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LONG-TIME DERIVATION AT EQUILIBRIUM OF THE FLUCTUATING

BOLTZMANN EQUATION

THIERRY BODINEAU, ISABELLE GALLAGHER, LAURE SAINT-RAYMOND, SERGIO SIMONELLA

Abstract. We study a hard sphere gas at equilibrium, and prove that in the low density
limit, the fluctuations converge to a Gaussian process governed by the fluctuating Boltzmann
equation. This result holds for arbitrarily long times. The method of proof builds upon the
weak convergence method introduced in the companion paper [8] which is improved by
considering clusters of pseudo-trajectories as in [7].

1. Introduction

In this paper, we prove that dynamical fluctuations in the empirical measure of a hard
sphere gas at equilibrium are governed, in the low density limit (Boltzmann-Grad limit), by
the fluctuating Boltzmann equation, and this for arbitrarily long kinetic times. In particular,
we show that the limiting process is Gaussian. The fluctuating equation is a stochastic equa-
tion given by a linearized Boltzmann collision operator, forced by a Gaussian noise, white in
space and time, whose structure can be predicted by a fluctuation-dissipation argument [33].

The convergence of the covariance of the fluctuations was proved for short times in [2]
and extended to non-equilibrium states in [31]. Moreover, the Gaussian character of the
limiting field and the fluctuating equation were conjectured in [14, 31, 32]. This conjecture
was reconsidered and proved to be true in [6, 7], where the convergence of the full fluctuation
process was obtained by using cumulant techniques, away from equilibrium, together with
(much stronger) large deviation bounds.

All these results are severely limited to a small interval of time, exactly in the same way
as for the validity of the nonlinear Boltzmann equation, as proved in [24]. This short time
limitation was removed first for the covariance of the fluctuation field in [4], in the case of
a two-dimensional gas of hard disks at equilibrium. The limiting covariance is governed by
the Boltzmann equation, linearized around the Maxwellian distribution. In the companion
paper [8], a more robust weak convergence method was introduced: taking advantage of the
invariant measure, we discarded atypical dynamics (preventing the convergence) by localizing
pathological behaviors and using a time decoupling. This allows to extend the previous result
to arbitrary dimensions. The present paper elaborates upon the same strategy: we study the
higher order moments of the fluctuation field and prove that they asymptotically factorize
according to Gaussian rules.

1.1. The model. We consider here exactly the same setting as in [8], of which we recall
the notations. The microscopic model consists of identical hard spheres of unit mass and of
diameter ε. The motion of N such hard spheres is ruled by a system of ordinary differential
equations, which are set in (Td × Rd)N where Td is the unit d-dimensional periodic box
with d ≥ 2: writing xεi ∈ Td for the position of the center of the particle labeled by i and vεi ∈ Rd
for its velocity, one has

(1.1)
dxεi
dt

= vεi ,
dvεi
dt

= 0 as long as ∣xεi (t) − xεj(t)∣ > ε for 1 ≤ i ≠ j ≤ N ,
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with specular reflection at collisions:

(1.2)
(vεi )

′ ∶= vεi −
1

ε2
(vεi − vεj) ⋅ (xεi − xεj) (xεi − xεj)

(vεj)
′ ∶= vεj +

1

ε2
(vεi − vεj) ⋅ (xεi − xεj) (xεi − xεj)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
if ∣xεi (t) − xεj(t)∣ = ε .

This flow does not cover all possible situations, as multiple collisions are excluded. But one
can show (see [1]) that for almost every admissible initial configuration (xε0i ,vε0i )1≤i≤N , there
are neither multiple collisions, nor accumulation of collision times, so that the dynamics is
globally well defined.

We will not be interested here in one specific realization of the dynamics, but rather in
a statistical description. This is achieved by introducing a measure at time 0, on the phase
space we now specify. The collections of N positions and velocities are denoted respectively
by XN ∶= (x1, . . . , xN) in TdN and VN ∶= (v1, . . . , vN) in RdN , and we set ZN ∶= (XN , VN),
with ZN = (z1, . . . , zN), zi = (xi, vi). A set of N particles is characterized by a random
variable Zε0N = (zε01 , . . . ,z

ε0
N ), zε0i = (xε0i ,vε0i ) specifying the time-zero configuration in the

phase space

(1.3) DεN ∶= {ZN ∈ (Td ×Rd)N /∀i ≠ j , ∣xi − xj ∣ > ε} ,

and an evolution according to the deterministic flow (1.1)-(1.2) (well defined with probabil-
ity 1)

t↦ ZεN(t) = (zε1(t), . . . ,zεN(t)) , t > 0 ,

with zεi (t) = (xεi (t) ,vεi (t)).
To avoid spurious correlations due to a given total number of particles, we actually consider

a grand canonical state (as in [23, 2]), living on the phase space

Dε ∶= ⋃
N≥0

DεN

(notice that DεN = ∅ for N large). This means that the total number of particles is also a
random variable, which we shall denote by N . In the low density regime, referred to as the
Boltzmann-Grad scaling, the density (average N ) is tuned by the parameter

µε ∶= ε−(d−1) ,

ensuring that the mean free path between collisions is of order one [18].
More precisely, at equilibrium the probability density of finding N particles in ZN is given

by

(1.4)
1

N !
W ε,eq
N (ZN) ∶= 1

Zε
µNε
N !

1DεN (ZN)M⊗N(VN) , for N = 0,1,2, . . .

with

M(v) ∶= 1

(2π) d2
exp (− ∣v∣2

2
) , M⊗N(VN) =

N

∏
i=1

M(vi) ,

and the partition function is given by

(1.5) Zε ∶= 1 + ∑
N≥1

µNε
N !

∫DεN
M⊗N(VN)dXN dVN = 1 + ∑

N≥1

µNε
N !

∫
TdN

(∏
i≠j

1∣xi−xj ∣>ε)dXN .

Here and below, 1A will be the characteristic function of the set A, and we will also use the
symbol 1∗ for the characteristic function of the set defined by condition ∗. Notice that, for
notational convenience, we work with functions extended to zero outside DεN .
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In the following, the probability of an event A with respect to the equilibrium measure (1.4)
will be denoted Peq

ε (A), and Eeq
ε will be the expected value. Definition (1.4) ensures that

µ−1
ε Eeq

ε (N )→ 1

as µε →∞, as required.

1.2. State of the art. Consider the empirical density of the hard-sphere model:

(1.6) πεt ∶=
1

µε

N
∑
i=1

δzεi (t) .

Under the initial grand canonical measure

(1.7)
1

Zε(f0)
µNε
N !

1DεN (ZN) (f0)⊗N(ZN) , for N = 0,1,2, . . .

where f0 is a smooth and fast (Gaussian) decaying density and Zε(f0) the corresponding
partition function, it has been proved by Lanford in [24] that, in the Boltzmann-Grad limit
µε →∞, πεt concentrates on the solution of the Boltzmann equation
(1.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tf + v ⋅ ∇xf =∫
Rd
∫
Sd−1

(f(t, x,w′)f(t, x, v′) − f(t, x,w)f(t, x, v))((v −w) ⋅ ω)+ dω dw ,

f(0, x, v) = f0(x, v)

where the precollisional velocities (v′,w′) are defined by the scattering law

(1.9) v′ ∶= v − ((v −w) ⋅ ω)ω , w′ ∶= w + ((v −w) ⋅ ω)ω .

More precisely, there exists a short time TL > 0 depending only on f0, such that for any test
function h ∶ Td ×Rd → R and any δ > 0, t ∈ [0, TL],

(1.10) Pε (∣πεt (h) − ∫Td×Rd
dzf(t, z)h(z)∣ > δ)ÐÐÐ→

µε→∞
0 ,

which can be interpreted as a law of large numbers; see e.g. [20, 33, 12, 15, 28, 13, 5, 16, 17].

Using the invariance of the equilibrium measure (1.4), it is not hard to see that in our
setting πεt concentrates on M, which is a stationary solution of the Boltzmann equation: for
any test function h ∶ Td ×Rd → R and any δ > 0, t ∈ R,

(1.11) Peq
ε (∣πεt (h) − ∫Td×Rd

dzM(v)h(z)∣ > δ)ÐÐÐ→
µε→∞

0 .

Our purpose here is to study the fluctuations of the empirical density πεt from its equilibrium
value. In this regime, the collision operator in Eq. (1.8) is expected to reduce to the linearized
operator (according to f =M + g)
(1.12)
Lg ∶= −v ⋅ ∇xg

+ ∫
Rd×Sd−1

[M(w′)g(v′) + g(w′)M(v′) −M(w)g(v) − g(w)M(v)] ((v −w) ⋅ ω)+dw dω .

Moreover, such fluctuations should be of size 1/√µ
ε
, which leads to define the fluctuation

field ζε,eq by

(1.13) ζε,eq
t (h) ∶= √

µε (πεt (h) −Eeq
ε (πεt (h))) ,

for any test function h.
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Making the analysis of (1.11) slightly more quantitative one easily proves that, for any
given t, ζε,eq

t converges in law towards a Gaussian white noise ζ with zero mean and covariance

(1.14) E(ζ(h(1))ζ(h(2))) = ∫
Td×Rd

h(1)(z)h(2)(z)M(v)dz .

Much more interesting is the analysis of time-correlations, i.e. of time-dependent products
such as Eeq

ε (ζε,eq
t (h(1))ζε,eq

0 (h(2))), which involves an accurate understanding of the colli-
sional processes in the hard-sphere dynamics. A local-in-time result for the covariance of the
fluctuation field was obtained in [2], by a direct application of the method of [24] (as discussed
below, this was extended in [4] and [8] to large times close to equilibrium). The techniques
of dynamical clusters introduced in [7] allowed then to extend this short time convergence to
moments of arbitrary order, as well as to establish the tightness property of the fluctuation
process (see also [6] for a less technical presentation of this method).

Recall that (1.12) is well-defined in L2. We also introduce

L2
M ∶= {g ∶ Td ×Rd → R , ∥g∥L2

M
∶= (∫

Td×Rd
∣g∣2Mdxdv)

1
2 <∞}

and the Hilbert space indexed by k ∈ Z

Hk ∶= {g ∶ Td ×Rd → R , ∥g∥Hk ∶= ∥(Id −∆v + ∣v∣2 −∆x)kg∥L2
M

<∞} .

Theorem 1.1 (Short time convergence of the fluctuating field, [2, 7]). Consider a
system of hard spheres at equilibrium in a d-dimensional periodic box with d ≥ 2. There exists
a time T ⋆ > 0 such that, in the Boltzmann-Grad limit µε →∞, the following properties hold
true.

(a) Let g0 and h be two functions in L2
M. The covariance of the fluctuation field (ζε,eq

t )t∈[0,T ⋆]
converges:

(1.15) Eeq
ε [ζε,eq

0 (g0) ζε,eq
t (h)]→ ∫ M g(t)hdxdv ,

where Mg is the solution of the linearized Boltzmann equation ∂tMg = LMg, with g∣t=0 = g0.

(b) There exists k > 0 such that the family of processes (ζε,eq
t )t∈[0,T ⋆] is tight in the Sko-

rokhod space D ([0, T ⋆],H−k). More precisely,

(1.16)

lim
δ→0+

lim
µε→∞

Peq
ε [ sup

∣s−t∣≤δ

s,t∈[0,T⋆]

∥ζε,eq
t − ζε,eq

s ∥−k ≥ δ
′] = 0 , ∀δ′ > 0 ,

lim
A→∞

lim
µε→∞

Peq
ε [ sup

t∈[0,T ⋆]
∥ζε,eq
t ∥−k ≥ A] = 0 .

(c) The fluctuation field (ζε,eq
t )t∈[0,T ⋆] converges in law to the (weak) solution of the fluc-

tuating Boltzmann equation

(1.17) dζt = L ζt dt + dηt ,
with initial datum (1.14), where dηt(x, v) is a stationary Gaussian noise.

The noise in the above equation is explicitly characterized (see [32]). It has zero mean and
covariance (for all T > 0)

(1.18)
E(∫

T

0
dt1∫ dz1h

(1)(z1)ηt1(z1)∫
T

0
dt2∫ dz2 h

(2)(z2)ηt2(z2))

= 1

2
∫

T

0
dt∫ dµ(z1, z2, ω)M(v1)M(v2)∆h(1) ∆h(2)

denoting
dµ(z1, z2, ω) ∶= δx1−x2 ((v1 − v2) ⋅ ω)+dω dv1 dv2dx1dx2
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and defining for any h

∆h(z1, z2, ω) ∶= h(z′1) + h(z′2) − h(z1) − h(z2) ,
where z′i ∶= (xi, v′i) with notation (1.9) for the velocities obtained upon scattering. Note that
this noise is white in time and space, but correlated in velocities.

Weak solutions of Eq. (1.17) have been discussed in [7]. They are martingale solutions
defined according to a classical procedure [19].

Remark 1.1. Theorem 1.1 has been generalized out of equilibrium (see [31] for part (a) and [7]
for parts (b)-(c)) for initial measures of type (1.7). The fluctuation field is still defined by
Eq. (1.13). The fluctuating Boltzmann equation is the linearized Boltzmann equation around
the solution f(t) of the Boltzmann equation with initial datum f0, forced by a noise with a
time-dependent covariance of the form (1.18), with M replaced by f(t).

For more discussions on physical aspects of the fluctuation theory at low density, and on
related mathematical results, we refer to [14, 22, 25, 29, 31, 32] (see also [7] and the references
therein).

