

— =2 /202 —||z|| /o
k(z) oc e lI2lF/20% k(z) oc e l#l/o k(z) o T /o

(3.149)
and satisty these hypotheses.

More generally, most of the interesting results in kernel theory hold for continuous,
symmetric functions k : X X X — R that are “positive definite”, i.e. are such that:

YN >0, V(2;) € XN, Kyp= (k(zi,7;)) € RNN is a positive-definite matrix. (3.150)

Under this assumption, Mercer’s theorem is indeed able to provide an explicit feature map
¢ and legitimize kernel analysis as an application of Euclidean geometry in some (infinite-
dimensional) Hilbert space F of feature vectors. A weaker but common assumption on k is
conditional positivity, which is only imposed on the space of zero mean vectors and is most
relevant to the study of probability measures.

Finally, researchers typically assume that their kernels are universal, i.e. that finite kernel
expansions of the form "N | p1;k(-, ;) - for any number N > 0 of points (2;); € AN and
weights (1;); € RN - are dense in C(X) for the || - ||, norm (Micchelli et al., 2006). In
the translation-invariant setting, this condition is roughly equivalent to asking the Fourier
transform of k to be positive instead of being merely non-negative, and ensures that the associated
kernel norm metrizes the convergence in law.
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A flat metric structure. As discussed in the last ten pages or so, kernel norms are backed by
an impressive body of work. In subsequent chapters of this manuscript, we will heavily rely on
this influential theory to lay the foundations of computational anatomy. But are kernel losses
really suited to geometric applications?

Following the guidelines of Figure 3.4, we first remark that kernel geodesics have a straight-
forward expression. Since kernel norms are induced by a /inear convolution operator k * -,
they are compatible with the algebraic structure on the vector space of signed measures M (X):
the shortest path between any two distributions @ and f3 is given by:

Yamsp t t€[0,1] = (1 —t)a + tf. (3.151)

At heart, kernel norms thus induce a pointwise, Eulerian geometry on spaces of measures.
Unlike the relative entropy KL, discussed in Section 3.2.1, Kernely, losses can handle continuous
and discrete distributions alike. They metrize the convergence in law. But out-of-the-box,
they interpolate between Dirac atoms d, and d, through manipulations on weights, instead of
moving samples in the feature space as prescribed around Eq. (3.74). Showcased in Figure 3.14.a,
the fading interpolations induced by kernel losses do nor leverage the metric structure of the
feature space.

Electrostatic screening, vanishing gradients. Fortunately, the gradient flow of Eq. (3.85)
provides a simple way of retrieving a particle-based dynamics out of any loss function. As
discussed in Section 4.2.2, relying on a kernel norm or MMD to drive a measure-fitting pipeline
is a standard procedure in shape analysis, image processing and machine learning. But are all
kernels created equal?

Naively, we could be inclined to believe so. After all, from a theoretical perspective, any
universal, positive definite kernel induces a Kernely, loss that metrizes the convergence in
law. In practice though, as evidenced by the catastrophic dynamics of Figure 3.10, combining
gradient descent with a kernel norm can be a dramatic mismatch.

To understand this phenomenon, we must cast aside the refined theories of RKHS or
Sobolev spaces and come back to our first physical intuitions: Kernely, losses are generalized
electrostatic energies. As we minimize 5|l — j3||7 with respect to the z;’s, “protons” +; 6,
naturally repulse each other while being attracted to the “electrons” —3;4,.. Unsurprisingly,

the repulsive term generated by close neighbors in the expression of the electric field E (z;),
Eq. (3.106), often dominates the feeble attractive force generated by the far-away target .

Picking a sensible kernel. To mitigate this weakness, the choice of a suitable kernel £ is
essential. For geometric applications, practitioners should focus on potentials whose attractive
strength —Vk(z) does not vanish too early: a heavy tail is a desirable property. On the other
hand, geometric kernels should not be too smooth: as evidenced in Figure 3.9.c, large regular
kernels can quickly blur-out the small-scale (i.e. high-frequency) details present in the input
data.

From this perspective, the ever-popular Gaussian kernel is one of the worst possible
choices: the Gaussian bell combines an extreme smoothness - discussed in Egs. (3.129-3.131) -
with a compact support, as for all practical purposes:

1 =e %2 >s /2 = 9. (3.152)
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Figure 3.10: Gradient flow of a Gaussian Kernely, loss in the unit interval (a-e) and the unit
square (f-j). Here, the setting is the same as that of Figure 3.7 and k(x, y) = exp(—||z —yl|?/20?), with
o = 0.1. As evidenced by these two dynamics, following the gradient of a positive and definite loss
function does not necessarily allow measure-fitting pipelines to converge towards satisfying alignments.
The “explosion” showcased here is due to the repulsive interaction exerced by the “positive charges”
+;0,, onto another. Eventually, most of the samples x; end up outside of the effective support of the
target’s potential field by = —k x 8 and lay around motionless, scattered across the domain.

() t=0 (b) t = .25 (c) t = .50 (d) t=1.00 (e) t =5.00

Ht=0 (g) t = .25 (h) t = .50 (i) t =1.00 (j) t=5.00

Figure 3.11: Gradient flow of the “Energy Distance” Kernel;, loss in the unit interval (a-e) and
the unit square (f-j). Here, the setting is the same as that of Figure 3.7 and k(z, y) = —||z — y||. Thanks
to its pointiness and (very) heavy tail, the Energy Distance kernel provides an excellent baseline for
geometric applications. At the cost of a single convolution per evaluation, it allows practitioners to
retrieve a monotonic convergence of the model o towards the blue target 3. Its main weakness is common
to all kernel losses: electrostatic screening. Due to the combination of attractive and repulsive terms in
the gradient of Eq. (3.106), vanishing gradients are always present: some points z; (here, on the top-left)
converge extremely slowly towards their targets, as the measure « gets stretched without good reason.
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A Gaussian kernel of deviation o is essentially blind to all points beyond a maximum
reach of ~ 30 and to all details which are smaller than a ~ 0/2 blur scale. Taken separately,
these properties could be guarantees of robustness with respect to outliers and discrete sampling
locations. But as they are tied together through a single parameter o, these two features severely
impact the reliability of Gaussian kernel losses in applied settings: catastrophic failures along
the lines of Figure 3.10 are a common occurence in computational anatomy.

This state of things is most unfortunate: Gaussian kernels are generally well-understood by
practitioners, well-suited to other applications (e.g. clustering) and supremely affordable on
grid images and volumes, where they can be implemented using separable convolution filters.
A common strategy is therefore to rely on sums of Gaussians:

K
k(z —y) = Zwi e~ l=vll?/207 (3.153)
i=1
with new hyper-parameters to tune: the scales (0;) € RY and weights (w;) € RX.

The Energy Distance. This strategy can provide satisfying results, but is generally brittle
and a bit cumbersome. As a robust and reliable baseline for practitioners, we would like to
recommend the (underrated) Energy Distance kernel:

k(r,y) = —[lz -y . (3.154)

It is well-known is statistics (Szekely and Rizzo, 2005) and generally induces good-looking
monotonic flows, displayed Figure 3.11, without any parameter to tune. The associated
potential:

N
a (@) = =[ = I*xa]@) = Y aillt — x| = Eacalllz—A]  (3.155)
=1

is a natural generalization of the distance field to a measure, and we always observe that:
Kernel_ . (dz,0y) = [z —yll. (3.156)

Note, however, that the “minus norm” kernel is only conditionally positive: the positivity of the
associated Kernel_ .|| loss is guaranteed only if v and 3 have the same mass. The Kernel .
loss should thus be used on the normalized probability distributions o/{«, 1) and 5/(5, 1).

Conclusion. All in all, robust kernel norms such as the Energy Distance provide sensible
gradient vectors at an affordable computational cost: a mere convolution through the data.
Their properties have been a strong motivation for the development of efficient numerical
schemes, from Fast Multipole Methods (Greengard, 1988; Beatson and Greengard, 1997) to the
KeOps library.

Nevertheless, as far as geometric applications are concerned, kernel norms suffer from two
important limitations: their geodesic interpolating curves rely on pointwise fadings instead
of geometric deformations; and due to electrostatic screening, their gradients vanish or become
inhomogoneous in ways that often mislead finely grained generative models.

Removing these artifacts without giving up on fast runtimes is the main motivation for
the work presented in the next few pages.
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3.2.4 Optimal Transport: Wasserstein distance and generalized Quicksort

A third idea: sorting points. To go beyond the limitations of convolutions and kernel norms,
we rely on the theory of Optimal Transport (OT) which generalizes sorting to feature spaces
X of dimension D > 1. Also known as linear assignment, OT is all about casting point set
registration as a linear optimization problem. Pairwise correspondences between weighted
point clouds can then be used to endow the space of probability measures M7 (X) with a
particle-based geometry, known as the Wasserstein metric or Earth Mover’s Distance.

A principled body of work. Over the last 40 years, this framework has progressively entered
the standard toolbox in applied mathematics as strong French and Italian schools gathered
around the topic. Excellent textbooks on the subject are available: albeit slightly outdated,
(Villani, 2003) and (Villani, 2008) are still reference works in pure mathematics while (San-
tambrogio, 2015) and (Peyré and Cuturi, 2017) respectively cover the standard results for
applications to functional analysis and data sciences. We highly recommend these monographs
to readers who would like to get a solid background on the topic, and refer to them as well as
to the lecture notes (Vialard, 2019) for standard proofs.

Keep in mind, however, that all authors have their biases. Staying close to its author’s
main interests, (Santambrogio, 2015) is written with a strong focus on PDE flows; meanwhile,
(Peyré and Cuturi, 2017) is mostly concerned with theoretical convergence rates and the
popularization of OT in a wide range of applied settings.

In this manuscript, which is all about real-life performances for geometric applications,
we focus on the link between Optimal Transport and sorting. This connection is especially
relevant for low-dimensional feature spaces and allows us to highlight four points:

1. OT is not a generic optimization problem. Whenever possible, leveraging its geometric
structure is the key to unlock efficient O(N log N) schemes that can be understood as
high-dimensional generalizations of the Quicksort algorithm.

2. OT can be highly relevant, but is not a magic solution to all registration problems. Just
like sorting algorithms, OT matches samples according to the metric structure of the
feature space: nothing more, nothing less. If features are not properly engineered, OT
is thus no more relevant than alphabetical or random sorting. Keeping this in mind
is most important in machine learning and image processing, where high-dimensional
embeddings can be of dubious quality.

3. Crucially, OT does not preserve the topology of the input measures. Computational
efficiency is achieved at the cost of simplistic assumptions on what practitioners may
regard as “optimal” matchings: users get what they pay for, and should always keep in
mind the counter-examples of Figure 3.31.

4. OT has a rich history and naturally appears in many applied settings, from physics to
combinatorics. Talented mathematicians and computer scientists have been working
on the subject since World War 2, with varying vocabularies and motivations. To stop
re-inventing the wheel and contribute to the wider scientific community, getting familiar
with the literature outside of data sciences is a necessary first step.
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Optimal Transport in dimension D = 1. With these precautions in mind, we first assume
that our measures a and 8 sample #nivariate probability distributions with an equal number
of points. That is, we assume that M = N and X = R with:

1o 1
= X2 0 and B= 52 % (3.157)
i=1 j=1

as (z;), (y;) € RN and o; = B8; = 1/N. Up to a re-labelling of the samples, we may assume
that the z;’s are sorted and find a permutation o : 1, N] — [1, N] such that:

1< T2 S <IN and Yo(1) S Yo(2) € S Yo(N) - (3.158)

The Wasserstein distance. Optimal Transport theory is all about using this canonical ordering
of the samples to pair the z;’s and the y;’s with each other. On the real line, we define the
Wasserstein-2 loss function through:

OT(« Z i — Yo | - (3.159)

This formula generalizes the squared Euclidean distance on RN to clouds of unlabeled samples.
Direct computations show that v/OT satisfies the triangular inequality and is a distance, usually
named after Leonid Vaserstein. Following the recommendations of Eq. (3.74), OT Iifts the
distance on the feature space as:

OT(6,0y) = Slz—y|*, (3.160)
with geometric shortest paths between Dirac masses:
Voo, 1t €[0,1] = S(1_pprey € MT(R). (3.161)
Remarkably, the OT loss is differentiable almost everywhere. Generically, we have that:
— V., 0T(e, ) = =95 Va, 170 = vo) ] = Vo) — @i - (3.162)

Otherwise said, with a learning rate dt that is equal to 1, a single gradient descent step on
OT(«, B) as in Eq. (3.85) is enough to ensure a perfect matching of the z;’s onto the y;’s.

Generalization to higher dimensions. These properties are undoubtedly appealing: thanks
to a re-ordering of the x;’s and the y;’s, the Wasserstein-2 distance endows the set of unlabeled
N-samples in R with a purely geometric Euclidean-like structure. But can we generalize this
method to higher dimensions, where no ordering “<” is available? Following the steps of
(Monge, 1781), we cast the sorting operation as an optimization problem on permutations
and define the Wasserstein-2 loss between point clouds (z;) and (y;) in RN*P through:

OT(a, ) & — Yo lI? - (3.163)

N
a1, N]—)[[l N] 2N 21
permutatl()ﬂ
In dimension D = 1, direct computations show that the optimal labelling o is, indeed, the one
that corresponds to a non-decreasing coupling between the z;’s and the y;’s. Picking the “least
action” assignment o is a sensible way of generalizing sorting to arbitrary feature spaces.
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Generalization to weighted point clouds. Going further, Kantorovitch remarked in (Kan-
torovich, 1942) that the Monge assignment problem could be generalized to any pair of discrete
positive measures:

N M
a = Z@idwi and B = Zﬁjéyj (3.164)
i=1 j=1

that have the same total mass. If the cost function on the feature space X = R® is given by:
C: (z,y) €eRPxRP = C(z,y) = 3z —y|* € Rxo, (3.165)

we define the Wasserstein-2 loss between « and /3 through:

N M
OT(O&,ﬁ) déf' min ZZT{'@"]’ C($iayj) (3166)

NxM
(mi)ERSG T i=1 j=1
def. def.
. .. ef. T eT.
subjectto V4,5, m; = 0, (nl); = E Ty = o, (m1); = g i = Bj.
i=1 i=1

Ilustrated Figure 3.13.(a,b,d), this equation describes the minimization of the linear objective
7 +— (m, C) over the set of non-negative transport plans (7; ;) € REOXM whose lines sum-up
to v and whose columns sum-up to .

Formally, these constraints define a simplex of co-dimension (N + M) in the (N - M)-
dimensional cone RYFM. More intuitively, the weighted point cloud o was historically in-
troduced to describe a collection of resources «;, produced in factories at locations z;, that
were to be allocated to satisty the needs 3; of Soviet cities at locations y;. The values of
C(z,y;) describe transportation costs per unit of mass: 7 should thus be understood as a large
factories x cities allocation plan that we strive to optimize globally.

Needless to say, the weighted Kantorovitch formulation is consistent with the combinatorial
Monge problem of Eq. (3.163). When N = M and a; = 8 = 1/Nfor all 4, j in[1, N], standard
computations show that any permutation o : [1, N] — [1, N] solution of the combinatorial
problem of Eq. (3.163) induces a solution of the Kantorovitch problem of Eq. (3.166) given by
the permutation matrix:

1N if o(i) = j

Tij = w0o(i)=j = { . (3.167)

otherwise.

Generalization to continuous measures. Today, mathematicians define the Wasserstein-2
distance between any pair o, 8 € M (X) of same-mass positive measures through:

OT(«, 5) el min (m, C) subjectto 7>0, m =a, m=p. (3.168)

TEMT(XXX)

As detailed page 69, these compact notations describe a linear optimization problem with respect
to a Radon measure 7 defined on the product space X x X. The linear constraints “m; = «”
and “mg = (” fix the marginals of 7, which can thus be understood as a probabilistic mapping
between the source and target distributions. These constraints imply that the optimal coupling
7 has density with respect to the product measure o ® 3: when v and §3 are discrete, Eq. (3.168)
coincides exactly with Eq. (3.166).
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A sensible generalization of the sorting problem. From the 1D sorting of Eq. (3.159)
to the multi-dimensional Monge problem of Eq. (3.163) and the fully general, continuous
Kantorovitch formulation of Eq. (3.168), modern Optimal Transport theory proposes a
consistent way of generalizing “sorting” to arbitrary feature spaces. Showcased in Figure 3.12,
the resulting assignments allow researchers to define particle-based algorithms on (unlabeled)
measures at a low computational cost.

Continuous OT retains the geometric properties of the discrete sorting operation. As-
suming that C(z, y) = ||z — y||? is the quadratic cost of Eq. (3.165), we can show that the
lifting conditions of Egs. (3.74,3.160) stay satisfied. Even better: as discussed in Figure 3.4.b,
OT defines sensible linear interpolations between Gaussian laws and can be used to define an
elegant notion of harmonicity for measure-valued applications (Lavenant, 2019a,b).

The dual Kantorovitch formulation. The OT loss can be cast in the measure-function duality
paradigm using the adversarial formulations:

N M
OT(x,3) = max Zaifi—l— Zﬁjgj st. Vi,5, fi+g9; < C(z4,9) (3.169)

(fi)eRN i= i—
(9;)€RM ! =t

= max a, )+ (8, S.t. ®g < C 3.170
[ nax (a, f) + (B, g) fog (3.170)

which respectively correspond to the discrete and general cases.

The equivalence between the primal problem of Eqs. (3.166,3.168) and the dual problem
above is the fundamental theorem of linear programming. In 1975, Leonid Kantorovitch was
awarded the “Nobel” prize in economics for this result, whose traditional interpretation in
terms of “external contractors” and market equilibrium is illustrated Figure 3.13.

Dual potentials. Strictly speaking, the dual problem above only interacts with the dual
potentials f and g on the supports of the input measures, through the vectors of sampled
values:

fi = fla) and 9;i = 9(yj) (3.171)
which are unique up to an additive constant: for all K € R,
(f,g) is an optimal pair < (f 4+ K,g — K) is also solution of the dual problem. (3.172)

We can, however, canonically extend any pair of optimal dual potentials to the whole domain
X = RP by using the (non-sufficient) optimality equations:

Ve, flz) = min [C(z.9)—g(y)] = gnig{l[c(x,yj) -],  (3173)
VyeX, gly) = xegggg(a)[c(%y) —fl@)] = Z.E{l[c(xi,y) —fl@)],  (3.174)

which correspond to a saturation of the constraints of the dual problem. The rules of linear
programming - complementary slackness — ensure that any optimal pair (f, g) satisfies these
conditions for z = z;, y = y;. Extending them to the whole domain is a consistent way of
ensuring that important quantities such as V f and Vg are properly defined almost everywhere.
In line with the literature on the topic, we refer to optimal potentials (f, g) that satisfy these
equations for all values of z and y in X as to the “unique” optimal dual potentials associated
to the transport problem OT(«, 3), defined up to an additive constant.
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(a) Unit sphere. (b) Stanford dragon. (c) Vertebra. (d) Human brain.

Figure 3.12: Optimal Transport generalizes sorting to spaces of dimension D > 1.

Here, all measures are sampled from 3D meshes with about 200,000 triangles each, with one weighted
Dirac mass |area| - dcenrer per triangle. As we transport a stripe color scheme from the unit sphere o
to the Stanford dragon S, a vertebra 8’ - courtesy of bio1260 on SketchFab - and a human brain
(", we can observe the structure of the optimal transport plans 7o« 3, Tay 7 and ma 57 solutions
of the Kantorovitch problem of Eq. (3.166). As discussed from Figure 3.27 to Figure 3.30, allowing
practitioners to compute such mappings in fractions of a second is the major contribution of this work.

(a) Primal agent. (b) Optimal transport plan (m;. ;). (c) Dual agent.

a15m1 - 6157;1 alé-a:l ﬁléyl
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(d) Optimal transport plan (m; ;). (e) Optimal dual prices (f;) and (g;)-

Figure 3.13: Illustrating Kantorovitch’s duality. The primal problem OT(«, ) of Eqs. (3.166,3.168)
models the decision process of a Soviet marshall (a) who wishes to minimize the cost of allocating
resources from factories x; to cities y; (d) using a large N-by-M transport plan (b). On the other hand,
the dual problem OT(«, 8) of Egs. (3.169,3.170) models the aspirations of an external contractor (c)
whose profit margin is directly proportional to the stamp prices f; and g; at locations z; and y;. The
postal network (e) should be set up to maximize the total sending + retrieval price >, ai; f; + 3 B;9;
under a competitive market constraint: for all pair (2;, y;) of destinations, the “FedEx rate” f; + g;
should stay below the baseline cost C(z;, y;) of sending an army truck from one place to the other.
Crucially, Kantorovitch showed in 1942 that the two problems are equivalent: there exists a “marshall
vs postman” market equilibrium around the optimal value OT(«, ) of both competing problems.



100 Chapter 3 Geometry on a space of measures

A compact encoding. The most important consequence of the primal-dual equivalence is that
the full information about an optimal transport plan 7 € M™ (X x X) - an N-by-M matrix -
can be summarized within a single dual potential f € C(X) - a vector of RYN. Indeed, since
B > 0, we know that for any set value of f, Eq. (3.174) gives the best possible competitor g
that saturates the constraint “f @ g < C”; standard computations then show that the support
of m = (m;;) is concentrated on pairs of points (z;,y;) such that f(z;) + g(y;) = C(xs,y;).
A large N-by-M transportation problem can thus be reduced to the optimization of a single
vector of potential prices f; = f(x;).

The Monge map. In (Brenier, 1991), motivated by his research on the incompressible Euler
equation, Yann Brenier pushed this analysis further. Working under the assumption that C is,
indeed, the quadratic cost function of Eq. (3.165), he showed that OT is all about computing the
gradients of convex potentials. As detailed for instance in (Peyré and Cuturi, 2017, Remark
2.24), a simple assumption of continuity on the input measures « and 3 is enough to ensure
that if (f, ¢) is an optimal dual pair for OT (¢, ), the Monge map:

T:2eRP » 2-Vfx) = V[ >~ f]) (3.175)

coincides with the optimal transport plan 7 of o onto 5. More precisely: the support of
T € MT(X x X) is concentrated on pairs (2, T'(z)) € X x X and 3 is equal to the pushforward
measure o o T~1 of & under the action of T'. Remarkably, the continuous potential:

p:2eRP = Lz|? - f(2) (3.176)
is necessarily convex, which allows us to ensure that:
Va, o € RP, (2 — 2, T(2') — T(z) )gp = (2’ — z, V(') — V(z) )gp = 0. (3.177)

This property of quadratic OT is a strong argument in favor of the theory. It generalizes to
high-dimensional settings the monotonicity of the optimal re-ordering o of Eq. (3.158):

Vi, i €[1,N], (2 — i) - Yo(ry = Yo(@) = 0. (3.178)

The Brenier map. We should keep in mind that formally, the results above only hold when
« is continuous, i.e. has density with respect to the Lebesgue measure A\gp. As illustrated
Figure 3.13.d, transport between weighted point clouds may involve a splitting of mass that can
not be represented using a deterministic Monge map.

In applications, however, most practitioners are satisfied with the barycentric mapping:

M
Zj:l T4,5Yj
M
2 =1 Tij

that matches each source sample a;d,; of o with a weighted barycenter of its targets 30, in S.
In subsequent pages of this manuscript, we generalize this construction to regularized variants
of OT and give it a central role in applied algorithms. To avoid any confusion, we propose to
call Brenier maps the generalized variants T' : = +— = — V f(z) of the classical Monge map,
which may not exactly send o onto § but always provide good approximations of the OT
matching under a given time or complexity budget.

T : z;eRP — ;i — Vf(x;) = xi—aiivxiOT(a,/B) = (3.179)
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(a) Kernel, linear barycenters. (b) Wasserstein barycenters.

Figure 3.14: Optimal Transport induces a particle-based geometry on the space of measures.

In both figures, four reference probability measures A, B, C' and D are represented using density
maps on the unit square X = [0,1] x [0, 1] - black is zero and denotes the absence of mass. The 25
interpolating density maps represent the Fréchet barycenters 75, = argmin_, Myl —5)- (1~
t)-Loss(A,v)+ (1 —s)-t-Loss(B,y) +s-(1—t)-Loss(C,v) +s-t-Loss(D,~) for values of s and
t sampled in {0., .25, .50, .75, 1.00}.

(a) The geometry induced by a Kernely, loss function acts purely on weights. As discussed Eq. (3.151),
7s,¢ 1s simply given through a bi-linear interpolation of density maps.

(b) On the other hand, when Loss is the Wasserstein-2 OT formula of Eq. (3.168), 7, ; interpolates
between measures using a purely geometric, particle-based method (Agueh and Carlier, 2011). The
difference is most striking in the A «++ C geodesic interpolation. Note that using approximations
described Section 4.3.3, this image was generated in less than a second on a free Google Colab session.

Choosing a cost function: beyond quadratic OT. Throughout this introduction, we kept a
focus on the quadratic cost function C(z,y) = 3|z — y||?, which induces the Wasserstein-2
distance on the space of probability measures. Endowed with the rich structure discussed
around Egs. (3.175-3.179), this specific metric is the one that most faithfully generalizes the
sorting operation to general feature spaces. As discussed around Eq. (3.85), it enables the study
of Wasserstein gradient flows and is most suited to geometric applications. Understanding
its (algorithmic) properties in low-dimensional feature spaces is our main priority.

In many applied fields, however, the cost function C is arbitrary and given as a generic
matrix (C; j) € RN*M, This was the setting originally studied by Kantorovitch, whose cost
matrix typically encoded the structure of the Soviet railway system. Since World War 2, solving
exactly the discrete OT problem in this un-structured setting has been a major problem in
operations research and network optimization. As discussed at the beginning of Section 3.3,
the literature dedicated to solving the linear assignment problem in this generic setting has
mostly revolved around combinatorial algorithms. These are typically sub-optimal when
the cost function presents a structure that can be leveraged, or when practitioners are only
interested in getting a rough approximate matching. Nevertheless, they still provide strong
baselines and essential concepts for the study of geometric OT problems.



102 Chapter 3 Geometry on a space of measures

Wasserstein-p, earth mover’s distance. In between the fully geometric and generic extremes,
the family of Wasserstein-p problems is associated to the power cost functions:

1
C(z,y) = ml!ﬂ?—yllp- (3.180)

The case of the Coulomb penalty “p = —1” has connections with density functional theory
and has become a topic of interest in quantum chemistry (Gori-Giorgi et al., 2009; Buttazzo
et al., 2012; Cotar et al., 2013). Meanwhile, concave costs such as the square-root penalty
“p = 1/2” are relevant in economics, but notoriously hard to handle (Delon et al., 2012).
Crucially, the simple distance penalty obtained for “p = 1” is the one that was originally
studied by Monge to formulate his earth mover’s problem. The associated theory is just as
significant as the one developed in the quadratic case “p = 2”, with a rich history and deep
connections to many applied fields. A fundamental remark is that when C(z,y) = ||z — y||,
the Kantorovitch dual formulation of Eq. (3.170) is equivalent to a simplified problem where
“f = —g”: the OT loss becomes the dual norm associated to the set of 1-Lipschitz test functions:

OT(a, B) = sup  (a—p4, f) & sup (a—p, f). (3.181)
f is 1-Lipschiz If (@)= fW)I<llz—yll
In recent years, this alternative definition of the Wasserstein-1 distance has inspired the creation
of a wide family of dual - adversarial - Loss functions, loosely related to OT theory and
computed through gradient ascent on a family of parametric test functions - discriminative
newtorks. We discuss the so-called Wasserstein GANs at the end of this chapter, but wish to stress
that the results presented in these pages only hold with respect to the genuine OT problem.
Generalizing them to the weakly structured settings encountered in machine learning and
imaging is still very much an open question.
Finally, as detailed in (Santambrogio, 2015, Section 4.2) an equivalent definition of the
Wasserstein-1 distance is given by Beckmann’s minimal flow problem (Koopmans and Beck-
mann, 1957):

OT(a,B) = w:Rrgi—I}RD /xeRD |¥(z)||dz st dive &y, v =a—0, (3.182)

which is of considerable interest in economics and can be conveniently generalized to graphs.

Geometric properties. As illustrated in Figures 3.15 and 3.16, the choice of an appropri-
ate cost function C has a sensible influence on the dynamics induced by the OT(«, 3) loss
on measure-fitting pipelines. In the remainder of this manuscript, we mostly focus on the
Wasserstein-2 distance which provides the most “geometric” gradients and is thus best suited
to computational anatomy. Nevertheless, we keep discussing the major trade-offs associated
to other cost functions and hope that the advances presented in the next few pages will prove
useful in a wide range of settings.

Conclusion. OT theory is an essential tool for geometric data processing, which allows us to
retrieve the intuitive dynamics of Figure 3.16 with a simple mathematical formula. In practice
though, the resolution of generic linear programs along the lines of Egs. (3.169-3.170) is known
to be a hard combinatorial problem. The quest for scalable and principled algorithms that
tackle this challenge in structured settings - e.g. when C(z,y) = ||z — y||> or ||z — y|| - is
thus a topic of utmost interest in data sciences.
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(a) t = (b) t= .25 (c) t= .50 (d) t=1.00 (¢) t =5.00

Ht=0 (g) t = .25 (h) t = .50 (i) t=1.00 (j) t =5.00

Figure 3.15: Gradient flow of the Wasserstein-1 loss in the unit interval (a-e) and the unit square
(f-j). Here, the setting is the same as that of Figure 3.7 and C(x,y) = ||z — y||. Since the gradient of C
is given by the unit-norm vector V,C(z,y) = (z — y)/||z — y|| whenever  # y, source particles o;d,
generally travel at unit speed until reaching a full covering of the target 3.

() t=0 (b) t = .25 (c) t = .50 (d) t=1.00 (e) t =5.00

Ht=0 (g) t = .25 (h) t = .50 (i) t=1.00 () t=5.00

Figure 3.16: Gradient flow of the Wasserstein-2 loss in the unit interval (a-e) and the unit square
(f-j). Here, the setting is the same as that of Figure 3.7 and C(z,y) = ||z — y[|>. A standard theorem
on the structure of Wasserstein-2 geodesics ensures that each source particle o;d,, goes in straight line
towards its target T'(x;), which stays constant troughout the whole evolution. The gradient of the
quadratic cost C is given by the simple formula V,C(z,y) = (x — y), which vanishes as z gets close to
y. We thus observe an asymptotic convergence in e " of the model o towards the target 3, as we recover
a dynamics that is comparable to that of the linear ODE “f’(¢) = — f(¢)”. In applications, practitioners
may reach the final matching at “t = 4+00” with a single gradient descent step by using a large learning
rate 6t = 1, instead of the small “infinitesimal” value of §¢ = .01 showcased since Figure 3.7.
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3.3 Sinkhorn entropies and divergences

In dimension D = 1, the Optimal Transport - sorting — problem can be solved using efficient
and robust methods. Relying on coarse-to-fine - divide and conguer - strategies, Quicksort-
like algorithms position iterative median pivots and find optimal permutations with a generic
O(Nlog N) complexity. Can we emulate these performances in higher-dimensional settings?

How should we solve the Monge-Kantorovitch problem? At first glance, scaling up the
resolution of the OT problem of Eq. (3.166) is a daunting task: the transport plan 7 € RN*M
that we strive to optimize can hardly fit in memory as soon as M and N exceed 10-50, 000.
Fortunately though, as discussed page 98, the OT problem can always be reduced to a tractable
dual search for optimal potentials that have the same memory footprint as the input data.

Since World War 2, numerous methods have been proposed to find optimal dual pairs (f, g)
solution of Egs. (3.169-3.170) that maximize the linear form:

(f:9) € C(X) X C(X) = (a, f) + (B, 9) € R (3.183)

under the constraint that f & g < C. Usually developed for applications to economics and
operations research, standard solvers find exact solutions of the linear assignment problem in
cubic or at least sup-quadratic time: we refer to the introduction of Bernhard Schmitzer’s PhD
thesis (Schmitzer, 2014) or to (Peyré and Cuturi, 2017, Chapter 3) for an overview.

Alternate maximization on the dual variables. Unfortunately, these classical linear program-
ming solvers are combinatorial algorithms which do not stream well on GPUs. As we look
for methods that can leverage the parallel computing power of modern hardware, a tempting
solution is to iterate the optimality equations of Egs. (3.173-3.174) until reaching convergence.
That 1s, to saturate alternatively the separable constraint:

with respect to the variables (f;) € RN and (g;) € RM, until no more progress can be made.