Using the invariant measure, it was shown in [4] in two space dimensions, and [8] in higher
dimensions, that the convergence result (1.15) actually holds for all times.

Theorem 1.2 (Long time convergence of the fluctuating field, [8] ). Consider a system
of hard spheres at equilibrium in a d-dimensional periodic box with d ≥ 3. Let g0 and h be
two functions in L2

M. Then in the Boltzmann-Grad limit µε → ∞, the covariance of the
fluctuation field (ζε,eq

t )t≥0 converges for all times

∀t ≥ 0 , Eeq
ε [ζε,eq

0 (g0) ζε,eq
t (h)]→ ∫ M g(t)hdxdv ,

where Mg is the solution of the linearized Boltzmann equation ∂tMg = LMg, with g∣t=0 = g0.

1.3. Statement of the result. Our goal in this paper is to build upon the techniques
introduced in [8] to extend the validity of Theorem 1.1 to arbitrarily large times. To reach
longer time scales, we devise a method of proof different from the one in [7]: we actually
combine the cumulant technique of [7] (controlling locally the small correlations induced by
the hard-sphere dynamics) with the weak convergence method introduced in [8], allowing to
make an efficient use of the invariant measure and thus providing the long time convergence
of the covariance of the fluctuation field.

We remark preliminarily, that at equilibrium, the tightness property (1.16) can be readily
generalized to arbitrary times. Indeed splitting an arbitrary time interval [0,Θ] into subin-
tervals of length T ⋆, using a union bound and the time invariance of the equilibrium measure,
we get

Peq
ε [ sup

∣s−t∣≤δ
s,t∈[0,Θ]

∥ζε,eq
t − ζε,eq

s ∥−k ≥ δ
′] ≤ 2

Θ

T ⋆
Peq
ε [ sup

∣s−t∣≤δ

s,t∈[0,T⋆]

∥ζε,eq
t − ζε,eq

s ∥−k ≥ δ
′] .(1.19)

Thus the short time fluctuations in [0,Θ] can be controlled by (1.16), and the same is true
for the norm ∥⋅∥−k of the field.

Our goal here is thus to extend the result (c) of Theorem 1.1, and this will be done by
going one step further in the weak convergence method of [8] looking at clusters of trajectories
to identify the fluctuation structure, and to combine it with a suitable iteration procedure,
allowing to extend the convergence result (1.15) to moments of the fluctuation field of or-
der P > 2. We shall prove that such moments are vanishing for P odd, and converging to sums
of products of covariances for P even, in agreement with the Wick rule. This, together with
the tightness property, will imply the convergence to the fluctuating Boltzmann equation.
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Theorem 1.3 (Long time convergence of the fluctuating field). Consider a system
of hard spheres at equilibrium in a d-dimensional periodic box with d ≥ 3. Then, in the
Boltzmann-Grad limit µε → ∞, the fluctuation field (ζε,eq

t )t≥0 converges in law for all times
to the solution of the fluctuating Boltzmann equation

(1.20) dζt = L ζt dt + dηt ,

with initial datum (1.14).

Remark 1.2. For simplicity we have chosen to state and prove the result in dimension d ≥
3 only: the geometric arguments needed to control pathological trajectories require indeed
a specific treatment in the case of two space dimensions and we prefer to leave out these
additional technicalities in this paper.

Remark 1.3. The moments of the fluctuation field remain actually under control on time
intervals with size diverging slowly with ε, as O( log log ∣ log ε∣), as will be made clear by the
quantitative convergence estimate in Proposition 2.1. Note that in this regime the hydrody-
namical limit holds true as shown in [4]. The derivation of the fluctuating hydrodynamics of
a Boltzmann gas is the subject of the third companion paper [9] (see also Chapter 7 of [33]
for the general structure of the fluctuation theory).

The proof of Theorem 1.3 requires several iterative steps, involving different time scales. A
generalized fluctuation structure will first be obtained on a very small time scale δ in Section 3,
and iterated to reach intermediate (small, of size τ) and macroscopic times in Sections 4 and
5. This requires in particular an elimination of small remainder terms encoding unlikely
events, namely recollisions at scale δ and superexponential growth at scale τ . The main term
of the iteration will be finally shown to converge to a Gaussian pairing in Section 6.

This intricated time sampling will be discussed first informally in Section 2 : we will
see that at each time scale, remainders of very different nature are identified. It will be
very important that all these remainders share a structure of products of fluctuation fields
(as defined in (3.23)), for which we can establish general estimates on the expectation and
covariance (see Sections 7-8).

2. Elements of strategy

The aim of this section is to provide an informal description of the procedure necessary to
extend a convergence result of type (1.15), to arbitrary moments

(2.1) Iε,eq
P ∶= Eeq

ε

⎡⎢⎢⎢⎢⎣

P

∏
p=1

ζε,eq
θp

(h(p))
⎤⎥⎥⎥⎥⎦
, P ≥ 3 ,

where (θ1, . . . , θP ) is a collection of times with 0 = θ1 ≤ θ2 ≤ ⋅ ⋅ ⋅ ≤ θP =∶ Θ , and (h(1), . . . , h(P ))
a collection of test functions. We shall restrict to L∞ test functions from now on.

Our main result is the following. Here and in what follows we use the notation A ≪ 1 to
indicate that A goes to zero when µε goes to infinity.

Proposition 2.1. For any P ≥ 2, denote by Spairs
P the set of partitions of {1, . . . , P} made

only of pairs. Then asymptotically when µε →∞, the moments are determined by the covari-
ances, in the following sense: for Θ ≥ 1 and τ > 0 satisfying

(2.2) Θ3(P−1)τ ≪ 1 and Θ/ (τ log ∣ log ε∣) ≪ 1,
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there holds uniformly in θ1, . . . θP ∈ [0,Θ]

(2.3)

RRRRRRRRRRRRRR
Eeq
ε

⎡⎢⎢⎢⎢⎣

P

∏
p=1

ζε,eq
θp

(h(p))
⎤⎥⎥⎥⎥⎦
− ∑
η∈Spairs

P

∏
{i,j}∈η

Eeq
ε [ζε,eq

θi
(h(i)) ζε,eq

θj
(h(j))]

RRRRRRRRRRRRRR

≤ (
P

∏
p=1

∥h(p)∥L∞)(CP τ1/2Θ(2P−1)/2 + (CPΘ)2Θ/τ

ε1/8d)

for some constant CP depending only on P . Notice that if P is odd then Spairs
P is empty and

the product of moments is asymptotically 0.

As the limit of the covariance has been computed in Theorem 1.1 and extended to the
time interval [0,Θ] in [8], Proposition 2.1 fully determines the limiting moments which turn
out to coincide with the Gaussian moments of the solution to the fluctuating Boltzmann
equation (1.20). By the ‘Moment Method’ (see [3] Section 30, Theorem 30.1), this fully
characterizes the limiting distribution. Combined with the tightness of the process (see
(1.19) and (1.16)), this completes the proof of the convergence to the fluctuating Boltzmann
equation stated in Theorem 1.3.

2.1. The global pairing scheme. For simplicity, we will assume that all evaluation times
are different

0 = θ1 < θ2 < ⋅ ⋅ ⋅ < θP =∶ Θ .

The idea is then to design an iteration scheme decreasing the parameter P , where each
elementary step uses the weak convergence method introduced in [8], and which realizes
progressively the pairing (Wick rule), up to small remainder terms.

Let us focus on the moments Iε,eq
P defined in (2.1) and consider the first step of our

iteration procedure. Our goal is to reduce the number of evaluation times by transforming
the fluctuation at time θP into a sum of (more complicated) fluctuations at time θP−1

(2.4) Iε,eq
P = ∑

mP

Eeq
ε

⎡⎢⎢⎢⎢⎣
(
P−1

∏
p=1

ζε,eq
θp

(h(p))) ζε,eq
mP ,θP−1

(φ(P )
θP−θP−1

)
⎤⎥⎥⎥⎥⎦
,

where ζε,eq
mP ,θP−1

(φ(P )
θP−θP−1

) is a fluctuation of an observable involving mP particles at time θP−1

(the notation is defined below in (2.5)). The function φ
(P )
θP−θP−1

= φ(P )
θP−θP−1

[h(P )](ZmP ) of mP

particles is given by the elementary test function h(P ) pulled back, along the flow induced
by the Duhamel formula, during a time θP − θP−1. We refer to Section 3 below for a detailed
discussion, and focus now on the iteration procedure.

For this it is convenient to use the following extension of Definition (1.6) of the empirical
distribution: for any integer m ≥ 1, any time t and any test function Hm defined on (Td×Rd)m,
we set

πεm,t(Hm) ∶= 1

µmε
∑

(i1,...,im)
Hm(zεi1(t), . . . ,z

ε
im(t)) ,

where the symbol ∑(i1,...,im) indicates a sum over m-tuples of labels running from 1 to N
which are all mutually different (ij ≠ ik for k ≠ j). Note that πε1,t = πεt according to (1.6),

but πεm,t ≠ (πεt )⊗m for m > 1 since indices cannot be repeated. It will still be convenient to
maintain a product notation by introducing a product symbol, the so-called “⍟-product”,
which by definition takes into account non-repeated indices, so that we can write

πεm,t = (πεt )⍟m .
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Finally we introduce the shorthand notation

Eeq
ε [Hm] ∶= Eeq

ε [πεm,t(Hm)] ,
and extend Definition (1.13) of the fluctuation field:

(2.5) ζε,eq
m,t (Hm) ∶= √

µε(πεm,t(Hm) −Eeq
ε [Hm]) .

Returning to (2.4) let us consider the product

ζε,eq
θP−1

(h(P−1))ζε,eq
mP ,θP−1

(φ(P )
θP−θP−1

)
and look at the repeated indices to decompose it into two contributions, with the above
notation:

● a “⍟-product”, which by definition takes into account the non-repeated indices,

ζε,eq
θP−1

(h(P−1))⍟ ζε,eq
mP ,θP−1

(φ(P )
θP−θP−1

)

= µε (
1

µε
∑h(P−1) −Eeq

ε [h(P−1)])⍟ ( 1

µmPε
∑φ

(P )
θP−θP−1

−Eeq
ε [φ(P )

θP−θP−1
])

∶= µεπεmP+1,θP−1
(h(P−1) ⊗ φ(P )

θP−θP−1
) + µεEeq

ε [h(P−1)]Eeq
ε [φ(P )

θP−θP−1
]

− µεEeq
ε [h(P−1)]πεmP ,θP−1

(φ(P )
θP−θP−1

) − µεπεθP−1
(h(P−1))Eeq

ε [φ(P )
θP−θP−1

]
which will be a new fluctuation to be analyzed at time θP−1;

● a “contracted product”

πεmP ,θP−1
(ψ(P,P−1)) , with ψ(P,P−1) ∶= φ(P )

θP−θP−1
(ZmP )

mP

∑
j=1

h(P−1)(zj) ,

which will essentially decouple from the rest of the weight and sum up to give the
covariance

Eeq
ε [ζε,eq

θP−1
(h(P−1))ζε,eq

θP
(h(P ))] = ∑

mP

Eeq
ε [πεmP ,θP−1

(ψ(P,P−1))] + o(1) .

We obtain

Iε,eq
P =∑

mP

Eeq
ε

⎡⎢⎢⎢⎢⎣
(
P−2

∏
p=1

ζε,eq
θp

(h(p))) ζε,eq
θP−1

(h(P−1))⍟ζε,eq
mP ,θP−1

(φ(P )
θP−θP−1

)
⎤⎥⎥⎥⎥⎦

+Eeq
ε [ζε,eq

θP−1
(h(P−1))ζε,eq

θP
(h(P ))]Iε,eq

P−2 + o(1) .
From the above discussion, one can guess the structure for the general term to be iterated

at time θp

(2.6) ∏
{j,j′}∈ρ

Eeq
ε [ζε,eq

θj
(h(j))ζε,eq

θj′
(h(j′))] ×∑

M

Eeq
ε

⎡⎢⎢⎢⎣
(∏
u<p

ζε,eq
θu

(h(u))) ⍟
i∈B

ζε,eq
mi,θp

(φ(i)
θi−θp)

⎤⎥⎥⎥⎦
where :

● B is a subset of {p, . . . P}, ρ is a partition of {p, . . . P} ∖B in pairs {j, j′};

● M = (mi)i∈B records the number of variables; φ
(p)
0 = h(p) and the other dual func-

tions φ
(i)
θi−θp have been pulled back from h(i) : each φ

(i)
θi−θp is a function of mi variables

containing the information on the backward transport of h(i) on [θp, θi];
● the ⍟-product is defined as previously by avoiding repeated indices

(2.7) ⍟
i∈B

ζε,eq
mi,θp

(φ(i)
θi−θp) ∶= µ

∣B∣/2
ε ∑

A⊂B
πεMA,θp

(⊗
i∈A

φ
(i)
θi−θp) ∏

j∈B∖A
Eeq
ε [−φ(j)

θj−θp]

where MA ∶= ∑i∈Ami.
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As before, the fluctuation at time θp is first transformed into a sum of fluctuations at time θp−1,
so that (2.6) can be rewritten :
(2.8)

∏
{j,j′}∈ρ

Eeq
ε [ζε,eq

θj
(h(j))ζε,eq

θj′
(h(j′))] × ∑

M,N

Eeq
ε

⎡⎢⎢⎢⎣
(∏
u<p

ζε,eq
θu

(h(u))) ⍟
i∈B

ζε,eq
mi+ni,θp−1

(φ(i)
θi−θp−1

)
⎤⎥⎥⎥⎦

where N = (ni)i∈B records the number of particles added when pulling back further the test
functions indexed by i ∈ B during the time interval [θp−1, θp]. Then (by looking at repeated
indices), either p−1 is added to B, or an element of B is randomly chosen and paired with p−1,
adding a new pair in ρ. Finally going back down to p = 1, the dominant term turns out to

correspond to B = ∅ and ρ ∈ Spairs
P , describing all possible pairings of the fluctuation fields

in (2.3).

2.2. The pullback of test functions on a time δ ≪ 1. By definition, the “block” φ
(i)
θi−θp

will be obtained by pulling back h(i) according to a Duhamel series on [θp, θi]. We shall see

that a proper definition of φ
(i)
θi−θp requires to describe all possible forward-in-time dynamics

starting from a configuration Zmi at time θp, respecting suitable connection constraints. We
encounter here a first difficulty due to an uncontrolled number of collisions in this forward
dynamics. This issue appears already in the study of the covariance in [8] (Iε,eq

2 with the
above notation), where we showed that the construction of dual functions is efficient if one
performs a conditioning of the invariant measure: this conditioning ensures that all micro-
scopic configurations have a controlled dynamical behaviour on an elementary time step of
size δ, with ε≪ δ ≪ 1.

Given an integer γ ∈ N, we call microscopic cluster of size γ a set G of γ particle configu-
rations in Td ×Rd such that (z, z′) ∈ G × G if and only if there are z1 = z, z2, . . . , z` = z′ in G
such that

∣xi − xi+1∣ ≤ 3
√
γVδ , ∀1 ≤ i ≤ ` − 1 ,

where V ∈ R+ is related to an energy truncation. To fix ideas, we choose from now on the
microscopic time scale δ, the intermediate time scale τ , the macroscopic time Θ, the energy
cut-off V and the size of the cluster γ as follows:

(2.9) ε≪ δ ≪ τ ≪ 1 ≪ Θ = O (log log ∣ log ε∣) , γ = 4d , V = ∣ log ε∣ , δ = ε1− 1
2d .

Definition 2.2. Given γ ∈ N, we define the set Υε
N as the set of initial configurations Zε0N

in DεN such that for any p ∈ {2, . . . , P} and integers k, r such that 1 ≤ k ≤ (θp − θp−1)/τ
and r ∈ [0, τ/δ], the configuration at time θp − (k − 1)τ − rδ satisfies

∀1 ≤ j ≤ N , ∣vj ∣ ≤ V ,
and any microscopic cluster of particles is of size at most γ.

On each elementary step, the hard sphere system will be shown to behave in essence
as a collection of independent clusters of small size, and in particular the total number of
collisions is under control. Note also that with the previous choices (2.9) of parameters, the
conditioning by Υε

N is typical in the sense that the complement satisfies

(2.10) Peq
ε (cΥε

N ) ≤ Θεd .

We refer to [8, Section 6.1] for the proof of this result.

In the following, we shall mostly restrict our estimates to the sets Υε
N , so it is useful to

introduce the following notation: the probability of an event A with respect to the (unnor-
malized) conditioned measure is denoted by Pε(A)

Pε (A) ∶= Peq
ε (Υε

N)Peq
ε (A ∣ Υε

N ) ∶= Peq
ε (Υε

N ∩A) ,
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and Eε is the corresponding expected value. The moments of the fluctuation field under such
conditioning are written

IεP ∶= Eε
⎡⎢⎢⎢⎢⎣

P

∏
p=1

ζεθp(h
(p))

⎤⎥⎥⎥⎥⎦
where ζε is the non-centered field defined by

ζεt (h) ∶=
√
µε (πεt (h) −Eε(πεt (h))) .

Furthermore we use the notation

Eε[Hm] ∶= Eε[πεm,t(Hm)] ,

and

(2.11) ζεm,t(Hm) ∶= √
µε(πεm,t(Hm) −Eε[Hm]) .

For future convenience we notice that

(2.12) ζεm,t(Hm) = ζε,eq
m,t (Hm) +√

µεEeq
ε [1cΥεN π

ε
m,t(Hm)] .

The pairing mechanism described in Section 2.1 will be achieved with IεP rather than Iε,eq
P ,

and the difference between IεP and Iε,eq
P will be shown to be of subleading order in (2.3),

thanks to the estimate (2.10) (see Proposition 2.3 below).
The conditioning ensures that the pullback of the test functions can be performed effi-

ciently, on very small time intervals of size δ = O(ε1−1/2d) (see Section 3). Each pullback
will involve combinatorial factors, counting the number of trajectories compatible with a
given Zmi , which cannot be iterated O(1/δ) times without leading to strong divergences.
The idea is therefore to iterate only the principal terms, removing at each time step O(δ) all
“non minimal correlations”, up to reaching an intermediate time scale τ such that δ ≪ τ ≪ 1
(see Section 4).

2.3. The factorization defect on a time τ ≫ δ. The second difficulty is that the pullback
does not preserve exactly the factorized structure

Eε
⎡⎢⎢⎢⎣
(∏
u<p

ζεθu(h
(u)))⍟

i∈B
ζεmi,θp(φ

(i)
θi−θp)

⎤⎥⎥⎥⎦
≠∑

N

Eε
⎡⎢⎢⎢⎣
(∏
u<p

ζεθu(h
(u)))⍟

i∈B
ζεmi+ni,θp−1

(φ(i)
θi−θp−1

)
⎤⎥⎥⎥⎦
.

Let us start from an observable which is a product of blocks

(2.13) ΦM(ZM) ∶=∏
i∈B

φ(i)(Z(j)
mi

) ,

denoting M = (mi)i∈B with mi ≥ 1. On an elementary time interval of size δ, these blocks φ(i)

are transported dynamically, which can lead to some dynamical correlations. Blocks are then
connected into “packets” according to the dynamical correlations. Then, in order to keep a
fluctuation structure, all variables have to be centered. The trivial packets containing only
one block have already the fluctuation structure so no additional term appears. The other
packets are called “clustering” since they contain at least two blocks, and their centering
provides a contribution of the expectation. The goal of Section 3 is thus to establish the
following identity, relating the fluctuation structure at time θ to that at time θ − δ (with θ
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chosen such that θ and θ − δ belong to (θp−1, θp)):

(2.14)

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))⍟

i∈B
ζεmi,θ(φ

(i))]

=∑
N

∑
η1∪η2 partition of B

η2 clustering

∏
q≤∣η2∣

µ
1− ∣η2,q ∣

2
ε Eε[φ(η2,q)

δ ]

×Eε[(
p−1

∏
u=1

ζεθu(h
(u)))( ⍟

q≤∣η1∣
µ

1
2
− ∣η1,q ∣

2
ε ζεMδ

η1,q
,θ−δ(φ

(η1,q)
δ ))] .

where M δ
η1,q

is the total number of particles in the packet η1,q at time θ − δ, and φ
(η1,q)
δ is

supported on configurations obtained by backward pseudo-trajectories forming a cluster η1,q

(in a sense to be made precise in Section 3).
It will be useful in the sequel to interpret (2.14) by the following recipe (see Figure 1

page 11): between time θ and θ − δ
● some observables are grouped into clusters by dynamical constraints, which leads to

the partition into packets η1, η2;
● observables are pulled back according to the Duhamel pseudo-trajectories compatible

with the previous clustering conditions;
● some non trivial clusters (containing at least two packets) encoded in η2 are expelled

from the fluctuation, their expectation remaining as an independent factor in the
product.

To iterate this procedure down to time θ − τ with τ = Rδ ≪ 1, we need to extend for-
mula (2.14) starting from packets and not only from blocks. We will therefore construct
iteratively on each time step [θ − rδ, θ − (r − 1)δ] for r = 1, . . . ,R a sequence of nested par-
titions ηr−1

1 ↪ ηr1 ∪ ηr2 with ηr2 corresponding to packets which are expelled from the main
factorized structure, contributing only via their expectation, and ηr1 corresponding to packets
contributing to the factorized structure via their fluctuations (see Figure 1).

η11 η12

η22η21

η31

Figure 1. At time θ, the set B contains 12 blocks. The nested partitions are
depicted and the dashed parts represent the expelled clustering cumulants.
After 3 iterations, blocks 8 to 12 (numbered from left to right) have been
expelled and the other blocks have merged into a single packet connected by
dynamical constraints.
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As assumed in (2.8) and as becomes apparent in view of the powers of µε in (2.14), we
expect that the leading order term corresponds to the single block type factorized structure,
i.e. to ∪Rr=1η

r
1 = ∅ and ηR2 is the trivial partition in singletons. However, discarding clustering

terms at each time θ − rδ (r ≤ R) would generate diverging remainders since 1/δ ≫ 1. We
will therefore need to perform the full iteration (discarding only non minimal correlations as
explained in Section 2.2) on some intermediate time scale τ ≪ 1, and then to combine all
remainders due to clusterings on [θ − τ, θ] in a rather subtle way (see Section 4) to recover
the single block type factorized structure (see Section 5). We refer to Figure 2 for a summary
of the procedure.

θp−1 θpθp − k2τ

Remove superexponential 
growths,  and high order 
cumulants (preventing 
tensor factorization)

Decompose 
products to identify 
the pairings

θp − k1τ − rδ

Remove non minimal  
collision and overlap graphs

Figure 2. Double time-sampling of the interval (θp−1, θp) into pieces of size τ
(in green) and subpieces of size δ (in red). At each time step of size δ, all
non minimal correlations are discarded; at each time step of size τ , all other
remainder terms are discarded (exponentially large collision trees, higher order
clusters). Pairings are identified at each macroscopic time step θp, θp−1, etc.

2.4. Control of the remainder terms. All the remainder terms coming from these two
samplings (at scales δ and τ) are controlled by decoupling the different times thanks to
Hölder’s inequality. This will rely on the moment estimates on the fluctuation field stated in
the following proposition.

Proposition 2.3. Let h be a function in L∞(Td × Rd). Then for all 1 ≤ p < ∞ and for ε
small enough, the moments of the fluctuation field (at equilibrium and under the conditioned
measure) are bounded:

∣Eeq
ε ((ζε,eq(h))p)∣ ≤ Cp∥h∥p∞ ,(2.15)

∣Eε((ζε(h))
p)∣ ≤ Cp∥h∥p∞ ,(2.16)

where the constant Cp > 0 depends only on p. Moreover under the assumptions of Proposi-
tion 2.3

(2.17) ∣Iε,eq
P − IεP ∣ ≤ (

P

∏
p=1

∥h(p)∥L∞)CP (Θεd)1/2

uniformly in θ1, . . . θp ∈ [0,Θ].
The standard result (2.15) can be found in Proposition A.1 from [8], from which (2.16)

and (2.17) will be derived in Section 8.
The key argument to implement the strategy is therefore to obtain estimates for the ex-

pectation and variance of ⊗ products defined by (2.7), proved in Sections 7 and 8. To derive
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these estimates it is necessary to have a precise description of the structure of the test func-

tions φ
(i)
θi−θp(Zmi). As will be made precise in Section 4, they are supported on “dynamical

clusters” of mi particles, called forward clusters below. This means that there exists a graph
with mi vertices, constructed by adding one edge each time two particles find themselves at
a distance (equal or) less than ε during the time interval [θp, θi].

θi

θp

h(i)

Figure 3. Forward cluster of φ
(i)
θi−θp associated with the pullback of h(i) dur-

ing a time θi − θp, case of mi = 5 hard spheres. The function φ(i) is supported
on a configuration Zmi such that, starting at time θp and going forward in
time, particles encounter, and are progressively removed from the dynamics,
until only one particle is left at time θi.

In particular they will be shown to satisfy roughly an estimate of type

∣φ(i)
θi−θp (Zmi)∣ ≤ C

(Cµε)mi−1

mi!
∑1Zmi forward cluster ,

where we sum over all possible forward dynamics starting from Zmi as in Figure 3. Note
that the size of the typical volume spanned by one particle in a finite time is µ−1

ε , so that
the volume of a cluster is typically µ−mi+1

ε . The 1/mi! is due to the symmetrisation by
permutation of the particle labels. This estimate in turn will imply that

Eε
⎡⎢⎢⎢⎢⎣
(⍟
i∈B

ζεmi(φ
(i)))

2⎤⎥⎥⎥⎥⎦
≤ (C ′Θ)2M , M ∶= ∑

i∈B
mi .

Moreover using the fact that error terms are supported on clusters with additional constraints,
we will get some additional smallness, providing the expected control on the error terms at
arbitrary times.

3. Preserving the fluctuation structure on small times

In this section we detail one part of the discussion of the previous section, namely how to
transport the fluctuation structure between two time steps, thanks to the Duhamel formula.
However in order to make sense of the Duhamel formula and its dual form uniformly in ε, we
will actually not connect directly time θp to time θp−1, but rather introduce an iteration on
infinitesimal time intervals (much smaller than Lanford’s convergence time). This consists in
transforming a weight at a time θ ∈ (θp−1, θp) in a (more complicated) weight at a time θ − δ



14 THIERRY BODINEAU, ISABELLE GALLAGHER, LAURE SAINT-RAYMOND, SERGIO SIMONELLA

in (θp−1, θp), for some very small δ > 0 tuned in (2.9). In what follows, we shall therefore
focus only on the interval (θ−δ, θ): the precise statement requires some notation and is given
at the end of this section (see Proposition 3.9 page 26).