Algorithm 3.1: Naive greedy algorithm

Parameter: Cost function C : (z;,y;) € X x X — C(z;,y;) € R.
Input: Positive measures @ = SN | o;d,, and 3 = Z?/I:l B;dy,; with the same mass.

1: fi, gj < Ogx, Opm > Default initialization for vectors of size N and M.
2: repeat

3 fi = mindL, [C(xzi,y5) — g5] > Parallel updates over 7 € [1,N].
4 gj + min}, [C(z,y;) — fi ] > Parallel updates over j €[1, M].
5: until convergence.

6: return f;, g; > Pseudo-optimal dual vectors.
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(a) Greedy, Alg. 3.1. (b) Auction, Alg. 3.2. (c) Sinkhorn, Alg. 3.3.

Figure 3.17: The auction (b) and Sinkhorn (c) algorithms alleviate the main drawbacks of a greedy
coordinate ascent scheme on the dual OT problem (a): they converge to sensible e-approximations of
the optimal transport cost OT(a, 3) with an O(NM max,gs C/¢) complexity.

A good-bad idea. Most appealingly, this algorithm can be parallelized using the KeOps routines
and streams well on modern hardware. Since v and 3 are positive measures, maximizing f and
g alternatively leads to a non-decreasing sequence of dual objective values... But unfortunately,
in general, these greedy iterations do not converge towards a solution of the transport
problem: they get stuck after no more than two updates in configurations that satisfy both
Egs. (3.173-3.174) but are not optimal solutions of the dual OT problem.

This phenomenon is studied in detail in (Santambrogio, 2015, Section 1.6) (C-cylical

monotonicity) and is a consequence of the non-differentiability of the dual OT problem.
As we optimize [ and g aggressively, we converge towards “stalemate” configurations on
faces of the set of admissible dual pairs which do not necessarily maximize the linear form
(f,9) = (o, )+ (B, g) on the domain, as illustrated Fig. 3.17.
The auction algorithm. From times to times, mathematics provide valuable life lessons. In
Figure 3.13, we showed that under a “competitive market” assumption, internal planning and
external out-sourcing compete around a common equilibrium. Now, we’ve seen that greedy
updates generally prevent us from reaching a global optimum, even for the seemingly trivial
and monotonous maximization of a linear functional over a convex polytope.

To retrieve a well-behaved algorithm, we should relax the updates on the prices f; and g;.
Most pragmatically, the theory of auctions proposes to introduce a positive temperature or
margin € > 0 and iterate “sub-optimal” updates along the lines of:

Algorithm 3.2: Pseudo-auction algorithm

Parameters: Cost function C: (z;,y;) € X x X — C(z;,y;) € R,
Temperature € > 0.
Input: Positive measures o = & Y1 8, and B = £ Zé\/lzl dy, with N = M.

1: fi, gj < Ogn, Opu > Default initialization for vectors of size N and M.
2: repeat > Auction rounds.
3 fi « minfl, [Clay,y)) —gj] — ¢ > Bidding phase over i €[1,N].
4 g; + min}, [C(zi,yj) — fi ] > Assignment phase over j €1, M].
5: until Vi, 35, fi+g; = Clai,y;) — €. > e-complementary slackness.
6: return f;, g; > Pseudo-optimal dual vectors.
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Properties. First introduced in (Bertsekas, 1979), the standard auction algorithm is traditionally
formulated in the linear assignment setting: o; = 1/N = 1/M = ;. It is meant to optimize a
labelling o : [1,N] — [1, M], using a single vector of dual prices f; and asynchronous updates
that are slightly more aggressive than those of Algorithm 3.2. Throughout the 80’s, a very
strong school gathered around Dimitri Bertsekas and extended this method to a wide range of
settings: network flows, fully asynchronous iterations, integer weights, etc. We recommend
(Bertsekas, 1992, 2009) and their references for an in-depth introduction.

As far as geometric applications are concerned, the main take-away from this remarkable
line of work is that if C > 0, dual pairs which get e-close to the optimal value can be computed
in no more than (max,gg C/¢) parallel iterations, with O(NM) complexity. Going further, as
discussed Section 3.3.3, annealing or e-scaling strategies can be used to accelerate convergence:
the number of iterations is reduced to an O(log(max,gs C/¢)), both in theory and in practice.

The Sinkhorn algorithm. Auction iterations are ideally suited to large-scale geometric appli-
cations. To emulate their behaviour with smooth updates that are easier to study and extend
from a mathematical perspective, a simple idea is to rely on SoftMax and SoftMin reductions.
For any continuous expression ¢ and temperature € > 0, these operators are defined through:

max. ¢ = max. [p(z)] e log/e+‘p(m)/5 da(z) = +e log{a, exp(+p/c)), (3.185)
min. ¢ = min. [¢(z)] e log/eﬂ”(m)/6 da(z) = —¢ log{a, exp(—p/c)), (3.186)

and can be implemented efficiently using the online KeOps log-sum-exp scheme of page 50.
As discussed Section A.3.2, log-sum-exp formulas allow us to interpolate between a sum with
respect to @ (when € — +00) and a maximum or a minimum on its support (when € — 0).

To get a smooth approximation of the optimal dual potentials f and g at a low computational
cost, a sensible strategy is therefore to replace the “minima” of Algorithm 3.1 with SoftMin
reductions as we iterate the not-so-greedy “Sinkhorn” updates:

Algorithm 3.3: Sinkhorn or “soft-auction” algorithm, in the log-domain

Parameters: Cost function C: (z;,y;) € X x X — C(z;,y;) € R,
Temperature ¢ > 0.
Input: Positive measures @ = SN | o;d,, and 3 = 2?4:1 B0y, with the same mass.

1: fi, gj < Ogn, Ogum > Default initialization for vectors of size N and M.
2: repeat

3 fi « —¢log 2?4:1 Bjexpi[g; — C(zi,y;)] > Parallel updates over i €[1,N].
4 gj + —elogya;expl[fi — Czs,y;) ] > Parallel updates over j €[1, M].
5: until convergence up to a set tolerance. > Monitor the updates of f and g.
6: return f;, g; > Pseudo-optimal dual vectors.
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3.3.1 Entropic regularization of the Kantorovitch problem

The Schrodinger problem. Surprisingly, this simple algorithm works well in practice: the
iterates converge linearly towards an e-approximation of the optimal dual potentials f and g,
without ever getting stuck in bad “local minima”. To understand this, we introduce a strictly
convex regularization of the primal OT problem of Eq. (3.170) which reads:

. el . KL 3.187
OTe(ef) = min (7 C) + eKL(m,a® f) (3.187)
subjectto 7w >0, T = q, T =0,

for positive values of the temperature € > 0. The entropic penalty:

KL(m,a® ) = <7r,logd§(g > —(m 1) + (a®B, 1), (3.188)

or Kullback-Leibler divergence, has already been discussed in detail Section 3.2.1. This entropic
OT. problem was first introduced by Erwin Schrédinger in (Schrodinger, 1932, Section VI,
page 302) in a memoir that discussed the physical interpretations of quantum mechanics. It
models a Brownian bridge problem between two probability measures wy = o and w1 = f,
with an important legacy in probability theory and fluid mechanics (Léonard, 2012; Baradat,
2019).

Remarkably, the entropic barrier (x — zlog(z/y) — x + y) has a singular derivative of
—oo at = 0, which prevents this value from being attractive. For € > 0, this ensures that the
unique solution 7 of OT.(«, 3) has full support with respect to the product measure o ® 8
and belongs to the interior of the simplex defined by the positivity and marginal constraints
- see Figure 3.18. Unlike the “genuine” OT = OT)) linear program, which collapses into a
combinatorial problem on the boundary of the simplex of admissible transport plans, the
strictly convex OT. problem can thus be solved using calculus and vanishing derivatives.

Dual formulations. Thanks to the Fenchel-Rockafellar theorem, which generalizes Kan-
torovitch’s duality from linear to convex programs, we can rewrite the primal problem above
as the dual maximization of an un-constrained dual objective:

OT.(a,8) = max (o, f) + (B, 9) — e{a®@B,expl[fdg—C] —1). (3.189)
J,9€C(X)

Alternatively, some authors may prefer the Lipschitz formulation of (Genevay et al., 2016):

OTE(avﬁ) =  max <Oé, f> + <ﬁa g> - € 10g<0¢®ﬁ, eXpé[f@g_CD : (3190)
f9eC(X)

maxe [f®g—C]
a®p

As for us, we generally favour the “elementary” dual problem:

OT.(a,8) = max (a, f) + (B, 9) st.  max. [f®g—C] < 0, (3.191)
f9eC(X) a®f
which highlights the similarity with the traditional “FedEx” problem of Eq. (3.170). Anyway:
these three dual formulations are all equivalent to the primal OT. problem of Eq. (3.187). As
illustrated Figure 3.17.c, they can be understood as concave regularizations of the classical dual
problem: the hard constraint “f @& g < C” is simply replaced by various soft penalties.
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Figure 3.18: The entropic transport plan 7, solution of the regularized OT. problem, has full support
with respect to the product measure o ® 8. If C(z,y) = %HJJ — y||?, 7 sends points «;d,, onto fuzzy

collections of targets 3;8,, whose diameters are roughly proportional to the blurring scale o = /7.

A compact encoding of the optimal transport plan. Strong duality is satisfied by the OT.
problem. The regularized optimal transport plan 7 € M™*(X x X) and dual potentials
(f,g) € C(X)? are linked through the constitutive equation:

T = exp%[f@g—C] - (a®p), (3.192)
Le. Tij = €xp %[fZ +9; — Clzi,y5) | - @by, (3.193)

which ensures that a significant amount of mass ; ; is transported from a point ¢;d,, onto a
target (3;0,, if and only if the constraint “f; + g; < C(w;,y;)” 1s e-close to being saturated.

Sinkhorn = coordinate ascent on the dual problem. For the three dual objectives D, 5(f, 9)
of Egs. (3.189-3.191), simple computations show that for all pair (f, g) of dual potentials:

9Dap(fr9) = 0 = f(z) = Twige [C(z,y) —g(y)]  a(z)ae (3.194)

and  9yPap(fi9) = 0 <= gly) = min. [Cla,y) — f(2)]  Bly)ae (3.19)
Up to the switch between “vector” and “measure” notations, we retrieve exactly the Sinkhorn
iterations of Algorithm 3.3. Enforcing them alternatively is thus equivalent to performing
a simple coordinate ascent on the smooth and concave dual of the Schrdinger problem
OT.(«, B). As the latter approximates the Monge-Kantorovitch problem up to an e-small
correction, this explains the surprisingly good empirical properties of Algorithm 3.3.

Matrix scaling. Most researchers interpret the “Sinkhorn” iterations of Algorithm 3.3 through
the introduction of auxiliary variables: the Gibbs kernel k. and scaling functions v and v,
defined trough:

ke(z,y) = e Cv/e, u(x) = /@, v(y) = eSW/e (3.196)
and encoded with the kernel matrix and positive scaling vectors:

Kij = e Clwvi/e ¢ REOM - = ofile e RY )V = e9/F eRY). (3.197)
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In this exponential system of coordinates, the Sinkhorn iterations read:

1 1
— d —_— 3.198
v kx (vpB) an v kx (ua)’ ( )
. 1 1
.. i —— i — . 3.199
e U, +— KOV5) and Vi K (Ua) ( )
This is equivalent to enforcing alternatively the marginal constraints:
M N
(7['1)1' = Zﬂ'id‘ = Q4 and (ﬂ'Tl)j = Zﬂivj = ﬁj, (3.200)
j=1 i=1

on the transport plan:
mij = expz[fi+gj —Claiy)] - il = UK, ;VifB; (3.201)
encoded implicitely by the two scaling vectors (U;) and (V).

Historical perspective. Today, Algorithm 3.3 is most often named after Richard Sinkhorn
who first showed the convergence of the normalizing procedure of Eq. (3.199) for arbitrary
positive matrices K (Sinkhorn, 1964). Easy to implement and study, these iterations and their
application to the transport problem have been periodically re-discovered since the days of
Schrodinger. Let us discuss some of the most important lines of work, without any pretense
of exhaustivity: we value cross-field interactions more than priority disputes over a method
which predates the career of any active researcher.

Economics. Unsurprisingly, following Kantorovitch’s pioneering work, some of the first
major papers on entropic OT came from operations research and economics. In this litera-
ture, the Sinkhorn iterations and Schrédinger problem OT. were successively referred to as
entropy maximising models (Wilson, 1969), gravity models (Erlander, 1980), or matching
with trade-offs (Galichon and Salanié¢, 2010) using the iterative projection fitting procedure
(IPFP) (Yule, 1912; Deming and Stephan, 1940; Fienberg et al., 1970; Ruschendorf et al., 1995).

Geometry. Independently, (Kosowsky and Yuille, 1994) introduced the Sinkhorn loop to the
machine learning community as a modification of the standard auction rounds, inspired by
statistical physics and neural networks: the names of SoftAssign or invisible hand algorithm
are attached to this period. As discussed in the next few pages, most of the important algorithmic
and theoretical points were already understood in this work, which had a considerable influence
in computer vision. Marketed as robust point matching (RPM) in two landmark papers (Gold
et al., 1998; Chui and Rangarajan, 2000), the regularized loss function OT, is now a standard
tool for point cloud processing - see e.g. the excellent Wikipedia page on point set registration.

Statistics. Finally, (Cuturi, 2013) revived the Sinkhorn algorithm in the GPU era. Subsequent
works in machine learning have kept a strong focus on the high-temperature setting (max C/e <
10-30) and brought an important understanding of the statistical properties of the OT, problem
in high-dimensional settings (Genevay et al., 2019). Today, the reference textbook (Peyré and
Cuturi, 2017) is probably the best introduction available on the subject: we strongly recommend
it to newcomers looking for intuitions, insightful remarks and examples of applications.


https://en.wikipedia.org/wiki/Point_set_registration
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Figure 3.19: The Sinkhorn algorithm is simple, but relatively inefficient. We display two translated
probability measures « (in red) and 3 (in blue) using their rectangle-shaped densities on the unit square
X =0,1] x [0,1]. Here, C(z,y) = %||z — y||* and /¢ = 0.01. In the background, the dual potentials
f (in blue) and ¢ (in red) are extended to the ambient space using the canonical Egs. (3.194-3.195) and
displayed as contour lines. After every application of Algorithm 3.3, line 3, the dual vectors (f(z;))
and (g(y;)) encode a transport plan = which satisfies the first marginal contraint (71 = «) but not the
second one (7' 1 = $3) until convergence : we display it as a green, transparent “spring system”.

(a) Initially, at iteration 1 of the Sinkhorn loop, the implicit transport plan  is very close to the naive
nearest-neighbor matching discussed Section 3.2.2 (Hausdorfl, chamfer distance). (b-c) The Sinkhorn
algorithm is all about letting the “high pressure” wavefront on the nearest neighbors of « spread through
the support of 8. (d) At convergence, 7 finally maps « onto 3. The whole procedure is slow, with
incremental steps of size . As discussed Section 3.3.3, we now see that the Sinkhorn loop could benefit
massively from coarse-to-fine multiscale strategies, which handle the translation above in one single step.

Stressing the importance of our conventions. Throughout its long history, entropic OT has
been studied from diverse perspectives. Subtle variations between papers occur naturally, but
are seldom made explicit... and tend to confuse newcomers to the field: keeping track of the
conventions adopted by a loosely connected web of authors is by no mean easy. In the present
work, we wish to stress two important variations between our conventions and those of the
“standard” Sinkhorn framework adopted for instance in (Cuturi, 2013; Peyré and Cuturi, 2017):

1. As detailed in Algorithm 3.3, we always write our iterations in the log-domain. We
directly update the dual potentials f; and g; instead of the (exponentiated) scaling vectors
U; and Vj. This ensures numerical stability for all values of the temperature ¢, with
little computational overhead: the KeOps log-sum-exp routines are just as efficient as
standard matrix-vector products with a kernel matrix K ;.

2. Our entropic penalty is defined relatively to the product measure @ ® 3 and does
not rely on the ill-defined “entropy” H(m) = KL(7, Countgypp(azg)) With respect
to the counting measure on the product of the measures’ supports. This change is
barely noticeable on the primal problem: for discrete measures, the two conventions
are equivalent up to an additive constant. However, it drastically simplifies the study
of the dual problem: potentials f and g can now be properly extended to the ambient
space using Eqgs. (3.194-3.195), which generalize Egs. (3.173-3.174) and stay consistent
for both discrete and continuous measures o and 3.

These changes make very little difference in classical statistics, where researchers tend to
work with histograms and discrete feature spaces. However, as we investigate geometric problems
in continuous vector spaces, picking canonical and stable conventions is an essential first step
towards robust and efficient algorithms, as suggested by Figure 3.19.
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3.3.2 Removing the entropic bias, with theoretical guarantees

The entropic bias. When C(z,y) = %H:c — y||P, the Monge-Kantorovitch problem defines

a positive and definite loss function. As discussed Section 3.2.4, {/OT satisfies the triangle
inequality and is usually called the Wasserstein-p distance. This is most convenient - but beware.
These important geometric properties do not hold for the entropic loss OT.(a, ), output
of the Sinkhorn algorithm, as soon as € > 0. Most noticeably, as illustrated Figures 3.20 and
3.21.a, minimizing an OT loss is not a sensible thing to do. In general, if /5 is a given target
measure, there exists a degenerate measure « such that:

OT.(a,B) < OT.(3,8) # 0. (3.202)

This problem is well-documented in the computer vision literature, without any satisfying
answer being provided: letting the temperature ¢ slowly decrease towards 0 to retrieve a genuine
Wasserstein distance is do-able, but generally brittle and expensive - as illustrated Figure 3.20.

De-biased Sinkhorn divergences. As long as researchers kept understanding entropic regular-
ization as a “dirty hack” to compute approximations of the Wasserstein distance, the entropic
bias could be accepted as a necessary evil. But in recent years, a major culture shift on entropic
regularization has taken place in the community: the regularizing influence of the entropic
barrier and Gibbs kernel k. = exp(—C/¢) on the input measures is now hailed as a feature
of the theory, not a bug that should be brushed under the carpet. It could improve statisti-
cal robustness and prevent overfitting on the precise samples’ locations, which is relevant in
stochastic high-dimensional settings where sampling noise is a major concern (Genevay et al.,
2019).

To retrieve a “good-looking” formula that vanishes when ov = S even if € > 0, the statistics
paper (Ramdas et al., 2017) thus introduced the de-biased Sinkhorn divergence:

S.(e, 8) & OT.(a,8) — L0T.(a,0) — 1OTL(8,8), (3.203)

which was quickly adopted in the machine learning community for the training of generative
models (Genevay et al., 2018; Salimans et al., 2018; Sanjabi et al., 2018).

The reasoning behind this “de-biased” formula is simple. When ¢ — +o00, the entropic
penalty in the OT. problem of Eq. (3.187) becomes so strong that 7 converges towards the
product measure o ® 3, with a cost value:

OT.(or,f) =% (a®B,C) = (a, Cxf). (3.204)

Surprise: we do not recognize a squared norm... but a kernel dot product, similar to the ones
discussed in Section 3.2.3 ! Subtracting the o <+ o and 8 <+ (3 auto-correlation terms to retrieve
a quadratic-like limit thus makes a lot of sense. More specifically, both (Ramdas et al., 2017)
and (Genevay et al., 2018) showed that if the probability measures « and f3 stay put:

S-(ar, ) =2 OT(a, ) (Wasserstein ) (3.205)

S22 (@, Cx B) — S, Cxa) — §(B, CxB)
= %(04 — B, —Cx(a—p)) (kernel MMD) . (3.206)
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Our contribution. The de-biased Sinkhorn divergence interpolates between two well-known
loss functions: the Wasserstein and kernel distances. Can we prove that the appealing geometric
properties at the limit - positivity, definiteness, convexity, etc. - also hold for S., with any
value of € ? Going further, couldn’t we improve upon the baseline Sinkhorn loop, whose rather
poor performances are illustrated Figure 3.19 ? The remainder of this chapter provides an
original answer to these questions. After fifty pages of introduction to measure theory, time
has now come to present our contributions to the field, developed between 2017 and 2019.

De-biased dual potentials. First of all, we remark that the Sinkhorn divergence S, can be neatly
expressed in terms of debiased potentials F' and G : X — R. If (f#7, g*78) is a solution of
the dual problem OT,(«, ), it necessarily satisfies both optimality Equations (3.194-3.195).
Simple computations then show that:

OT.(e, ) = (a, fF7%) + (B, g7, (3.207)

as the soft penalty vanishes at the optimum. Going further, if (f*<%, f*<®) and (g%, %7
are the unique solutions of the symmetric problems OT.(a, @) and OT(f3, 8) on the diagonal
of the space of dual pairs C(X) x C(X), we see that:

30T (o, a) = (a, f*99) and 10T.(8,8) = (B, ¢°7P),  (3.208)
so that Se(a,B) = (a, [P — faoay 4 (3, g7 — gFoly (3.209)
_};—/ _G/_/

Gradient. As shown in Section A.4.2, the debiased potentials F' and G correspond to the
gradients of the Sinkhorn divergence S; with respect to the input measures « and 3, in the
sense of Eq. (3.56). This is consistent with the discussion of page 100 on Brenier potentials. In
the discrete setting, assuming that a = 37, ;0,, and 8 = 3, 3;d,, have the same mass:

00, Se(a, B) = F(x;) and O, Se(, B) = a; VF(x) . (3.210)

As discussed page 124, these expressions can be computed “for free” as the output of any solver
of the entropic OT problem. No backpropagation through the Sinkhorn loop is ever required.

Positivity, convexity. Crucially, as illustrated in Figures 3.21.b and 3.22, the debiased Sinkhorn
divergence is suitable for measure-fitting applications and satisfies the geometric axioms of
page 72. More precisely, the following result holds:

Theorem 3.1. Let X be a compact metric space with a Lipschitz cost function C(x,y) that induces,
fore > 0, a positive universal kernel k.(x,y) = exp(—C(x,y)/e). Then, S defines a symmetric,
positive, definite, smooth loss function that is convex in each of its input variables. It also metrizes
the convergence in law: for all probability measures o and B € M7 (X),

0 =S:(8,8) < Se(a, B), (3.211)
a=8 <= S.a,8)=0, (3.212)
ap = a <= S.(an,a) =0. (3.213)

Notably, these results also hold for measures with bounded support on a Euclidean space X = RP
endowed with ground cost functions C(z,y) = ||z — y|| or C(z,y) = &||z — y||* - which induce
exponential and Gaussian kernels respectively.
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Figure 3.20: The entropic bias in the TPS-RPM paper (Chui and Rangarajan, 2000). In a classic
CVPR paper, Chui and Rangarajan propose to use an entropic transport loss OT. - robust point matching
- to drive a thin plate spline deformation model. Starting from a rest configuration (triangles and regular
grid, second line), their algorithm registers a deformed point cloud (circles z;, first and second lines)
onto a target point cloud (crosses y;, first line). This is done by alternatively computing entropic
transport plans (spring systems, first line) and regularized spline deformations (deformed grid, second
line), following a method detailed Section 5.1.2. The temperature € > 0 is figuratively represented using
circles of radius o = /7, where C(z,y) = %Hﬂ? —yll.

When ¢ is large (left), the registration collapses as source points x; converge towards local barycenters
at scale o of the target samples y;. This phenomenon, which we propose to call entropic bias, is
an immediate consequence of the fuzziness of the entropic transport plan displayed Figure 3.18. To
mitigate its effects, Chui and Rangarajan propose to let € decrease across iterations (left to right), as
they slowly recover a solution to the genuine transport problem OT = OT). This solution is not very
satisfying: collapsing distributions to slowly unwrap them afterwards is both unstable and cumbersome.
As discussed in the remainder of this chapter, debiased Sinkhorn divergences provide a convenient
and principled answer to this two-decade-old problem.

o= W/
(a) Loss = OT.. (b) Loss = S..

Figure 3.21: Removing the entropic bias. Solution « (in red) of the fitting problem min,, Loss(c, )
for some 8 shown in blue. Here, C(z,y) = ||z — y|| on the unit square X in R? and e = .1. The
positions of the red dots were optimized by gradient descent, starting from a normal Gaussian sample.
(a) The entropic bias in the standard Sinkhorn loss OT. promotes mode collapse as the source measure
« converges towards a structure that looks like a medial axis of the target 3 at scale ¢ = £'/P = ¢.

(b) Defined through the debiased formulation of Eq. (3.203), the Sinkhorn divergence S, is a positive,
definite loss function: 8 = argmin, S.(«, 3). The exponential kernel k. (z,y) = exp(—||z — yl|/¢)
induced by the “distance” cost is pointy, with a heavy-tailed Fourier transform. This ensures that
the associated Sinkhorn divergence is sensitive to the full spectrum of the input configuration («, 3),
promoting a near-perfect overlap between the point clouds. This is desirable in many applications, but
could also lead to overfitting on the samples’ locations in real-life (noisy) settings.
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(a) ve=1.00 (b) ve= .10 (c) v/e= .05 (d) ye= .01

Figure 3.22: Influence of the blurring scale o = £/? = /¢ of the Sinkhorn divergence S. on measure-
fitting pipelines, with a quadratic cost C(z,y) = 3 ||z — y||? on the unit square X = [0, 1] x [0, 1]. These
pictures are analogous to the last thumbnail (j) of Figure 3.16, with Sinkhorn divergences S. used as loss
functions instead of the genuine Wasserstein-2 squared distance (1/ = 0). As we let the ratio between
the configuration’s diameter max; ; ||x; — y;|| and the blurring scale ¢ = /¢ vary between one (a) and
a hundred (d), we illustrate the typical behaviour of the Sinkhorn divergence as a loss function for shape
registration and generative modelling.

The key operator behind entropic OT is the Gibbs kernel k. = exp(—C/e). In this situation, since C
is a squared distance on X, k. is a Gaussian kernel of deviation o which is smooth and blurs out the
high frequencies of the input measures — unlike the pointy exponential kernel of Figure 3.21.b.

(a) When o is larger than the diameter of the measures’ supports, S. behaves like the degenerate kernel
MMD (o — B, =4[ - [|> x (a — B)) = &|| [ 2 de(z) — [y dB(y)||* which only takes into account the
mean values of both distributions. (b-c) Lowering the blurring scale allows S to capture the finer details
of the target distribution £8. (d) Finally, as /€ gets close to zero, S. becomes virtually indistinguishable
from a genuine Wasserstein distance.

The pictures above show that in practice, in the “Wasserstein-2 setting”, S is blind to all details which
are smaller than the blurring scale 0. This behaviour allows practitioners to regularize their matchings
with a simple and interpretable scale parameter, a desirable behaviour in most applications.

moa —— True Wasserstein
54 mm B 0.0175 —8— Sinkhorn divergence
. —&— Blurred Wasserstein
—— Squared difference of means
0.0150 4

0.0125 4

Z
2 0.0100 4
(7]
°

2 0.0075

-050 -0.25 000 1.50 10-2 101 10° 10!

blur v

(a) Measures « and 3. (b) Values.

Figure 3.23: As discussed page 116, the Sinkhorn divergence S. essentially behaves like a blurred
Wasserstein distance B.. (a) To illustrate it, we draw two random samples « and 3 on the real line
and represent them using kernel density estimations on the interval [-.50, 1.50]. (b) Then, we
display the values of S. (v, 8) and B.(«, 3) for varying values of . As predicted by the theory, both
quantities interpolate between the genuine Wasserstein-2 loss OT(«, 3) and a degenerate kernel MMD.
Remarkably, the curves stay close to each other: S, could be used as an affordable proxy for the intuitive
blurred Wasserstein loss B..
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The theorem above is significant. After twenty years of research on entropic OT for point
set registration, it is the first time that a loss derived from the Sinkhorn algorithm is actually
shown to be suitable for optimization and gradient descent. Its proof, detailed Chapter A,
is our main theoretical contribution to the field. The full demonstration is pretty technical,
especially for the proof of convexity, and can be skipped by practitioners. Nevertheless, the
simple partial proofs of Section A.1.3 already provide relevant insights on the structure of the
Sinkhorn divergence S.: we recommend them to interested readers.

Extensions to the unbalanced setting. Remarkably, Theorem 3.1 can be generalized to the
unbalanced theory of OT (Liero et al., 2015; Chizat et al., 2018b), explained for instance in
(Peyré and Cuturi, 2017, Section 10.2). This was shown by Thibault S¢journé as part of his
first year of PhD, under the supervision of Frangois-Xavier Vialard and Gabriel Peyré: we refer
to his paper for an extensive discussion (Séjourné et al., 2019).

Let us simply mention that if €, p > 0 are two regularization parameters, we can soften
the marginal constraints on the transport plan 7 and consider the unbalanced cost:

def.

OTey(.f)® _ min  (r.C)+eKLir.a®f)+pKL(ri.0) +pKL(ra. ) . (3214

The problem above is well-defined even if @ and 5 don’t have the same total mass and
coincides with the standard Schrodinger problem OT. of Eq. (3.187) when p = 4o00. The
associated dual problem is:

OT = J1—e T/ 1—e9/p 3.215
e pola, B) f’;relggg()p(a e 1P) + p(B, 1 —e 9P) ( )

—c(a®pB, expi[fdg—C|] — 1),

with generalized (dampened) Sinkhorn iterations that read (Chizat et al., 2018a):

fla) = i min [Clavy) —g()] and () S min. [Clay) — f(2)]

Then, if we define the unbalanced Sinkhorn divergence:

SE,p(aaﬁ) = OTE,p(av/B) - %OTE,p(aua) - %OTE,p(ﬁ7ﬁ) + %(<O" 1> - </87 1>)2 5 (3'216)

Theorem 3.1 still holds. We detail the practical applications of this result in Chapter 4.

Intuitions on low-frequency Optimal Transport. Sinkhorn divergences rely on a simple idea:
by blurring the transport plan through the addition of an entropic penalty, we can reduce the
effective dimensionality of the transportation problem and compute sensible approximations
of the Wasserstein distance at a low computational cost.

As discussed in the next section, the baseline Sinkhorn loop can be symmetrized, de-biased
and turned into a genuine multiscale algorithm. Available through highly efficient routines,
the de-biased Sinkhorn divergence S; is therefore a tractable approximation of the Wasserstein
distance that retains its key geometric properties: positivity, convexity, metrization of the
convergence in law for measures with bounded support.
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But is it really the best way of smoothing our transport problem? When C(z,y) = ||z —
y||?, a sensible alternative to Sinkhorn divergences could be the blurred Wasserstein distance:
Be(a, ) = OT((kepsx ) Agp, (keya* ) Agp ) (3.217)

where OT denotes the true Wasserstein distance associated to our cost function C,
ks (@ —y) = exp(—|lz —yl?/Fe) (3.218)

is a Gaussian kernel of deviation o = /2/2 and Agp is the Lebesgue measure on X = RP.
This simple divergence enjoys a collection of desirable properties:

1. It is the square of a distance that metrizes the convergence in law.

2. It takes geometric values on atomic Dirac masses, lifting the ground cost function to the
space of positive measures:

Bs(émaéy) = C(z,y) = %Hx—y||2 = Sz—:((sx,(sy) . (3.219)

3. It has the same asymptotic properties as the Sinkhorn divergence, interpolating between
the true Wasserstein distance (when ¢ — 0) and a degenerate kernel norm (when
€ — +00) as discussed Figure 3.22.

4. Thanks to the joint convexity of the Wasserstein distance, B.(«, 3) is a decreasing
function of €: as we remove small-scale details, we lower the overall transport cost.

An empirical test. To compare the Sinkhorn and blurred Wasserstein divergences, a simple
experiment is to display their values on pairs of 1D measures for increasing values of the
temperature . As illustrated Figure 3.23.a, we first generate random samples (x;) and (y;) that
respectively parameterize two discrete probability measures o and 5 on the unit interval. We
can then compute S.(«, 3) using the multiscale Sinkhorn algorithm of Section 3.3.3, while
the blurred Wasserstein loss B.(«, 3) can be quickly approximated with the addition of a
Gaussian noise followed by a sorting pass - a perfect OT solver in dimension D = 1.