The procedure relies on three ingredients: we fix θ = θp − rδ for some r ∈ [0, (θp − θp−1)/δ].
● We first introduce the family of correlation functions (GεM)M≥1 at time t ∈ [θ − δ, θ],

defined for any test function HM of M variables by

(3.1) ∫ GεM(t,ZM)HM(ZM)dZM ∶= Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεM,t(HM)] .

These correlation functions satisfy a hierarchy of linear evolution equations, the so-
called BBGKY hierarchy, so thatGεM(θ) can be expressed as a Duhamel sum involving
the correlation functions at time θ − δ (see Section 3.1)

(3.2) GεM(θ) = ∑
N≥0

QεM,N(δ)GεM+N(θ − δ) ,

where the operator QεM,N encodes transport and collisions.

● We then use a graphical representation of the elementary operator QεM,N(δ) in terms

of “pseudo-trajectories” to define an “adjoint” operator (see Section 3.2).
● We finally recombine the contributions of the different correlation functions to identify

a fluctuation structure at time θ − δ (see Section 3.3).

Note that the last time interval when r = ⌊ θp−θp−1

δ ⌋ may be a little smaller than δ, but the
very same arguments can be applied.

3.1. The Duhamel iteration and its graphical representation. In the grand canonical
setting, (3.1) is equivalent to

GεM(t,ZM) = 1

µMε

∞
∑
n=0

1

n!
∫(Td×Rd)n

dzM+1 . . . dzM+nW
ε
M+n(t,ZM+n) , t ∈ [0,Θ] ,

where the (signed, non-normalized) measure (W ε
N(t))N≥1 is defined as follows.

On [θ1, θ2], W ε
N solves the Liouville equation

(3.3) ∂tW
ε
N + VN ⋅ ∇XNW ε

N = 0 on DεN ,
with specular reflection on the boundary (and extending W ε

N by zero outside DεN ) and with
initial data (see (1.4))

W ε
N(θ1, ZN) ∶= 1ΥεN

W ε,eq
N (ZN) 1

√
µε

(
N

∑
i=1

h(1)(zi) − µεEε[h(1)]) .

Inductively for p > 2, one solves again Eq. (3.3) on [θp−1, θp], with perturbed initial data

W ε
N(θ+p−1, ZN) ∶=W ε

N(θ−p−1, ZN) 1
√
µε

(
N

∑
i=1

h(p−1)(zi) − µεEε[h(p−1)]) ,

where ± indicate the limits from the future/past.

3.1.1. The Duhamel iteration. By integration of the Liouville equation (3.3) for fixed ε, one
obtains formally that for any integer M , the M -particle correlation function GεM satisfies

(3.4) ∂tG
ε
M + VM ⋅ ∇XMGεM = CεM,M+1G

ε
M+1 on DεM ,

with specular boundary reflection as in (3.3). This is the well-known BBGKY hierarchy
(see [11]), which is the elementary brick in the proof of Lanford’s theorem for short times [24].
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The operator CεM,M+1 describes the collision between one “fresh” particle (labelled M + 1)

and one given particle i ∈ {1, . . . ,M}:

CεM,M+1G
ε
M+1 ∶=

M

∑
i=1

Cε,iM,M+1G
ε
M+1

with

(Cε,iM,M+1G
ε
M+1)(ZM) ∶= ∫

Sd−1×Rd
GεM+1(Z

⟨i⟩
M , xi, v

′
i, xi + εω, u′)((u − vi) ⋅ ω)+ dω du

− ∫
Sd−1×Rd

GεM+1(ZM , xi + εω, u)((u − vi) ⋅ ω)− dω du

= ∫
Sd−1×Rd

GεM+1(Z
⟨i⟩
M , xi, v

′
i, xi + εω, u′)((u − vi) ⋅ ω)+ dω du

− ∫
Sd−1×Rd

GεM+1(ZM , xi − εω, u)((u − vi) ⋅ ω)+ dω du ,

where (v′i, u′) is recovered from (vi, u) through the scattering law as in (1.9), and with the
notation

Z
⟨i⟩
M ∶= (z1, . . . , zi−1, zi+1, . . . , zM) .

Now let us fix θ = θp − rδ for some r ∈ [0, (θp − θp−1)/δ]. Denote by SεM the group associated
with transport in DεM , with specular reflection on the boundary. By iteration of Duhamel’s
formula

GεM(θ) = SεM(δ)GεM(θ − δ) + ∫
θ

θ−δ
SεM(θ − t1)CεM,M+1G

ε
M+1(t1)dt1 ,

the solution GεM of the hierarchy (3.4) can formally be expressed as a sum of operators acting
on the data at time θ − δ:
(3.5) GεM(θ) = ∑

N≥0

QεM,N(δ)GεM+N(θ − δ) ,

where we have defined

QεM,N(δ)GεM+N(θ − δ) ∶= ∫
θ

θ−δ ∫
t1

θ−δ
⋯∫

tN−1

θ−δ
SεM(θ − t1)CεM,M+1S

ε
M+1(t1 − t2)

. . . SεM+N(tN)GεM+N(θ − δ) dtN . . . dt1 .
We stress that formula (3.5) is valid almost everywhere for a large class of measures (W ε

N(t))N≥1,
in spite of a collision operator being defined as a trace (see for instance [15, 30]).

3.1.2. Backward pseudo-trajectories. It is a standard procedure to translate the iterated
Duhamel formula (3.5) in terms of (backward) pseudo-trajectories. We first encode the com-
binatorics of collisions in a graph a = (aj)1≤j≤N where aj ∈ {1, . . . ,M +j−1} denotes the label
of the particle colliding with particle M + j at its creation time. Note that the set of graphs
a is a collection AM,N of M binary trees with a total of N branchings. We define A±M,N

the set of such collision trees, where each aj is equipped with a sign sj ∈ {−1,1}. Then,
given such an a, as well as a configuration ZM and collision parameters (tj , ωj , uj)1≤j≤N
with tN+1 = θ − δ < tN < ⋅ ⋅ ⋅ < t1 < θ = t0, we define iteratively the pseudo-trajectory

Ψε
M,N = Ψε

M,N(ZM , a, (tj , ωj , uj)j=1,...,N)

as follows (denoting by ZεM+i(t) the coordinates of the pseudo-particles at time t ∈]ti+1, ti]):
● starting from ZM at time θ,
● transporting all existing particles backward on (tj , tj−1) (on DεM+j−1 with specular

reflection at collisions),
● adding a new particle labeled M + j at time tj at position xεaj(tj) + εsjωj , and with

velocity uj ,
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● applying the scattering rule if sj > 0.

We discard non admissible parameters for which the above procedure is ill-defined; in
particular we exclude values of ωj corresponding to an overlap of particles (two particles

at mutual distance less than ε) as well as those such that ωj ⋅ (uj − vεaj(t
+
j )) ≤ 0. In the

following we denote by GεN(a,ZM) the set of admissible parameters (tj , ωj , uj)1≤j≤N and
by ZεM+N(θ − δ) the configuration at time θ − δ. With these notations, one gets the following
geometric representation :

GεM(θ,ZM) = ∑
N≥0

∑
a∈A±M,N

∫GεN (a,ZM )
dTNdΩNdUN

×
⎛
⎝
N

∏
j=1

sj((uj − vεaj(t
+
j )) ⋅ ωj)+

⎞
⎠
GεM+N(θ − δ,ZεM+N(θ − δ)) ,

where (TN ,ΩN , UN) ∶= (tj , ωj , uj)1≤j≤N .

We recall the following classical notions of collision and recollision in a pseudo-trajectory.

Definition 3.1. A collision is the addition of a fresh particle at distance ε from an existing
particle (see the third item above), while a recollision involves two particles transported by the
backward flow Sε (in between two collision times).

3.1.3. Blocks and packets. As mentioned in Section 2.3, when pulling back the product of
fluctuation fields, various structures are involved. We refer to Figure 4 for a schematic
description of the following definition.

Definition 3.2. Given a particle labeled j ∈ {1, . . . , P} and the number mj of particles in the
collision tree of j at some time, the associate block of particles is the set of all particles in

the collision tree at that time. We denote by Z
(j)
mj the corresponding configuration.

A packet of particles is a union of different blocks which have been connected dynamically
at time t. These packets aggregate as the iteration described in Section 2.3 progresses. Given
B ⊂ {1, . . . , P}, a partition ς of B and i ≤ ∣ς ∣, we call Ci the packet of Mςi ∶= ∑

j∈ςi
mj particles

with configuration (Z(j)
mj )j∈ςi, connecting all the blocks j in ςi.

For the elementary step of the iteration, we then have to consider functions of the form

(3.6) ΦM(ZM) ∶= ∏
i≤∣ς ∣

φ(ςi)({Z(j)
mj }j∈ςi)

where the functions φ(ςi) will be assumed symmetric within each block j ∈ ςi. We have
written M ∶= (mj)j∈B.

For a given a ∈ A±M,N with M = ∑j∈Bmj , we denote by nj the number of branchings in the

collision tree issued from the block j on (θ − δ, θ). Note that the cardinal of the blocks and
the packets vary with time. We also denote N ∶= (nj)j∈B so that ∑j∈B nj = N . Finally we

denote by a(j) ∈ A±mj ,nj the restriction of a to the block j. Then starting from (3.6) we can

define

GεM(θ,ZM) =∑
N

∑
a∈A±M,N

∫GεN(a,ZM)
dTNdΩNdUN

×
⎛
⎝∏j∈B

nj

∏
`=1

s
(j)
` ((u(j)` − vε

a
(j)
`

(t(j)+` )) ⋅ ω(j)
` )

+

⎞
⎠
GεM+N(θ − δ,ZεM+N(θ − δ)) ,
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θ

θ − δ

i1

i2

i3

θi1

θi2

θi3

Figure 4. Three blocks indexed by i1, i2, i3 consist of mi1 = 2, mi2 = 3
and mi3 = 2 particles at time θ, at which time blocks i1 and i2 have merged
into one packet. The remaining block merges with that packet to build one
packet at time θ − δ.

where (TN,ΩN, UN) = ((t(j)` , ω
(j)
` , u

(j)
` )1≤`≤nj)j∈B and each of the ∣B∣ sets (t(j)` )1≤`≤nj is or-

dered; recalling (3.1) and (3.5) and using the symmetry of correlation functions, one has
(3.7)

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεM,θ(ΦM)]

= ∫ GεM(θ,ZM)ΦM(ZM)dZM =∑
N
∫ (QεM,N(δ)GεM+N(θ − δ))(ZM) ΦM(ZM)dZM .

Remark 3.3. By the Fubini identity, one may equivalently prescribe an order on all the
collision times (tj)1≤j≤N corresponding to the trees a ∈ A±M,N , or a partial order on all the

times (t(j)` )1≤`≤nj for each j ∈ B, corresponding to the trees a ∈ A±M,N.

3.2. Pullback of observables. The idea now is to take advantage of the geometric repre-
sentation to construct the “adjoint” of the operator QεM,N(δ), rewriting (3.7) as

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεM,θ(ΦM)]“ = ”∑

N
∫ GεM+N(θ − δ)(Qε∗M,N(δ)ΦM)dZM+N

“ = ”∑
N

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεM+N,θ−δ(Qε∗M,N(δ)ΦM)] .

In other words, this means that we would like to change variables

(3.8) (ZM, TN,ΩN, UN)↦ ZεM+N(θ − δ)

where (TN,ΩN, UN) = ((t(j)` , ω
(j)
` , u

(j)
` )1≤`≤nj)j∈B. Unfortunately it is not true that the

change of variables (3.8) is admissible in general, due to the presence of recollisions. Ac-
tually only recollisions involving particles of the same block are an issue, which leads to the
following classification :

Definition 3.4. A recollision is said to be internal if it involves two particles of the same
block. It is said external if it involves two particles of different blocks.
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3.2.1. Duality in absence of internal recollisions. Let us first describe the duality argument
in the case when there is no internal recollision, which is simpler. Setting M ∶= (mj)j∈B the

number of particles in the block j at time θ and N ∶= (nj)j∈B the number of particles added

to the block j between times θ and θ − δ, we denote by Qε0M,N the restriction of QεM,N to

pseudo-trajectories without internal recollisions. We set, recalling (3.6) and (3.7),

I0
M,N ∶= ∫ (Qε0M,N(δ)GεM+N(θ − δ))(ZM) ΦM(ZM)dZM .

Given a ∈ A±M,N, consider the change of variables :

(3.9) (ZM, TN,ΩN, UN)z→ ZεM+N(θ − δ) ∈ R0
a ,

where the configurations in R0
a have to be compatible with pseudo-trajectories satisfying the

following constraints on (θ − δ, θ):
(i) there are nj particles added to the block j;

(ii) the addition of new particles in the block j is prescribed by a(j);
(iii) the pseudo-trajectory has no internal recollision.

Note that pseudo-trajectories compatible with R0
a may have external recollisions (recall Def-

inition 3.2). This change of variables is injective since the forward flow underlying (3.9)
starting from ZM+N ∈ R0

a at θ − δ can be defined in a unique way on [θ − δ, θ] as explained
below.

Definition 3.5. We say that two particles encounter when they approach at a distance ε at
some time, in the forward flow.

If two particles encounter at time t−, their resulting configuration at time t+ is then obtained
as follows:

(a) if they belong to two different blocks, then their velocities are deflected according to
the scattering law (1.2);

(b) if they are in the same block j, the collision is prescribed by the tree a(j), and
one of the two particles disappears (it is removed) from the flow. The velocity of
the remaining particle is updated by scattering, or not, according to the parameters

Sj = (s(j)` )`≤nj encoded also by the tree a(j).

One can prove recursively that the jacobian of the inverse map (3.9) is

1

µNε
∏
j∈B

nj

∏
`=1

((u(j)` − vε
a
(j)
`

(t(j)+` )) ⋅ ω(j)
` )

+
.

Denoting by ZεM(θ,ZM+N) the configuration of theM particles at time θ starting from ZM+N

in R0
a at time θ − δ, one can therefore write

(3.10)

I0
M,N = ∑

a∈A±M,N

µNε ∫R0
a

dZM+NG
ε
M+N(θ − δ,ZM+N)ΦM(ZεM(θ,ZM+N))∏

j∈B
sign(Sj) ,

where the factor µNε comes from the jacobian, and sign(Sj) is the product of all scatterings
signs attached to the block j

sign(Sj) =
nj

∏
`=1

s
(j)
` .

Referring to (3.6), since ΦM is symmetric within blocks, we get a complete symmetrization
within blocks by performing a partial symmetrization on the added particles : we will denote
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by S
nj
mj+nj the partitions of nj+mj particles in nj (ordered) singletons and a block of size mj .

Then we can set

Φ0
M,N(ZM+N) ∶= µNε ∑

(σj∈Snjnj+mj)j∈B
∑

a∈A±M,N

ΦM(ZεM(θ,Zσ))1{Zσ∈R0
a} ∏
j∈B

( mj !

(mj + nj)!
sign(Sj)) ,

where we have denoted for simplicity ZεM(θ,Zσ) for the M remaining particles at time θ, and
as a consequence (3.10) can be rewritten by duality, recalling (3.1),

I0
M,N = Eε[(

p−1

∏
u=1

ζεθu(h
(u)))πεM+N,θ−δ(Φ0

M,N)] .(3.11)

Note that on each configuration ZM+N, there exist at most 4N different (σ, a) such that Zσ
belongs to R0

a. Indeed at each encounter in the forward dynamics (recall Definition 3.5),
the particle which disappears has to be chosen, as well as a possible scattering. To fix

these discrepancies, we introduce for each index j ∈ B two sets of signs S̄j ∶= (s̄(j)` )1≤`≤nj
and Sj ∶= (s(j)` )1≤`≤nj which determine respectively which particle should be annihilated

(say s̄
(j)
` = + if the particle with largest index remains, s̄

(j)
` = − if it disappears) and whether

there is scattering (s
(j)
` = +) or not (s

(j)
` = −). Note that the signs (s(j)` )1≤j≤ni are encoded

in the collision tree a(j) while (s̄(j)` )1≤`≤nj are known if σj is given. We stress the fact
that if two particles in different blocks encounter, there is no ambiguity on the dynamics: it
corresponds to a recollision in the backward pseudo-trajectory hence there is always scattering
(see Case (a) page 18). If we prescribe the sets (S, S̄) ∶= (Sj , S̄j)j∈B, then the mapping

(3.12) (a, (σj)j∈B, ZM, TN,ΩN, UN)z→ ZεM+N(θ − δ)
restricted to pseudo-trajectories compatible with (S, S̄), is injective. This leads to defining

(3.13) Φ0
Ξ0(ZM+N) ∶= µNε 1{ZM+N∈R0

S,S̄
} ΦM(ZεM(θ,ZM+N))∏

j∈B
( mj !

(mj + nj)!
sign(Sj)) ,

where R0
S,S̄

is the set of configurations such that a forward flow with nj annihilations in the

block j and compatible with (S, S̄) exists, and where

(3.14) Ξ0 ∶= (M,N,S, S̄) .
Our final result is then (3.11) with

Φ0
M,N = ∑

S,S̄

Φ0
Ξ0 ,

where the sum over S, S̄ runs in {−1,1}2nj , j ∈ B.
Remark 3.6. The symmetrisation over the labels of the particles, which was already an
important argument in [8], is a key step of the procedure: it is not apparent when looking at the
expectation since the sum over the partial permutations compensates exactly the combinatorial
factor mj !/(mj +nj)!, on the other hand since the supports of the test functions are disjoint,
it will be a true gain when computing the variance.

3.2.2. Duality: general case. In the case when internal recollisions are allowed in backward
pseudo-trajectories, the change of variables (3.8) is no longer injective and, in order to apply
our strategy, we need to control the number of internal recollisions. The important fact
is that thanks to the conditioning Υε

N introduced in Definition 2.2, the configuration at
time θ − δ has no microscopic cluster of more than γ particles, and the total energy of each
microscopic cluster is at most γV2/2 so that the variation of the relative distance between
two particles from different clusters is at most 2

√
γVδ, which prevents any collision during
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the time lapse δ. Each cluster evolves therefore independently from the other clusters on the
time interval [θ − δ, θ].

Furthermore the recollisions in each cluster cannot be due to periodicity since Vδ ≪ 1.
Since the total number of collisions for a system of γ hard spheres in the whole space is finite
(see Theorem 1.3 in [10] or [21]) say at most kγ , each particle in a pseudo-trajectory cannot
have more than Kγ = ∑γ`=2 k` recollisions during the short amount of time δ. This crude upper
bound on the number of recollisions takes into account the fact that the number of particles
in a cluster may have varied on [θ− δ, θ] due the creation of new particles. We then associate
with each particle i an index κi (less than Kγ) which is zero at time θ and increased by one
each time the particle undergoes a recollision in the backward pseudo-dynamics. We denote

by KM+N the set of recollision indices (κ(j)
` )`≤mj+nj at time θ−δ. This new set of parameters

enables us to recover the lost injectivity of (3.12). The construction of the forward dynamics
starting from a configuration ZM+N is slightly more intricate. Fix a tree a ∈ A±M,N, a set

of indices KM+N and the starting configuration ZM+N = (Z(j)
mj+nj)j∈B. The forward flow is

uniquely defined based on the following three possibilities, each time two particles encounter :

(a) either the two particles belong to two different blocks : in this case the particles are
scattered and their indices are unchanged (this corresponds to an external recollision
in the backward pseudo-trajectory);

(b) or the two particles belong to the same block and have a positive index: in this case
also the particles are scattered, and their indices are decreased by 1 (this corresponds
to an internal recollision in the backward pseudo-trajectory);

(c) or the two particles belong to the same block and one particle has zero index: one
particle (with zero index) is annihilated and the other one is possibly scattered, as
prescribed by the collision tree a. The indices are unchanged.

Finally we define, for each a ∈ A±M,N and each K (we drop the index M + N in KM+N

for the sake of readability in the sequel), the set RK,a of configurations compatible with
backward pseudo-trajectories having the following constraints:

(i) there are nj particles added to the block j;

(ii) the addition of new particles is prescribed by a(j);

(iii) internal recollisions are compatible with (κ(j)
` )`≤mj+nj (coded in K).

Notice that, denoting by K = 0 the set of all null recollision indices, R0,a = R0
a. The change

of variables, as in (3.9),

(3.15) (ZM, TN,ΩN, UN)z→ ZεM+N(θ − δ) ∈ RK,a

is injective. Denoting as previously by ZεM(θ,ZM+N) the configuration of the M particles at
time θ starting from ZM+N ∈RK,a at time θ − δ, one can therefore write
(3.16)

IM,N ∶= ∫ (QεM,N(δ)GεM+N(θ − δ))(ZM) ΦM(ZM)dZM

= ∑
a∈A±M,N

∑
K

µNε ∫RK,a

dZM+NG
ε
M+N(θ − δ,ZM+N)ΦM(ZεM(θ,ZM+N))∏

j∈B
sign(Sj) .

As in (3.13), we can use the exchangeability of GεM+N and φ(ςi) to symmetrize partially the

particles in each block j at time θ − δ, by summing over σj ∈Snj
mj+nj . The mapping

(a, (σj)j∈B, ZM, TN,ΩN, UN)↦ ZεM+N(θ − δ)
is injective for any fixed K and (S, S̄), so one can define the δ-pullback of test functions

(3.17) ♯δΦM(ZM+N) ∶= ΦM(ZεM(θ,ZM+N))



LONG-TIME DERIVATION AT EQUILIBRIUM OF THE FLUCTUATING BOLTZMANN EQUATION 21

where the configuration ZεM(θ,ZM+N) at time θ is obtained by the forward dynamics de-
scribed above from the configuration ZM+N at time θ − δ. Finally we set

(3.18) ΦΞ(ZM+N) ∶= µNε ♯δΦM(ZM+N) 1{ZM+N∈RK,S,S̄} ∏
j∈B

( mj !

(mj + nj)!
sign(Sj)) ,

where RK,S,S̄ is the set of configurations such that a forward flow with nj annihilations in

the block j and compatible with (K,S, S̄) exists. We have denoted as in (3.14)

(3.19) Ξ ∶= (M,N,K,S, S̄) .

For K = 0, note that R0,S,S̄ =R0
S,S̄

.

Finally set

(3.20) ΦM,N ∶= ∑
K,S,S̄

ΦΞ ,

where the sum over S, S̄ runs in {−1,1}2nj , j ∈ B and the sum over K runs in {0, . . . ,Kγ}mj+nj ,
with j ∈ B. Identity (3.16) can be rewritten by duality

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεM,θ(ΦM)] =∑

N

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεM+N,θ−δ(ΦM,N)] .(3.21)

3.3. Clustering structure. Our aim is to study the transport of the factorization structure
on an infinitesimal time interval [θ − δ, θ]. We are interested in

(3.22) IM ∶= Eε[(
p−1

∏
u=1

ζεθu(h
(u)))⍟

i≤∣ς ∣
ζεMςi ,θ

(φ(ςi))]

for a partition ς in packets of some B ⊂ {p, . . . , P}. As in (3.6), the function φ(ςi) is evaluated

at the configuration (Z(j)
mj )j∈ςi at time θ. We recall that Mςi ∶= ∑

j∈ςi
mj . By analogy with (2.7),

we define the ⍟-product for the conditioned fluctuation fields by discarding repeated indices

(3.23) ⍟
i≤∣ς ∣

ζεMςi ,θ
(φ(ςi)) ∶= µ∣ς ∣/2

ε ∑
α⊂{1,...,∣ς ∣}

πεMα,θ(⊗
i∈α
φ(ςi)) ∏

j∈αc
Eε[−φ(ςj)]

where MA = ∑i∈AMςi .
After using a pullback as in (3.21), we would like to recover a factorized structure with

centered observables. This means that we need to decompose the functions ΦΞ defined
in (3.18) into products, and take care of the counterterms corresponding to contributions
of different correlation functions. The technical procedure implementing this program is
a cumulant decomposition of trajectories as devised in [7] (which we apply here to dual
functions).

Let us first of all decompose the product

(3.24) IM = µ∣ς ∣/2
ε ∑

α⊂{1,...,∣ς ∣}
(∏
i∈αc

Eε[−φ(ςi)]) ×Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεMα,θ(Φα)] ,

denoting here Mα = (mj)i∈α,j∈ςi , and Φα = ⊗
i∈α
φ(ςi) . To simplify notation, given the fam-

ily Nα = (nj)i∈α,j∈ςi of added particles on [θ − δ, θ], we set M δ
α ∶=Mα +Nα for the number of
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particles in the sets (Ci)i∈α at time θ − δ. As in (3.21), we can write

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεMα,θ(Φα)]

=∑
Nα

∫ (QεMα,Nα
(δ)GεMα+Nα(θ − δ))(ZMα) Φα(ZMα)dZMα

=∑
Nα

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεMδ

α,θ−δ(ΦMα,Nα)] ,

where as in (3.20)

ΦMα,Nα ∶= ∑
Kα,Sα,S̄α

ΦΞα .

From now on to lighten further the notation we omit the dependence on the number of
variables and set

Φα,δ ∶= ΦMα,Nα ,

so that

(3.25) Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεMα,θ(Φα)] =∑

Nα

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεMδ

α,θ−δ(Φα,δ)] .

Note that in particular there holds

(3.26) Eε[φ(ςi)] = Eε[πεMςi ,θ
(φ(ςi))] = ∑

Nςi

Eε[πεMδ
ςi
,θ−δ(φ

(ςi)
δ )] = ∑

Nςi

Eε[φ(ςi)
δ ] ,

where as above φ
(ςi)
δ is defined after a summation over Kςi ,Sςi , S̄ςi .

Let us analyse Φα,δ. Setting Mδ
α = Mα +Nα, one has

(3.27) Φα,δ(ZMδ
α
) = ∑

Kα,Sα,S̄α

ΦΞα(ZMδ
α
) ,

and the function Φα,δ is supported on configurations at time θ − δ of the backward pseudo-
trajectories corresponding to the packets (Ci)i∈α. We stress the fact that the variable decom-
position among the blocks is still encoded in ZMδ

α
. If these pseudo-trajectories were evolving

independently, then each of them would lead to a dual function φ
(ςi)
δ and the product form

would be exact. Even though this product form is the main part, there are further contri-
butions due to dynamical correlations between the packets (Ci)i∈α which we are going to
analyze below.