Results. In practice, as showcased Figure 3.23.b, the Sinkhorn and blurred Wasserstein diver-
gences are nearly indistinguishable from each other. But as far as we can tell today, these
two Loss functions have very different properties:

1. B, is easy to define, compute in 1D and analyze from geometric or statistical points of
views... But cannot (yet?) be computed efficiently in higher dimensions, where the true
OT problem is nearly intractable.

2. S; is available through Sinkhorn-like algorithms but has a cumbersome, composite
definition and is pretty hard to study rigorously: presented in Chapter A or (Genevay
et al., 2019), proofs on the topic quickly get technical.

Couldn’t we get the best of both worlds? Ideally, we’d like to tweak efficient Sinkhorn-like
algorithms to compute the natural divergence B.... but as of today, this still seems out of
reach. A realistic target could be to quantify the difference between these two loss functions,
in order to legitimize the use of the Sinkhorn divergence as a cheap proxy for the intuitive
and well-understood blurred Wasserstein distance: we leave these questions for future works.
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3.3.3 Scaling up to millions of samples with a multiscale strategy

In the last two sections, we have shown that the theory of auctions could be softened and
debiased to define a tractable low-frequency approximation of the Wasserstein distance. The
so-called Sinkhorn divergence S. is positive, definite and metrizes the convergence in law. As
far as practitioners are concerned, this new loss function fits perfectly within the modern
gradient-based programming paradigm for shape analysis and machine learning.

Unfortunately though, implementations of the Sinkhorn algorithm found in the literature
are generally guadratic both in time and memory. This prevents practitioners from scaling up
to large points clouds and datasets, with a bottleneck around 10k samples - which isn’t much,
as discussed Figure 2.1. In 2020, we should be able to go further: but how?

How should we compute the dual potentials? Since World War 2, solving the Kantorovitch
problem of Egs. (3.169-3.170) has been a major problem in computational mathematics.
Tractable approximations such as the Schrodinger problem OT. of Egs. (3.187-3.191) have
been proposed, and important works have been published in a wide variety of settings:

1. Generic linear programming. In the classic theory of Kantorovitch for economics and
operations research, the cost matrix (C; ;) is arbitrary. OT assignment is cast as a stan-
dard linear program, which can be solved using the Hungarian method (Kuhn, 1955),
simplex newtorks (Ahuja et al., 1988), auction iterations or more advanced combinatorial
solvers (Schrijver, 2003). Unfortunately, all these algorithms have a quadratic or worse
time complexity: every coeflicient of the cost matrix is inspected at least once in the
optimization procedure.

2. Structured linear programming. To bypass this limitation, advanced multiscale solvers
leverage priors on the structure of the cost matrix (Schmitzer, 2016; Gerber and Mag-
gioni, 2017). In favourable cases - e.g. if the cost C(z, y) is a strictly convex function
of the distance in a low-dimensional feature space X - these algorithms reach the de-
sired log-linear complexity that is expected in dimension D = 1 for sorting problems.
Unfortunately though, these algorithms are notoriously hard to parallelize: no GPU
implementation of these methods has ever been made available.

3. Continuous schemes based on PDE theory. In the Wasserstein-2 setting, the key
insights of (Brenier, 1991) discussed page 100 allow us to link OT with standard problems
in fluid mechanics that can be solved using variational or finite element-like methods.

The most well-known of these algorithms is the dynamical scheme of (Benamou and
Brenier, 2000), whose convergence to the underlying transport problem has recently been
shown in the general case (Lavenant, 2019¢). Going further, ulterior papers directly solve
the Monge-Ampeére equation satisfied by the optimal dual potential (Haker et al., 2004;
Benamou et al., 2014), minimize explicit variational problems with efficient discretization
schemes (Haber et al., 2010) or solve a flow problem formulated in a wavelet basis, possibly
on 3D meshes (Dominitz and Tannenbaum, 2009).

As shown for instance in (Lavenant et al., 2018), these methods are flexible and easy to
formulate on geometric domains. Unfortunately, they are also limited to low-dimensional
feature spaces and tend to be orders of magnitude slower than other solvers in the standard
Euclidean setting.



4. Semi-discrete OT, with non-degenerate point clouds. Generalized fluid mechanics
has been the major motivation behind the revival of OT theory in the 90’s. Eager to
simulate the flow of the incompressible Euler equation with Lagrangian schemes inspired
by (Arnold, 1966) and (Brenier, 1999), a strong group of authors has focused on the
large-scale resolution of semi-discrete OT problems between “volumetric” point clouds
and a weighted Lebesgue measure. After a seminal paper on the multiscale resolution
of OT problems (Mérigot, 2011), application to 3D data were showcased in (Lévy, 2015).
Today, elegant simulations (Gallouét and Mérigot, 2016; Mérigot and Mirebeau, 2016)
go hand-in-hand with cutting-edge theoretical results in fluid mechanics (Baradat and
Monsaingeon, 2018). Albeit not yet fully published, modern codebases in the field are
currently moving to GPUs (Ray et al., 2018) and reach an impressive level of performance:
we recommend the “github.com/sd-ot” repository and the “Geogram” software to
interested readers.

5. Graph-based algorithms. Solving a transport problem on graphs without ever comput-
ing the full matrix of pair-wise geodesic distances is highly relevant to operations research
and network analysis. In the Wasserstein-1 setting, efficient algorithms generally rely on
Beckmann’s formulation presented Eq. (3.182) as in (Ryu et al., 2018; Li et al., 2018).
Alternatively, when C is a quadratic cost function, the kernel convolutions involved in
the Sinkhorn loop, Eq. (3.198), can be approximated with a heat diffusion (Solomon
et al., 2015). Unfortunately though, such methods become numerically unstable as soon
as the blurring scale o = /< goes below a tenth of the graph’s diameter.

6. Stochastic, online setting. Finally, when the input measures o and 3 are encoded
through stochastic random variables X; ~ a and Y; ~ 3 (as discussed Section 3.1.2),
online variants of classic algorithms can be implemented. We refer to (Genevay et al.,
2016) for an introduction.

Our focus: discrete measures in simple feature spaces. In this chapter, we focus on the
simplest of all settings: discrete OT in a vector feature space X = RP endowed with an
explicit cost function such as C(x,y) = %H:U — y||P. This structured problem is most relevant
to computational anatomy and geometric applications, but could also be of interest to a wider
audience. Most of the improvements discussed here can be transposed to other settings, and we
hope that these pages will inspire our colleagues in all branches of the OT community.

Specifications of a good OT solver. Before describing our solution to the transport problem,
we should make an explicit list of desirable properties for OT solvers. If “OT” denotes a finite
program that approximates the Wasserstein cost OT («, 3) between any two discrete measures
a and 3, we strive to enforce the following properties:

1. Positivity. For all input configurations, 0T(«, 3) > 0.

2. Definiteness. Ideally, 0T(c, 8) = 0 if and only if &« = 5. At the very least, the partial
derivatives V,0T(a, ) and V30T(a, 3) should vanish whenever a = .
Symmetry. O0T(a, ) should be equal to OT(5, «v).
Numerical stability. No numeric overflow should ever occur.
Robustness, monotonicity. Simple situations should be handled well.
Speed. Solvers should have an O(NM) time complexity or lower; log-linear and parallel
algorithms should be used whenever possible.
Scalability. Solver should keep linear or log-linear memory footprints.
Simple parameters. Good solvers have no more than a couple of interpretable parame-
ters: users should engineer their features, not their optimization routines.
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Figure 3.24: The concave maximization problem OT.(«, 8) becomes nearly symmetric with respect
to f and g when « gets close to 3. (a) This situation is typical in measure-fitting applications, but
hardly suited to a naive coordinate ascent. (b) In the Sinkhorn loop, we recommend the use of averaged

iterations that 1nterpolate between both ascent directions “f” and “§”. The resulting program, detailed
Algorithm 3.4, is more robust than the baseline Sinkhorn algorithm and is fully symmetric with respect
to the input measures, even after a finite number of iterations.

Symmetrized iterations. As discussed in the previous section, Algorithm 3.3 already satisfies
some of these axioms. But we can do (much) better.

First of all, we remark that the baseline Sinkhorn loop is not symmetric with respect to
« and f3, as illustrated Figure 3.24. To alleviate this problem, we advocate the use of averaged
iterations that interpolate, at each step, between a maximization “over f” and a maximization
“over ¢g”. The resulting symmetric Sinkhorn updates are showcased Figure 3.24.b and written
out in the Algorithm below. An in-depth study of these iterations can be found in (Knight
et al., 2014), with applications to the scaling of linear systems. To the best of our knowledge,
this simple trick had never been used in the context of entropic OT.

To let the structure of our program stand out, we gray-out the lines associated to the
de-biasing of Egs. (3.203,3.209) and use high-level “SoftMin” notations. If o« = YN | ;0. is a
discrete measure and (f;) = (f(2;)) is a dual vector in RN:

min. [Cla,y) — fx)] € —elog SN ap exp L[ fx — Clzn,y)] - (3.220)

Algorithm 3.4: Symmetric Sinkhorn algorithm, with debiasing

Parameters: Cost function C: (z;,y;) € X x X — C(xz;,y;) € R,
Temperature € > 0.
Input: Positive measures @ = S.N | o;,, and 3 = Zy[:l fB;6,, with the same mass.

1 P gj‘_’ﬁ , e ngH + Opn, Opm, Opn, Opu > Dual vectors.
2: repeat > The four lines below are executed simultaneously.
— 16— 1
B0 f7TY e T+ fminggs e [Claiy) — 9P ()] >a
gf_w — %9?_}’8 + %minmwoz,a [C(z,y5) — fﬁ_m( )] > B+«
o0 LY Iming g e [Clag, 2) — f47%2) ], > a4«
i/'} 3 8 ia . Vs /
g‘jH — %qj P+ Imings. [Cly,yj) — 9P (y)] . > S« 3
4: until convergence up to a set tolerance. > Monitor the updates on the potentials.
5: return ff e free g?ﬁﬁ - g]ﬂ_)d > Debiased dual potentials F'(z;) and G(y;).




120 Chapter 3 Geometry on a space of measures

Annealing strategy. Going further, we tackle the issue of speed. As showcased Figure 3.19, the
Sinkhorn iterations generally improve the dual cost with small incremental steps that hardly
resemble those of optimal sorting algorithms: we should be able to do better. This intuition
is made rigorous by the complexity analyses of (Kosowsky and Yuille, 1994) and (Schmitzer,
2019), which link the Sinkhorn algorithm to auction iterations, as well as the PDE-based
analysis of (Berman, 2017) and the very recent proof of (Léger, 2020). In typical scenarios, we
should expect an approximate convergence of the Sinkhorn loop in:
maxags C (maxw llz: — y;ll
€ N o

p
> iterations, (3.221)

where C(z,y) = %Hx — y||” and o = /7 is the blurring scale associated to the Gibbs kernel
k. = exp(—C/e). In the quadratic Wasserstein-2 setting, waiting for the Sinkhorn algorithm
to converge becomes cumbersome as soon as the diameter-to-blur ratio exceeds 10 or 20.

Fortunately, we can reduce the number of iterations required to reach a nearly optimal
dual pair to a mere O(log(max ||z; — y;||/o)) by letting the temperature ¢ decrease across
iterations. After all, each auction or Sinkhorn iteration at temperature ¢ allows us to improve
the dual cost by a step of size ~ &, up until reaching an e-approximation of the optimal
transport cost. Making large steps with a high temperature in the beginning, to fine-tune the
dual potentials with a small € in the end-game makes a lot of sense.

In practice, letting o decay from a large estimation of the diameter towards a small target
value is a simple yet efficient way of speeding-up the convergence of the Sinkhorn loop. This
heuristic is known as simulated annealing in numerical analysis and e-scaling in operations
research. It was introduced as early as (Bertsekas, 1979) and (Kosowsky and Yuille, 1994) for
the auction and Sinkhorn algorithms, respectively. Combining it with the symmetrization and
debiasing introduced in the last few pages, we get an efficient algorithm that reads:

Algorithm 3.5: Symmetric Sinkhorn algorithm, with e-scaling and debiasing

Parameters: Cost function C: (z;,yj) € X X X — %”ZEZ - yilP €R,
Target temperature ¢ > 0, given as a blurring scale o = /7.
Annealing: Estimation of the diameter A ~ max; ; [|z; — y;]|,
Scaling ratio g € (0, 1), default values of .5 (fast) or .9 (safe).

Input: Positive measures @ = S.N | o;,, and 3 = 2?4:1 B0y, with the same mass.

> Sensible initializations for e = +o0, with [Cx 8] (z;) = 224:1 C(z4,y;)5;, ete. :
JE, gemR, g0 90 [CxB)(@), [Crally), [Cral(), [CxAl0)

—_

J j
2 forsin[A, A-q, A-¢% ..., 0] do > [log(A/o)/log(1/q)] iterations.
3 €+ 8P > The system cools down across iterations.
. gfoa L 1pBoa 1 Clas ) — 0B
4 i ~ 3/ +2m1ny~ﬁ,s[ (ziy) — g W], >a< 3
9777 Lgt77 + S mingeg,c [Cla,yy) — fF70(2) ] > B«
f;\,H(\, “ %f,‘,“H” + % 111111;('wu,,3 {CO/ '1,) o JL'(,\H(J(JA)} ) > o< O
gfﬁi +— %_qfﬁa + % ming 5 . [C(y, y;) — d*Py)] . > B
5. return ff%af o, g?ﬁﬁf gvfﬁj > Debiased dual potentials F(x;) and G(y;).
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Figure 3.25: The symmetric Sinkhorn algorithm, with debiasing and ¢-scaling - Algorithm 3.5.
The two measures « (in red) and 3 (in blue) are displayed as weighted point clouds in the unit square
X =[0,1] x [0,1], endowed with the quadratic cost function C(z,y) = %||z — y||%. The de-biased
potentials F = ff=® — fa<a and G = g*7# — g#8 are extended to the ambient space and displayed
using blue and red contour lines, respectively. The Brenier mapping x; — z; — =—V,S-(a, 8) =
z; — VF(x;) is displayed as a green vector field throughout the iterations of Algorithm 3.5.

(a) it =0, & = 2°. (b) it=1,/e=2"". (c) it =12, =272 (d) it =3,z =273

(e) it = 4, /e =277, () it =5, =275, (g) it =6,/ =275, (h) it =7, e = .01.

Figure 3.26: The multiscale Sinkhorn algorithm, symmetrized and debiased - Algorithm 3.6. The
e-scaling heuristic can be combined with multiscale decompositions of the input measures to reach
an approximate O(Nlog N + M log M) complexity on the GPU. The configuration here is essentially
the same as that of Figure 3.25, but a coarse representation of the input measures is leveraged to
speed-up computations by an order of magnitude. (a-¢) As long as ¢ = £'/? = /z is larger than the
typical distance between coarse sampling locations, the “Sinkhorn” updates are sufliciently smooth to
be performed on low-resolution data. (f-h) The last few iterations are computed on the high-resolution
measures. We leverage a block-sparsity mask computed at (e) to prune out useless computations in the
SoftMin reductions: in the “sum” of the “log-sum-exp”, we skip the computation of distances between
points whose clusters were not interacting with each other at iteration 4.
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Results. As showcased Figure 3.25, the e-scaling heuristic allows practitioners to compute
acceptable approximations of the OT plan with no more than a handful of Sinkhorn iterations.
Note, however, that no complete theory of simulated annealing for entropic OT exists as of
2020: rigorous proofs of convergence are only available for unrealistically slow temperature
decays (Sharify et al., 2011), with gaps and technical quantization hypotheses on the input
measures (Schmitzer, 2019) or for the simpler auction algorithm (Bertsekas, 1992). With a
new understanding of entropic regularization emerging from our work, we hope to make
theoretical advances on the topic in years to come.

Kernel truncation. Can we go further? In the general case, as discussed page 117, optimal
transport problems cannot be solved with less than O(NM) operations: the cost function
C should be evaluated on all pairs of points! Algorithm 3.5 allows users to compute an
approximation of the OT distance with a dozen of optimized KeOps reductions, and should
get close to optimal performances in weakly structured settings.

Nevertheless, when the data is intrinsically low-dimensional, we should strive to do better.
Targeting the log-linear complexity of sorting algorithms, a line of multiscale OT solvers was
started by a seminal paper of Quentin Mérigot (Mérigot, 2011): the core idea is to leverage
the structure of the virtual cost matrix (C(z;,y;)) to prune out useless computations
in quadratic OT solvers. In the simple case of entropic OT, which was best studied from
2015 onwards by Bernhard Schmitzer (Schmitzer, 2019), multiscale schemes rely on two key
observations made on the e-scaling descent:

1. When the blurring radius o = £/ is large, the dual potentials f and g define smooth
functions on the ambient space that can be described accurately with coarse samples at
scale 0. The first few iterations of the Sinkhorn loop can thus be performed quickly, on
sub-sampled encodings & = 3° &;d;, and B=3% Ejé’gjj of our measures computed with
an appropriate clustering method - e.g. a grid or K-means clustering.

2. The fuzzy transport plans ., solutions of the primal problem OT.(«, ) for decreasing
values of ¢ typically define a nested sequence of measures on the product space a ® f.
Informally, we may assume that:

e < & = Support(n.) C Support(r./) . (3.222)

Meanwhile, if (fz, ge) denotes an optimal dual pair for the coarse problem OT. (&, ) at
temperature €, we know that the effective support of:

Te = expé[fs@gs_c] ) d®B (3.223)
is typically restricted to pairs of coarse points or clusters (Z;, §;) such that:
fe(@i) + 9:(g;) = C(&i,9;) — e (3.224)

The so-called kernel truncation trick is all about leveraging this coarse-level information
to prune out useless computations from SoftMin reductions at a finer level. We skip
the computation of point-to-point interactions that would have a negligible impact on
the updates of the dual potentials, and solve an entropic OT problem without ever
computing the full matrix of pair-wise distances between our samples.

Using the block-sparse KeOps routines discussed Section 2.2.3 and idealized here with a

“minMak[ | ]” notation, we combine these key insights with Algorithm 3.5 as follows:



Algorithm 3.6: Multiscale Sinkhorn algorithm, with symmetrization and debiasing

Parameters: Cost function C: (z;,yj) € X X X — %sz —yilP €R,

Target temperature ¢ > 0, given as a blurring scale o = £!/7,
Constraints’ intensity p > 0, given as a maximum reach scale r = p!/?
(7 = p = 400 retrieves balanced Optimal Transport).
Annealing: Estimation of the diameter A ~ max; ; [|z; — y;]|,
Scaling ratio g € (0, 1), default values of .5 (fast) or .9 (safe),
Truncation margin 7 > 0, default values of 3 (fast) or 5 (safe).
Input: Coarse-to-fine collections (a(V), ..., a(%)) and (8M, ..., 3)) of discrete
measures (k) = Z?I:U;) agk)éw(k) and k) = ZMW B )5 L0 at scale (%),

Typically, computed using grid or K-means clustering on hlgh resolution measures.
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Contributions. A typical run is showcased Figure 3.26. In practice, our algorithm differs
significantly from standard machine learning codes or from Bernhard Schmitzer’s reference
CPU implementation (Schmitzer, 2019). Some modifications were motivated by mathematical
insights and may be relevant for all entropic OT solvers:

1.

Our algorithm computes the debiased dual potentials ' and G which correspond to the
positive and definite Sinkhorn divergence S, as detailed Eq. (3.209). In the unbalanced
setting, we refer to Egs. (3.214-3.216) and (Séjourné et al., 2019) for details.

. For the sake of numerical stability, all computations are performed in the log-domain.

We rely on the efficient log-sum-exp routines provided by the KeOps library and discussed
around Eq. (2.43).

For the sake of symmetry, we use averaged updates on the dual potentials f and g
instead of the standard alternate updates. This allows us to converge (much) faster
when the two input measures are close to each other, which is typical in measure-fitting
applications. We also make sure that whenever F' and G are computed with Algorithm 3.6
and S.(a, B) = (a, F) + (8, G), even after a finite number of iterations:

Se(a, B) =S:(8,a) , Se(a,) =0 and 9pSe(a, f =) =0. (3.225)

When extrapolating from coarse to fine scales, we use the genuine, closed-form expres-
sions of Egs. (3.194-3.195) of our dual potentials instead of the simplistic piecewise-
constant rule presented in (Schmitzer, 2019). In practice, this simple switch allows
our code to be extremely aggressive in the descent: we only spend one iteration per
value of the temperature €. The importance of using the correct expression of the
dual potentials in the multiscale descent was confirmed in private communications by
Bernhard Schmitzer, who reported significant improvements to his reference solver.

Our gradients are computed using an explicit formula provided at convergence by the
envelope theorem. This allows us to bypass the costly backpropagation through the
Sinkhorn loop that is often advocated in machine learning papers, but wholly unnecessary.
In practice, in the “forward” pass of our PyTorch implementation, we simply “detach”
the dual potentials ( fiB Y, (gJC.HB ), (f) and (gf “5) before a final “extrapolation”
update that is equivalent to the line 12 of Algorithm 3.6. Without ever writing a single

explicit derivative, this trick allows us to use the following mathematical identities:

ValSe(a, ) = Flxy) = f77% = fro°, (3.226)
M 17 a—pB
1 1 Dop_1eXpP= [Qk _C($i7yk)] Vo, C(xi,yk)
= V2. S:(a, = VF(x;) = =l = 3.227
Qi ( ﬁ) ( ) l+e/p 224:1 exp%[gzﬁﬁ—C(wi,yk)] ( )
_ 1 El,jzl exp % [f;?ﬁa_c(l’ivzk)} -V, Czi,x1)
+e/p 21;1:1 exp %[ ?Ha_c(afivwk)]

It is well-known in the automatic differentiation community and relevant for all iterative
algorithms that converge towards a limit stationary point: we refer to Section 2.1.2 for
an introduction to the inner workings of modern autodiff engines.
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Parallelism. Other tricks are more hardware-dependent and result from trade-offs between
computation times and memory accesses on the GPU:

6. Multiscale CPU schemes generally rely on lists and sparse matrices which are not suited
to GPUs. As discussed page 44, we implement the kernel truncation rule efficiently by
combining a sorting pass with a block-sparse truncation scheme that enforces conti-
guity in memory. Just like we did with the log-sum-exp reduction, we abstracted the
relevant CUDA codes in the KeOps library: this should allow them to reach a wider
audience and improve the maintainability of the whole codebase.

7. For the sake of simplicity, we only implemented a two-scale algorithm which performs
well when working with 50k-500k samples per measure. On the GPU, (semi) brute-force
methods tend to have less overhead than finely crafted tree-like methods: using a single
coarse scale is a good compromise for this range of problems.

8. Our implementation is not limited to dimensions 2 and 3. Users are free to use this
program in conjunction with their favorite clustering schemes, and should expect decent
speed-ups whenever their data has a low “intrinsic” Hausdorff dimension. In practice,
users can specify a multiscale decomposition of their measures using vectors of class
labels, output of a grid binning, K-means or any other clustering routine.

A pragmatic implementation. Crucially, our code does not perform any of the sanity checks
on the truncation masks described in (Schmitzer, 2019): we cannot guarantee the correctness
of our fast multiscale scheme. Running these tests during the descent would induce a significant
overhead on the GPU, for little practical impact: we found the multiscale Sinkhorn loop to
be remarkably stable, and precise enough for all practical purposes. The nice coarse-to-fine
dynamics of Figure 3.26 is representative of a typical run of Algorithm 3.6.

As of today, our multiscale implementation should thus be understood as a pragmatic,
GPU-friendly algorithm that provides quick estimates of the Wasserstein distance and gradient
on large-scale problems. In the remainder of this chapter, we focus on bringing this highly
optimized scheme to a wide audience, with an emphasis put on a proper packaging tailored to
the needs of data scientists. Rigorous theoretical analysis is left for future works.

Analogy with the Quicksort algorithm. As discussed in Section 3.2.4, Optimal Transport
can be understood as a generalized sorting problem. But how far can we go with this analogy?
In dimension D = 1, when p > 1, the optimal Monge map can be computed using a simple
sorting pass on the data with O(Nlog N 4+ Mlog M) complexity. At the other end of the
spectrum, generic OT problems on high-dimensional, scattered point clouds have little to no
structure and cannot be solved with less than O(NM) operations.

From this perspective, multiscale OT solvers should thus be understood as multi-dimensio-
nal Quicksort algorithms: coarse cluster centroids and their targets play the part of median
pivots. Our streamlined GPU implementation delivers on the promise made by (Mérigot,
2011; Gerber and Maggioni, 2017; Schmitzer, 2016, 2019) over the last decade: when the input
data is intrinsically low-dimensional, the runtime needed to compute a Wasserstein distance
should be closer to a O(Nlog N + Mlog M) than to a O(NM).
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Benchmarks. We now deem important to back our performance claims with rigorous bench-
marks. To showcase the speed-ups provided by Algorithms 3.5 and 3.6 in a realistic setting,
we focus on standard subsampled versions of the Stanford dragon, found in the reference
archive (Curless and Levoy, 1996). We measure timings on the simplest of all registration
problems: the optimal transport of a sphere onto the dragon, using a quadratic ground cost
C(z,y) = 3|z — y||* in the ambient space X = R3. This task is fairly representative of the
needs of practitioners in computer vision and shape analysis, where scaling up OT computations
has been a major concern for the best part of the XXI** century (Gold et al., 1998).

Problem solved. We first start by representing our 3D meshes as discrete probability measures:
N M

a = Zai O and B = Zﬁj Oy, (3.228)
i=1 j=1

with one weighted Dirac mass |area| - dcenter per triangle. As discussed in Section 3.3.1, we
then strive to solve the primal-dual entropic OT problem:

OT.(a,B) = 0<Trrré<ig®5 (m,C) + eKL(m,a®f) st.mrl=«a and 771 =0 (3.229)
= max (o, f)+(B,9) —ela®fexp[fOg-C]-1) (3.230)
fgeC(X)

as quickly as possible, optimizing on dual vectors f; = f(xz;) and g; = g(y;) that encode an
implicit transport plan:

T =expi[f@g—C] a®p, (3.231)

Le. Tarry, = expi[fi+g; — Clwiy;)] - by (3.232)

Theoretical analysis: choosing a temperature. Understood as a smooth generalization of the
standard theory of auctions, entropic regularization allows us to compute tractable approxima-
tions of the Wasserstein distance on the GPU.

The level of approximation is set using a single parameter, the temperature £ > 0 which is
homogeneous to the cost function C. With a number of iterations that scales roughly in:

{O( max; ; C(z;,y;) /€) with the Sinkhorn and Auction algorithms (3.233)

O( log (max; ; C(xi,y;) / €) ) using an e-scaling annealing strategy,
we may compute an approximation OT. of the transport cost with precision ~ ¢.

Theoretical analysis: choosing a blurring scale. In practice, when C(z,y) = %Hx —y||P 1s
the standard Wasserstein-p cost, the temperature ¢ is best understood through its p-th root:

o= {z, (3.234)

the blurring scale of the (exponential if “p = 17, Gaussian if “p = 2”) Gibbs kernel k. =
exp(—C/e) through which Sinkhorn-like algorithms interact with our weighted point clouds.
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According to the heuristics presented page 120, we may expect to solve a regularized OT.
problem with a number of iterations that scales in:

{O((A /o)P) with the Sinkhorn and Auction algorithms

. . . (3.235)
O(log(A/o)) wusing an e-scaling annealing strategy,

where A = max; ; ||z; — y;|| is the diameter of our configuration. The trade-off between speed
(large o) and precision (small o) is illustrated Figure 3.22 and discussed page 116.

Solvers. We focus on the quadratic Wasserstein-2 setting (p = 2), which provides the most
useful gradients for geometric applications - as illustrated Figure 3.16. Showcased in Figures 3.28,
3.29 and 3.30, the archetypal “statistics”, “shape analysis” and “graphics” regimes correspond to
varying values of the blurring scale o = /¢ and of the number of samples v/MN. In each of

those three settings, we discuss the performances of three distinct algorithms:

1. Our baseline is provided by Algorithm 3.3, a simple Sinkhorn loop implemented in
the log-domain on the variables f and g for the sake of numerical stability. We discuss
two separate implementations: a tensorized PyTorch script (which has a quadratic
memory footprint) and a scalable KeOps code (which has a linear memory footprint).
Accuracy-vs-time curves reflect an increasing number of iterations spent in the loop.

2. Our second competitor is the symmetric Sinkhorn algorithm with e-scaling, presented
in Algorithm 3.5. Once again, both PyTorch and PyTorch+KeOps implementations
are discussed. Accuracy-vs-time values are computed by letting the scaling ratio ¢ vary
between 0.5 (fast) and 0.99 (accurate).

3. Finally, we discuss the performances of our multiscale Sinkhorn solver - Algorithm 3.6
- with two different truncation thresholds: 7 = 1 (fast) and 7 = 5 (safe). Coarse
decompositions are computed using a cubic binning at scale s() ~ A/20. Our PyTorch
implementation relies on the block-sparse KeOps routines, discussed in Section 2.2.3.
Once again, we trade time for accuracy by adjusting the value of the scaling ratio ¢.

In both Algorithms 3.5 and 3.6, we skip the “grayed-out” computations that correspond to
the debiasing of Egs. (3.203,3.209). This allows us to benchmark our solvers on the standard
Schrédinger problem OT.(«, 8) of Egs. (3.229-3.230) : keep in mind that full debiased runs
would take twice as long.

Convergence. We monitor convergence in our entropic OT solvers by computing a simple,
meaningful quantity: the relative error made on the entropic Wasserstein “distance” OT/? =
v/OT.. For any two measures « and 3, we approximate the genuine target value of OT.(«, 3)
by the common value of all solvers run with very high precision settings. Then, if 0T, («, 3)
denotes the output of a given program,

5 - VOT. (0. 8) — VOT(a, B)
B OT.(w, B)

is chosen as our error criterion. This fits well with the needs of practitioners, who are usually
interested in computing Wasserstein distances and gradients “up to a 1% approximation error”
as quickly as possible.

Rel(a,

(3.236)
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0.5 T § o5

(a) N=10,000, M = 11,102. (b) N = 200,000, M = 202,520.

Figure 3.27: Two reference configurations. To compare approximate OT solvers in a fair and repro-
ducible way, we focus on a meaningful transport problem between two reference measures: the unit
sphere o of R3 and the Stanford dragon 3, sampled with 10k (a) or 200k (b) points each. The typical
diameter of this configuration is of order 1. As we compare several entropic OT solvers with each
other, we measure convergence through the relative error made on the entropic Wasserstein distance
/2 - OT¢(a, B), with actual runtimes - instead of abstract iteration numbers - on the z axis. All
benchmarks are perfomed on a Google Cloud machine, with a Tesla V100 GPU that is slightly more
efficient than the RTX 2080 Ti of Chapter 2.

Solving a 10,000-by-11,102 OT problem, with a blurring scale 6 = 0.1

—— Sinkhorn loop - PyTorch backend
Sinkhorn loop - KeOps backend

—— Sinkhorn with e-scaling - PyTorch backend

—— Sinkheorn with e-scaling - KeOps backend

—— Sinkhorn multiscale - truncate=>5 (safe)

— Sinkhorn multiscale - truncate=1 (fast)

10-2 4

Relative error made on the entropic Wasserstein distance

1073 1072 10! 10° 10! 10?
Time (s)

Figure 3.28: Benchmarks in a blurry “Cuturi-like” setting. A current trend in machine learning
is to rely on large blurring scales to compute low-resolution gradients: giving up on precision is
understood as a way of becoming robust to sampling noise (Genevay et al., 2019). To emulate this
regime with our 3D point clouds, we first pick a (very) large blurring scale ¢ = /¢ = 0.1 and work
with the subsampled point clouds of Figure 3.27.a. This corresponds to the setting of Figure 3.22.b.
As evidenced here, when the diameter-to-blur ratio max ||z; — y;||/o is of order 10, the baseline
Sinkhorn algorithm works just fine. Improvements in this regime mostly come down to a clever low-
level implementation of the SoftMin reduction, abstracted within the KeOps library: switching from
PyTorch to KeOps allows us to get a x10 speed-up and a linear memory footprint, but annealing
strategies are overkill for this simple high-temperature problem.
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Solving a 10,000-by-11,102 OT problem, with a blurring scale o = 0.01

—— Sinkhorn loop - PyTorch backend
Sinkhorn loop - KeOps backend

Sinkhern with g-scaling - PyTorch backend
Sinkhorn with €-scaling - KeOps backend
Sinkhern multiscale - truncate=5 (safe)
Sinkhern multiscale - truncate=1 (fast)
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Relative error made on the entropic Wasserstein distance
=
=]
L

1073 T T
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Figure 3.29: Benchmarks in a low-resolution “geometric” setting. Keep in mind, however, that the
high-temperature setting of Figure 3.28 is not suited to applications in geometry and shape analysis: as
illustrated Figure 3.22, the precision of the Sinkhorn divergence is inversely proportional to the blurring
scale o = /¢ and most applications require diameter-to-blur ratios of order 50 or 100.

As we pick a value of 0 = 0.01 that is ten times smaller than that of Figure 3.28 (with the same
low-resolution dataset), the computation time required by the standard Sinkhorn loop is multiplied by
100. On the other hand, the scahng based routines only experience a x2-3 slow-down: our multiscale
algorithm ends up being 400 times faster than a naive implementation of the Sinkhorn loop.

Solving a 200,000-by-202,520 OT problem, with a blurring scale o = 0.01

—— Sinkhorn loop - PyTerch backend
Sinkhern loop - KeOps backend

Sinkhorn with €-scaling - PyTorch backend
Sinkhern with e-scaling - KeOps backend
Sinkhern multiscale - truncate=5 (safe)
Sinkhorn multiscale - truncate=1 (fast)

Relative error made on the entropic Wasserstein distance

1073 T T T T
10-3 102 107! 10° 10! 10?
Time (s)

Figure 3.30: Benchmarks in a high-resolution “graphics” setting. As we switch to the high-
resolution dataset of Figure 3.27.b, with 200k samples per measure, this trend becomes even more
apparent. Tensorized PyTorch routines crash due to memory overflows and single-scale, quadratic
Sinkhorn implementations experience a x100 slow-down. Remarkably, the multiscale runtimes stay
roughly linear with respect to the number of samples and only slow-down by a factor 10-20. Even
though high precision levels are still out-of-reach, practitioners can now compute Wasserstein distances
“up to a 1% approximation error” in 100 to 300 milliseconds on high-resolution datasets.
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Results. As shown here, our new multiscale OT solvers scale up to both large point clouds and
small values of the temperature: taking e = 02 of the order of (0.01)? = 1e-4 for normalized
point clouds is now perfectly do-able. When implemented using our efficient solvers, Sinkhorn
divergences define robust approximations of the Wasserstein distance that can be used in a wide
range of settings, without any problem of numerical stability.

Our primary focus has always been to optimize OT solvers for applications to computa-
tional anatomy, in-between the two archetypal settings of Figures 3.29 and 3.30. In practice,
in this setting, our multiscale implementation provides a x100 speed-up compared with the
state-of-the-art. As the first multiscale solver for discrete OT ever implemented on the GPU, it
is both faster than GPU implementations of the Sinkhorn loop and log-linear implementations
of multiscale algorithms on the CPU. Keeping a reasonable level of accuracy, we can now
compute Wasserstein-2 distances and gradients between heart or brain meshes in less than 0. 1s:
this opens a whole new range of applications, discussed in the remainder of this thesis.

Is Sinkhorn a fast algorithm? The Sinkhorn algorithm is known to have a linear convergence
rate, with performances that fall off a cliff when the (max,gg C/¢) ratio becomes larger than
50 or 100. To improve upon this coordinate ascent scheme, many authors have proposed to use
accelerated updates inspired by optimization theory (Walker and Ni, 2011): see, for instance,
the Nesterov-like extrapolation rule of (Thibault et al., 2017).

This is a sensible approach: after all, the dual maximization problem OT,(«, ) is concave,
smooth, and satisfies all the standard hypotheses in the field. Unfortunately though, assuming
an appropriate tuning of the hyper-parameters, such strategies can at best provide a x5-10
speed-up compared with the baseline Sinkhorn loop. This is not enough to compete with the
e-scaling heuristic, which provides excellent estimations of the optimal dual vectors in at most
a dozen iterations, both for large and small values of the temperature €.

Global vs local heuristics. At a fundamental level, we believe that the success of annealing
strategies reflects the global structure of the “sorting” OT problem. Standard optimization
theory is mostly concerned with solving generic convex problems with very high accuracy.
Motivated by applications to, say, sparse recovery, most authors in the field focus on improving
asymptotic convergence rates — the end-game - in a neighborhood of the global optimum, but
say little about how we should get in such neighborhoods in the first place.

In the context of entropic OT, this focus on asymptotic results has clear limitations. Indeed,
as soon as the (max,gg C/¢) ratio starts increasing beyond 20-50, the OT. problem becomes
badly conditioned: as illustrated Figures 3.17.c, local gradients only encode information about
the closest saturated constraints. As suggested by Figure 3.19, order 1 schemes typically
improve the dual cost with updates of size of order e: they cannot be competitive in the mid-
and low-temperature settings which are of interest to a majority of users.

This analysis contrasts with the nice coarse-to-fine dynamics of annealing schemes, which
let our algorithms match distributions hierarchically - from mean values to small details. This
heuristic, which alters the OT, problem instead of accelerating its gradient, allows us to leverage
our knowledge of the point clouds’ structures. Even though no formal proof of convergence
exists for Algorithms 3.5 and 3.6 as of 2020, the intuitive displays of page 121 vindicate, in our
opinion, this age-old heuristic from operations research.
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Relationship with the machine learning literature. As discussed at the end of this chapter,
the recent line of stats-ML papers on entropic OT started by (Cuturi, 2013) has prioritized
the quest for statistical robustness over computational efliciency. Consequently, in spite of
their impact on fluid mechanics (Mérigot and Mirebeau, 2016), computer graphics (Lévy, 2015)
and all fields where a manifold assumption (Gerber and Maggioni, 2017) may be done on the
input measures, works on multiscale methods have been mostly ignored by authors in the
machine learning community.

In recent years, some of the key geometric insights discussed page 122 have been re-
discovered in the stats-ML literature. A notable example is (Altschuler et al., 2018a), where
authors propose to use low-rank approximations of the Gaussian kernel matrix (k. (x;,y;)) in
the standard Sinkhorn iterations of Eq. (3.199): this is roughly equivalent to working with
coarse approximations of the input measures. Unfortunately, these ML-related works keep a
focus on very high-temperature scenarios and never discuss e-scaling strategies, coarse-to-fine
schemes or introduce any idea that could allow practitioners to work with smaller amounts of
entropic regularization.

For instance, (Altschuler et al., 2018b) only considers data normalized to fit in the unit
hyper-cube X = [0, 1], with a blurring scale ¢ = |/z that ranges between 1/1/2-5 = 0.31
and 1/4/2 - 30 = 0.13. This massive amount of regularization may be of interest in settings
where sampling noise is a concern. It is, however, hardly suited to any geometric application in
shape analysis or computer graphics: as illustrated Figure 3.22, large blurring scales make our
losses blind to all details in the input distributions.

We also note that in very high-temperature settings, computing blurry Wasserstein distances
up to the third decimal is of little practical interest. The benchmarks of (Altschuler et al.,
2018b) include comparisons with our solvers for o = 1/4/2 - 15 = 0. 18 on the unit cube, but
we do not believe that making these runs with a (very) conservative value of the scaling ratio
at ¢ = 0.95 reflects the needs of practitioners. The default value suggested by our “GeomLoss”
package, ¢ = 0.5, would likely have been just as precise for all practical purposes - and
considerably faster.

Bridging the gap between the ML and OT communities. We hope that the introduction
to the geometric side of OT presented in these pages will be accessible to all readers. As
researchers in the stats-ML community progressively acknowledge the geometric meaning
of the temperature ¢ and the associated blurring scale ¢ = £!/P, abstract benchmarks will
hopetully be replaced by healthy discussions on the trade-offs associated to the behaviours of
OT solvers in different settings.

We aim at bridging the gap between communities that study OT from “geometric” and
“statistical” perspectives by providing a fast OT solver that relies on key ideas from both worlds.
More than our efficient (but always perfectible) implementations, we believe that this original
introduction to entropic OT can have a fertilizing impact on the literature. Most importantly,
the geometric plots of Figures 3.22, 3.25 or 3.26 convey a message that is very different from
the standard diagrams of (Peyré and Cuturi, 2017) : we look forward to reading papers that
combine these geometric insights with key ideas from other recent works, such as (Benamou
et al., 2015), (Berman, 2017) or (Léger, 2020).



R = N e S I -

_ = =
N = O

132 Chapter 3 Geometry on a space of measures

3.3.4 The GeomLoss package - future works

Progress over the last few years. Entropic OT has gone a long way since (Kosowsky and
Yuille, 1994; Chui and Rangarajan, 2000) and (Cuturi, 2013). As discussed throughout this
chapter, we now know how to make the Sinkhorn loop converge in a mere handful of iterations.
Going further, optimal log-linear (instead of quadratic) runtimes are now at hand whenever
the input data has a low intrinsic dimensionality.

Our single- and multi-scale OT solvers, detailed in Algorithms 3.5 and 3.6, are respectively
suited to applications in statistics and geometry. They allow us to define a fully symmetric,
positive and definite loss function that satisfies all the axioms of page 118: the debiased
Sinkhorn divergence S.. This affordable approximation of the Wasserstein distance is backed
with essential theoretical results, presented in Theorem 3.1 and in (Genevay et al., 2019; Séjourné
et al., 2019; Mena and Weed, 2019). It provides reliable gradients that define a low-frequency
Brenier mapping between any two measures and can be tuned with a couple of meaningful,
interpretable parameters.

A simple interface. These desirable properties come at the cost of simplicity: our solvers are
numerically stable, orders of magnitude faster than the baseline Sinkhorn loop... but also
harder to implement. This is most unfortunate: the striking simplicity of the Sinkhorn updates,
Eq. (3.199), certainly played a major part in its widespread adoption.

To let users get access to an efficient and well-tested implementation of our methods,
we took the time to distribute our solvers in a user-friendly Python module: the GeomLoss
package, which is freely available on PyPi (pip install geomloss). Numerous examples
and tutorials are showcased in our documentation, that is available at:

www.kernel-operations.io/geomloss .
Out-of-the-box, Sinkhorn divergences can be computed using an idiomatic PyTorch interface:

import torch
from geomloss import SampleslLoss # See also ImagesLoss, VolumesLoss

# Create some large point clouds in 3D
x = torch.randn(100000, 3, requires_grad=True).cuda()
y = torch.randn (200000, 3).cuda()

# Define a Sinkhorn (~Wasserstein) loss between sampled measures
S_e = SamplesLoss(loss="sinkhorn", p=2, blur=.05)

Sxy = S_e(x, y) # By default, use constant weights = 1/number of samples
g_x, = torch.autograd.grad(Sxy, [x]) # GeomLoss fully supports autograd!

Future of the GeomLoss library. Going further, applications to computational anatomy,
image processing or machine learning can be sketched out in a few lines of high-level Python
code. Some of our demos are displayed in the next two pages, and illustrate the main strengths
and weaknesses of optimal transport “on its own”. In months to come, we will work on
implementing and packaging properly extensions to the basic framework: solvers for images
and volumetric density maps, extensions to meshes and curves with orientation- and curvature-
aware loss functions, etc. This work is detailed in Chapter 4.
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(a) Saxo - before. (b) Saxo - after. (c) Crescent - before. (d) Crescent - after.
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(e) Worms - before. (f) Worm - after. (g) Moons - before. (h) Moons - after.

Figure 3.31: Optimal transport generalizes sorting to arbitrary feature spaces. Here, we showcase
some matchings in the unit square X = [0,1] x [0, 1] computed with a Sinkhorn divergence S., as
C(z,y) = ||z — y||* and ¢ = /2 = 0.01. They are analogous to the 3D matchings of Figure 3.12,
with a target 3 in blue and a source « displayed using a rainbow colormap. (a-d) OT can match any two
measures with each other; for instance, an elliptic blob with a saxophone or a crescent. This may come
handy in the literature on generative modelling, where authors strive to match Gaussian samples with
generic empirical distributions. (e-f) When the two input measures are close to each other, Wasserstein-2
OT tends to retrieve good-looking monotonic matchings. (g-h) Keep in mind, however, that OT does
not always match salient geometric features with each other - say, the ends of both crescents in the
moons dataset. In challenging settings, OT should be used in feature spaces that take into account the
local orientation and curvature or rely on global spectral coordinates. This is discussed in Chapter 4.

(a) Small deformations. (b) Scalings, translations. (c) No preservation of topology.

Figure 3.32: The GeomLoss routines are ideally suited to the processing of segmentation masks,
even with little to no overlap. Since (Brenier, 1991), we know that Wasserstein-2 OT retrieves the
unique gradient of a convex function that maps a measure onto another. In practice, this implies that the
Sinkhorn divergence S, is robust to small deformations (a), translations and dilations (b). Keep in mind,
however, that OT also has clear limitations. First of all, as evidenced Figure 3.31.h, it is 7ot robust to
rotations. (c) Going further, unlike spectral loss functions, OT does not preserve the topology of the
input data; we illustrate this major weakness with pseudo-heart slices taken from the spectral log-demons
paper (Lombaert et al., 2014).
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(a) Images A and B. (b) Matching the distribution 8 onto a.

Figure 3.33: Color transfer is a nice illustraton of optimal transport in 3D. As discussed for instance
in (Rabin et al., 2014), OT can be used to “equalize histograms” efficiently in a 3D color space. (a) The
simplest way of doing so is to encode source and target images as point clouds « and 3 in the RGB unit
cube X = [0, 1]3. Every pixel is represented as a weighted Dirac mass a;6,, or 3;6,,, with i = 1/N
and 8; = 1/M by default. (b) Each pixel z; in the source image then gets re-painted with a new color
z; — = VS. (v, ) that roughly corresponds to a target in the histogram 3. In practice, the regularized
gradient of the Sinkhorn divergence S. allows users to transfer color palettes without overfitting on
the precise distribution of the target, as illustrated here with a blurring scale of \/¢ = 0.1. This is in
line with the theoretical Lispschitz model of (Paty et al., 2019). Going further, better results could be
obtained in spaces of patches or with the addition of relevant spatial features: see e.g. the impressive
applications to texture synthesis of (Galerne et al., 2018; Leclaire and Rabin, 2019).

(a) 3D view. (b) Coronal view. (c) Sagittal view.

Figure 3.34: A typical use case: segmented knee caps kindly provided by Zhenlin Xu and Marc
Niethammer from UNC Chapel Hill, from raw volumes of the OsteoArthritis Initiative dataset
(Eckstein et al., 2012). The source « (in red) and target 5 (in blue) are respectively made up of 52,319
and 34,966 voxels - out of a pair of 192-192-160 volumes. The green vector field is the gradient of the
Energy Distance of Eq. (3.154), an excellent baseline implemented alongside Sinkhorn divergences by
the GeomLoss package. Rendering done with 3DS1licer (Fedorov et al., 2012). As discussed in the
literature since (Gold et al., 1998; Chui and Rangarajan, 2000), for real-life matching problems, OT is
best used in conjunction with a generative model that enforces a prior on the structure of admissible
deformations. The GeomLoss routines can be plugged in any shape analysis pipeline, as a straightforward
replacement for the baseline chamfer and Gaussian kernel losses that are ubiquitous in the literature.
In fractions of a second, our global loss functions can now provide high-quality gradients between
segmentation masks or 3D point clouds which have little to no overlap.
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Conclusion. After decades of research, the OT community is finally closing in on optimal
algorithmic structures for the Wasserstein-2 “sorting” problem. Depending on the dimension
of the input data and the level of precision required, state-of-the-art algorithms now compute
optimal dual vectors with log-linear or quadratic runtimes, and always keep a linear memory
footprint. Crucially, in both discrete (GeomLoss) and semi-discrete (SD-0T, Geogram, ...)
settings, optimized CPU and GPU solvers are being packaged properly and made available
through Python interfaces.

OT on geometric domains, graphs or with non-convex cost functions remain challenging
problems... But as far as users are concerned, from 2020 onwards, standard Wasserstein-1 and
Wiasserstein-2 costs on RP should be as easy to use as generic chamfer and kernel distances.

Cleaning up the theory. As discussed throughout this chapter, the computational theory of
entropic OT has made great strides over the last few years. Nevertheless, in our opinion, two
major theoretical questions are still left to be answered:

1. Can we link the Sinkhorn algorithm with the blurred Wasserstein distances of page 1162

2. Can we prove the convergence of the scaling of Algorithm 5 in the general case?

We believe that these two problems are deeply linked with each other, and are working on the
subject with Francois-Xavier Vialard and Bernhard Schmitzer. The entropic OT solvers pack-
aged in the GeomLoss library are probably good enough for most practical purposes... But
getting a rigorous understanding of the multiscale, wavelet-like behaviour of our algorithms
as we add details through a decay of the blurring scale /e would be truly insightful. In some
sense, couldn’t we prove a Plancherel-like theorem for the Wasserstein distance? That’s the
dream!

How far can we go with OT? The next generation of OT solvers will probably meet the fate
of standard linear algebra packages, buried in the foundations of higher-level projects. As the
fundamental problem of OT computation is progressively getting solved in all practical settings,
we expect the community to gradually switch its focus onto higher-level problems.

In Chapter 4, we discuss applications of OT theory to 3D shape analysis: the high-quality
gradients of Sinkhorn divergences can greatly improve the reliability of registration pipelines
in medical imaging. Likewise, the relevance of the Wasserstein metric for fluid mechanics and
crowd modelling is now a well established fact (Santambrogio, 2015).

But is OT suited to statistics and machine learning research? Out-of-the-box, unfortunately,
this seems very unlikely. The statistical properties of the Wasserstein distance have been studied
extensively over the years (Dudley, 1969; Dobri¢ and Yukich, 1995; Weed et al., 2019), with
catastrophic results in high-dimensional feature spaces: asymptotically, the number of samples
needed to approximate a Wasserstein distance between two continuous distributions - its sample
complexity - increases exponentially with the dimension of the measures’ supports.

Facing the so-called curse of dimensionality, authors in the stats-ML literature have mostly
used OT as a source of inspiration for the design of robust divergences. Researchers look for
formulas that retain some of the appealing geometric features of the Wasserstein metric, but
keep reasonable statistical properties in high-dimensional settings.



136 Chapter 3 Geometry on a space of measures

In statistics. A first strategy is to regularize and constrain the OT problem to make its solution
robust to statistical fluctuations. This has been one of the major motivations behind the recent
revival of entropic regularization (Cuturi, 2013) and the introduction of online OT solvers
(Genevay et al., 2016), low-rank transport plans (Forrow et al., 2019) or Lipschitz-constrained
Monge maps (Paty et al., 2019) in the literature.

In general, “robustified” solvers are far from being as efficient and versatile as the fast
geometric algorithms discussed throughout this chapter... But in contexts where data is
encoded with noisy batches of at most a few thousand samples at a time, statistical consistency
trumps scalability. Both lines of work serve different purposes and can hardly be compared with
each other. We recommend interested readers to check the “Python Optimal Transport”
(POT) library (Flamary and Courty, 2017), which implements a good collection of ML-related
algorithms with a unified user interface.

Generative adversarial networks. Beyond classical machine learning, a recent wave of papers
on “GANs” (Goodfellow et al., 2014) and “Wasserstein-GANs” (Arjovsky et al., 2017) has
sparked a strong interest for the applications of geometric measure theory to generative mod-
elling. To understand these works, we should first mention one of the fundamental issues in
image processing: the absence of mathematical formulas that can quantify the “perceptual”
discrepancy between pairs of natural images. For instance, defined on the high-dimensional
space of bitmaps X = RWVidth xheight 'the standard Euclidean metric:

2 (3.237)

lz = ylZeey = Do1%ig—vig
‘7‘7‘

does not capture - at all - the notions of texture and shape which are central to human vision.
Deprived of any explicit criterion to optimize, how could we hope to generate new batches of
convincing synthetic images?

To bypass this difficulty, (Goodfellow et al., 2014) made a fundamental remark: even
though specifying an explicit perceptual distance on a space of images is probably out of reach,
designing a parametric collection of dual test functions that models a “perceptual decision
process” should be do-able. In practice, this insight leads researchers to compare distributions
of images using dual losses in the mould of:

Lossgan(a, f) =~ max (a—f, gy ), (3.238)
PERP

where gy is a convolutional neural network parameterized by a vector of weights 1. This choice
is a sensible one for the processing of natural images, and can be justified in many different
ways (LeCun et al., 1995; Mallat, 2016; Goodfellow et al., 2016).

Unfortunately, unlike the structured maximization problems of Egs. (3.115,3.128) - kernel
norms - or Egs. (3.170,3.181) - Wasserstein distance - these generic optimization problems
cannot be solved efficiently. Researchers thus compute these losses by using a gradient ascent
scheme on the vector of weights ¢ that parameterizes the discriminative network gy.

As discussed page 66, generative modelling of images can then be cast as an explicit optimiza-
tion problem. If ap = a0 f, ! is a parametric distribution of generated images, pushforward
of a reference (Gaussian) measure o under the action of a generative network fg and if § is an
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empirical distribution of images, the measure-fitting “GAN” problem reads, up to additional
regularization terms:

in L ,8) ~ min ma e—h . 3.239
min Lossgan(ag, §) = min max {a o fy" =B, g5 (3.239)

Wasserstein-GANSs. In practice, such min-max problems are notoriously hard to solve: naive
optimization schemes quickly diverge or cycle around saddle points without ever converging
to an acceptable optimum.

In an attempt to ease the training of generative-adversarial pairs of networks (fg, gy),
(Arjovsky et al., 2017) proposed to restrict the optimization in the dual objective of Eq. (3.238)
to Lipschitz discriminators g,. This is essentially equivalent to promoting the use of the
restricted Loss function:

Lossw.gan(a, 8) ~ ﬁ?&’ (=B, gy) s.t. gy is 1-Lipschitz. (3.240)
In practice, this constraint is typically enforced (loosely) by clipping to [—1, +1] the weights
of all linear operators involved in the expression of gy, i.e. by constraining the vector of neural
weights 1) to stay in the unit ball of RY for the L norm.

This heuristic makes sense: as discussed throughout this chapter - say, page 86 - constraining
the set of adversarial test functions is usually a good way of making sure that the associated
dual norms have smoother geometric properties, and “nicer” gradients. By analogy with the
Kantorovitch-Rubinstein formulation of the Wasserstein-1 distance as a dual norm with respect
to the full set of 1-Lipschitz test functions, Eq. (3.181), the authors of (Arjovsky et al., 2017)
decided to call the adversarial Loss of Eq. (3.240) the “Wassertein-GAN” objective.

This unexpected connection between image processing and geometric measure theory
appealed to a large number of theorists and practitioners. However, we deem important to
stress that this dual loss function is not actually related to optimal transport theory. Defined
as a dual norm over a set of perceptual test functions, generated by a given convolutional
architecture (1) — gy), the W-GAN loss is likely to be way more suited to image processing than
the “genuine” Wasserstein-1 distance on (X, || - ||12), which relies on the irrelevant Euclidean
norm of Eq. (3.237). The poor statistical properties of the Wasserstein-1 distance in high
dimensional feature spaces come from the size of the set of 1-Lipschitz test functions, which is
too large for its own good. Restricting ourselves to domain-specific test functions is therefore a
sensible choice, but has a major influence on the associated dual norm.

Unfortunately, this essential point is often (always?) ignored in the specialized literature.
Neglecting the essential prior encoded within the convolutional architectures of their imaging
pipelines (Ulyanov et al., 2018), authors in the field often assume that the discriminator
gy — a convolutional neural network with a finely tuned architecture - somehow converges
towards the “genuine” - and in this setting, completely irrelevant - optimal test function
of the dual Kantorovitch problem of Eq. (3.181). This confusion is unfortunate, and at the
source of a great deal of misunderstandings between authors in the “optimal transport” and
“generative modelling” communities. Measure-theoretical works may provide insights and ideas
to researchers working in a wide range of applied settings; but without strong empirical proofs,
we should not assume that the geometric structure of the Wasserstein distance is ever preserved
or relevant to the study of convolutional GANSs.
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Loss functions and models. Throughout Section 3.2, we showed that in comparison with
Hausdorff and kernel losses, Wasserstein distances provide high-quality geometric gradients.
In the remainder of this thesis, we explain how this new tool can improve the robustness of
registration pipelines in medical imaging - where deformation models are typically flexible,
loosely constrained and therefore sensitive to spurious local minimas. Keep in mind, however,
that the switch from simple baselines to refined Sinkhorn divergences is not always worth
the effort. As discussed page 82, whenever the generative or deformation model to estimate is
heavily regularized, cheaper alternatives may do a fine job at a fraction of the price. We refer
for instance to the use of sliced OT (Bonneel et al., 2015) for rigid pose estimation in (Bonneel
and Coeurjolly, 2019).

In-between these two extreme settings, the trade-offs associated to the use of OT, Hausdorft
or kernel Loss function are now pretty well understood for geometric applications in 3D.
But what about machine learning problems? As discussed throughout this conclusion, the
subject is currently a hot topic in the stats-ML literature, with statistical properties often taking
precedence over geometric considerations. The picture is still pretty unclear as of 2020; but in
years to come, we hope to see a comprehensive theory for measure-fitting problems emerge in
high-dimensional feature spaces.

Final warning. The next chapter of this thesis is dedicated to the use of OT theory for shape
analysis, both as a global loss function and as a cheap baseline metric for population study.
As discussed in the last few pages, our algorithmic and theoretical progresses on entropic OT
provide us with solid foundations to enter the field of computational anatomy. Nevertheless,
before going any further, we wish to re-iterate some healthy criticism of optimal transport
theory as a tool for data sciences: in spite of a flamboyant name and a flock of elegant results,
this framework seldom provides ready-made answers to real-life problems.

First of all, as solutions of generalized sorting problems, OT plans are fundamentally reliant
on the ground cost functions C : (z,y) — C(z,y) defined on the feature space X'. Computing
OT matchings with a poorly engineered ground metric is no more relevant than performing
a random assignment between two lists of samples. Second, as illustrated page 133, the good
algorithmic properties of OT come at the cost of the preservation of topology. As discussed in
Chapter 5, defining relevant, affordable and topology-aware metrics on spaces of measures is
still a major open problem in medical imaging.



Chapter 4

Encoding shapes as measures

in collaboration with Pierre Roussillon and Pietro Gori (Télécom ParisTech).

Key points - measure theory is a convenient abstraction for shape analysis:

1.

Invariance to re-meshing is a property that should be enforced by shape analysis pipelines.
In the last twenty years, this constraint has induced a flourishing literature in computer
graphics and medical imaging: the focus has been put on instrinsic Laplacians, projection
algorithms and geometric measure theory.

Encoding shapes as weighted subsets of a relevant space of features - e.g. (position, orien-
tation, curvatures) triplets - is a convenient way of ensuring parameterization invariance.
Researchers use weights that are proportional to the lengths of their segments or the areas
of their triangles to balance-out variations of the local sampling density.

. In this framework, shape elements are compared using an extrinsic distance on the ambient

feature space, which replaces the intrinsic metric of the mesh. This method guarantees
some robustness to topological noise and paves the way for efficient GPU implementations.
On the flip side, it may also be understood as a fundamental blind spot of the theory.

Contributions - robust and scalable routines for shape analysis:

4.

Leveraging our work on smooth optimal transport, we propose robust and scalable ge-
ometric loss functions for density maps, meshes and curves. Our GeomLoss package
is freely available on the PyPi repository (pip install geomloss), with tutorials and
documentation handy on our reference website:
www.kernel-operations.io/geomloss

. We discuss a particle-based Lagrangian scheme for the computation of Wasserstein barycen-

ters: this algorithm provides a simple way of interpolating between neighboring distributions.
It is efficient yet easy to implement and raises interesting theoretical questions.

. With routines that can now scale up to large (500,000-1,000,000) collections of curves, we

propose simple transport-based algorithms for the processing of brain tractograms. This
work is still very much in progress, as we are yet to assess quantitatively the choice of
anatomical features that should be used to encode white matter fibers.
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4.1 A robust encoding for shapes

Throughout the last two chapters, we have explained how to speed-up a wide variety of
computations: the KeOps and GeomLoss libraries bring a performance boost in physics, image
processing and data sciences. Deep down, however, our main motivation has always been to
work in the field of computational anatomy: the processing of shape data in a medical setting.
As discussed Section 1.2, this is a challenging topic: the absence of uniform coordinate systems
or clean mesh structures prevents us from representing shapes in a canonical vector space.
Surfaces may also come with holes or sampling artifacts that must be handled with care.

Working with weighted sets: measures. A good way of mitigating these issues is to work
with implicit surfaces (Alexa et al., 2001; Amenta and Kil, 2004) or intrinsic operators such
as the mesh Laplacian (Zhou et al., 2005; Bronstein et al., 2017). Alternatively, as detailed in
Chapter 3, we can represent shapes as discrete measures: weighted point clouds on RP or some
other feature space X:

a = ?:1%5% , with () € Rgo , (m;) € xN (4.1)

A built-in invariance to re-meshings. We discuss choices for the weights «; and features x;
over the next few pages. An appealing trait of measure theory is that it lets us identify with
each other objects whose supports do not overlap. For instance, as detailed page 68, we can say
that for small values of e:

do = $00+300 ~ Jo_.+16. (4.2)

for the weak-x topology associated to the convergence in law. Going further, just as in the
classic definition of the Riemann integral, discrete measures converge to continuous objects if
they are properly weighted by arc-length.

In this manuscript, as discussed Section 3.2, we restrict ourselves to computing quantities
that are well-defined with respect to our measure-theoretic encodings and continuous with
respect to the convergence in law: this ensures that our algorithms are numerically stable
and robust to small deformations or re-meshings.
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(a) Labeled data. (b) Density map. (c) Asa measure.

Figure 4.1: Illustrating the challenge of working with unlabeled data, using tunas adapted from
(Addis et al., 2010). (a) In favorable settings, well-defined landmarks can be identified on input images.
As discussed Section 1.2.2, we can then encode shapes as large vectors: labeled point clouds that we
process coordinate-wise. (b) Unfortunately, most problems in medical imaging cannot be dealt with so
easily. As illustrated Figure 1.1, 1.9, 1.11, 3.32, 3.34 or 4.5, getting access to a segmentation “heatmap”
for every type of tissue is often the best that we can hope for. (¢) Introduced in Chapter 3, the theory
of measures allows us to handle these weighted sets in a way that is principled, efficient and robust
to re-parameterizations. As detailed Section 3.1.2, segmentation maps can be understood as sums of
weighted Dirac masses located on pixel centers, with a weight that is proportional to the local density.

4.1.1 Density maps

Segmentation maps: bitmaps vs. weighted point clouds. For the sake of simplicity, we first
understand shapes as distributions of mass on the ambient space: 2D or 3D segmentation maps
that may be represented as binary masks or soft heat maps. As discussed Section 3.1.2, we can
encode these objects in two different ways, with complementary strengths and weaknesses:

1. Bitmaps. Segmentation algorithms generally output a probability heatmap as a 2D image
or 3D volume. This representation is well supported by modern libraries that provide
efficient routines for convolutions, subsampling and Fourier transforms. On the flip side,
voxellization is relatively ill-suited to the fine processing of 3D deformations, as mid- to
high-resolution volumes quickly stop fitting contiguously in memory.

2. Weighted point clouds. Alternatively, we can use an explicit point cloud (z;) € RN*P
with a vector of weights (c;) € RY: each weighted Dirac mass a;8,, stands for a non-
empty voxel localized around its center z; with mass ;. This encoding is ideally suited
to represent thin structures with a small geometric support: the KeOps library lets us
process clouds of N = 100k to 1M points in fractions of a second.

Working with images. With the advent of reliable segmentation networks, illustrated Fig-
ure 1.9, the study of positive density maps is becoming increasingly relevant. We must stress,
however, that research in computational anatomy has historically been more concerned with
images than density maps: grids or volumes filled with intensities that cannot be interpreted as
weights. We will look into generalizing our methods to these signals in the future, but have so
far prioritized the study of meshes and curves: as illustrated Figure 1.11, these representations
are ideally suited to the study of deformations. They allow us to represent shapes and their
variations with algorithms that are both memory efficient and GPU-friendly.
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4.1.2 Curves

Discrete curves. In practice, we identify a curve in the ambient space RP with a finite collection
of P segments encoded as a wireframe mesh:

A* = (x7, Ag), where (z}) € RN*P and (A;) €[1,N]7*? . (4.3)
i d
vertices eages

The integer array (Ay)reqr,p] is the list of the P pairs of indices (s, ) €1, N]? for the end-points
of the segments [z}, 27| that make up the curve A*.