We are going to group packets (Ci)i∈α which are connected by (external) recollisions. De-
note by Pα the set of partitions of α. Given λ ∈ Pα, we restrict the change of variables (3.15)
to the pseudo-trajectories such that a chain of recollisions occurs in each set (λ`)`≤∣λ∣, meaning
that the graph with packets Ci as vertices and recollisions as edges has connected compo-
nents specified by λ`. In particular, the pseudo-trajectories from two different connected
components λ`1 and λ`2 do not approach, which we will denote by 1λ`1 /∼λ`2 . Each connected

component λ` will be called a forest. By extension, the blocks (and particles) of the associate
packets will be said to belong to λ`. Denoting by Rλ

Kα,Sα,S̄α
the corresponding restriction

of RKα,Sα,S̄α , we get the change of variables

(3.28) (ZMα , TNα ,ΩNα , UNα)z→ ZεMδ
α
(θ − δ) ∈ RλKα,Sα,S̄α

,

which is injective: by construction when two particles meet in the forward flow, they have
to belong to the same forest λ` and the rule upon encounter (disappearance of a particle
or not, scattering or not) is given by Definition 3.8 with parameters Kα,Sα, S̄α. In the



LONG-TIME DERIVATION AT EQUILIBRIUM OF THE FLUCTUATING BOLTZMANN EQUATION 23

following we shall denote by Rλ`
Kλ`

,Sλ` ,S̄λ`
the set Rλ

Kα,Sα,S̄α
restricted on a single forest. The

definition (3.18) can be extended to dual functions with the constraint above:
(3.29)

ΦΞα(ZMδ
α
) = ∑

λ∈Pα
µNαε Φα(ZεMα

(θ,ZMδ
α
))1{Z

Mδ
α
∈Rλ

Kα,Sα,S̄α
} ∏
i∈α
j∈ςi

( mj !

(mj + nj)!
sign(Sj))

= ∑
λ∈Pα

∣λ∣
∏
`=1

(Φλ`(Z
ε
Mλ`

(θ,ZMλ`
+Nλ`

))ϕ̃λ`(ZMλ`
+Nλ`

)) × ∏
`1/=`2

1λ`1 /∼λ`2 (ZMα+Nα)

= ∑
λ∈Pα

∣λ∣
∏
`=1

((♯δΦλ`)ϕ̃λ`) × ∏
`1/=`2

1λ`1 /∼λ`2 (ZMα+Nα) ,

denoting by (♯δΦλ`) the δ-pullback of Φλ` by the dynamics as in (3.17), and where the
contribution of a forest is

(3.30) ϕ̃λ`(ZMλ`
+Nλ`

) ∶= µNλ`ε 1{ZMλ`
+Nλ`

∈Rλ`
Kλ`

,Sλ`
,S̄λ`

} ∏
i∈λ`
j∈ςi

( mj !

(mj + nj)!
sign(Sj)) .

We have used the fact that the pseudo-trajectories associated with different forests do not
intersect in order to decouple the Φλ` . The function ϕ̃λ` encodes in particular the correlations
due to encounters between particles of different packets.

A correlation remains through the dynamical exclusion condition expressed by the con-
straint

∏
`1/=`2

1λ`1 /∼λ`2 (ZMα+Nα) ,

encoding the fact that no encounter should occur between the particles in different forests λ`1
and λ`2 . We will expand this exclusion condition writing 1λ`1 /∼λ`2 = 1−1λ`1∼λ`2 , and defining

the following notion.

Definition 3.7. An overlap occurs between two forests λ`1 , λ`2 (which is denoted by λ`1 ∼ λ`2)
if two pseudo-particles from λ`1 and λ`2 find themselves at a distance less than ε one from
the other at some time.

Note that an overlap between two forests is a mathematical artefact to analyze the dynamical
correlations. In particular, it does not modify the dynamics in the forests.

Definition 3.8 (Extended encounter rules). Given a set of κ-indices K, a set of signs (S, S̄)
and a partition λ in forests, the forward flow starting from some configuration ZM+N =
(Z(j)

mj+nj)j∈B is reconstructed according to the following rules each time two particles en-
counter:

● either the two particles belong to two different forests : they do not see each other.
The κ-indices are unchanged;

● or the two particles belong to two different blocks but to the same forest : they are
scattered. The κ-indices are unchanged;

● or the two particles belong to the same block and have a positive κ-index: they are
scattered. Both indices are decreased by 1;

● or the two particles belong to the same block and one particle has zero κ-index: one
particle (with zero index) is annihilated. The label of the particle which is annihi-
lated, and the possible scattering of the other colliding particle are prescribed by the
signs (S, S̄). The other indices are unchanged.
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In order to identify all possible correlations, we introduce now a cumulant expansion of
the non overlapping constraint

(3.31) ∏
`1 /=`2

1≤`1,`2≤∣λ∣

1λ`1 /∼λ`2 = ∑
G∈G∣λ∣

∏
{`1,`2}∈E(G)

(−1λ`1∼λ`2 ) = ∑
ρ∈P∣λ∣

∣ρ∣
∏
q=1

ϕρq ,

where G∣λ∣ is the set of graphs G with ∣λ∣ vertices, E(G) denotes the set of edges of a graph G,
and the cumulants are defined on the connected components ρq of {1, . . . , ∣λ∣} by

(3.32) ϕρq = ∑
G′∈Cρq

∏
{`1,`2}∈E(G′)

(−1λ`1∼λ`2 ) ,

denoting Cρq the set of connected graphs with vertices ρq. In particular, the function ϕρq is
supported on clusters formed by overlapping forests.

Combining (3.29) with (3.31), we get

ΦΞα = ∑
λ∈Pα

∑
ρ∈P∣λ∣

∣λ∣
∏
`=1

(♯δΦλ`ϕ̃λ`)
∣ρ∣
∏
q=1

ϕρq ,

denoting by (♯δΦλ`) the δ-pullback of Φλ` by the dynamics as in (3.17). Exchanging the order
of the sums, we end up with the following (scaled) cumulant expansion

(3.33) ΦΞα = ∑
η∈Pα

∣η∣
∏
q=1

µ
1−∣ηq ∣
ε φ

(ηq)
δ,Ξηq

,

where the (dual) cumulants are defined for any subset ηq of {1, . . . , ∣ς ∣} by

(3.34) φ
(ηq)
δ,Ξηq

∶= µ∣ηq ∣−1
ε ∑

λ∈Pηq
(

∣λ∣
∏
`=1

♯δΦλ` ϕ̃λ`(ZMλ`
+Nλ`

))ϕ{λ1,...,λ∣λ∣} .

Recall that ϕ̃ encodes the external recollisions between packets in each forest and keeps track
of Kλ` ,Sλ` , S̄λ` , while ϕ encodes the overlaps between forests. Finally we set

(3.35) φ
(ηq)
δ (ZMδ

ηq
) ∶= ∑

Kηq ,Sηq ,S̄ηq

φ
(ηq)
δ,Ξηq

so that, plugging (3.30) in (3.34) and denoting sign(Sηq) the product of all scattering signs Sηq ,
we obtain

(3.36)

φ
(ηq)
δ = µNηq+∣ηq ∣−1

ε

⎛
⎜⎜
⎝
∏
i∈ηq
j∈ςi

mj !

(mj + nj)!

⎞
⎟⎟
⎠

∑
Kηq ,Sηq ,S̄ηq

∑
λ∈Pηq

sign(Sηq)ϕ{λ1,...,λ∣λ∣}

× (
∣λ∣
∏
`=1

(♯δΦλ`)1{ZMλ`
+Nλ`

∈Rλ`
Kλ`

,Sλ`
,S̄λ`

}) .

As a consequence of (3.27), (3.33) and (3.35), we finally obtain a cumulant decomposition
for any collection α of packets

(3.37) Φα,δ(ZMδ
α
) = ∑

η∈Pα

∣η∣
∏
q=1

µ
1−∣ηq ∣
ε φ

(ηq)
δ ,

where Mδ
α = Mα +Nα.
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By definition, φ
(ηq)
δ corresponds to the contribution of packets (Ci)i∈ηq which are completely

connected dynamically by encounters. From the definition (3.24) of IM, identities (3.25)-
(3.26) and the cumulant decomposition (3.37), we arrive at

IM = µ∣ς ∣/2
ε ∑

N

∑
α⊂{1,...,∣ς ∣}

(∏
i∈αc

Eε[−φ(ςi)
δ ])

× ∑
η∈Pα

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))πεMδ

α,θ−δ(
∣η∣
⊗
q=1

µ
1−∣ηq ∣
ε φ

(ηq)
δ )] .

Note that φ
(ςi)
δ is indexed by a single set ςi so that it is constructed without resorting to

forests or overlaps. Moreover we can decompose each cumulant in the sum of its expectation
and its fluctuation

(3.38) πεMδ
ηq ,θ−δ

(φ(ηq)
δ ) = µ−

1
2

ε ζεMδ
ηq ,θ−δ

(φ(ηq)
δ ) +Eε[φ(ηq)

δ ] .

We obtain (cf. (3.23))

IM = µ∣ς ∣/2
ε ∑

N

∑
α⊂{1,...,∣ς ∣}

∑
η∈Pα

(∏
i∈αc

Eε[−φ(ςi)
δ ])

× ∑
η∈Pα

∑
I⊂{1,...,∣η∣}

∏
q∈Ic

µ
1−∣ηq ∣
ε Eε[φ(ηq)

δ ] Eε[(
p−1

∏
u=1

ζεθu(h
(u)))(⍟

q∈I
µ

1
2
−∣ηq ∣

ε ζεMδ
ηq ,θ−δ

(φ(ηq)
δ ))] .

For a given α, we denote by I the set of observables contributing to the fluctuation field, and
by Ic the set of observables contributing via their expectation. We then split Ic into two
parts

Ic1 ∶= {q ∈ Ic / ∣ηq ∣ = 1} , Ic2 ∶= {q ∈ Ic / ∣ηq ∣ ≥ 2} .
We also define

β− = αc , β+ = ⋃
q∈Ic1

ηq , β1 = ⋃
q∈I
ηq , β2 = ⋃

q∈Ic2
ηq ,

and we denote (abusively) η1 and η2 the restriction of η to β1 and β2 respectively. By
definition, η2 has no singleton: recall that as defined in Section 2.3, such a partition is called
clustering. Then by Fubini,

IM = µ∣ς ∣/2
ε ∑

N

∑
β1,β2,β−,β+

partition of {1,...,∣ς]}

∑
η1∈Pβ1

∑
η2∈Pβ2

η2 clustering

∏
`−∈β−

Eε[−φ(`−)
δ ](3.39)

× ∏
`+∈β+

Eε[φ(`+)
δ ] ∏

1≤q≤∣η2∣
µ

1−∣η2,q ∣
ε Eε[φ(η2,q)

δ ]

×Eε[(
p−1

∏
u=1

ζεθu(h
(u)))( ⍟

1≤q≤∣η1∣
µ

1
2
−∣η1,q ∣

ε ζεMδ
η1,q

,θ−δ(φ
(η1,q)
δ ))] .

Fixing β1 and β2, we see that the sum over β−, β+ is zero as soon as β1 ∪β2 ≠ {1, . . . , ∣ς ∣}. We
find

IM = µ∣ς ∣/2
ε ∑

N

∑
β1,β2

partition of {1,...,∣ς∣}

∑
η1∈Pβ1

∑
η2∈Pβ2

η2 clustering

∏
1≤q≤∣η2∣

µ
1−∣η2,q ∣
ε Eε[φ(η2,q)

δ ]

×Eε[(
p−1

∏
u=1

ζεθu(h
(u)))( ⍟

1≤q≤∣η1∣
µ

1
2
−∣η1,q ∣

ε ζεMδ
η1,q

,θ−δ(φ
(η1,q)
δ ))] .

Finally given η1 and η2 we decompose ∣ς ∣ = ∑q ∣η1,q ∣ +∑q ∣η2,q ∣ and we arrive at the following
identity.
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Proposition 3.9. Consider a partition ς of a set B ⊂ {p, . . . , P}, indexing the test func-

tions (φ(ςi))i≤∣ς ∣ as in (3.6). Then for any θ = θp − rδ with r ∈ [0, (θp − θp−1)/δ], there holds
with notation (3.36)

(3.40)

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))⍟

i≤∣ς ∣
ζεMςi ,θ

(φ(ςi))]

=∑
N

∑
η1∪η2 partition of {1,...,∣ς∣}

η2 clustering

∣η2∣
∏
q=1

µ
1− ∣η2,q ∣

2
ε Eε[φ(η2,q)

δ ]

×Eε[(
p−1

∏
u=1

ζεθu(h
(u)))(

∣η1∣
⍟
q=1

µ
1
2
− ∣η1,q ∣

2
ε ζεMδ

η1,q
,θ−δ(φ

(η1,q)
δ ))] .

The algebraic identity (3.40) extends formula (2.14) to take into account the structure
of packets at time θ. The length δ of the time interval is limited only by the fact that
we need to control the number of internal recollisions uniformly in ε (so that the sums

over Kηi,q defining φ
(ηi,q)
δ are finite). Extending this time interval would require to modify

the conditioning, but then 1(ΥεN )c would not be a negligible correction.

4. Extracting minimal cumulants

In this section, we aim at iterating Proposition 3.9 to pull back the fluctuation structure on
an intermediate time scale τ such that δ ≪ τ ≪ 1. For the sake of simplicity, we choose τ such
that R ∶= τ/δ is an integer. Let θ = θp−kτ for some integer k be such that [θ−τ, θ] ⊂ [θp−1, θp].