Distributions of mass. To encode a discrete curve as a measure, we can identify its segments
with weighted Dirac masses in RP, as illustrated Figure 4.2 (Glaunes et al., 2004). Formally,
we turn a curve A* into a discrete measure v = Y 5_; a0, with the function:

Measure : A" = (x;, Ax) — (ag,zk) € Rgo x REXD | (4.4)

where for all pair of indices Ay, = (s,t) €[1,N]?, axd,, represents [¢*, x}] with:

def. def.
a = |lzh —z7|| and T = %(:1:: +x}) . (4.5)
The weights ay, are proportional to arc length and make this representation robust to re-
sampling: as detailed page 68, two discretizations of the same curve are close to each other for
the weak-x topology. When all segments become finer, the Wasserstein distance between two
measure encodings of the same shape tends to zero.

Orientation-aware features. Going further, we can work with higher-order features to take
into account the orientation of our segments. We encode a curve A* as a discrete measure
a=3r_, O (g, ,7,) ON X = RP x SP~! with the function:

Measure : A" = (x}, Ax) — (o, zk, k) € Rgo x RPXD 5 RPXD (4.6)

where for all pair of indices Ay, = (s,t) €[1,N]?,

o E ot —afll,  w E J@l+a)) and i T L@l-a)). (47

The representation of curves and surfaces as measures has a long history in geometry
(Federer, 1969). In computational anatomy, the encoding above is known under two different
names: if all subsequent processings are linear with respect to the oriented directions 7y, we
say that the curve is represented as a current (Vaillant and Glaunes, 2005); alternatively, if
our formulas are invariant to the orientations of the 7’s, we identify o with a measure on

X =RP x SP7! and say that it is a varifold (Charon and Trouvé, 2013).

Curvature. Going further, we can design higher-order embeddings to handle curvature and
end-points in a consistent way: a first option is to process curvature as an additional coordinate
in a lifted space of features (Charlier et al., 2017a). Alternatively, we can rely on the theory
of normal cycles to define general order-2 encodings: we refer to (Roussillon, 2017) for an
in-depth tutorial.



(a) Curve. (b) As a measure. (c) Normal cycle of a collection of
6 segments.

Figure 4.2: Encoding a curve as a measure, with (c) from (Roussillon, 2017). (a) Working with curves,
a simple way of designing parameterization-invariant methods is to consider the distribution of mass
that a line defines on the ambient space X = R? or R3. (b) If a curve is given as a collection of segments,
we can approximate the associated integrals with discrete sums. As detailed Eq. (4.1.2), we put one
Dirac mass a;d,,; at the center z; of each segment, with a weight «; that is proportional to arc length.
(c) Going further, we may consider higher-order features that take into account the local orientation
and curvature. Since measure theory is additive, we only need to define the embedding of atomic
shape elements - segments, vertices. Our curves end up being represented as weighted point clouds in
a product space of dimension 2 to 9: we compare them with each other using the tools presented in
Chapters 3 and 5.

A ABC =~ (673 5(%7@)
B o = HABeAC|
B a; zi = 3(A+B+C)
n; = iﬁzﬁ ® R“
C
(a) Triangle, encoded as a Dirac measure on R? x S3. (b) Normal cycle of a triangle.

Figure 4.3: Encoding a triangle mesh as a measure, with (b) from (Roussillon, 2017). (a) Just like
the curves of Fig. 4.2, surface meshes may be encoded as sums of weighted Dirac atoms, each of whom
stands for a triangle element. We pick weights that are proportional to surface areas, and retain as
features the centers of mass and unit un-oriented normals of our triangles. (b) Going further, defining
curvature-aware features that are fully invariant to re-meshings can be tricky. Fortunately, the geometric
framework of normal cycles (Federer, 1969) provides a satisfying answer to this problem: we refer to
(Roussillon, 2017; Roussillon and Glaunés, 2019) for a kernel-centric overview.

(a) Full mesh. (b) 30% of triangles. (c) 5% of triangles. (d) Registered surface.

Figure 4.4: Measure encodings are robust to topological noise, from (Kaltenmark et al., 2017).

A key feature of measure theory is that it is intrinsically robust to re-meshings and partial acquisitions.
(b-c) In this example, degraded versions of a clean surface mesh are used to define rough approximations
of the surface distribution associated to (a). In spite of glaring holes in the subsampled structures, the
three objects remain close from a measure-theoretic perspective, as measured e.g. by the Wasserstein
distance if we normalize total masses. (d) We use a geometric loss function from Chapter 3 to drive the
registration of an “elastic” sphere onto a subsampled measure and retrieve a clean approximation of the
original mesh. All relevant information has thus been preserved in the sparse, noisy encoding.
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4.1.3 Meshes

Surfaces. We handle surfaces in a similar way to curves. Let us consider a triangle mesh:

A* = (xf, Ag), where (x7) e RN*3 and (Ay) €[1,N]72 . (4.8)
—_————
vertices faces

The array (Ay) is the list of P triplets of indices (s, t,u) € [1, N]? for the triangles [¢*, x7, 2]

Oriented faces. Following our discussion on curves, we encode the mesh A* as a varifold, i.e.
as a discrete measure o = 25:1 0 gy, ,7,) ON X = R? x S2 with:

Measure : A* = (2], Ag) — (ag,xk, Tk) € Rgo x RP*3 x RP*3 (4.9)
where for all triplet of indices Ay, = (s, t,u) €[1,N]*:
ap = Area(zf, zf,xy) = gll(af —xf) @ (xy — 2,
zp = Center(z},z},x}) = %(ajz +zf+ ),

(4.10)

—

fr = Normal(z% af,z) = =+

This encoding is illustrated Figure 4.3 and is robust to re-meshings - with an important caveat:
convergence results only hold if mesh triangles do not become too thin. As detailed for instance
in (Roussillon, 2017, Section 3.6), we can build ill-conditioned counter-examples - Schwarz
lanterns - whose areas and normals are not faithful representations of the underlying continuous
objects. Fortunately, these concerns are now addressed by standard remeshing algorithms and
do not impact practical results.

Curvature. The unit normals 7, of the varifold encoding allow us to take into account the
orientations of our triangles. In practice though, most salient geometric features are character-
ized by higher-order descriptors. Assuming that we have access to reasonable triangulations
of our surfaces, a key problem is therefore to define a notion of curvature that is affordable,
robust to topological noise and fully invariant to re-meshings.

From the perspective of geometric measure theory, a first option is to study the variations
of a varifold encoding (Buet et al., 2015, 2017). Going further, as illustrated in Figures 4.2
and 4.3, we can introduce the normal cycle of a mesh to compute curvatures in a principled
way (Federer, 1969): all relevant information is contained in an object that is defined in a
consistent way for both continuous surfaces and discrete meshes.

We refer to (Morvan, 2008) for background on the topic, with applications to mesh
processing (Chazal et al., 2009) and shape registration (Roussillon, 2017; Roussillon and
Glaunes, 2019). In practice, this framework turns a triangle mesh into an expanded varifold
representation: additional features are associated to edges and vertices to act as generalized
mean and Gaussian curvatures. We will detail the associated computations in future works.
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(a) Diffusion Tensor Imaging. (b) Fiber probability map. (c) Tractogram.

Figure 4.5: Illustrating tractography with images from (Descoteaux and Deriche, 2008).

(a) As illustrated Figure 3.5, modern MRI scans are remarkably versatile (Basser et al., 1994; Le Bihan
et al., 2001). Using specific pulse sequences, doctors can now visualize the diffusivity of water inside a
patient’s body: at every voxel location of a DTI volume, a high-order tensor encodes the local anisotropy
of the tissue - represented here as a 3D glyph. We can then use these diffusivity maps to segment a brain
into meaningful fiber tracks that inform us on the brain’s connectivity patterns. These structures may
be encoded as soft segmentation maps (b) or as collections of 3D curves (c).

4.1.4 Brain tractograms

Tractography. Segmentation maps, meshes and curves are the most common representations
of geometric data - but other types of structure are also worth studying. In neuro-anatomy for
instance, the advances made on MRI sequences now let us retrieve 3D maps of the anisotropy
patterns present in a patient’s tissues. As illustrated Figure 4.5, this signal can then be processed
to construct fiber tracks that model the anatomy of white matter bundles in the brain. Under-
standing the shape and structure of this data has important applications for neurology and
neurosurgical planning: how should we encode it on our computers?

Probability maps. A first way of doing so is illustrated Fig. 4.5.b: we segment white matter into
a collection of 3D segmentation maps, each of whom stands for a structure that is anatomically
meaningful. Standard atlases in the field define up to a thousand such bundles: a single brain
ends up being represented as a concatenation of 50 to 1,000 segmented volumes (Zhang et al.,
2018; Wasserthal et al., 2018).

Encoding a tractogram. Alternatively, we can represent each bundle as a collection of N
curves sampled with Q points in R?. Each fiber is encoded as a vector (%) ;¢1,q) € RO*3 for
i € [1,N] and must be processed in a way that is fully invariant to the flip operator:

Flip : (z1,...,2q) € R¥? s (2q,...,71) € RY3. (4.11)

In practice, as illustrated Fig. 4.9, a full brain tractogram can be made up of N ~ 10° curves sam-
pled with M ~ 20 points each. We encode such datasets as discrete measures v = & 21, 8,
on a high-dimensional space of curves X = R®*3, endowed with a flip-invariant quotient
distance:
def. . .

d(z,y) = min ([lz = yllrexs, |z —Flip(y)lraxs ) - (4.12)
Going further, we may add weight to the end points of the fibers or consider a domain-specific
feature space X': we refer to (Berto et al., 2020) for an introduction.



4.2 Computing distances and gradients

Encoding meshes or curves as measures is a first step towards robust shape analysis: as detailed
in the previous chapter, we can define loss functions between measures that satisty the geometric
axioms of pages 72 and 118 while remaining affordable. But can we translate these abstract
results to shape analysis? Before going any further, we now briefly summarize the main
take-aways of Chapter 3 for computational anatomy.

4.2.1 Images vs. Measures: choosing appropriate weights

Which gradient should we use? Computing the gradient of a loss function with respect to
the vertices of a shape is more delicate than it seems. Looking back on the curve and mesh
encodings of Egs. (4.4,4.6,4.9), we turn a list of vertices (z7) € RN*P into a collection of
weights (o) € RY and features (25,) € RP*P through the use of a “Measure” operator.

This change of variables has one major consequence: if the weights a, are updated on-the-fly
with the z’s, the gradient field Vz;Loss(Z i 00z, ) of a weakly continuous loss function with
respect to the vertices = of a mesh is necessarily orthogonal to the underlying shape. This is
a consequence of the invariance properties of our encodings: since sliding tangential movements
of the z}’s on a shape do not affect the measure >°; a;d,, = Measure(z}) up to discretization
effects, they are discarded by the adjoint operator d, Measure in the chain rule of Eq. (2.17).

To retrieve the appealing geometric gradients of éhapter 3, a sensible choice is therefore to
work with fixed weights per shape element, as detailed in the second line of Algorithm 4.2.
This alleviates all problems related to the orthogonality of the gradient and lets us retrieve a
vector field V.« Loss that has the same geometric properties as the Lagrangian velocity V., Loss.

Constant density vs. constant mass. From a mathematical perspective, the dichotomy
between variable and fixed weights is understood as the distinction between the varifold and
measure transport actions of deformations on shapes: we refer to (Charlier et al., 2017a,
Section 6) for a detailed discussion. Similarly, in the medical imaging literature, authors tend
to stress the difference between morphing images as intensities or as densities: in the first case,
pixel values are preserved by local dilations and contractions; in the second, we rescale pixel
values by the inverse of the Jacobian determinant of the deformation to preserve the total mass
of the distribution.

Both approaches are sensible and correspond to different priors on the deformations
to study: in practice, as detailed in Section 3.2.2 and Chapter 5, the interaction between
raw gradient fields and structured deformation models is a central element of shape analysis
pipelines. Nevertheless, as a default baseline for practitioners, we recommend to keep the
weights (o) fixed - possibly normalized to sum up to 1 - and only modify them using an
external growth model. This choice ensures the preservation of surface areas: we dissuade
deformation models from turning small patches into massive bubbles and vice versa. This acts
as a sensible regularization prior in most applications.

4.2.2 Hausdorff, Kernel and Wasserstein fidelities

ICP algorithm, kernel methods and optimal transport. Assuming that our shapes are
properly encoded as measures, the main lessons of Chapter 3 hold and are effective: the theories
of Hausdorff distances, kernel norms and optimal transport all induce algorithms that can be
scaled up to high-resolution meshes. We discuss their properties in Section 3.2, with a focus on
the computation of Wasserstein distances in Section 3.3. As illustrated in Figures 3.12, 3.27
and 3.34, we can now compute an optimal transport map between two collections of 100k+
triangles in fractions of a second.



Our results hold in all relevant settings. The theoretical analysis of Chapter 3 translates well
to high-order measure encodings for shapes. For instance, on the product space X = R3 x S
associated to the varifold encoding of Eq. (4.9), we can use the cost function:

C((z ), (y,11)) = glle—yl* + 3(1— (@ m)?) (4.13)
for non-negative values of the angular sensitivity A > 0. It is associated to the Gibbs kernel:
e (2,7, (y,17)) = exp [ = gllo = yl?) - exp [5 (7, m)* = 1)] , (4.14)

which is positive definite on X = R3 x S (Charon and Trouvé, 2013). Assuming that our
shapes have bounded support, theoretical results such as Theorem 3.1 thus hold.

4.2.3 The GeomLoss library

Reminder on entropic OT. The methods that we present in the remainder of this chapter
are all related to the entropic regularization of optimal transport, discussed Section 3.3.1. As
detailed page 108, the multiscale solvers of Algorithms 3.5 and 3.6 return dual vectors (f;) € RN
and (g;) € RM that are uniquely defined up to an additive constant, Eq. (3.172), and describe a
fuzzy N-by-M transport plan:

Tij = Ociﬁj - exp % [fz +9; — C(xi,yj)] (4.15)

between any two discrete measures & = Y | ;0,, and § = Zy[:l By, -

In the classical transport setting, when the strength p of the marginal contraints is set to
+00, we assume that o and 3 have the same total mass. The transport plan 7 associated to the
optimal dual vectors (f;) and (g;) then satisfies the two constraints 71 = a.and 7 '1 = 3. The
distribution « is fully transported onto £ as for all indices ¢ and j:

SLiBj exp L[fi+g; — Clas,y)] = 1 = Yijai exp[fi + g5 — Clas, y;)] - (4.16)
Alternatively, in the unbalanced generalization of optimal transport, the constraints are softened

following Eq. (3.214). This corresponds to the use of lazy workers, whose willingness to
transport mass between the source and target points roughly decays in exp[—C(z,y)/p].

Working with Sinkhorn divergences. Assuming that de-biasing is enabled, as detailed
Eq. (3.209), our solvers let us compute efficiently the value and gradients of the (de-biased)
Sinkhorn divergence S (a, 3). The de-biased potentials (F;) = (F(z;)) € RN and (G;) =
(G(y;)) € RM do not encode a transport plan 7. However, when the cost function C(z,y) ~
llz — y||? can be interpreted as a halved squared distance, they induce a Brenier map:

T T+, where v; = v(x;)) = —VF(z;) = —ivziss(a,ﬁ) (4.17)

is encoded as an array (v;) € RN*P. We understand this vector field as an optimal low-frequency
mapping from « onto § and refer to Eq. (3.227) for a detailed computation. Its behaviour for
varying values of ¢ is illustrated in Figures 3.25 and 3.26.

Coming soon: support for orientation and curvature. As of March 2020, the GeomLoss
package provides support for the processing of point clouds in a vector space X = RP. We
now plan to package our research prototypes into well-documented routines to support:
1. The processing of meshes and curves, with a reference implementation of the varifold
and normal cycle encodings.
2. An FFT-based implementation of Algorithms 3.5-3.6 on grids, for optimal performances
on density maps and volumes.
3. A simple interface for arbitrary cost functions encoded as KeOps LazyTensors to let
users work on spheres, hyperbolic spaces and others.



148 Chapter 4  Encoding shapes as measures
4.3 Applications
In practice, all types of shapes can be encoded as measures and processed using the tools of

Chapters 2 and 3. We now present applications of our optimal transport methods in three
different settings: shape registration, segmentation and interpolation.

4.3.1 Shape registration

Morphable models, deformable templates. Matching two shapes with each other is a funda-
mental yet surprisingly difficult problem. In practice, as discussed in Section 1.2 and Chapter 5,
most researchers map a source shape A* onto a target B by minimizing a cost function:

Cost(f) = Reg(f, A*) + Loss(Morph(6, A*), Measure(B)) (4.18)

regularization data fidelity

with respect to a vector 6 that parameterizes the deformation of the source A* into a model
A = Morph(#, A*) that is close to the target B.

The regularization (Reg) and deformation (Morph) routines encode a domain-specific prior
on admissible transformations. Depending on the context, we solve the related optimization
problem using gradient descent, quasi-Newton schemes (Liu and Nocedal, 1989), Expectation-
Maximization (Dempster et al., 1977; Myronenko and Song, 2010) or explicit linear solvers
(Bookstein, 1991; Chui and Rangarajan, 2000).

An ideal run of Algorithm 4.1 is illustrated Figure 4.6. Going further, more refined methods
tend to enforce symmetry with respect to A* and B (Avants et al., 2008; Lorenzi et al., 2013)
or use a neural network to bypass optimization loops and estimate quickly the optimal set of
parameters 6 (Yang et al., 2017; Krebs et al., 2017, 2019).

Reliable loss functions. Ultimately though, all methods rely on a positive loss function and
its gradient to drive the model A towards the target B. As illustrated in Figures 4.6 and 4.7, we
understand shape registration as a generalization of the particle flow problem of page 80.

In our experience, the main lessons of Section 3.2 still hold: compared with Hausdorff or
kernel distances, transport-based loss functions induce cleaner gradients for a faster and safer
convergence. As the packaging of our algorithms progressively comes to an end, we are now
working on evaluating rigorously their impact for medical imaging and computer vision.

Algorithm 4.1: Model-based shape registration

Input: Source mesh, curve or segmentation map A*, target B.

Parameters: Deformation model Morph(60; A*) — A (discussed Chapter 5),
Regularization and data attachment functionals: Reg(6, A*) and Loss(a, ).

1: function Model( 6, A*) > Deform the source and turn it into a measure.
2: (of,xf) < Measure(A*) > Turn the source into a measure.
3 (i, ;) < Measure(Morph(6; A*)) > Deformed measure.
4: return (o, z;) or (o, x;) > See the discussion of Section 4.2.1.

> Use gradient descent wrt. 6 or any other solver:
5: 04+ p < argming Reg(f, A*) + Loss(Model( 6, A*), Measure(B))

6: return 04+_,p > Parameters for an affine deformation, spline coeflicients, etc.
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(a) Start. (b) Optimizing. (c) At convergence.

Figure 4.6: Using optimal transport to drive a diffeomorphic registration algorithm. The first
motivation behind our work is the need for reliable loss functions in computational anatomy. Presented
Chapter 3, Sinkhorn divergences can be interfaced with any of the deformation models discussed
Chapter 5. The resulting pipelines are robust to large displacements - thanks to the global gradients
provided by OT theory - and guarantee the preservation of the shapes’ topologies.

(a) Let us consider the registration of a “rainbow” amoeba « onto a purple target 5. The blue “spring
system” between the source curve and its target represents the optimal transport plan associated to
the Sinkhorn loss function S. (a, 8). It may tear apart some features of the curve, such as its bottom
arm. (b) Fortunately, diffeomorphic registration models prevent our template from breaking down into
pieces. As discussed page 81, they regularize the raw gradient field v; = —-1 5-02,5:(a, B) and project it
onto a space of admissible deformations. (c) Minimizing the composite ob cétive function of Eq. (4.18)
allows us to converge towards a close overlap between the source and the target: our deformation model
fully accounts for the geometric variability present in the data. Note that Theorem 3.1 ensures that
(de-biased) Sinkhorn divergences define positive and definite loss functions: as discussed Section 3.3.2,
we can now rely on entropic OT losses without having to worry about the entropic “shrinkage” bias.

I
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(a) Segmentation maps. (b) With gradient. (c) Start. (d) At convergence.

Figure 4.7: A versatile toolbox. (a,c) Geometric measure theory provides a coherent framework to
deal with density maps, meshes and curves. (b) As detailed Eq. (3.85), the key ingredient behind most of
our algorithms is the Lagrangian gradient field v; = — L -0y, Loss(a, 3) of a geometric loss function with
respect to the positions of the Dirac atoms that make up the source measure a = 3 ;0. Following
the discussion of Section 3.2.4, we generally favour an approximation of the squared Wasserstein-2
distance Loss(«, ) = Se(«, 8) ~ OT (v, 8) and display its gradient as a green velocity field. (c-d) Our
loss functions are easy to interface with domain-specific pipelines. In this simple example, just as in
Figure 4.6, a Sinkhorn divergence S. is used to drive a diffeomorphic registration pipeline. Fibers and
triangles are handled simultaneously by the deformation module, but correspond to separate terms in
the Weighted loss function: LOSS(OL, ﬂ) = Ahand Se (ahand7 Bhand) + Afibers Se (aﬁberw Bﬁbers)'
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4.3.2 ‘Transfer of labels

Generalized assignment problems. More prosaically, we can use multiscale Sinkhorn solvers
to provide solutions (f;) € RN and (g;) € RM for generalized assignment problems. As
discussed page 115 and Eq. (4.15), these optimal dual vectors encode an implicit transport

plan (m; ;) € ]RI;OXM that we understand as a soft matching between any two discrete measures

a=3 aib,; and 8= 3L, B;0,,.

As illustrated Figure 4.8 and detailed in Algorithm 4.2, we can use such a transport plan
7 to transfer labels between distributions. At an affordable computational cost, OT-based
algorithms enforce a (soft) constraint on the preservation of mass while taking into accound
the geometry of the problem. They are best suited to the tracking of structured distributions
over time, with successful applications to e.g. RNA-sequencing (Schiebinger et al., 2019).

Applications to tractography. In neuro-anatomy, we use this method to segment brain
tractograms as follows:

1. As discussed page 145, we first encode a segmented atlas and a novel subject as discrete
measures in a high-dimensional space of features X'

2. We then use Algorithm 4.2 to transfer the source class labels (I;) onto the subject. The
blur and reach scales are anatomically meaningful: they should be of the order of the
typical distances between two neighboring fibers and clusters, respectively.

As illustrated Figure 4.9, recent progresses on multiscale OT solvers let us scale this proce-
dure to millions of curves in minutes. This relatively affordable method could provide a simple
way of dealing with tractograms, but our results are still preliminary: we are yet to assess the
robustness of this method to large anatomical variations or the influence of our encoding on
the quality of the results. As discussed for instance in (Berto et al., 2020), we expect that the
choice of domain-specific feature space X will have a sizeable impact on performances.

Algorithm 4.2: Transfer of labels with entropic, unbalanced OT

Input: Source distribution (z;) € RN*P| labels (1;) e[1,L]Y,
Target distribution (y;) € RM*D,
Weights (a;) € RY; and (8;) € RY) (use % and 3 as default).
Parameters: Cost function C(xz,y) (use %Hx — y||” with p = 2 as default),
Blur scale o = /P (typically 1% to 10% of the configuration’s diameter),
Maximum reach scale r = p/P (set to 400 for balanced OT).

fisgj < Solve(OTe (32, aidu; s 5 Bidy; ) > Use Alg. 3.5-6 without de-biasing.
Tij + B - expi[fi+g; — C(zi,y))] > N-by-M transport plan, see Eq. (3.193).
¢; + OneHot(;) > (€;) € RN*L with ¢;[k] = 1if k = I;, 0 otherwise.
U é SN il > (¢;) € RMXL _ yse KeOps for an efficient implementation!
lj <« argmaxycpp) 4[k] > Vector of labels, in[1, L]]M .
return the labels ¢; € RY; (soft) or I; €[1,L] (hard).

SN A T S




(a) Dataset. (b) Optimal transport. (c) Entropic transport.  (d) Unbalanced transport.

Figure 4.8: Transfer of labels between two point clouds in the unit square.

(a) Let us consider a source point cloud (z;) with {red, green, blue} labels (I;) and a target distribution
of black points (y;). We want to transfer labels from the z;’s onto the y;’s... but due to noise and
outliers, nearest-neighbor projections may not produce satisfying results. What can we do? (b) A simple
option is to compute the optimal transport plan (m; ;) between the z;’s and the y;’s: we can then rely
on the associated assignment to transfer the I;’s. In this example, we use a quadratic cost function
C(z,y) = %||z — y||? on the unit square X = [0, 1]2. The marginal constraints on (; ;) ensure that
the assignment is one-to-one if the point clouds have the same size: they promote the non-trivial pairing
(R-1, G-2) between the source and target clusters. Unfortunately, they also make the eventual labelling
sensitive to noise (borders of 1, 2) and outliers (cluster 4). (c) As discussed Section 3.3.1, adding an
entropic penalty to the OT problem is a simple way of smoothing the transport plan (m; ;) and resulting
labelling. (d) Going further, relaxing the marginal constraints is a simple way of discarding outliers. As
discussed page 115, this can be done efficiently through the introduction of a dampening factor in the
Sinkhorn iterations: these matchings were all computed in fractions of a second, using the multiscale
Sinkhorn algorithm of page 123 without de-biasing.

(a) Atlas. (b) As point clouds in R®. (c) Subject.

(d) Bundle 1. (e) Bundle 2. (f) Bundle 3.

Figure 4.9: Scaling up to brain tractograms with the GeomLoss routines. The OT-based method
of Figure 4.8 can be applied to labeled (a) and raw (c) tractograms, encoded as large point clouds (b)
in a high-dimensional feature space. Here, the source and target distributions are encoded using a
flip-invariant parameterization of the fibers with 20 points per curve: N ~ M ~ 800k, D = 20 x 3 = 60.
(df) White matter fibers are naturally clustered in anatomically meaningful bundles that link one area
of the cortex to another. Thanks to this peculiar structure, which resembles that of the toy dataset of
Figure 4.8, we can perform a reliable transfer of class labels from the atlas (a) to the subject (c) tractogram.
Both tractograms come from the Human Connectome Project dataset (Van Essen et al., 2013) with a
reference segmentation from (Zhang et al., 2018). Rendering done with Paraview (Ayachit, 2015).
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4.3.3 Atlas construction

Wasserstein barycenters. We conclude our overview of OT theory in shape analysis with a
fast scheme for geometric interpolation. If (84) g1, py is a collection of P probability measures
and if \j,..., \; > 0 are interpolation weights that sum up to 1, the Wasserstein barycenter
of the s is defined as the solution of the optimization problem:

P

Barycenter(\g, ;) = arg min Z)‘k OT(a, Br) , (4.19)
aeM{(X) ;5

where the OT loss is associated to a quadratic cost function C(z,y) = 3|z — y||? on the
ambient space X = RP (Agueh and Carlier, 2011). The existence and unicity of the barycenter
derives from the strict convexity of the Wasserstein loss o — OT(«v, ).

As illustrated in Figures 3.14.b and 4.13, this problem generalizes barycentric interpolation
to generic shapes and measures: in the degenerate case of atomic Dirac masses, we can show that
for all weights (\) and points (z)) € RF*D, Barycenter(Ag, 6z, ) = 5, 7,4, - Going further,
as discussed in (Gerber et al., 2018) and Figure 4.14, this model can be used as a crude but
affordable tool for exploratory shape analysis in e.g. neuro-anatomy.

Eulerian vs. Lagrangian schemes. Motivated by applications to shape analysis and machine
learning, numerous schemes have been proposed to solve the optimization problem of Eq. (4.19).
If the competitor @ = SN | a0y, is encoded using a vector of weights (c;) € RY and a point
cloud (7;) € RN*P| possibly sampled on a grid, we can perform a Eulerian descent with respect
to the «;’s (Solomon et al., 2015), optimize the z;’s with a Lagrangian method (Rabin et al.,
2011) or use a mix of both strategies (Cuturi and Doucet, 2014).

The convexity of the OT loss guarantees the convergence of Eulerian schemes to the global
optimum of Eq. (4.19). In practice though, as illustrated from Figure 4.10 to 4.13, these
“pointwise” methods tend to be vastly outperformed by the aggressive Lagrangian iterations
of Algorithm 4.3, which iterate over the linearization of the Wasserstein space discussed in
(Mérigot et al., 2019) and usually converge in a handful of steps.

As illustrated Figure 4.12, this scheme may get trapped in poor local minima, but can also
be combined with the GeomLoss routines to produces satistying results in fractions of a second:
we are currently working on bridging this gap between theory and practice.

Algorithm 4.3: Lagrangian solver for the Wasserstein barycenter problem

Input: Positive measures (B¢ )ye[1,p] 0N RP and weights (\x) ke[1,p] that sum up to 1.
Parameters: Approximation OT of the squared Wasserstein-2 distance,
Reference measure o* as initial guess (use Y_; AxSk or a uniform law),
Number of discrete samples N (in the range [10%, 10°] for typical problems).

: (e, ;) < Sample(a*, N) > (o;) € RY and (z;) € RN*P with 3, 06,, ~ a* .
2: for it = 1 to n;, do > In practice, use 1 to 5 iterations.
3 @ & B— 2 Yo M 0n,0T( 01 j0a,, Br) > Wasserstein flow with §t = 1.

4: return (o, ;) > Encodes an approximation ) a0, of the barycenter.




(a) it = 0. (b) it = 4. (c) it =8. (d) it = 16. (e) it = 100.

Figure 4.10: Computing a Wasserstein barycenter with a Eulerian scheme, in 1D.

Given uniform densities 3 and «y on the intervals [0.0,0.1] and [0.8, 1.0], we iteratively update the
weights of a third probability measure a to minimize the objective function Bar(a) = 1S.(«, 8) +
£S< (e, 7). Here, we use a quadratic cost function C(z,y) = %||z — y||* and a negligible amount of
entropic regularization: o = /¢ = .001. Following the conventions of Figure 3.7, the probability
measures « (green), 3 (red) and y (blue) are represented by their density with respect to the uniform
Lebesgue measure on the unit interval [0, 1].

(b-e) As discussed around Eq. (4.19), the barycenter problem is convex with respect to the «;’s. Using a
gradient-based descent algorithm on their logarithms (Liu and Nocedal, 1989), we eventually converge
towards the uniform measure on [0.4,0.55], solution of the problem. Unfortunately, this method
converges slowly and induces Gibbs-like oscillations. To the best of our knowledge, such artifacts are
produced by all Eulerian solvers of the barycenter problem: researchers usually smooth them out in a
post-processing step.

(a) it = 0. (b) it = 1. (c) it =o0. (d) it = 1.

Figure 4.11: Computing a Wasserstein barycenter with a Lagrangian scheme, in 1D.

The setting is the same as that of Figure 4.10. However, instead of updating the weights «; of the
competitor ¢, we directly move the samples x; according to the update of Algorithm 4.3.

(a-b), (c-d) In dimension 1, optimal transport is equivalent to the equalization of histograms. The ordered
structure of the real line, discussed page 100, makes straightforward the analysis of this Lagrangian
scheme: it always converge to the optimum in one step, for any choice of the reference measure.
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(a) Wasserstein barycenter. (b) Bad local minimum.

Figure 4.12: A counter-example for Algorithm 4.3, adapted from (Borgwardt, 2017).

As illustrated Figure 4.11, the Lagrangian scheme of Algorithm 4.3 works flawlessly on the real line. In
higher dimensions however, it may run into poor local minima: the Wasserstein barycenter problem is
convex with respect to the weights «; of the Dirac masses «;d,.,, but 7ot with respect to their positions ;.
(a) In this 2D example, 8 = 15, + 16,, (red) and v = 16., + 34., (blue) are two probability measures
on the plane, supported by the vertices of a rectangle. Their Wasserstein barycenter a = £6,, + 304,,
with #; = 1(y; + 2;) is a stable minimum of our Lagrangian algorithm. (b) Unfortunately though,
stable sub-optimal configurations can also be found as illustrated here with #; = 3(y1 + 22) and
Zs = 2(y2 + 21): the blue links represent the optimal transport plans Ta+, 5 and ma«,. This gridlock
would hold even if the discrete Dirac masses had been replaced by continuous densities: non-convexity
is an intrinsic feature of the Wasserstein barycenter problem, seen from a Lagrangian perspective.
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(a) it =0. (b) it = 1. (c) it =2.

Figure 4.13: Computing Wasserstein barycenters with a Lagrangian scheme, in 2D.

(a) Starting from an average reference measure o* = % Zi:l Bk, (b-c) we represent the iterations
of Algorithm 4.3 as we solve the Wasserstein barycenter problem for weights (A1, A2, A3, A4) that
interpolate bi-linearly between (1,0, 0,0), (0,1,0,0), (0,0,1,0) and (0,0, 0, 1) at the four corners of
our waflle plot. The setting is the same as that of Figure 3.14.b : we simply replaced the toy distributions
A, B, C and D by worm-like shapes that are more relevant to medical applications.

Even if Algorithm 4.3 does not always converge to the solution of the barycenter problem, as highlighted
Figure 4.12, it performs very well in practice: a sensible approximation of the Wasserstein barycenter
between P measures can often be computed using no more than 2P calls to the efficient OT solvers
presented Section 3.3.3.

(d) Barycenter, view 1. (e) View 2. (f) View 3.

Figure 4.14: Computing Wasserstein barycenters in 3D. The efficient Lagrangian scheme of Algo-
rithm 4.3 allows practitioners to compute geometric templates or interpolate between 3D shapes in
fractions of a second - in this specific instance, segmentations of the inferior fronto-occipital fasciculus
(IFOF) tract (Delmonte et al., 2019) that we process with MRtrix3 (Tournier et al., 2019) and ren-
der with 3DSlicer (Fedorov et al., 2012). This simple method has major limitations: as illustrated
Figure 3.31.(g-h), OT matchings become unreliable when shapes differ too much from each other.
Nevertheless, it could have its use for population analysis and machine learning with shapes, in the
spirit of (Seguy and Cuturi, 2015; Ciliberto et al., 2016).



Chapter 5

Geometry on a space of anatomical shapes

This chapter relies on the notations of Sections 3.2.3 (kernel norms)

and 4.3.1 (shape registration).

Key points - shape modelling is a hard problem:

1.

Optimal transport routines do not model interactions between neighboring points and
should be combined with topology-aware deformation models.

Endowing spaces of shapes with the geometry induced by a registration algorithm is an
old idea that still defines the landscape in computer graphics and medical imaging. Affordable
methods often rely on spline interpolations or stationary velocity fields. Going further,
expressive Riemannian models specify small deformation costs and integrate them along
geodesic trajectories.

Learning a metric structure on a space of shapes that is both convenient and anatomically
relevant is the Holy Grail of computational anatomy. Modern approaches usually rely on
convolutional neural networks or optimal control theory: they face deep structural and
algorithmic challenges.

Contributions - let researchers focus on high-level questions, promote interactions:

4.

First and foremost, this thesis attempts to ease the computational burden put
on research teams that are already overwhelmed by clinical problems. With the
PyTorch+KeOps+GeomLoss toolbox, implementing a state-of-the-art registration pipeline
only requires a few lines of human-readable code. This is the path chosen by the Aramis
INRIA team for the development of its reference Deformetrica software.

Enjoying the freedom provided by a compact, automatically differentiable codebase, we start
to investigate methods that could enforce meaningful axioms on arbitrary (learned?) shape
metrics. We use the symmetric Sinkhorn algorithm to ensure that translations become
geodesics in a local and principled way: this surprising “normalization trick” allows us to
fix one of the main weaknesses of the standard LDDMM framework.

In years to come, closer interactions with the computer graphics and deep learning communi-
ties are likely to bring relevant ideas to our field. By helping to trim down our codebases and
putting together a simple introduction to computational anatomy, we hope to bridge
the gap between cousin communities that have a lot to learn from each other.
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5.1 Affordable algebraic models

Going beyond optimal transport. A key problem in biomedical imaging is to extract geomet-
ric information out of our datasets. As discussed Section 1.2, this research can be understood
as a quest for reliable shape metrics: we look for distances d(A*, B) between brain or heart
images that are both affordable and relevant from a medical perspective.

Throughout Chapters 3 and 4, we used explicit metrics to compare weighted sets - or
measures - with each other. The Hausdorfl, kernel and Wasserstein distances induce geometric
loss functions that are fully invariant to re-parameterizations and re-meshings. Unfortunately
though, none of these formulas take into account the topology of the input data: as illus-
trated from Chapter 3 to Figure 5.1, they cannot be relied upon to handle large and complex
deformations by themselves.

Building suitable deformation models. From the perspective of shape registration, discussed
Section 4.3.1 and illustrated Figure 5.2, the Wasserstein-2 distance can be identified with a
simple deformation module: the free-form model of Algorithm 5.1, with L? regularization of
the velocity field. To overcome the limitations of optimal transport theory, a natural strategy
is therefore to study structured deformation models and rely on the stronger metrics that they
induce on spaces of shapes.

Throughout this chapter, we present deformation modules:

Morph : (6; A*) — A (5.1)

that enforce essential priors on shape variations: smoothness, preservation of the topology,
etc. Computed using Algorithm 4.1 the parameters 0 of our registrations can be understood as
latent codes for the deformation A* — A ~ B between A* and B.

This framework allows us to define shape metrics d(A*, B) as the sum of regularization
terms Reg(f, A*) and data attachment penalties Loss(A, B). In practice, most researchers
devise symmetric penalties and eflicient solvers for the registration problem of Eq. (4.18) (Klein
et al., 2009a)... but we set these considerations aside in this high-level overview. Our goal here
is to bring geometric ideas to the fore and open doors for cross-field interactions, without
pretence to exhaustive treatment.



(a) Two measures. (b) Optimal transport. (c) Optimal transport. (d) Smooth registration.

Figure 5.1: Optimal transport is not the answer. (a) As discussed Chapter 4, generic shapes can be
encoded as measures. (b) In order to match the red curve onto the blue one, a simple idea is to rely on
optimal transport theory. Unfortunately though, as illustrated Figure 3.31, OT matchings tend to tear
shapes apart. They handle curves and meshes as piles of dirt (Monge, 1781), with little regard for their
topologies. (c) This limitation is most apparent in ambiguous configurations, such as the rotation of
this star-shaped amoeba. (d) Chapter 5 introduces deformation models that enforce the preservation
of topological features. This generally comes at the cost of the convexity of the related optimization
problems: in order to retrieve satisfying rotations, our models must commit to one direction or another.
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(a) Albrecht Diirer, 1528. (b) D’Arcy Thompson, 1917. (c) Manifold of brain images.

Figure 5.2: Using deformations to study populations, from (Thompson, 1917; Gerber et al., 2010).
Most anatomical shapes can be described as deformations of common templates. Up to ablations or
metamorphoses that are handled separately, this generally holds for faces (a), fishes (b), brains (c) and
other organs. Fortunately, relatively to raw biomedical images, deformations are easy to handle and
study: fitting a deformation model to a population is a good way of analysing its modes of variation. As
discussed Section 1.2, this research can be cast as a geometric problem: we look for relevant metrics on
spaces of anatomical shapes, understood as sub-manifolds of a larger set of medical images.

Algorithm 5.1: Free-form deformation model

Input: Shape A*, e.g. point cloud () € RN*P and list of triangles (Ay) € [1, N]¥*3,
Parameters: Vector field of displacements v = (v;) € RN*P,

1: function Morph(0 = (v;); A* = (af, Ag)) > Deform a shape A*.

2: T — xf + > Free-form deformation with a vector field.

3 return A = (x;, Ag) > We move vertices but keep the same connectivity.

4: function Reg(0 = (v;)) > Simple L? regularization term.
N .

5. return £ 30 [[oil* = 3|[vlEnen > Squared Euclidean norm.
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(a) Simple deformation models. (b) Register images with keypoints.

Figure 5.3: Affine registration models, from (Uchida, 2013).

(a) Affine deformations act on spatial coordinates to translate, rotate, rescale and distort shapes. These
operations are often used to normalize acquisition parameters between different subjects.

(b) As discussed Section 1.2, this standard pre-processing is usually performed by identifying landmarks
and solving a least square problem. Going further, the geometric loss functions presented in Chapter 4
allow researchers to align shapes without having to rely on pointwise correspondances.

5.1.1 Affine deformations

Parametric models. The simplest way of morphing an image is to translate, rescale and rotate
its domain with a similarity of the ambient space RP. Going further, the parametric model
of Algorithm 5.2 allows us to apply general affine deformations. Illustrated Figure 5.3, affine
registration is now a standard processing tool that puts shapes in a normalized system of
coordinates.

This parametric approach to shape registration can be pushed further: estimating an
homography between two views of a 3D scene is a fundamental problem in computer vision
(Agarwal et al., 2005), poly-affine deformations have become a staple of biomedical imaging
(Arsigny et al., 2005, 2009), etc.

Explicit vs. implicit regularization. Unfortunately though explicit formulas can only grow
so much before becoming illegible. In challenging settings, instead of designing an ad hoc
parametric method, researchers thus tend to rely on expressive models with many degrees of
freedom and regularize them using implicit constraints: smoothness, incompressibility, etc.

Algorithm 5.2: Afhine deformation model

Input: Source shape A*, encoded e.g. as a point cloud (z}) € RN*P
and a list of triangles (A) € [1,N]">3.

Parameters: Transformation matrix M € RP*P | offset vector v € RP.

1: function Morph( 6 = (M,v); A* = (af, Ax)) > Deform a shape A*.
2 oz — Mai+4w > Affine transform on the coordinates.
3 return A = (z;, Ag) > Keep the same connectivity.
4: function Reg(0 = (M,v)) > Dummy regularization term.

o

return 0 > Affine transforms are seldom penalized.
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(a) Matching two skulls with each other. (b) Folding patterns as we try to invert Id + .

Figure 5.4: Strengths and limitations of spline models, from (Ogihara et al., 2015; Ashburner, 2007).
(a) A spline model finds a smooth deformation field v that brings the source shape A* close to the target
B without tearing it apart. This framework is ideally suited to the analysis of small geometric variations.
(b) Unfortunately, spline deformations may also be hard or impossible to invert: large displacements
can induce foldings and destroy the topological structure of the input data.

5.1.2 Spline registration

Smooth alignments. A common way of doing so it to rely on the computations of Section 3.2.3
to promote smoothness in Algorithm 5.1: we regularize the vector field v; = x; — 2 from A*
to A with a kernel metric instead of a simple L? penalty.

If k:RP xRP — R isapositive, definite kernel that induces a generalized Sobolev norm
| - ||x on the space of vector fields v : RP — RP, we use:

Reg(v;) o Rr}glileD Hol st Vi, v(a)) = v =2 —af. (5.2)
v

Working with kernels. As discussed around Eq. (3.137), the properties of kernel norms imply
that there exists a set of vector coefficients (p;) € RN*P such that the optimal field reads:

= k*Z%\Izlpiéwf? with H'UH% = y:1zy:1 ( Ly, ])p’L bj - (5.3)

We can thus parameterize our deformations by a vector field of momenta (p;) € RN*P and
ensure the smoothness of v; = v(z}) through a convolution with the kernel k. This method is
detailed in Algorithm 5.3 and known under many different names, from “Gaussian Process
regression” to “variational Horn-Schunck method” for the estimation of optical flow (Horn
and Schunck, 1981). In practice, most researchers work with a Thin Plate Spline kernel to
quotient out afline transforms (Bookstein, 1991), a compactly-supported B-spline kernel to
retrieve fast O(N) solvers (Rueckert et al., 1999) or local Gaussian filters to enforce coherence
without long-range interactions (Myronenko and Song, 2010).

Algorithm 5.3: Spline deformation model

Input: Shape A*, e.g. point cloud (z¥) € RN*P and list of triangles (Ay) €[1, N]" 2.
Parameters: Vector coefficients p = (p;) € RNV*D,

Hyper-parameters: Kernel function k(z,y) - see Section 3.2.3.

1: function Morph( 0 = (p;); A* = (2}, Ag)) > Deform a shape A*.
2 v; Z?I:l (xf, J)p] >v= k*szjéx; , (v) = (v(zF)) € RNXDP,
3: T — x4 > Free-form deformation with a k-smooth vector field.
4 return A = (z;, Ag) > Keep the same connectivity.
5. function Reg( 0= (p:)) > Kernel regularization term - see Eq. (3.99).

6:  return ; Z” k(z}, @f) - pipj = 3(p, Ko p)gnxo > Squared kernel norm.
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5.1.3 Stationary velocity fields

Limitations of linear models. Alongside data-driven PCA metrics (Mahalanobis, 1936), spline
models provide the reference baseline for shape analysis. Nevertheless, as discussed Section 1.2.2
and illustrated Figure 5.4, these simple methods often introduce folds and other artifacts when
dealing with large deformations.

Diffeomorphic registration. To preserve the topology of our shapes, we should restrict
ourselves to diffeomorphic variations and require that z; = p(z}) where ¢ : RP — RP isa
smooth and invertible mapping with a smooth inverse. Diffecomorphisms ¢ that satisfy these
axioms can be inverted and composed with each other: we say that they make up a group of
deformations of RP. This is most convenient from a theoretical perspective... but can we
encode these applications on our machines?

Stationary velocity fields. A common way of doing so is to rely on the Picard-Lindelof
theorem for ordinary differential equations (Teschl, 2012). If v : RP® — RP is a smooth
vector field on the ambient space, we define the Lie group exponential (¢)icr = (exp(tv))ier
through:

¢’ =1d, and &£o' = voy', sothat plogl = ot (5.4)

In other words: () is a one-parameter group of deformations whose derivative at time ¢ = 0
is the vector field v. To evaluate the diffeomorphism ¢! = exp(v) at any location z in RP, we
can let a particle flow along v and integrate the homogeneous differential equation:

=0 = 2, 4ot = v(ah) (5.5)

between times ¢ =0 and ¢ = 1 using an Euler or Runge-Kutta scheme. Even better: we can
leverage the stationarity of v through time and remark that if 6¢ > 0 is small enough:

exp(dt-v) ~ Id+dt-v ie. VzeRP exp(dt-v)(z) ~ z+dt-v(z). (5.6)

Then, relying on the scaling-and-squaring identity (Higham, 2005), we can approximate (! as:

exp(v) = (exp(2_871))28 = ((exp(2_8v))2---)2 ~ ((Id+2_87})2 )2 (5.7)

Large diffecomorphisms can thus be evaluated by composing recursively with itself a small
perturbation of the identity (Id +278v) : 2+ 2 + 278 - o(x).

Strengths and limitations. The scaling-and-squaring trick paves the way for the fast generation
of diffeomorphisms on images and volumes. We present a straightforward 2D scheme in
Algorithm 5.4, and refer to (Arsigny et al., 2006; Ferraris et al., 2016) for efficient 2D and 3D
implementations. Combined with the Baker-Campbell-Hausdorff (BCH) formula that allows
us to approximate efficiently the gradient of the Lie group exponential (Bossa et al., 2007),
these routines lie at the heart of the SVF framework that met widespread adoption for heart
modelling (McLeod et al., 2011; Lombaert et al., 2014) and neuro-anatomy (Ashburner, 2007;
Lorenzi et al., 2013) over the last decade.

Unfortunately though, the rigid algebraic structure of the Lie group exponential also
has clear limitations. As illustrated Figure 5.5, restricting ourselves to the integration of
stationary velocity fields prevents us from generating a// deformations of the ambient space and
extrapolating reliably beyond time ¢t = 1 (Lorenzi and Pennec, 2013). To design models that
handle large deformations well and generalize outside of training datasets, we must go further.
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Figure 5.5: Stationary vs. time-varying velocity fields.

(a) We can use a smooth velocity field v defined on the 2D plane to move a particle between any two
positions. In this example, a particle located at 2° at time ¢ = 0 flows along the blue velocity field v
and arrives at exp(v)(2°) = 2! at time ¢ = 1. Assuming that v is smooth enough, the Picard-Lindel6f
theorem ensures that the deformation ¢ = exp(v) : R? — R? is a diffeomorphism: it preserves all
topological features and has a simple inverse, ¢! = exp(—v). This framework is principled, robust
and can be implemented efficiently. However, it also has two major drawbacks: extrapolation beyond
time ¢ = 1 may be meaningless, as v generally does not have support outside of a neighborhood of
[2°, 21]; points’ trajectories interact with each other between different time-steps and blend together in
a way that is not anatomically relevant.

(b-d) In order to overcome the limitations of the Lie group exponential v — exp(v), we can build our
deformations through the integration of a time-varying velocity field (v),c[0,1). This allows us to
mitigate the weaknesses of the SVF framework and generate arbitrary smooth deformatlons albeit at a
higher computational cost. Choosing (') according to a least action principle is then a sensible way
of lowering the complexity of the method and retrieving sensible trajectories. Applications of this idea
to shape registration have been studied extensively over the last two decades: we discuss the resulting
“LDDMM?” Riemannian framework in the remainder of this chapter.

Algorithm 5.4: SVF diffeomorphic deformation model (in 2D)
Input: Shape A*, e.g. point cloud (z¥) € RN*2 and list of segments (Ay,) €1, N]"*2.
Parameters: Stationary velocity field v: a vector field over [0, W) x [0, H),
sampled at integer points and encoded as a volume (v[z, y]) € RW*Hx2,
1: function Square( ¢ ) > Bi-linear squaring of a deformation field € RW>*H*2,
2: XY « |¢] > Integer coordinates X,Y € ZW*H,
3: s, t <« p— ¢l > Residuals s, € [0,1)W>H,
¢ Yplr,y] « (1=s)-1=t)-o[ X[z, y], Y[z,y]] + s (1—1)- @[ X[z,y]+1, Y[z,y]]
+(1=s)t-o[ X[z, yl, Y[z,y] +1] + s-t-o[X[z,y] + 1, Y[z, y] +1]
5: return ) > Encodes ¢ o ¢ as a deformation field in RW*Hx2,
6: function Morph(0 = v; A* = (z},Ag)) > Deform a shape A*.
72 ple,y] « (d+27%w)(@y) = (2.9) + 55 v, ] > € RV,
8: forn=1to8do > Compute ¢ = exp(v).
9 ¢ < Square(yp) > Scaling-and-squaring.
10 z; < Interpolate(p,z}) ~ ¢(z}) > Use e.g. the bilinear scheme of line 4.
11: return A = (z;, Ay) > Keep the same connectivity.
12: function Reg(6 = v) > Use a kernel norm to enforce smoothness!
13: return o W Z?:_ol vz, y][? = 5llv]|%. > Squared L? norm.
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5.2 Expressive Riemannian geometries

Looking for an expressive geometric framework. Classic models rely on algebraic identities
to regularize matchings at an affordable computational cost: Algorithms 5.2 (Affine transform)
to 5.4 (SVF exponential) provide reliable baselines for shape registration. They have been
integrated as transformer layers in several deep learning libraries (Jaderberg et al., 2015;
Niethammer et al., 2019b).

But crucially, in a medical setting, departing from algebraic recipes is a necessary first step
to retrieve flexibility. In order to interpolate between two MRI volumes, our models should
value medical insights over theoretical constraints: we must find ways of describing generic
distances between shapes without losing too much on the computational front.

5.2.1 Riemannian geometry 101

A Riemannian metric is a field of local Euclidean metrics. An appealing way of doing so
is to specify a Riemannian metric on a space of shapes z = (z;) € RN*P_ In other words: to
use a collection of positive definite tensors (g,) € RNP*ND o distort locally the Euclidean
distance on RN*P | and rely on the associated path length to encode a wide range of geometries
with simple matrix computations.

Formally, a Riemannian metric on a shape space S ~ RN*P is defined as an application:

g : (x,v) € RVP S RNXD g 4 € RN*DP (5.8)

that is smooth with respect to the shape x and linear with respect to the tangent velocity v. For
all z € RN*P | we assume that the ND-by-ND matrix g, is symmetric, positive and definite.
The local metric tensor g, induces, around every shape x € RN*P 3 Euclidean norm:

def.
[vlle = /(v gov)paxn (5.9)

The Riemannian length of any smooth curve  : ¢ € [0,1] = 2! € RNXD s then given by:

1 1
Length(z) % /0 |, dt & /0 J(Eat, g Sat)t, (5.10)

and we define the Riemannian distance between any two shapes A* and A in RN*P as the
minimal path length associated to a geodesic interpolation:

d(A*;A) = min Length(z) s.t. 2 = A* and o' = A. (5.11)

(xt)te[o,u

A convenient and versatile framework. As illustrated from Figure 5.6 to 5.8, Riemannian
geometry encompasses all kinds of curvy models within a unified framework. Beyond the
simple linear model of Eq. (1.6), local metrics (g,) could allow us to represent “medical
distances” in a space of brains or bones without having to rely on a reference template z*.
But first of all, in order to work with Riemannian models, we must be able to solve the
geodesic interpolation problem of Eq. (5.11) between any two shapes A* and A. This is
a challenging task: optimizing a non-convex functional on continuous paths is generally a
hard problem. Fortunately though, Riemannian metrics retain enough structure to make this
process tractable: we now present the theory behind the two most common algorithms for
geodesic interpolation, the mean curvature flow and Hamiltonian geodesic shooting.
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(a) The Poincaré disk. (b) Charging Bull. (c) Mercator projection.

Figure 5.6: Riemannian geometry, from (Norton, 2013; Leys et al., 2013; Kiihn, 2019).

(a) Riemannian geometry distorts the ambient space RP with a local operator K, = g, ! that is
analogous to a “temperature”: when it is high, objects expand and make large steps; when it is low,
objects shrink and endure longer distances (Poincaré, 1902). (b) This idea is at the heart of the theory
of relativity. It allows us to describe generic metric spaces in a unified framework, from 3D surfaces
to high-dimensional spaces of anatomical shapes. (c) We can represent local variations of the metric
tensor ¢, by displaying unit balls for the local Euclidean norm || - || ;. These ellipsoids are known as
Tissot’s indicatrices (Tissot, 1878): in cartography, they allow us to visualize the geometry induced by
the spherical metric of S C R? onto the 2D plane through the Mercator projection.

1/

(a) Donut. (b) Flat torus. (c) Geodesics. .. (d) On a donut.

Figure 5.7: Riemannian geometry is a convenient way of dealing with curvature. (a) Encoding
a torus as a 2D level set in a 3D space is cumbersome: projections are required to prevent points
from leaving the donut-shaped surface. (b) The homogeneous encoding of the torus as a Cartesian
product S! x §' ~ R?/Z? with two angular coordinates is more convenient: two parameters are used
to describe a two-dimensional surface. Unfortunately, this parameterization also discards the specific
“donut” geometry of the 3D torus: it assigns an equal length to all tropics and equators. (c) Riemannian
geometry allows us to get the best of both worlds: we can define a metric g, on the periodic 2D model
R2/Z? (b) that endows it with the curved intrinsic geometry of (a) (Irons, 2005; Jantzen, 2012). Standard
computations, detailed Eq. (5.22), then allow us to draw geodesic paths in the curved 2D space... which
correspond exactly to the usual “straight lines” of the 3D model (d).
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(a) Hyperbolic models. (b) Isometry. (c) Discrete model. (d) Hyperbolic graph.

Figure 5.8: A convenient model for arbitrary geometries, from (Cannon et al., 1997). Riemannian
geometry allows us to study metric structures in a unified continuous framework. (a-b) The well-known
Poincaré disk I can be identified with other models such as the Poincaré half-plane H, the hemisphere
J or the hyperboloid L. Going further, it can be put in correspondence with discrete graphs (c) and
groups (d) (Gromov, 1987): we display here a Cayley graph of the hyperbolic group SL(Z) in a
neighborhood of the identity, rendered with GraphViz (Gansner and North, 2000). These sketches are
to the hyperbolic plane what the discrete grid Z? is to the Euclidean plane R?: continuous and discrete
geometries interact seamlessly with each other.
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Geodesic curves. Formally, a curve (2'),¢(0,1) is a geodesic between two shapes 2 = A* and
zt = A in RV if it goes at constant speed and if it minimizes length locally. Otherwise said,
if for all time ¢ € [0, 1], there exists a margin ¢ > 0 such that (2°),¢[r—c 1] is the shortest
continuous path between z'~¢ and "¢ and

|4*]|¢ = Length(z) . (5.12)

As discussed Section 1.2.3, geodesic curves are generalized straight lines. Due to curvature
and non-uniqueness, we cannot guarantee that all geodesics are shortest paths between their
end points... But up to arc-length re-parameterization, all solutions of Eq. (5.11) are geodesics.
Using the Cauchy-Schwarz inequality, we can show that geodesics are critical points of the
energy functional:

1 r1
Energy(x / |82 dt = 5/ (2" gped® Ypnxo dt (5.13)
0

defined on the set of smooth curves of RN*P that take the correct values A* and A at times
t = 0and ¢t = 1. We refer to (Lee, 2006, Chapter 6) for a detailed proof of this result, which is
known as the least action principle in mechanics.

Theorem 5.1 (Euler-Lagrange equation). Building upon the characterization of Eq. (5.13), and
under suitable regularity assumptions, we then show that geodesic curves are solutions of a second-
order differential equation. If vt = it = ot € RN*P denotes its velocity at time t, a path (x*) is
a geodesic if and only if:

vte[0,1], Lguv'] = +Z[E](2',0") with  B(z,v) & (v, gpv) . (5.14)

Sketch of proof: Let z :t € [0,1] — a' € RNXD be a geodesic curve between A* and A. If
Sz it €[0,1] = dzt € RN*D is a (small) perturbation of 2 with §2° = dz' = 0, we can
expand the energy of the alternative path « + dz between A* and A as:

1 1
Energy(x +x) = / (0 460", gyt s (0 + 601) ) dt (5.15)
0

1 1 1
%/ (', gpevty dt + / (62, %[E] (z',0h))dt + / (60t gpevt) dt (5.16)
0 0 0

Energy(z) d Energy(z) - 6z

at order 1 with respect to dx. Since x is geodesic, it is a critical point of the energy: the linear
term dEnergy(x) - 62 must vanish. Otherwise said:

1
/0<5:Jct,8x[ |(z*,v") ) dt +/ , ggrv')dt = 0. (5.17)

As we know that 62" = §x! = 0, we then integrate by parts the second term and retrieve:

/01<<5:ct, %[E] (zf 0" — %[gxtvthdt =0. (5.18)

Since this holds for any admissible variation dz, we conclude with Eq. (5.14). O
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Examples. On a flat Euclidean space endowed with a constant metric g, = Idgnxp, the
Euler-Lagrange equation reads:

i = = Slge'] = LI = 0. (5.19)
We retrieve the well-known fact that the shortest path between A* and A is the segment z? :
t €10,1] — (1 —t)A* 4+ tA. Going further, explicit computations let us derive expressions for
great circles on a sphere or for geodesics on a torus.

Hamilton’s change of variables. In the general case, however, Eq. (5.14) is hard to deal with
effectively. Expanding the left-hand term could allow us to write the Euler-Lagrange equation
in coordinates (z¢, 2!, #'), but computing the associated coefficients - the Christoffel symbols -
leads to cumbersome and unstable derivations.

Fortunately though, just as in Section 5.1.2, a clever change of variables allows us to save
the day. Instead of describing a trajectory with its position 2! and velocity v* = 3!, we rely on
the position-momentum coordinates (¢*, p') in the phase space (RN*P)?2, defined as:

def. def.

g = zeRYP and p 4ok g ERNVP e v = Kp with K, = gql. (5.20)

This parameterization was introduced by Hamilton in a successful bid to simplify the rules
of Newtonian and Lagrangian mechanics (Hamilton, 1835). The fundamental operator K,
inverse of the metric tensor g—g, is known as the cometric. Defined over the space of position-
momentum pairs, the Hamiltonian H can be identified with the kinetic energy E and reads:

def.
H(q,p) = %<p7qu> = %(gqv,v) = %(v,g(ﬂ)) = E(Q7qu)‘ (5'21)

Theorem 5.2 (Geodesic equation). Using these notations, we show that a smooth curve (')
on RN*D s eeodesic if and only if the associated phase (¢*,p') = (x!, gyeit) satisfies the coupled
geodesic equation:

%qt = —I—%%(qt, ph) (follow the velocity v* = K p")
al T ot , P (5.22)
aP = —9,(d,p")  (steer the momentum to stay on a geodesic path).
Sketch of proof. According to the definitions of Eq. (5.20), we know that:
§d' = o' = Kgep' = Z[H](d"p") . (5.23)

On the other hand, if we differentiate Eq. (5.21) with respect to ¢, we see that:
SH(q,p) = £E(q, Kgp) + 5[0, Kp))(0,0) = £E(q, Kqp) + 25 H(g,p) - (5.24)
If (2!) is a geodesic curve, the Euler-Lagrange equation satisfied by (¢', p') thus reads:
%pt = %[ththpt] - +%[E](qt7 thpt) = _%[Hthvpt) ) (525)

which allows us to conclude. O
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Working in a Riemannian shape space. The clean, homogeneous structure of the geodesic
Equation (5.22) in Hamiltonian coordinates is at the heart of modern mechanics. The configu-
ration (¢*, p) flows along a smooth vector field, the symplectic gradient A\H = (+0,H, —0,H)
that is identified with the gradient of the Hamiltonian VH = (9,H, 9,H ) up to a “rotation”
by 90° in phase space.

Since AH is orthogonal to VH for any value of ¢ and p, the Hamiltonian is preserved by
the geodesic flow: if (z!) = (¢) is a geodesic curve,

vie[0,1], H(¢\p") = 5(p', Kpp') = (0", ggpv') = H(q",p") . (5.26)

This is coherent with Eq. (5.12) and allows us to compute the length of any geodesic curve as:

Length(¢") = /(p°, Kpop°) . (5.27)

The exp and log maps. By analogy with the complex exponential exp, : if € iR + ¢ € S
that wraps the real line onto the unit circle, we define the Riemannian exponential map at
any point ¢° through:
0 RVXD 1y ol ¢

expyo RN*D where (qt,pt)te[oﬂ follows Eq. (5.22). (5.28)

This interpretable decoder turns any momentum p° € RN*P into a shape ¢! by flowing
along the geodesic equation. Unlike the Lie group exponential introduced Section 5.1.3, this
operator relies on the (model-dependent) metric g, instead of the (fixed) composition rule “o”
to generate trajectories in shape space. It is as-faithful-as-possible to the metric g, around the
template ¢° and thus fairly reliable for statistical studies on small to medium deformations.

Remarkably, the exponential map at any location ¢V is invertible in a neighborhood of 0
(Lee, 2006, Lemma 5.10). If ¢ is close enough to ¢, this allows us to define the Riemannian
logarithm as the geometric encoder:

logpo @ g€ RNXP oy p0 ¢ RNXD such that expo ) =gq. (5.29)

Effective algorithms. Given any two shapes A* and A in RN*P | geodesic interpolation can thus
be cast as a non-linear inverse problem: we look for a fast and reliable inverse log 4. : A + p°
to the Riemannian exponential exp 4« : p° — A. Can we solve this problem efficiently? The
characterization of geodesic paths as local minimizers of the energy - Eq. (5.13) - and as
solutions of the geodesic equation - Eq. (5.22) - suggests two strategies:

1. Mean curvature flow - using the metric g,. For some time-step 6t = 1/T > 0, we

can work with a sampled curve (zt) = (29, 2%, ..., z}) € RTHDXN<D and minimize:
1Y Lty )12 1 ¢
Energy(z) = 5 > 0t - (™ — a2 = 55 3 (hg’)  (5.30)
=0 —

under the constraint that 2° = A* and 2! = A ~ B, with v & £ (a0 — 2t). The
associated deformation model is detailed in Algorithm 5.5: descent schemes on the
path energy Reg(6 ; A*) are often understood as curve-shortening geometric flows that
straighten the path (') with respect to the Riemannian metric (g,) (Brandt et al., 2016).
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2. Geodesic shooting - using the cometric K. Alternatively, we can optimize the shooting
momentum p° so that the solution (¢, p') of the geodesic equation with initial condition
(q° = A*,p") gets as close as possible to the target at time t = 1: ¢ = A ~ B.