4.1. Backward iterated clustering. Let B = {b` ∣ ` = 1, . . . , ∣B∣} be a subset of {p, . . . , P}
indexing the test functions (φ(i))i∈B at time θ. As explained in Section 2.3, the strategy is to
iterate R = τ/δ times the formula (3.40) down to time θ−τ . We therefore construct iteratively
on each time step [θ − rδ, θ − (r − 1)δ] for r = 1, . . . ,R nested partitions ηr−1

1 ↪ ηr1 ∪ ηr2 with ηr2
corresponding to (non trivial) packets which are expelled from the main factorized structure,
contributing only via their expectation, and ηr1 corresponding to packets contributing to the
factorized structure via their fluctuations.

Keeping track of all the intermediate ηr for 1 ≤ r ≤ R would imply rapidly growing com-

binatorics. Therefore, at time θ − rδ, we are going to identify cumulants of the form φ
(A)
rδ ,

with A ⊂ B by taking into account all possible clustering dynamics leading to a given cluster
indexed by A, whatever the successive partitions η1

1, . . . , η
r
1 : the identification of packets of

packets with the union of these packets is therefore essential to gather all contributions. This
identification will be key to control the combinatorics.

On the other hand, the combinatorics encoding all possible elementary pullbacks on [θ −
rδ, θ − (r − 1)δ] leading to a given configuration at time θ − rδ, is also quite bad and by
iteration will be out of control. Indeed, the number of possible K describing the forward

dynamics on [θ − rδ, θ − (r − 1)δ] is K
Mrδ
B

γ (recalling M rδ
B = M (r−1)δ

B + N r
B). In particular,

we do not expect that formula (3.40) can be iterated brutally O(τ/δ) times without having
a strong divergence. The strategy to avoid this divergence will consist in retaining at each
time step [θ − (r − 1)δ, θ − rδ], only “local minimal cumulants” defined by pulling back the
observables along backward pseudo-trajectories such that

(i) internal recollisions (inside any block j) are forbidden, i.e. Kj = 0;
(ii) recollisions between blocks in any given packet are forbidden;

(iii) the graph encoding the recollisions between packets of any given forest has to be
minimally connected;
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η11,1 η12,1

η21,2η21,1

η31,1

η11,2

b1 b2 b7 b8 b12

η11,3 η11,4 η11,5 η11,6
η21,2

η22,1

Figure 5. The nested partitions are depicted and the dashed parts represent
the expelled clustering cumulants. By summing over all the possible interme-

diate decompositions of η3
1,1 = {b1, . . . , b7}, we will recover the cumulant φ

(η3
1,1)

3δ .

The expelled cluster will be collected in the set ρ3 = {η1
2,1, η

2
2,1}.

(iv) the graph encoding the overlaps between the different forests has to be minimally
connected.

We then define

(4.1)

φ̄
(ηq)
δ ∶= µNηq+∣ηq ∣−1

ε

⎛
⎜⎜
⎝
∏
i∈ηq
j∈ςi

mj !

(mj + nj)!

⎞
⎟⎟
⎠

∑
Sηq ,S̄ηq

∑
λ∈Pηq

sign(Sηq)ϕ̄{λ1,...,λ∣λ∣}

× (
∣λ∣
∏
`=1

(♯δΦλ`)1{ZMλ`
+Nλ`

∈R̄λ`
Sλ`

,S̄λ`

}) ,

where R̄λ`
Sλ` ,S̄λ`

is the set of configurations compatible with pseudo-trajectories in a forest

satisfying (i)(ii)(iii), and ϕ̄ is the restriction of ϕ to minimally connected graphs according
to (iv). In particular, denoting by R̄λ

Sλ,S̄λ
the resulting set of configurations, there holds

(4.2) ϕ̄{λ1,...,λ∣λ∣}1{ZMλ+Nλ
∈R̄λ

Sλ,S̄λ
} = (−1)∣λ∣−11{ZMλ+Nλ

∈R̄λ
Sλ,S̄λ

}

Only the contribution of such local minimal cumulants in (3.40) will be iterated. Starting
with ∣B∣ blocks at time θ, we therefore obtain with this partial iteration “minimal cumulants”
defined by pulling back the observables along backward pseudo-trajectories such that

(i) internal recollisions (inside any block j) are forbidden, i.e. Kj = 0;
(ii) the ∣B∣ blocks are dynamically connected according to a graph with exactly ∣B∣ − 1

edges representing all encounters (corresponding to external recollisions and overlaps
in the backward pseudo-trajectory). This graph is therefore minimally connected
(meaning there are neither multiple edges nor cycles).

Remark 4.1. Note that, by definition, particles which are in different packets at time θ − rδ
are independent on [θ−rδ, θ]. In particular, even if they approach at a distance ε on [θ−rδ, θ],
this is neither a recollision nor an overlap.

4.2. Iterated forward dynamics. For minimal cumulants, the forward dynamics can be
encoded by simpler combinatorics. Indeed to describe the partition in forests λ, it is enough
to prescribe a sequence of signs E ∈ {−1,+1}∣B∣−1 encoding whether the ∣B∣ − 1 encounters
between particles within different blocks have scattering (sign +1) or not (sign -1). Since we
further assume that there is no internal encounter without annihilation, we end up with a
“minimal forward dynamics” which is parametrized only by the sets of signs (S, S̄) and E .
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Definition 4.2 (Minimal forward dynamics). Given 1 ≤ r ≤ R, let B be any subset
of {1, . . . , P}, and consider integers MB ∶= (mj)j∈B and

(4.3) Mrδ
B ∶= MB +NB ∶= (mj + nj)j∈B.

representing the particle numbers in the blocks respectively at times θ and θ − rδ.
A minimal forward dynamics on [θ − rδ, θ] starting from ZMrδ

B
is completely prescribed by

two sequences (S, S̄) = (Sj , S̄j)j∈B with (Sj , S̄j) ∈ {−1,+1}2nj , and E ∈ {−1,+1}∣B∣−1. Moving
forward in time, each time two particles approach at a distance ε,

● if they belong to the same block j: the particle to be removed and the possible scattering
are encoded by Sj , S̄j;

● if they belong to two different blocks: a (signed), minimally connected graph GB
with ∣B∣ − 1 edges is constructed iteratively by adding an edge decorated with a sign
according to E if the two particles are not already in the same connected component
of the graph. If the two particles are in the same connected component of GB, then

– if the before-last edge in this connected component was created in a different time
interval [θ − r′δ, θ − (r′ − 1)δ], the particles are unaffected (this is actually not an
encounter, see Remark 4.1);

– if it occurs in the same time interval, the configuration is not admissible (by
definition, the graph representing all encounters has to be minimal).

We say that ZMrδ
B

is a minimal forward cluster associated with (S, S̄,E) if the NB annihila-

tions occur, as well as the ∣B∣−1 encounters making the graph GB connected. This is denoted
by ZMrδ

B
∈Rmin

E,S,S̄.

The case when B = {i} is reduced to one singleton is stressed by the denomination single
minimal forward cluster. Notice that a single minimal forward cluster is simply parametrised
by S, S̄ (as E becomes irrelevant) and we will write ZMrδ

B
∈Rmin

S,S̄
.

Remark 4.3. Note that the time intervals [θ−r′δ, θ−(r′−1)δ] (with r′ ≤ r) when the different
encounters happen are not prescribed in the definition above.

With this definition of minimal forward dynamics, we obtain the following representation
of minimal cumulants at time θ − rδ:

(4.4) φ̄
(B)
rδ (ZMrδ

B
) ∶= µNB+∣B∣−1

ε

⎛
⎝∏j∈B

mj !

M rδ
j !

⎞
⎠ ∑

S,S̄,E
sign(E) sign(S)1Z

Mrδ
B
∈Rmin
E,S,S̄

(♯rδ⊗
i∈B

φ(i)) ,

where Rmin
E,S,S̄ imposes that ZMrδ

B
is associated with a (unique) minimal forward dynamics

on [θ − rδ, θ]. As in (3.17), the pullback during a time rδ is given by

♯rδ⊗
i∈B

φ(i)(ZMrδ
B
) ∶=⊗

i∈B
φ(i)(ZεMB

(θ,ZMrδ
B
)) .

Remark 4.4. Note that it is possible to prescribe a priori the numbers (nr′j )j∈B,r′≤r of particles
annihilated at each time step in each tree, in which case there are additional “sampling”
conditions on Rmin

E,S,S̄.

After iterating Proposition 3.9 up to time θ−rδ for 1 ≤ r ≤ R, we expect that the main con-

tribution will be given by minimal cumulants of the form φ̄
(B)
rδ . There are however additional

terms at each time step θ − r′δ, for 1 ≤ r′ ≤ r, which will not be iterated; their contribution
will be shown to be negligible in the limit. In order to analyse these error terms recursively
for each r, we need a more general notion of forward cluster on [θ − rδ, θ], such that in the
first interval [θ − rδ, θ − (r − 1)δ] the forward dynamics is not necessarily minimal but it is
minimal starting at time θ − (r − 1)δ.
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Definition 4.5 (Forward dynamics). Given 1 ≤ r ≤ R, let B be any subset of {1, . . . , P},

and consider integers MB ∶= (mj)j∈B, M
(r−1)δ
B ∶= N<r

B + MB ∶= (mj + n<rj )j∈B and Mrδ
B ∶=

Nr
B+N<r

B +MB = (mj+n<rj +nrj)j∈B representing the particle numbers in the blocks respectively

at times θ, θ − (r − 1)δ and θ − rδ.
A forward dynamics on [θ − rδ, θ] starting from ZMrδ

B
is completely prescribed by the fol-

lowing parameters :

● for each j ∈ B, a sequence (Sj , S̄j) ∈ {−1,+1}2nj encoding the particle to be removed
and the possible scattering at each encounter between two particles of the same block j.
The restriction to the time interval [θ− rδ, θ− (r−1)δ] of these parameters is denoted

by (Srj , S̄rj) ∈ {−1,+1}2nrj and the other parameters by (S<r
j , S̄

<r
j ) ∈ {−1,+1}2n<rj ;

● a partition ς of B, defining packets (Ci)i≤∣ς ∣ at time θ − (r − 1)δ;
● a partition λ ∈ P∣ς ∣ in forests on [θ − rδ, θ − (r − 1)δ];
● a multi-index K ∈ {0, . . . ,Kγ}M

rδ
B encoding the number of internal encounters without

annihilation per particle on [θ − rδ, θ − (r − 1)δ]. Note that within the packet Ci,
particles in different blocks are always scattered when they encounter during the time
interval [θ − rδ, θ − (r − 1)δ];

● for each i ≤ ∣ς ∣, a sequence Ei ∈ {−1,+1}∣ςi∣−1 encoding the types of encounters in the
packet Ci on [θ − (r − 1)δ, θ].

We say that ZMrδ
B

is a forward cluster associated with (S, S̄, ς, λ,K, (Ei)i≤∣ς ∣) if all encounters

occur in such a way that the graph coding these encounters is completely connected, modulo
the identification of the mj particles of each block j at time θ as a unique vertex.

Remark 4.6. The forward cluster ZMrδ
B

associated with (S, S̄, ς, λ,K, (Ei)i≤∣ς ∣) is recovered

by creating ∣ς ∣ independent minimal forward clusters indexed by each ςi up to time θ−(r−1)δ.
The corresponding packets are linked dynamically to form a forward cluster at time θ − rδ.

Remark 4.7. Note that the partition into packets and the subpartition into forests are only
prescribed on the first time interval [θ− rδ, θ− (r−1)δ]: thanks to the minimality assumption
there is no need to prescribe those objects at each intermediate time step. All possible diver-
gences are therefore concentrated on the first time interval, whose size δ was chosen for them
to remain under control.

Fix nrj ≤M rδ
j for any block j in B. Going back to the definition (3.36) of cumulants, the

forward dynamics are related to a cumulant φ
(B)
rδ which is obtained in terms of the minimal

cumulants φ̄
(ςi)
(r−1)δ defined in (4.4) as follows

(4.5)

φ
(B)
rδ (ZMrδ

B
) ∶= (∏

j∈B

M
(r−1)δ
j !

M rδ
j !

) ∑
ς∈PB

µ
Nr
B+∣ς ∣−1

ε ∑
K,Sr,S̄r,λ

ς↪λ

sign(Sr)ϕ{λ1,...,λ∣λ∣}

×
∣λ∣
∏
`=1

(♯δ ⊗
ςi⊂λ`

φ̄
(ςi)
(r−1)δ)1{Z

Mrδ
λ`

∈Rλ`,ς
Kλ`

,Sr
λ`
,S̄r
λ`

} ,

where for any i ≤ ∣ς ∣, the minimal cumulant φ̄
(ςi)
(r−1)δ is coded by the parameters Ei and

(S<r
j , S̄

<r
j )j∈ςi , and Rλ`,ς

Kλ`
,Sr
λ`
,S̄r
λ`

is the set of configurations compatible with packets ς and

forests (λ`) in the first time interval (cf. (3.28)).
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4.3. Discarding non minimal dynamics in the iteration. Starting from general func-
tions {φ(i)}i∈B at time θ, we have explained how they can be aggregated in (4.5) to form

cumulants at time θ − rδ. In what follows, the structure of the functions {φ(i)}i∈B will be-

come relevant. For i ≥ p, we will assume that φ(i) = φ̄(i) is built from a single minimal
cumulant obtained by the pullback of the test function h(i) during the time interval [θ, θi]

(4.6) φ̄(i)(Zmi) =
µmi−1
ε

mi!
∑

Sθi ,S̄
θ
i

sign(Sθi )1Zmi∈Rmin

Sθ
i
,S̄θ
i

(♯θi−θh(i)) ,

where the signs (Sθi , S̄θi ) ∈ {−1,1}2(mi−1) prescribe the encounters in the time interval [θ, θi]
in the same way as in Definition 4.2. From now on, we shall write φ̄(i) instead of φ(i) to
emphasize the minimality of the cumulant. This structure will be crucial for the geometric
estimates in Sections 7 and 8.