This approach is summarized by the Hamiltonian deformation model of Algorithm 5.6
and often studied from the perspective of optimal control theory (Arguillere et al.,
2015). We understand it as a continuous-time generalization of the linear spline model
of Algorithm 5.3, that corresponds to the case where ¢t = 1 and K, is a kernel matrix.

Algorithm 5.5: Time-varying deformation model

Input: Shape A*, e.g. point cloud () € RN*P and list of triangles (Ay) € [1, N]¥*3,
Parameters: Velocities (vf) = ((v0), (v9t), (03?), ..., (v} %)) € RTXNxD,

Hyper-parameters: Time step 0t =1/T >0 (dt = 0.1 as default),
Shape metric g : (z,v) € (RN*P)? — g0 € RN*P, smooth wrt. z, linear wrt. v.

1: function Morph( 6 = (v}); A* = (2}, Ag)) > Deform a shape A*.
2: ) «— af > Starting configuration.
3 for ¢t in {0,6t,...,1 — 4t} do > Simple Euler integrator, T timesteps.
4 AL N > Trajectory, with @;(t) = v (x;(t)).
5. return A = (z}, Ay) > Keep the same connectivity as A*.
6: function Reg( 0 = (vf); A* = (zf, Ag)) > Path energy, see Eq. (5.30).
7: (x}) < Trajectory(x}, v}) > As above: (z}) € RT*N*D,
8:  return 55 >, (v, g(zt,v!) )pnxp = %fol(vt, gyt 0 )dt
Algorithm 5.6: Hamiltonian deformation model

Input: Shape A*, e.g. point cloud (z¥) € RN and list of triangles (Ay) €[1, N]" 2.
Parameters: Shooting momentum (pY) € RN*D,
Hyper-parameters: Time step 0t = 1/T >0 (6t = 0.1 as default),

Cometric K : (q,p) € (]RNXD)2 — Kgp € RN*D | smooth wrt. g, linear wrt. p.

Bl

N W

O oo

function Morph(6 = p°; A* = (*, Ay)) > Deform a shape A*.
g, p «— z*, p¥ > Starting configuration in phase space: ¢q,p € RN*D,
for tin {0,0t,...,1 — 6t} do > Simple Euler integrator, T timesteps.

G —i—%%(q,p) = Kyp > Velocity v = ¢ € RNXP,
D —%—Zl(q,p) = —%a%[(p, Kqp)) > Steer the momentum, p € RN*DP,
g, p < q+ot-q, p+ot-p > Geodesic trajectory, as in Eq. (5.22).
return A = (¢, Ay) > Keep the same connectivity as A*.
: function Reg(0 = p°; A* = (2%, A)) > Path energy, see Eq. (5.13).

return 3(p°, Ku-p® )pnxo = 3[|p°||2. > Squared length of the geodesic, Eq. (5.27).




168 Chapter 5 Geometry on a space of anatomical shapes

5.2.2 Elastic metrics: thin shells and finite elements

The deformation routines of Algorithms 5.5 and 5.6 allow us to work with any Riemannian
structure on a space of shapes * = ¢ € RN*P | encoded using either a metric (g,.) or a cometric
(Kq). In practice, researchers combine these morphing models with efficient optimizers or
neural networks to compute geodesic interpolations in fractions of a second (Brunn et al., 2019;
Yang et al., 2017).

The underlying assumption here is that a well-chosen Riemannian metric will promote
meaningful interpolations and induce relevant latent codes p° for statistical studies. With medi-
cal applications in mind, picking a reliable shape metric is therefore an important question:
what are our options?

Elastic meshes. If the point cloud x € RN*P is the set of vertices of a wireframe mesh with
connectivity A € [1, N]J¥*2, a simple choice is to rely on the graph Laplacian:

g & ~Brw  sothar (v, g0) © S eaw(llas - all) - o —oil*, (53D)
where w : R>¢ — R is a non-negative weight function. This affordable (semi-definite) metric
penalizes tearings along graph edges without putting any constraint on global translations.

Going further, more refined metrics can be derived from standard mechanical models: as
detailed in (Bonet and Wood, 1997), a common option is to rely on hyper-elastic descriptions
of surface or volumetric meshes. Alternatively, parameterization-invariant elastic metrics can
be used as reliable baselines: we refer to (Michor and Mumford, 2006; Srivastava et al., 2010; Su
et al., 2019) for an overview.

Overall, as illustrated in Figures 5.9 and 5.10, elastic metrics induce an intuitive geometry on
spaces of shapes. But unfortunately, these intrinsic methods also rely on clean mesh structures
that may be hard to specify in a clinical setting. Working with noisy images and segmentation
masks, what should we do?

Morphing the ambient space. A sensible choice is to rely on extrinsic metrics that penal-
ize deformations of the ambient space RP. If k is a positive definite kernel associated to a

generalized Sobolev norm || - ||, we use a metric (g,) on RN*P that is defined through:
VoeRYP (y g o min ||o)? st Vi, o(x;) = ;. 5.32
o900 2 min ol @)= 63

As discussed in (Beg et al., 2005; Zhang and Fletcher, 2019; Brunn et al., 2019) and illustrated
Figure 5.11, the associated interpolation problem can be solved efficiently on 2D images and
3D volumes. In practice, most implementations rely on kernel norms that are associated to the
Laplacian on the ambient space RP and use a formula along the lines of:

2§ = (v, (Id — @A)’ o) 12D go) (5.33)
= Yt fpero lva(@) P + 20| Voa(2)[|* + o Avg(2)]|* da (5.34)

where v1, ..., vp denote the coordinates of the vector field v : RP — RP anda > 0 isa
parameter that controls the smoothness of v over RP = R? or R3. The associated geodesic
equation can then be cast as a PDE inspired by fluid mechanics (Holm and Marsden, 2005) and
solved using a mean curvature flow or a specific multiscale algorithm. Overall, this Riemannian
theory allows researchers to generate large diffeomorphisms without being constrained by the
properties of the Lie group exponential discussed Section 5.1.3: it is known in the literature as
the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework.



(a) Discrete shells. (b) Geodesics in shape space.

Figure 5.9: Elastic shape metrics, from (Grinspun et al., 2003; Kilian et al., 2007). Over the last
two decades, motivated by applications to game design and 3D graphics, affordable approximations of
mechanical models have been cast as metrics on spaces of shapes: simple baselines are provided by thin
shells (a) and “gummy” finite element models (b). These elastic metrics allow us to interpolate (green)
and extrapolate (red) realistically between any two key frames encoded as 3D meshes (blue).
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Figure 5.10: Optimized numerical schemes (Von-Tycowicz et al., 2015; von Radziewsky et al., 2016).
Modern implementations of elastic metrics let artists solve geodesic (a) and barycentric (b) interpolation
problems in real-time. Unlike OT-based algorithms, these methods guarantee the preservation of the
shapes’ topologies along deformations: they can handle convincingly some extreme non-linearities. Un-
fortunately though, mesh-based methods often rely on clean segmentations, pointwise correspondences
and clever pre-computations to produce these impressive results. A key challenge for computational
anatomy is to mitigate these constraints to combine biomechanical models with noisy clinical data.

Figure 5.11: LDDMM geodesic between a disk and a square, from (Younes, 2010). When no
“Intrinsic” model of the data is available, shapes can still be registered onto one another by morphing the
ambient space itself. In this example, a disk (left) is mapped onto a square (right) through the action of
a diffeomorphism on the unit square (bottom row).
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5.2.3 Kernel cometrics: the LDDMM framework

Kernel cometrics. Extrinsic Sobolev metrics along the lines of Eq. (5.32) are often implemented
on a grid discretization of the spatial domain: we rely on convolution filters or Fourier
transforms to compute metrics ||v||; in the mould of Eq. (5.34).

Remarkably though, the Riemannian metric on point clouds defined Eq. (5.32) can also be
written in closed form. Following the derivations of Egs. (3.137-3.142), we can show that for
any kernel function k:

(v, K;'w) = min_|o|3 st Vi, o(x;) = v, (5.35)

2:RP RDP

where K, € RN*N is the kernel matrix associated to the point cloud x € RN*D:

N
def. .
(Kz)ij = k(zi,zj), Le. (Kep)i = Y kl(wi, x5) p; - (5.36)
j=1
In other words: the metric tensor induced by an extrinsic Sobolev norm || - || on a point
cloud (z;) is exactly the inverse of the kernel matrix K, = (k(x;,z;)); ;. For any suitable

choice of the symmetric, continuous, positive and definite kernel k&, LDDMM geodesics can
thus be generated with Algorithm 5.6, using the simple kernel matrix K, = (k(gi,q;))i,; asa
Riemannian cometric. Going further, anisotropic and inhomogeneous norms can also fit in
this framework and induce e.g. incompressible deformations (Micheli and Glaunes, 2014).

First intuitions. Geodesic shooting with a kernel cometric is illustrated Figure 5.12: this
algorithm allows us to generate large deformations without ever tearing apart our shapes. But
how should we understand the LDDMM metric g, = K, ! ?

To get some intuition of its properties, we first work in the plane RP = R? and consider
x1, x2 and x3 the vertices of an equilateral triangle whose sides have length ¢. If £ is, say, a
Gaussian kernel of deviation o, the kernel matrix K, = (k(x;,x;)); ; reads:

1 a a

K, =1]a 1 al, with £(0) =1 and k(¢) = e =g >0. (5.37)
a a 1

= (1+B-1Da)uu’ + (1 —a)(Idgs —uu') (5.38)

where u = 1/4/3 is a unit-norm vector, colinear to the vector 1 = (1,1, 1). Taking advantage
of this decomposition of K into orthogonal components, we invert it explicitely:

_ 1 1
gz = Kx L 11 2a uuT + ia(IdR3 - uuT) . (539)

If v = (v1,v2,v3) € R3*2 is an infinitesimal deformation of the point cloud = = (1, 22, z3),

illustrated Figure 5.13, we can thus compute its Riemannian squared norm as:

3
1+ 2a

1
loll2 = (v, g00) = om0+ =g 2 I (5:40)
i=1

is computed as:

where the orthogonal decomposition v; = v™" 4 2

def. def.
o™ = L0y + v + v3) € R? and v E g —pmen (5.41)
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Figure 5.12: Geodesic shooting with a kernel cometric - Algorithm 5.6. We work with N = 4
points in the plane of dimension D = 2. (a) We start from an initial point cloud (¢?) € R**? and
shooting momentum (p?) € R**? to display the geodesic trajectory (¢*, p*);c(0,1] as we flow along
Eq. (5.22) (b-d). (top row) Our cometric K¢ is a 4-by-4 kernel matrix (k(g},q})) associated to a
Gaussian kernel of deviation o = 0.5. It correlates the trajectories of the points ¢ and ¢3, which stay
close to each other throughout the process. (middle row) The velocity v* = ¢* = K p' is computed
as the k-smoothing of the vector field (p!) € R**2 supported by the ¢!’s. (bottom row) Theorem 5.3
allows us to see the geodesic trajectory (¢);c[0,1) as the image of the initial point cloud (¢f) under the
action of a time-varying velocity field o' : R? — R2.

1 1
T T3 T 3
(a) Cloud z, velocity v. (b) v = V™M ™, (c) Carpooling artifact.

Figure 5.13: Understanding kernel cometrics with toy configurations. (a) When the point cloud
(z;) € R3*? is an equilateral triangle, explicit computations allow us to invert the kernel matrix
K, = (k(x;,z;)) and make sense out of Eq. (5.35). (b) As detailed Eq. (5.40), the LDDMM metric
g = K ! penalizes separately the group velocity v™" (green) and the individual perturbations v**f
(blue). As the three points 1, 22 and 23 get closer to each other, they start behaving as a single particle
of mass 1. (c) The extrinsic geometry induced by kernel cometrics has a surprising consequence: in
LDDMM shape spaces, assuming that we use a typical “bell-shaped” kernel, the Riemannian geodesic
that joins two translated copies of the same disk (1,4) is 7ot a translation. Instead of sliding the red
curve (1) sideways to match its blue target (4), the least action model saves up on “spatial deformation
costs” by shrinking the shape (1—2), translating the small package (2—3) and expanding it back to its
initial size (3—4).
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If the side length ¢ is much larger than the kernel radius o, then k(¢) = a — 0 and the
kernel metric behaves as a simple L? norm:

lolfe mpwsy = N0l + oall? + flos]? . (5.42)

On the other hand, if ¢ is smaller than the kernel radius o, then k(¢) = a — 1 and the kernel

norm starts penalizing individual variations. At the limit, when £(¢) = a ~ 1, our three
particles are only allowed to move as a single body with a uniform group velocity.

Rigorous results: the LDDMM framework. This behaviour is coherent with Eq. (5.32):
LDDMM metrics penalize deformations of the point cloud z as the effort made by a virtual
agent that distorts the ambient space RP. The local density of points has no influence on the
final cost, which only depends of the smoothness and magnitude of the displacement field:

N N
v = k*Zpdei czeRP — ov(x) = Zk($,$i)pi eRP, (5.43)
i=1 i=1

solution of the kernel interpolation problem of Eq. (5.32). More generally, all discrete trajecto-
ries fit in a unified continuous framework with the following result, whose proof is detailed in
(Beg et al., 2005; Arguillere et al., 2015):

Theorem 5.3 (Structure of the LDDMM geodesics). Let k : RP x RP — R be a smooth,
symmetric, positive and definite kernel that is associated to a generalized Sobolev norm || - ||1. For
any number of points N > 0, we consider the discrete space of point clouds RN*D endowed with the
Riemannian metric:

9. = K;! ¢ RNVN where (Kg)ij = k(xi,xj) . (5.44)

xT

On the other hand, we consider the continuous group of diffeomorphisms:

def.

Gr = { ¢ =" :RP = RP solution for a trajectory (9")1e[0,1) of the ODE (5.45)

1
P(z) =, $o'(x) =2 op'(z), subjectto / o' ||2dt < 400 }
0
endowed with the infinite-dimensional Riemannian metric:

& (o0 +0p) = (39, g,00) & [[0po e !} = ||} (5.46)
that penalizes infinitesimal deformation using the extrinsic Sobolev norm || - ||,. We can show
that (G, g,) is a complete, geodesic Riemannian manifold of diffeomorphisms that are generated
through the integration of a k-smooth time-varying velocity field v'.

Then, most remarkably, all discrete geodesics in (RN*P | g,.) correspond to geodesic trajecto-
ries in the group of diffeomorphisms (Gy, g,,). Any geodesic path (¢, p') in phase space (RN*D)?
can be lifted as a geodesic curve ' in Gy, with:

N
o0 Idgp and Lot = ko« S pidy . as ©'q)) =g} forall timet. (5.47)
i=1
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An affordable and stable way of generating diffeomorphisms. All trajectories generated by
Algorithms 5.5 and 5.6 with an LDDMM metric can be understood as deformations of the
ambient space: they map the source point cloud A* = ¢° onto the target ¢! = A ~ B as
efficiently as possible, with a smoothness of trajectories that is controlled by the norm || - ||.

Loosely speaking, Theorem 5.3 describes a nested hierarchy of discrete shape spaces that
progressively fill up the group of deformations Gy:

(RlXD7gx) C (R2XDa g:p) c - C (RNXD7927) c - C (Glﬁgg&) (548)

As far as practitionners are concerned, this result ensures that LDDMM algorithms are stable: if
we re-mesh our shapes and improve sampling rates, the discrete geodesics illustrated Figure 5.12
progressively converge towards a smooth interpolation in the group of diffeomorphisms Gy.
Numerical “explosions” never occur.

Over the last fifteen years, this fundamental guarantee has led the LDDMM framework to
become a standard method in biomedical imaging. Understood as a non-linear generalization
of the theory of optical flows, this Riemannian toolbox allows researchers to overcome the
limitations of the SVF exponential at a reasonable computational cost. It has been widely
implemented in registration toolkits and powers reference software in neuro-anatomy (Klein
et al., 2009a; Avants et al., 2009; Ashburner and Friston, 2011; Bone et al., 2018).

Historical ties with fluid mechanics. On the theoretical front, Theorem 5.3 is a right fit for the
geometric theory of fluid mechanics pioneered by (Arnold, 1966), which cast the incompressible
Euler equation as a geodesic flow in the space of volume-preserving diffeomorphisms. As
detailed in (Holm et al., 2004), LDDMM trajectories are linked to the study of soliton waves:
we refer to (Holm and Marsden, 2005; Sommer et al., 2013b; Bruveris and Holm, 2015) for an
overview of the relevant Camassa-Holm and EPDiff equations.

The carpooling artifact. Thanks to the extrinsic definition of the metric g, = K, ! in
Egs. (5.32-5.35), LDDMM geodesics are fully invariant to re-parameterizations. If d(x, y) is the
geodesic distance induced by an LDDMM metric between any two shapes x and y in RN*P,
then for all permutation o : [1,N] —[1,N]:

d(z,y) = d(xoo,yoo), (5.49)

where (x 0 0); = (24(;)) 1s the cloud of points z = (x;) shuffled by 0. Going further, in the
group of diffeomorphisms (Gy, g,,) endowed with the geodesic distance d, we can show that:

Vo, 0, €Gr, d(p,¥) = d(pof,vo&) = d(Idgp,op™'). (5.50)

Geometers say that LDDMM metrics are righ-invariant and leverage this property to prove
strong existence theorems (Misiotek, 1998; Kouranbaeva, 1999; Constantin and Kolev, 2003;
Bauer et al., 2013).

In practice, the extrinsic nature of LDDMM metrics has one major consequence: assuming
that we use a typical “bell-shaped” kernel k(z, y), geodesic interpolations are biased towards a
contraction-dilation dynamics that we illustrate in Figures 5.13.c, 5.14.c and 5.15.a-c. The phe-
nomenon is reminiscent of branched optimal transport (Bernot et al., 2008) and was studied in
depth by (Micheli et al., 2012). As far as shape analysis is concerned, unfortunately, this carpool-
ing artifact prevents LDDMM algorithms from producing reliable extrapolations: geodesics
tend to blow up instead of simulating plausible evolutions in the footsteps of Figure 5.9.b.
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5.3 Working towards anatomical relevance

Overview of Riemannian shape models. From Section 1.2 to the last few pages, we have
seen that the design of shape metrics is a central question in medical imaging. In the context of
Algorithms 5.5 and 5.6, we look for relevant functions:

g : (x,0) = ggo (metric) (5.51)
or K : (q,p) — Kgp (cometric) (5.52)

that are smooth with respect to the shape x or ¢ and linear, symmetric, positive and definite
with respect to the velocity v or momentum p.

In most settings, we need to preserve the topology of our shapes along geodesic trajectories.
To control the smoothness of the infinitesimal deformation v, researchers thus tend to penalize
derivatives with a high-pass metric |[v||?2 = (v, g,v) or generate velocities as the filtering
v = K p of the momentum p with a low-pass cometric K. The two most iconic Riemannian
frameworks for shape analysis fit this template, with complementary strengths and weaknesses:

1. Elastic models rely on mesh structures to define a Laplacian-like metric g, that is encoded
as a sparse matrix. They produce sensible trajectories in shape space but are notoriously
hard to interface with clinical data: building a clean biomechanical mesh out of a noisy
3D scan is a challenging problem.

2. LDDMM models rely on grid convolutions or kernel dot products to define extrinsic
metrics g; ~ (Id — @A)? and cometrics K, = (k(q;,qj))ij- They are versatile and
robust to topological noise but do not extrapolate well “beyond time t = 1.

Working towards data-driven heterogeneity. Standard implementations of the models above
rely on a uniform description of the elastic material or on a translation-invariant kernel k(z —y).
The simplistic assumption of homogeneity is convenient, but hardly relevant in a medical
setting: an organ is everything but an isotropic piece of gum. Going forward, researchers
should leverage expert knowledge and data-driven insights to define adaptive shape metrics. ..
But this is easier said than done.

5.3.1 Learning the metric

Anatomical data is expensive: every single medical scan is processed by a team of skilled techni-
cians and radiologists. Compared with the millions of annotated images that have been made
available in computer vision, high-quality data is thus relatively scarce in computational
anatomy: datasets for population studies now document up to 100k patients, but specific
syndroms are seldom present in more than 100 to 1,000 images at a time.

Combined with the high dimensionality of shape data, this situation prevents standard
machine learning techniques from bringing a ready-made solution to our problems: to generalize
outside of small datasets, we must combine statistical tools with geometric architectures.

Finding the right balance between built-in priors and data-driven insights has always
been a challenging problem for the shape analysis community. But fortunately, from 2017
onwards, versatile deep learning libraries have acted as a catalyst for research in the field
(Kithnel and Sommer, 2017): as discussed throughout Chapter 2, the powerful mix of automatic
differentiation and GPU computing provided by Theano, PyTorch and others has allowed
researchers to divide by 10 (!) the size of their codebases over the last three years.
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The KeOps and GeomLoss libraries fit within this global progression towards modular
development. They allow us to focus on the design of data-driven shape models, where three
main strategies prevail:

1. Deformable models and autoencoders. In line with (Blanz et al., 1999; Wu et al., 2016;
Litany et al., 2018), we can fit a parametric generative model:

Dy : ce RM s 1 e RNXD (5.53)

to our datasets, where 6 is a vector of neural weights to optimize. Shapes z are then
compared with each other in the latent space of codes ¢ = ®~!(z) € RM, endowed
with the standard Euclidean distance. This is equivalent to endowing the shape space
®y(RM) ¢ RN*D with the Riemannian metric:

d*(z,x + 6z) = || d®,  (z) - 0z || 3w Le. gy =[d®, ()] dD,(z) (5.54)
or K, =d®y(c)dd] (), with c=o,(2), (5.55)

making it isometric to the flat Euclidean space RM - a strong but convenient assumption.
Going further, standard machine learning techniques for metric learning can be applied
to the distribution of latent codes (Lin and Zha, 2008): we refer to (Krebs et al., 2019)
for an example of medical application.

2. Hierarchical and implicit models. Alternatively, we can put an emphasis on inter-
pretability and build our operators g, and K|, as hierarchical compositions of well-known
deformation modules (Sommer et al., 2011, 2013a). This approach is usually studied
through the lens of optimal control theory (Arguillere, 2014; Arguillere et al., 2015)
and is well-suited to the formulation of semi-parametric models in biology (Kaltenmark,
2016; Gris et al., 2018; Gris, 2019).

3. Adaptive metrics. Finally, as discussed for instance in (Vialard and Risser, 2014), we
can rely on feature detectors to alter locally the parameters of a generalized elastic or
LDDMM model. Modern deep learning libraries now allow us to scale this approach to
realistic datasets, with promising results (Niethammer et al., 2019a; Shen et al., 2019).

5.3.2 Enforcing axioms on the target geometry

Opening the Pandora box. Relieved from the burden of low-level development, researchers in
the field are now more creative than ever. But can we design data-driven models while retaining
the guarantees that made the SVF and LDDMM frameworks popular in the first place?

Modern research in the field is concerned with the development of advanced (black-box?)
models g, or K, that encode the geometry of a population. These may for instance be encoded
as forward-backward products:

Kqp oo LyLgp, where Ly :RYP 5 RM  isan arbitrary feature map ~ (5.56)

to guarantee the symmetry and positivity of a Hamiltonian function that reads:
def.
H(q,p) = %<p7 qu> = %HLqu%ﬂ(RM) . (5.57)

In this very open context, an interesting research topic is to look for ways of enforcing
meaningful axioms on generic shape metrics, without making strong assumptions on the
inner structure of the operators (g, ) and (K,). How should we proceed?
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Keeping metrics under control with an adaptive scaling. If K, € RNP*ND 5 3 black-box
Riemannian cometric, a simple way of controlling its properties is to compose it with a local
scaling matrix S, € RNP*ND and consider the operator:

K : (q,p) € RYPxRVP oy Kp & STK,Sp € RNP (5.58)
After all, the adaptive change of coordinates induced by the matrix S; on the momentum
p € RN*D ould allow us to enforce some structure on the Riemannian cometric K = ST K S
while retaining guarantees of symmetry and positivity.
As an illustration, let us assume that our base cometric K is encoded as a large N-by-N
matrix with positive coeflicients, associated to a Hamiltonian:

N N
H(q,p) = 5(p, Kep)wsxo = D> (Ky)ij (pipj)ep > 0. (5.59)
i=1j=1

This is typically the case with LDDMM metrics, where K, = (k(gi, g;)):.; € RN*N is induced
by a positive kernel function k(z,y) > 0. Let us also assume that our shape ¢ is encoded as
a positive measure on the ambient space: non-negative importance weights m; € R are
associated to the points ¢; € RP, defining a measure 1 = 3> | m;0,, with a positive total mass.
Then, we propose to rescale adaptively the cometric K, € RYsN using a diagonal matrix

S, = Diag( sq, ,i €[1,N] ), where the positive vector s, = (s,,) € RY, is chosen so that:

sq- Kq(sq-m) = Kgm = 1g~, with “” denoting the pointwise product in RY. (5.60)

First properties. The existence and unicity of the scaling vector s, is guaranteed by our results
on entropic optimal transport. For any choice of the positive definite matrix K, and vector
of weights m = (m;) € RY,, using the notations of page 112, we can indeed remark that
JHP = log(sg) is the unique solution of the symmetric problem OT.—;(x, ;) with a cost
matrix C(g;, ¢;) = —log(Ky)i ;. A detailed proof is given page 194. In practice, following the
discussion of page 119, we compute the values of s, on-the-fly with the symmetric Sinkhorn loop
of Algorithm 5.7 and rely on automatic differentiation whenever required by Algorithm 5.6.

An LDDMM cometric K, = (k(g; — g;))i; acts as a convolution with the kernel k. On
the other hand, after our proposed normalization with the scaling vector s, the cometric
K behaves as an interpolation operator. Thanks to Eq. (5.60), the velocity field v € RN*P
induced by a momentum p = (p;) € RNV*P reads:

%3 Ky(sq-P)

v = qu = m le vy = ’U(ql) =

N

Zj:l k(g — q5) Sq; Pj
d .

Y1 k(g — q5) sq; my

(5.61)

The velocity v; of a point g; is therefore a barycentric combination of the anchor velocities:
oF dek pj/m; € RP with weights wij o< k(g —qj)sqmy =0 (5.62)

and is associated to a total energy that reads:

N
1 ~ ~_

H(g,p) = 3(pv) = 5> mi(Bivi)ro = 3{v, Kq'v) = Egv). (5.63)

i=1
This new Riemannian structure on weighted point clouds behaves as a smooth generalization of
the Wasserstein-2 metric £ (v, ggv) = 3 3=, m||vi||3p. We implement it on meshes and density
maps at a cost that is 2 to 5 times that of a standard LDDMM metric: the loop of Algorithm 5.7

can be inserted in any implementation of Algorithm 5.6.
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Figure 5.14: Normalizing metrics to retrieve sensible translations. We display the shape geodesic
(q") between translated copies of a disk at times ¢ = 0 and 1 using two distinct Riemannian models:
(ac) a Gaussian LDDMM cometric (K,); ; = exp(—|l¢; — ¢;*/20?) with o = .05 on the unit square;
(d) its normalization K, with importance weights m; that are proportional to arc length.

(a-c) As discussed Figure 5.13, LDDMM geodesics rely on a contraction-dilation dynamics that hampers
extrapolations outside of the interval ¢ € [0, 1]. (d) Fortunately, the normalization loop of Algorithm 5.7
allows us to get rid of the carpooling artifact: we retrieve a clean translation.

(a) LDDMM. (b) Normalized. (¢) LDDMM. (d) Normalized.

Figure 5.15: Robust extrapolations with a normalized LDDMM metric. We display side-by-side
the geodesic curves between A = ¢" (red) and B = ¢* (blue) for an LDDMM metric K, (a, c) and its
normalization K, (b, d). We use a Cauchy kernel k(z,y) = 1/(1 + ||z — y||2/o?) of radius o = .05
on the unit square, with importance weights m; that are proportional to arc length at time ¢ = 0.

As illustrated Figure 5.14, normalized cometrics K, do not suffer from the carpooling artifact. The
extrapolations at time ¢ = -1 (purple) and ¢t = +2 (cyan) preserve the topologies of our shapes with a
natural fit, free of any “rebound” and extravagant growth.

Algorithm 5.7: Normalized shape cometric K,

Input: Weighted point cloud ¢ = "N ; m;d, with (¢;) € RN*P and (m;) € RY,,
Momentum p = (p;) € RN*P supported by the ¢;’s .

NxN

Parameters: Black-box cometric K : (¢,p) — Kgp , with K, € RJ]

1 8g < l1pn
2: for it = 1 to ny do > 2 to 5 steps are enough in practice.
3 Sq  1/Sq/K(q,54-m) > Symmetric Sinkhorn iterations, s, = exp(f/1).

4: return sq - K(q,s4 - p) > Velocity v = qu € RNxD,
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Local translations. The Sinkhorn normalization trick turns a convolution K into an inter-
polator K, that shares many properties with a poly-affine model (Arsigny et al., 2005, 2009).
Remarkably, it also guarantees the preservation of translations as geodesics in shape space.

If ¢ = (¢;) € RN*P is a point cloud with non-negative weights m = (m;) € RY, we
can indeed remark that the infinitesimal translation of vector 7 € R3 is generated by the
momentum:

D g’ = (m; ¥); € RY*3 | so that Equ = f(/quz’T = 1pn 7T, (5.64)
with a total cost H(q,py) = & >°; m;||7]|* that does 7ot depend on the shape g. The trajectory
(¢, p") = (q + t¥, py) is therefore a solution of the geodesic Equation (5.22).

5.3.3 Missing pieces in the puzzle - future works

Unlocking exciting research directions. As illustrated in Figures 5.14 and 5.15, normalizing
an LDDMM metric allows us to straighten its geodesics and get rid of the carpooling artifact:
the normalized cometric K, induces sensible trajectories in shape space without relying on a
clean mesh. Going further, we could work with iterated kernel products K = K --- K, and
their normalizations to approximate an intrinsic mesh diffusion with point clouds: this would
allow us to bridge the gap between LDDMM, optimal transport and elastic models.

These ideas will certainly appeal to geometers. But can we prove that they define stable
trajectories in shape space? That they bring value to practitioners in a significant and repro-
ducible way? We believe that normalized metrics can advantageously replace LDDMM or
spline models as a robust baseline for the study of shape dynamics (Trouvé and Vialard, 2012;
Durrleman et al., 2013; Schiratti et al., 2015; Koval et al., 2017) - but providing solid evidence
to back up this claim will likely require a few more years of work.

A powerful and versatile environment. Crucially, none of this research would have been
possible without the investment in foundational tools that we described from Chapters 2 to 4:

1. Efficient geometric routines let us scale up to real 3D shapes with human-readable
scripts. Thanks to the KeOps library, we can study principled Riemannian models while
remaining credible in the deep learning era.

2. Global loss functions stabilize our pipelines and make them robust to large deformations.
Wasserstein-like distances are usually more reliable than kernel norms: they allow us to
experiment freely with deformation models, without having to re-tune kernel parameters
at every turn.

Enabling new interactions. These tools will certainly become fundamental bricks for a new
generation of methods in computational anatomy. Over the last three years, the transition
from monolithic C++ codebases towards modular high-level packages has been a revolution
for the field. The barrier of entry to state-of-the-art methods has been greatly reduced, which
has opened the door to a whole new range of interactions with related communities. Going
forward, computational anatomy is bound to benefit from a closer integration with the graphics,
vision and simulation literatures: we look forward to working on the topic in years to come.



Appendix A

Detailed proofs on entropic optimal transport

in collaboration with Frangois-Xavier Vialard (Paris-Est University),

Thibault Séjourné and Gabriel Peyré (Ecole Normale Supérieure).

A.1 Statement of Theorem 3.1, simple arguments
This chapter contains our original proofs on optimal transport theory, related to

the Schrodinger problem OT,(«, ) of Eq. (3.187) and to the debiased Sinkhorn
divergence:

Se(e,8) ¥ OTe(a,8) — 20T.(a,0) — LOT.(3,8) . (A.1)

As discussed page 115, it contains two quick proofs of positivity for S., followed
by a full demonstration of Theorem 3.1.

A.1.1 Notations, technical hypotheses

Throughout these pages, we use the measure-theoretic notations detailed Sec-
tion 3.1.3. In addition to that, if f € C(X), we write:

def.

1Fle & max 1£(2)] (A2)

and say that a sequence f;, of continuous functions converges uniformly towards
alimit foo if || fr, — f]|, converges towards 0.

Lipschitz cost functions. In this chapter, we consider ground cost functions:
C: (z,y) e XxX — C(z,y) =C(y,z) € R (A.3)

that are symmetric and Lipschitz with respect to both variables on the bounded
feature space (X, d). That is, there should exist some constant £ > 0 such that:

Va,y,y' € X, |C(z,y) — C(z,y)| < w-d(y,y). (A4)

179
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Gibbs kernel. An arbitrary cost function defines a kernel through an exponential
mapping: for any temperature € > 0, we define the Gibbs kernel of C as:

ke : (z,y) € X x X — exp(—1C(z,y)) €R. (A.5)

This operation is central to the theory of regularized OT, and our main results
(positivity, metrization of the convergence in law by Sinkhorn and Hausdorff
divergences) hold for cost functions that define positive kernels k. as discussed in
Section 3.2.3.

Typical use cases. In the simplest of all settings, we compare with each other two
measures o and 3 on a Euclidean space RP. We suppose that both have compact
support, and can thus work in a compact, bounded domain:

X = {2€R° |2l <R} with dla,y) = Jz—y|. (A6

Then, we endow X with an earth mover cost C(z,y) = ||z — y|| or a Wasserstein
quadratic cost C(z,y) = ||z — y||?, which are both Lipschitz on bounded
subsets of RP and induce exponential and Gaussian kernels respectively:

ke(z,y) = exp(=Lllz—yl), ke(z,y) = exp(—llz—yl]>). (A7)

A.1.2 The theorem

As discussed in Section 3.3.2, the theorem below legitimizes the use of the de-
biased Sinkhorn divergence S, for measure-fitting applications.

Theorem A.1. Let X be a compact metric space with a Lipschitz cost function C(x, y)

that induces, for € > 0, a positive universal kernel k. (z,y) <4 exp(—C(z,y)/e).

Then, S¢ defines a symmetric, positive, definite and smooth loss function that is convex
in each of its input variables. It also metrizes the convergence in law: for all probability
Radon measures o and B € M{ (X),

0 =5:(8,8) < Se(e, B) (A.8)
a=p <= S(a,B)=0, (A.9)
ap = a <= S.(an,a) —=0. (A.10)

Notably, these results also hold for measures with bounded support on a Euclidean space
X = RP endowed with ground cost functions C(x,y) = ||z — y|| or C(x,y) =
tllz — y||? - which induce exponential and Gaussian kernels respectively.
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A.1.3 Two quick, partial proofs

We give a full demonstration of Theorem 3.1 in the next fifteen pages or so. This
proof is fairly technical, especially with regards to the (surprising) concavity of
OT. on the diagonal “a = 8” of the space of pairs of measures.

Measure-function change of variables. We remark, however, that a simple
change of variables can be used to show that:

Va,B € M[(X), Se(a,8) = 0 (A.11)

with a minimal amount of effort. If (f, g) is a pair of competitors for the dual
problem OT.(a, ) of Eq. (3.189), we introduce the “scaled” measures:

a ¥ efleg and B &k e/ 3. (A.12)

The optimality equations for OT.(«, 3), detailed Egs. (3.194-3.195), ensure that
at the optimum:

(@, B)r. & (@, kerB) = (B, kewa) = 1. (A.13)

Consequently, the soft penalty “f @ g < C” vanishes at the optimum. If @ and 3
are associated to the optimal pair of dual potentials (f, g):

OT.(a,8) = {a, f)+ (B, 9) = elo, log @) + (B, log P) . (A.14)

First proof of positivity. Now, let (f*<%, f4°%) and (g%<#, f#5) be the
unique solutions of the symmetric Schrodinger problems OT. (o, &) and OT (3, 3)
on the diagonal of the space of pairs of dual potentials. According to the discussion
above, we know that:

10T (@) = (o, f*%) and L1OT.(8,8) = (B, f*7F). (A.15)
We also know that the scaled “symmetric” measures:
q & e g, and B dek egﬂHﬂ/E,B (A.16)

lie on the unit ball of the space of probability measures M7 (X), endowed with
the kernel norm || - ||.:

def.

@l & (@ kexa) =1 and [BIL € (B kxB) = 1. (A17)
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To conclude, it suffices to remark that (¥, g#<#) is an admissible competitor
for the concave maximization problem OT. (o, 3):

OT. (e, B) = (a, f*%) + (B, ¢°P) (A.18)
+ ela®B, 1 —exp L[f*"a gff —C)) .

We remind the reader that in this chapter, o and 3 are both assumed to be
probability measures that sum-up to 1. Therefore, using our scaled measures @

and

Se(ar, ) & OT.(a, B) — O0T.(a, ) — LOT.(8, B) (A.19)

= OTe(a, ) = {a, f*7%) = (B, g"7) (A.20)

> ela®pB, 1 —exp L[*7pg? P — Q) (A.21)

= cl{la®pB, 1) — (@@ B, k)] (A.22)

= e[l — (@ B).] (A.23)

= t|la-3B ie . (A.24)

Under the assumption that k. defines a positive kernel, this allows us to conclude:
Se(a,B) = 0. O

Second proof of positivity. Alternatively, we remark that the dual Schrodinger
problem OT. can be expressed using the “elementary” formulation of Eq. (3.191):

OT.(a,8) = max (a, f) + (B, g) st. max. [fdg—C] < 0 (A.25)
f9eC(X) a®p

= max ¢&(a, log 3%> + (8, log £> sit. (@, B)p. < 1. (A.26)
@ BEMT(X)

Meanwhile, the debiasing term can be expressed in similar fashion:

LOT.(a,a) + $OT(3,8) = max ela, log &) + (8, log §3)
a,feMT(X)
st. alf, <1 and Bl < 1. (A.27)

This is essentially equivalent to Proposition A.3, whose rigorous proof is detailed
in Section A.4.3. Since we assume that k. is a positive kernel, || - [|7_ satisfies the
Cauchy-Schwarz inequality:

@i, < 1and B, <1 = (@ Bhe <1. (A.28)

Both OT. and the debiasing term can be expressed as the maximum of the same
functional, with the second domain included into the first one. This allows us to
conclude: S.(a, 8) = 0. O
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A.2 High-level demonstration of Theorem 3.1

We now give a full proof of Theorem 3.1. Our argument relies on a new Bregman
divergence derived from a weak-x continuous entropy that we call the Sinkhorn
entropy (see Section A.2.2). We believe this (convex) entropy function to be of
independent interest: since our first publication on the subject, it was for instance
used in (Mensch et al., 2019) for structured learning. Note that all this section is
written under the assumptions of Theorem 3.1.

A.2.1 Properties of the OT. loss

First, let us recall some standard results of regularized OT theory whose proof
may for instance be found in (Peyré and Cuturi, 2017). Thanks to the Fenchel-
Rockafellar theorem, we can rewrite the Schrodinger problem of Eq. (3.187) as
an un-constrained dual maximization:

OT.(a, )% max (a.f) + (5.9) (A.29)

(f.9)ec(x
—e{la@pB,exp (2(fog—C) —1),

where f @ g is the tensor sum (z,y) € X2 — f(z) + g(y). The primal-dual
relationship linking an optimal transport plan 7 solving (3.168) to an optimal
dual pair (f, g) that solves (A.29) is recalled in Egs. (3.192-3.193):

m=exp(2(f@g—-C)) (a®p). (A.30)

Crucially, the first order optimality conditions for the dual variables are equivalent
to the primal’s marginal constraints (m; = «, m2 = ) on (A.30). They read

f=T(,9) arae. and ¢g=T(a,f) [-ae., (A.31)
where the “Sinkhorn mapping” T : M{(X) x C(X) — C(X) is defined through

T:(a,f)—~ (y € X — min. [C(z,y) — f(x)]) , (A.32)

r~o

with a SoftMin operator of strength ¢ defined through
min. p(z) < —5log/ exp (— 1p(2)) da(z) . (A.33)
T X

Dual potentials. The following proposition recalls some important properties
of OT. and the associated dual potentials. Its proof can be found in Section A.4.1.

Proposition A.1 (Properties of OT.). The optimal potentials (f, g) exist and are
unigue (v, B)-a.e. up to an additive constant, 1.e. VK € R, (f + K, g — K) is also
optimal. At optimality, we get:

OT:(a, 8) = (o, f) + (B, 9) - (A.34)
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Gradients. We recall that, as discussed page 73, a functional F : M (X) —
R is said to be differentiable if there exists VF(a) € C(X) such that for any
displacement ¢ = 3 — B’ with (3, 8') € M7 (X)?, we have:

Fla+t€) = F(a) + t(£, VF(a)) + o(t) . (A.35)

The following proposition, whose proof is detailed in Section A.4.2, shows that
the dual potentials are the gradients of OT-.

Proposition A.2. OT. is weak- continuous and differentiable. Its gradient reads:
VOT.(e, 8) = (f.9) (A.36)

where (f, g) satisfies f = T(53,g) and g = T, f) on the whole domain X and T
is the Sinkhorn mapping of Eq. (A.32).

Let us stress that even though the solutions of the dual problem (A.29) are
defined («, 3)-a.e., the gradient (A.36) is defined on the whole domain X. For-
tunately, an optimal dual pair (fo, go) defined («, 3)-a.e. satisfies the optimality
condition (A.31) and can be extended in a canonical way: to compute the “gradient”
pair (f,g) € C(X)? associated to a pair of measures (o, 3), using f = T(3, go)
and g = T'(«, fo) is enough.

A.2.2 Sinkhorn and Haussdorf divergences

Having recalled some standard properties of OT., let us now state a few original
facts about the corrective, symmetric term —2OT.(c, @) used to define the
debiased Sinkhorn divergence S.. We still suppose that (X, d) is a compact set
endowed with a symmetric, Lipschitz cost function C(x,y). For e > 0, the
associated Gibbs kernel is defined through:

ke : (x,y) € X X X — exp (— C(x,y)/e) . (A37)

Crucially, we now assume that k. is a positive universal kernel on the space of
signed Radon measures.

Definition A.1 (Sinkhorn negentropy). Under the assumptions above, we define
the Sinkhorn negentropy of a probability Radon measure o € M7 (X) through:

F.(o) & —10T (o, ) . (A.38)

The following proposition is the cornerstone of our approach to prove the

positivity of S¢, providing an alternative expression of F.. Its proof relies on a
change of variables ;1 = exp(f/e) « in (A.29) that is detailed in Section A.4.3.
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Figure A.1: Sketch for the proof of Theorem 3.1. On the product space of dual pairs
M (X) x MT(X), the regularized cost OT. is convex with respect to each variable:
this allows us to show (A.41-A.42) and eventually that H. < S.. Crucially, we have also
seen with Proposition A.4 that OT. is concave on the diagonal: we show that 0 < H,
and can then state our main result: Sinkhorn divergences define positive Loss functions
over the space of probability measures.

Proposition A.3. Let (X, d) be a compact set endowed with a symmetric, Lipschitz
cost function C(z,y) that induces a positive kernel k.. Then, fore > 0and a €
M (X), one bas:

LF.(a)+1= min_(a,log2) + Ll . (A39)

PEMT(X)

D=

The following proposition, whose proof can be found in Section A.4.4, lever-
ages the alternative expression (A.39) to ensure the convexity of F..

Proposition A.4. Under the same hypotheses as Proposition A.3, F. is a strictly
convex functional on M{ (X).

We now define an auxiliary “Hausdorfl” divergence that can be interpreted as
an OT, loss with decoupled dual potentials.
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Definition A.2 (Hausdorff divergence). Thanks to Proposition A.2, the Sinkhorn
negentropy F. is differentiable in the sense of (A.35). For any probability mea-
sures a, 3 € M{ (X) and regularization strength ¢ > 0, we can thus define:

H.(a,8) < L{a — 8, VE.(a) - VE.(8)) > 0. (A40)

It is the symmetric Bregman divergence induced by the strictly convex functional
F; (Bregman, 1967) and is therefore a positive definite quantity.

A.2.3 Proof of the Theorem

We are now ready to conclude. First, remark that the dual expression (A.29) of
OT.(a, ) as a maximization of linear forms ensures that OT.(«, ) is convex
with respect to v and with respect to 8 (but not jointly convex if € > 0). S; is
thus convex with respect to both inputs « and /3 as a sum of the functions OT.
and F. - see Proposition A.4.

Convexity also implies that:

OT.(a,a) + (B — a, VoOT (v, 0)) (o, B), (A.41)
OT:(B8, 8) + (o = B, V10T:(B, B)) (a,B) . (A.42)

Using (A.36) to get VoOT, (o, o) = —=VF (), V1OT. (8, 3) = —VF.(5) and
summing the above inequalities, we show that H. < S., which implies (A.8). To
prove (A.9), note that S (o, ) = 0 = H.(«, 3) = 0, which implies that « = 3
since F. is a strictly convex functional. Finally, we show that S. metrizes the
convergence in law (A.10) in Section A.4.5. O

< OT.(a,
< OT.(a,

A.3 Lemmas: standard results

Before detailing our proofs, we first recall some well-known results regarding the
Kullback-Leibler divergence and the SoftMin operator defined in (A.33).
A.3.1 The Kullback-Leibler divergence

First properties. For any pair of Radon measures o, 3 € M (X) on the compact
metric set (X, d), the Kullback-Leibler divergence is defined through:

KL(a, 8) =

ek {<a, log §§ 1)+ (8, 1) ifa<p (A.43)

+00 otherwise.
It can be rewritten as an f-divergence associated to:

Y:x€Ryg— xlog(r) —x+1 €Ryp, (A.44)
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with 0 - log(0) = 0, as:
B, ¥(§3) ifa<p

i (A.45)
+00 otherwise.

i - |

Since 1 is a strictly convex function with a unique global minimum at ¢/(1) =0,
we thus get that KL(«, 8) > 0 with equality iff o = .

Dual formulation. The convex conjugate of 1 is defined for u € R by:

™ (u) dek sup (xu —(z)) = e —1, (A.46)
x>0
and we have ¢(z) +¢*(u) > zu (A.47)

for all (z,u) € Ryp x R, with equality if z > 0 and u = log(x). This allows
us to rewrite the Kullback-Leibler divergence as the solution of a dual concave
problem:

Proposition A.5 (Dual formulation of KL). Under the assumptions above,

KL(a7IB) = Sup <Oé, h> - </Ba eh - 1> (A48)
heF,(X,R)

where Fy,(X,R) is the space of bounded measurable functions from X toR.

Proof. Lower bound on the sup. If « is not absolutely continuous with respect to
f3, there exists a Borel set A such that «(A) > 0 and 5(A) = 0. Consequently,
forh =M1y,

(a, h) — (B, e" = 1) = Aa(4) 221 4o, (A.49)
Otherwise, if @ < 3, we define h, = log g—g and see that:
<a7 h*> - <57 eh* - 1> = KL(O(,,B) : (ASO)

If h,, = log(g—g) 11 /n<da/ap<n € Fb(X,R), the monotone and dominated con-
vergence theorems then allow us to show that:

(a, hn) — (B, e — 1) 225 KL(a, B) . (A.51)

Upper bound on the sup. It h € Fp(X,R) and o < S, combining (A.45) and
(A.47) allow us to show that:

KL(, 8) = (o, h) + (B, " = 1) = (8, ¥(§3) +¢*(h) —hg3) > 0. (A52)

The optimal value of (v, h)— (3, €"—1) is bounded above and below by KL (c, 3):
we get (A.48). O
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Convexity. Since (o, h) — (3, € — 1) is a convex function of (a, (), taking the
supremum over test functions h € Fp(X,R) defines a convex divergence:

Proposition A.6. The KL divergence is a (jointly) convex function on M™(X) x
MT(X).
Going further, the density of continuous functions in the space of bounded

measurable functions allows us to restrict the optimization domain:

Proposition A.7. Under the same assumptions,

KL(o, 8) = sup (a, h) — (B, " —1) (A.53)
heC(X,R)

where C(X,R) is the space of (bounded) continuous functions on the compact set X.
Proof- Let h = Y,c1 h; 14, be a simple Borel function on X, and let us choose
some error margin ¢ > 0. Since « and (3 are Radon measures, for any i in the

finite set of indices I, there exists a compact set K; and an open set V; such that
K, CcA, CV and:

> max[a(Vi\K;), B(V;\K;)] <6 . (A.54)
el
Moreover, for any i € I, there exists a continuous function ¢; such that 1x, <
¢; < 1y;. The continuous function g = >_;c; hip; is then such that:
o, g = M) < ||hllswd  and  [(B, 9 — ") < [l"]lcd  (A55)
so that:
| ((a, h) = (B, " = 1)) = ({o, g) — (B, € = 1)) (A.56)
< (Ihlloo + ll€"los) 6 - (A.57)

As we let our simple function approach any measurable function in Fp(X, R),
choosing 0 arbitrarily small, we then get (A.53) through (A.48). O

Convergence in law. We can then show that the Kullback-Leibler divergence is
weakly lower semi-continuous:

Proposition A.8. If o, — « and 3, — [ are weakly converging sequences in
MH(X), we get:

liginf KL(a, Brn) = KL(a, S) . (A.58)

Proof. According to (A.53), the KL divergence is defined as a pointwise supremum
of weakly continuous applications:

on ¢ (@,8) = {a, h) — (B, " 1), (A.59)

for h € C(X,R). It is thus lower semi-continuous for the convergence in law. [J
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A.3.2  SoftMin operator

Proposition A.9 (The SoftMin interpolates between a minimum and a sum).
Under the assumptions of the definition (A.33), notably the fact that o is a probability
measure, we get that:

min. ¢(x) 2% min () (A.60)
e 2€Supp()
EZEO0 ). (A.61)
If ¢ and ) are two continuouns functions in C(X) such that ¢ < 1, then:
mine ((z) < mine Y(z) . (A.62)

Finally, if K € R is constant with respect to x, we have that:
min. [K + ¢(x)] = K + min. [¢(z)] . (A.63)
T~ fdade

Proposition A.10 (The SoftMin operator is continuous). Let (cv,) be a sequence
of probability measures converging weakly towards o, and (pr,) be a sequence of
continuous functions that converges uniformly towards . Then, for ¢ > 0, the
SoftMin of the values of py, on o, converges towards the SoftMin of the values of ¢
on a, Le.

(an — a, op LN ¢) = min. ¢, (z) = min. p(z) . (A.64)

T~ T~

A.4 Lemmas: original proofs

A.4.1 Dual potentials

Proof of Proposition A.1. We first state some important properties of solutions
(f,g) to the dual problem (A.29). Please note that these results hold under the
assumption that (X, d) is a compact metric space, endowed with a ground cost
function C : X x X — R that is x-Lipschitz with respect to both of its input
variables.

The existence of an optimal pair (f, g) of potentials that reaches the maximal
value of the dual objective is a standard result for entropic OT. It can be proved
using the contractance of the Sinkhorn map 7', defined in (A.32), for the Hilbert
projective metric (Franklin and Lorenz, 1989).

While optimal potentials are only defined (a, 5)-a.e., as highlighted in Propo-
sition A.1, they are extended to the whole domain X' by imposing, similarly to
the classical theory of OT (Santambrogio, 2015, Remark 1.13), that they satisty:

f=T(,9) and g=T(a,f), (A.65)
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with T" defined in (A.32). We thus assume in the following that this condition
holds. The propositions below study the uniqueness and the smoothness (with
respect to the spacial position and with respect to the input measures) of these
functions (f, g) defined on the whole space.

Proposition A.11 (Uniqueness of the dual potentials up to an additive con-
stant). Let (fo, go) and (f1, g1) be two optimal pairs of dual potentials for a problem
OTc(«, B) that satisfy (A.65). Then, there exists a constant K € R such that:

fo=hH+K and go=g — K. (A.66)
Proof. Fort € [0, 1], let us define fy = fo+t(f1 — fo), gt = go +t(g1 — go) and:

e(t) =(a, fi) + (B, gt) —ela@Bexp (L (fidg —C)) — 1),  (A.67)

the value of the dual objective between the two optimal pairs. As ¢ is a concave

function bounded above by ¢(0) = (1) = OT. (e, B), it is constant with respect
to t. Hence, for all ¢ in [0, 1],

0= (1) (A.68)

= —tla@ B, VIO (i = fo) @ (91 = 90))?) - (A.69)

This is only possible if, @ ® S-a.e. in (z,y),

(f1(2) = folx) + 61(y) — go(y))* =0, (A.70)

1.e. there exists a constant X € R such that:

fi(x) = fo(zr) =+K a-ae. (A.71)
91(y) —go(y) = —K  f-ae. (A.72)

As we extend the potentials through (A.65), the SoftMin operator commutes with
the addition of K (A.63) and lets our result hold on the whole feature space. [

Proposition A.12 (Lipschitz property). The optimal potentials (f, g) of the dual
problem (A.29) are both k-Lipschitz functions on the feature space (X, d), where K is
the Lipschitz constant of C.

Proof. According to (A.65), f is a SoftMin combination of x-Lipschitz functions
of the variable z; using the algebraic properties of the SoftMin operator detailed
in (A.62-A.63), one can thus show that f is a x-Lipschitz function on the feature
space. The same argument holds for g. O
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Proposition A.13 (The dual potentials vary continuously with the input mea-
sures). Let o, — avand (B, — [3 be weakly converging sequences of measures in
M (X). Given some arbitrary anchor point x, € X, let us denote by (fn, gn) the
(unique) sequence of optimal potentials for OT(au,, Br) such that f,(z,) = 0.

Then, f,, and g,, converge uniformly towards the unique pair of optimal potentials
(f,g) for OT.(«, B) such that f(x,) = 0. Up to the value at the anchor point x,, we
thus have that:

(an = a, By — B) = (fo =y fg, =gy (A73)

Proof. For all n in N, the potentials f,, and g,, are x-Lipschitz functions on the
compact, bounded set X. As f,,(z,) is set to zero, we can bound | f,,| on X’ by
r times the diameter of X'; combining this with (A.65), we can then produce a
uniform bound on both f,, and g,,: there exists a constant M € R such that:

VneNVre X, —M < fr(z), gn(z) < +M . (A.74)

Being equicontinuous and uniformly bounded on the compact set X, the
sequence (fn, gn)n satisfies the hypotheses of the Ascoli-Arzela theorem: there
exists a subsequence (fy, , gn, )k that converges uniformly towards a pair (f, g) of
continuous functions. As k tends to infinity, we see that f(z,) = 0 and, using
the continuity of the SoftMin operator (Proposition A.10) on the optimality
equations (A.31), we show that (f, g) is an optimal pair for OT.(, 3).

Now, according to Proposition A.11, such a limit pair of optimal poten-
tials (f, g) is unigue. (fn, gn)n is thus a compact sequence with a single possible
adherence value: it has to converge, uniformly, towards (f, g). O

A.4.2 Differentiability of the OT. loss

Proof of Proposition A.2. This demonstration is inspired by (Santambrogio,
2015, Proposition 7.17). Let us consider some measures «, /3, variations da,
9/ and times ¢ in a neighborhood of 0, as in the statement above. We define
ar = a+tda, B = B+ td and denote by A, the variation ratio given by:

w OTe(or, ) — OT(a, )
: |

Using the very definition of OT and the continuity property of Proposition A.13,
we now provide lower and upper bounds on A as ¢ goes to 0.

Ay

(A.75)

Weak-x continuity. As written in (A.34), OT.(«, 3) can be computed through
a straightforward, continuous expression that does not depend on the value of the
optimal dual potentials (f, g) at the anchor point z,:

OTe(, ) = (o, /) + (B, 9) - (A.76)
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Combining this equation with Proposition A.13 (that guarantees the uniform
convergence of potentials for weakly converging sequences of probability mea-
sures) allows us to show that OT. is continuous with respect to the convergence
in law.

Lower bound. First, let us remark that (f, g) is a suboptimal pair of dual potentials
for OT.(ay, B¢). Hence,
OTe(aw, Br) = (au, f) + (Br, 9) — elaw ® Broexp (2(f @ g — C)) = 1) (A77)

and thus, since:

OT:(a, 8) = (a, ) + (B, 9) —ela @ B,exp(;(f &g~ C)) — 1), (A78)

one has:

Ay = (da, f) + (05, 9) (A.79)
—e(da® B+ a®dpexp(E(f®g—C)))+o(1)
2 (0o, f —e) +(6B,9 —¢€) +o(1), (A.80)

since g and f satisfy the optimality equations (A.31).

Upper bound. Conversely, let us denote by (g:, f;) the optimal pair of potentials
for OT.(av, Bt) satisfying g(z,) = 0 for some arbitrary anchor point z, € X.
As (ft, g) are suboptimal potentials for OT,(a, ), we get that:

OT:(a, 8) > (a, fy) + (B, 90) — la® Byexp (;(fr @ g: — C)) — 1) (A.81)

and thus, since:

OT.(cu, Bt) = (ou, fr) + (Be, gt) — elou @ By exp(2(fr & g — C)) — 1), (A.82)

we can show that:

A1‘, < <(SO£, ft> + <5ﬁagt> (A83)
—e(6a ® B + ar ® 683, exp(2(fi ® g — C))) + o(1)
< (o, fe —e) + (08,9t —€) +o(1) . (A.84)

Conclusion. Now, let us remark that as ¢ goes to 0:
a+tdha — o and B+téis—p. (A.85)

Thanks to Proposition A.13, we thus know that f; and g, converge uniformly
towards f and g. Combining the lower and upper bound, we get:

A¢ =% (Sa, f — ) + (08,9 — &) = (ba, f) + (3B.9) , (4.86)

since dcv and 3 both have an overall mass that sums up to zero. Otherwise said,
f and g are the gradients of OT.(«, 3) with respect to o and /3. O
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A.4.3 Function-measure change of variable

Proof of Proposition A.3. The definition of OT.(«, ) is that:

OT.(a,a) = (f,gl)Té%}((XP(a’ f4+9) —ela®a,e/®0k_1)  (A.87)

Reduction of the problem. Thanks to the symmetry of this concave problem
with respect to the variables f and g, we know that there exists a pair (f, g = f)
of optimal potentials on the diagonal, and:

OT.(a,0) = max 2(a, f) — ela ® a, eSO/ 1) (A.88)
fec(x)

Thanks to the density of continuous functions in the set of simple measurable
functions, just as in the proof of Proposition A.7, we show that this maximization
can be done in the full set of measurable functions F, (X, R):

OT. = 2 - (fof-C/e _q A.89
(o, @) pelmax (a,f) —ela®a,e ) (A.89)
= jomax 2(a, f) —e(exp(f/e)a, k- *exp(f/e)a) + ¢, (A.90)

where x denotes the smoothing (convolution) operator defined through:

ks pl(@) = [ kla.y) duty) (A91)
fork € C(X x X) and p € MT(X), as discussed in detail in Section 3.1.3.

Optimizing on measures. Through a change of variables:

w=-exp(f/e)a Le. f=c¢log S—Z , (A.92)

keeping in mind that « is a probability measure, we then get that:

- dpy
OT.(a,a) = 5M6M+(I£1{z)z7§<<u<<02<a, log 3&) — (p, ke % p) + 1 (A.93)
—30Te(a,0) = ¢ min (o, log @) + (ke xp) — 5, (A94)

PEMT(X),akp<a

where we optimize on positive measures u € M™T(X) such that @ < p and
n <L a.



194 Appendix A Detailed proofs on entropic optimal transport

Expansion of the problem. As k.(x,y) = exp(—C(z,y)/¢) is positive for all x
and y in X, we can remove the y < « constraint from the optimization problem:

1 : da 1 1
—:0T. (o, ) = min a,log §%) + 5 ol ke x n) — 5 . A.95
2 6( ’ ) Eu€M+(i\’),a<<,u< 1208 d“> 2< e > 2 ( )

Indeed, restricting a positive measure j to the support of « lowers the right-hand
term (f, k- * ) without having any influence on the density of a with respect
to p. Finally, let us remark that the o < 1 constraint is already encoded in the
log 92 operator, which blows up to infinity if o has no density with respect to 1;
all in all, we thus have:

F.(a) = —30T. (o, a) (A.96)
_ ; da 1 _1
= speﬂl*‘n(é’()@é’ log du> +3 (11 e % p1) 2 (A.97)

which is the desired result.

Existence of the optimal measure . In the expression above, the existence of
an optimal p is given as a consequence of the well-known fact from OT theory
that optimal dual potentials f and g exist, so that the dual OT problem (A.29)
is a max and not a mere supremum. Nevertheless, since this property of F is
key to the metrization of the convergence in law by Sinkhorn divergences, let us
endow it with a direct, alternative proof:

Proposition A.14. For any a € M{ (X)), assuming that X is compact, there exists
a unique o, € M (X) such that:

F.(a) = ¢ [{a,log (ﬂ%) + S o ke * pa) — 21 (A.98)
Moreover, @ < g < .

Proof. Notice that for (o, ) € M7 (X) x MT(X),

def.

Ee(a, 1) = (a,log §%) + 5 (i, ke * o) (A.99)

= KL(a,p1) + (o —p, 1) + Ll — 3. (A.100)

Since C is bounded on the compact set X x X and « is a probability measure,
we can already say that:

1F.(a) < Be(o,a) — 3 = 3(a®q, e=C/ey - 3 <+4oo. (A.101)
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Upper bound on the mass of 1. Since X x X is compact and k.(x,y) > 0, there
exists ) > 0 such that k(z,y) > n for all z and y in X'. We thus get:

el = (s 1)%n (A.102)

and show that:
Ec(a,p) = (o—p 1) + Sluli -3 (A.103)
> (p, 1) ((, g — 1) — 5. (A.104)

As we build a minimizing sequence (i) for F.(«), we can thus assume that
(tn, 1) is uniformly bounded by some constant M > 0.

Weak continuity. Crucially, the Banach-Alaoglu theorem asserts that:
{ne M (X) | (p, 1) <M} (A.105)

is weakly compact; we can thus extract a weakly converging subsequence i, —
oo from the minimizing sequence (i,). Using Proposition A.8 and the fact
that k. is continuous on X x X, we show that u — E. (o, i) is a weakly lower
semi-continuous function: e = po realizes the minimum of E. and we get our
existence result.

Uniqueness. We assumed that our kernel k. is positive universal. The squared
norm ju — ||u||7, is thus a strictly convex functional and using Proposition A.6,
we can show that p — E. (o, ) is strictly convex. This ensures that (1, is uniquely

defined. 0

A.4.4 Concavity of OT.(«, ) on the diagonal

Proof of Proposition A.4. Let us take a pair of measures ag # a1 in M| (X),
and t € (0,1); according to Proposition A.14, there exists a pair of measures /i,
w1 in MT(X) such that

(1 —t)Fe(ao) +tFe(an) = e (1 —t) Ec(aw, po) + et Ec(a, p1) (A.106)
>eBE((1—t)ap+tar, (1 —1t)po+tu) (A.107)
>F(1-t)ap+tag), (A.108)

which is enough to conclude. To show the strict inequality, let us remark that:

(1 —t) Ec(vo, pt0) + t Ec(a, 1) (A.109)
=E((1—t)ap+tar, (I —1t)uy+tu)
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would imply that p1g = p1, since pu — || |7 is strictly convex. As a — KL(av, )
is strictly convex on the set of measures « that are absolutely continuous with
respect to 3, we would then have a9 = a1 and a contradiction with our first
hypothesis. O

A.4.5 Metrization of the convergence in law

The regularized OT cost is weakly continuous, and the uniform convergence for
dual potentials ensures that H, and S, are both continuous too. Paired with (A.9),
this property guarantees the convergence towards 0 of the Hausdorff and Sinkhorn
divergences, as soon as a,, — a.

Conversely, let us assume that S; (v, ) — 0 (resp. He(ap, «)). Any weak
limit «v,, of a subsequence () 1s equal to a: since our divergence is weakly
continuous, we have Sc (o, , ) = 0 (resp. Hc (o, ), and positive definite-
ness holds through (A.9).

In the meantime, since X" is compact, the set of probability Radon measures
M (X) is sequentially compact for the weak-x topology. a, is thus a compact
sequence with a unique adherence value: it converges, towards a. O
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