The goal of this section is to prove the following approximate preservation of the fluctuation
structure on the generic time interval [θ− τ, θ] (or on a possibly smaller one), discarding non
minimal dynamics.

Proposition 4.8. Fix θ = θp−kτ for some integer k such that [θ−τ, θ] ⊂ [θp−1, θp]. Consider

a set B ⊂ {p, . . . P} and observables (φ̄(i))i∈B supported on single minimal forward cluster at
time θ as in (4.6). There is a constant CP depending only on P such that for δ ≪ τ = Rδ ≪ 1
the following holds, as µε →∞
(4.7)

∣Eε[(
p−1

∏
u=1

ζεθu(h
(u)))⍟

i∈B
ζεmi,θ(φ̄

(i))]

−∑
N

∑
η∪ρ partition of B

ρ clustering

∣ρ∣
∏
q=1

µ
1− ∣ρq ∣

2
ε Eε[φ̄(ρq)

τ ] × Eε[(
p−1

∏
u=1

ζεθu(h
(u))) (

∣η∣
⍟
q=1

µ
1
2
− ∣ηq ∣

2
ε ζεMτ

ηq ,θ−τ
(φ̄(ηq)

τ ))]

RRRRRRRRRRRRRRRR
≤ (CPΘ)MB( ∏

i∈B∪{1,...,p−1}
∥h(i)∥L∞)ε

1
8d ,

with notation (4.4), and with M τ
ηq the total number of particles in the packet ηq at time θ− τ .

The proof of this proposition is the content of the next two sections and proceeds in two
steps: starting from

(4.8) JM ∶= Eε[Ξp−1 ⍟
i∈B

ζεmi,θ(φ̄
(i))] with the short notation Ξp−1 ∶=

p−1

∏
u=1

ζεθu(h
(u)) ,

we first extract iteratively the remainder terms (for which the minimality condition is vio-
lated), and identify the main part. This procedure produces a sum of R ∶= τ

δ error terms,
which are estimated in Paragraph 4.4.

Proposition 4.9. The fluctuation structure (4.8) is transported on [θ − τ, θ] according to

(4.9) JM = J̄M +
R

∑
r=1

Rint
r ,
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where the principal part is given by

J̄M ∶= ∑
Nτ
B

∑
ηR∪ρR partition of B

ρR clustering

∣ρR∣
∏
q=1

µ
1− ∣ρRq ∣

2
ε Eε[φ̄

(ρRq )
τ ](4.10)

×Eε[Ξp−1(
∣ηR∣
⍟
q=1

µ
1
2
− ∣ηRq ∣

2
ε ζεMτ

q ,θ−τ(φ̄
(ηRq )
τ ))]

with notation (4.4), the short notation M rδ
q ∶=M rδ

ηrq
for the total number of particles in ηrq at

time θ−rδ, and Nrδ
B = (nj)j∈B the number of particles removed in each block during [θ−rδ, θ].

The remainders are defined, with notation (4.5), as the sums of

(4.11)

Rint,1
r = ∑

Nrδ
B

∑
ηr∪ρr partition of B

ρr clustering

∣ρr ∣
∏
q=1

µ
1− ∣ρrq ∣

2
ε Eε[φ̄

(ρrq)
rδ ]

×Eε
⎡⎢⎢⎢⎢⎣
Ξp−1

⎛
⎝

∣ηr ∣
⍟
q=1

µ
1
2
− ∣ηrq ∣

2
ε ζεMrδ

q ,θ−rδ(φ
(ηrq)
rδ ) −

∣ηr ∣
⍟
q=1

µ
1
2
− ∣ηrq ∣

2
ε ζεMrδ

q ,θ−rδ(φ̄
(ηrq)
rδ )

⎞
⎠

⎤⎥⎥⎥⎥⎦
,

Rint,2
r = ∑

Nrδ
B

∑
ηr∪ρr partition of B

ρr clustering

⎛
⎝

∣ρr ∣
∏
q=1

µ
1− ∣ρrq ∣

2
ε Eε[φ

(ρrq)
rδ ] −

∣ρr ∣
∏
q=1

µ
1− ∣ρrq ∣

2
ε Eε[φ̄

(ρrq)
rδ ]

⎞
⎠

×Eε[Ξp−1(
∣ηr ∣
⍟
q=1

µ
1
2
− ∣ηrq ∣

2
ε ζεMrδ

q ,θ−rδ(φ
(ηrq)
rδ ))] .

Proof. Proposition 4.9 is proved recursively. More precisely we start with a decomposition
of JM at step r − 1 under the form

JM = J̄ r−1
M +

r−1

∑
r′=1

Rint
r′ ,

where the main term is defined by

J̄ r−1
M ∶= ∑

N
(r−1)δ
B

∑
ηr−1∪ρr−1 partition of B

ρr−1 clustering

∏
q

µ
1− ∣ρr−1

q ∣

2
ε Eε[φ̄

(ρr−1
q )

(r−1)δ]

×Eε[Ξp−1(⍟
q
µ

1
2
− ∣ηr−1

q ∣

2
ε ζε

M
(r−1)δ
q ,θ−(r−1)δ

(φ̄(ηr−1
q )

(r−1)δ))].

For each q, we pull back the cumulants φ̄
(ρr−1
q )

(r−1)δ and φ̄
(ηr−1
q )

(r−1)δ on a time step δ and extract

minimal clusters and remainder terms. A Fubini equality will enable us to replace the nested
partitions by one partition ηr ∪ ρr thus completing the induction.

We first consider the expelled cumulants. As in (3.26), we have

Eε[φ̄
(ρr−1
q )

(r−1)δ] =∑
Nr

Eε[φ
(ρr−1
q ),t

rδ ] ,

where the superscript t in φ
(ρr−1
q ),t

rδ stands for cumulants transported by the forward dynamics
in the sense of Definition 4.5, without any clustering in the last time interval [θ−rδ, θ−(r−1)δ].
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By construction

(4.12) φ
(ρr−1
q ),t

rδ ∶= µN
r
q

ε

⎛
⎜
⎝
∏

j∈ρr−1
q

M
(r−1)δ
j !

M rδ
j !

⎞
⎟
⎠

∑
K,Sr,S̄r

sign(Sr)(♯δφ̄
(ρr−1
q )

(r−1)δ)1{Z
Mrδ
q
∈Rρ

r−1
q

K,S,S̄
}
,

denoting for simplicity by N r
q the number of particles annihilated in ρr−1

q on [θ−rδ, θ−(r−1)δ]
so that the number of particles in ρr−1

q at θ − rδ is M rδ
q =M (r−1)δ

ρr−1
q

+N r
q .

We turn now to the product of the fluctuation fields. The packets at time θ − (r − 1)δ are
prescribed by ηr−1, and we will temporarily keep track of this fact by an additional superscript
ηr−1 in the pulled back observables :

Eε[Ξp−1 (⍟
q
µ

1
2
− ∣ηr−1

q ∣

2
ε ζε

M
(r−1)δ
q ,θ−(r−1)δ

(φ̄(ηr−1
q )

(r−1)δ))]

=∑
Nr

∑
ηr−1↪ηr

1
∪ηr

2
ηr
2

clustering

∏
q

µ
1−

∣ηr2,q ∣

2
ε Eε[φ

(ηr2,q),ηr−1

rδ ] ×Eε[Ξp−1(⍟
q
µ

1
2
−

∣ηr1,q ∣

2
ε ζεMrδ

q ,θ−rδ(φ
(ηr1,q),ηr−1

rδ ))] ,

where ηr1 ∪ ηr2 is a coarser partition than ηr−1, and each part of ηr2 contains at least two
components of ηr−1: this term only appears if ∣ηr−1∣ ≥ 2.

Our goal is to sum over all ηr−1 compatible with a given coarser decomposition ηr, in order
to retrieve cumulants at step r (see Figure 6). Let us first introduce

(4.13)

φ
(ηr1,q)
rδ ∶= ( ∏

j∈ηr1,q

M
(r−1)δ
j !

M rδ
j !

) ∑
ς,λ

ς↪λ↪ηr
1,q

µN
r+∣ς ∣−1

ε ∑
K,Sr,S̄r

sign(Sr)ϕ{λ1,...,λ∣λ∣}

×
∣λ∣
∏
`=1

(♯δ ⊗
ςj⊂λ`

φ̄
(ςj)
(r−1)δ)1{Z

Mrδ
λ`

∈Rλ`Kλ` ,Sλ`
}

φ
(ηr2,q),c
rδ ∶= ( ∏

j∈ηr2,q

M
(r−1)δ
j !

M rδ
j !

) ∑
ς,λ

ς↪λ↪ηr
2,q

∣ς∣≥2

µN
r+∣ς ∣−1

ε ∑
K,Sr,S̄r

sign(Sr)ϕ{λ1,...,λ∣λ∣}

×
∣λ∣
∏
`=1

(♯δ ⊗
ςj⊂λ`

φ̄
(ςj)
(r−1)δ)1{Z

Mrδ
λ`

∈Rλ`Kλ` ,Sλ`
}

denoting by N r the total number of particles annihilated on [θ − rδ, θ − (r − 1)δ] in the
packets. Observe that, with respect to Eq. (3.36), this definition contains an additional sum
over previous packets ς at time θ − (r − 1)δ. Now we can apply Fubini’s equality to sum
over ηr−1 thanks to the above definitions. We define indeed ρr ∶= ρr−1 ∪ ηr2 and ηr ∶= ηr1.

The sets ρr−1 and ηr2 play symmetric roles and the cumulants φ
(ρr−1
q ),t

rδ and φ
(ηr2,q),c
rδ can be

combined into one cumulant φ
(ρrq)
rδ . Now we sum (4.3) over ηr−1 and use (4.13) to recover

J̄ r−1
M = ∑

Nr
B

∑
ηr∪ρr partition of B

ρr clustering

⎛
⎝∏q

µ
1− ∣ρrq ∣

2
ε Eε[φ

(ρrq)
rδ ]

⎞
⎠
×Eε[Ξp−1(⍟

q
µ

1
2
− ∣ηrq ∣

2
ε ζε

Mrδ
ηrq
,θ−rδ(φ

(ηrq)
rδ ))] .

We finally extract from the main term the minimal cumulants. We restrict the support of

the cumulants φ
(σ)
rδ (with σ = ηrq or ρrq) to configurations such that the graph recording all

the encounters on the time interval [θ − rδ, θ − (r − 1)δ] has no cycle (nor multiple edge). In
particular there is no internal encounter without annihilation inside the blocks so that the
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sum over K in (4.13) disappears, and by definition, all “admissible” partitions ς = (ςi)1≤i≤∣ς ∣
of σ into packets are characterized by the graph recording the encounters between the ςi
which must be minimally connected. This local minimal dynamics in [θ − rδ, θ − (r − 1)δ]
is then entirely prescribed by the signs Sr, S̄r encoding encounters between particles of the
same tree on the time interval, and signs Er ∈ {−1,+1}∣ς ∣−1.

θ − rδ

θ − (r − 1)δ
1 2 3 4 5 6 7 8 9 10

ς5
ς4ς3ς2ς1

Figure 6. A schematic picture of generic contribution to the minimal cu-

mulant φ̄
(σ)
rδ , in the case of a σ consisting of 10 blocks (for simplicity

σ = {1,2,⋯,10}) grouped into s = 5 packets. An admissible partition ς is rep-
resented in red : it imposes some dynamical constraints after θ−(r−1)δ. The
dynamics in the depicted time interval is prescribed by Er,Sr, S̄r. Note that
two blocks of the same packet ςi should not collide or overlap on [θ − rδ, θ −
(r − 1)δ].

For such an admissible ς, there is a unique partition λ in forests and (4.2) holds. Thus the

restriction of φ
(σ)
rδ to minimal local forward dynamics is given by

(4.14)

φ̄
(σ)
rδ = ∑

s≤∣σ∣
µN

r
σ+s−1

ε ∑
Er,Sr,S̄r

sign(Er) sign(Sr)

× ∑
admissible ς

∣ς∣=s

1
Z
Mrδ
σ
∈Rlocmin,ς

Er,Sr,S̄r

s

∏
i=1
∏
j∈ςi

M
(r−1)δ
j !

M rδ
j !

(♯δφ̄(ςi)
(r−1)δ) ,

where Rloc min,ς

Er,Sr,S̄r is the set of all configurations leading to minimal forward dynamics on the

time interval [θ − rδ, θ − (r − 1)δ] compatible with Er ∈ {−1,1}s−1, Sr, S̄r and ς.

Now by the induction assumption, φ̄
(ςi)
(r−1)δ is a minimal cumulant given by formula (4.4)

at time θ − (r − 1)δ

φ̄
(ςi)
(r−1)δ(ZM(r−1)δ

ςi

) =µN
<r
ςi
+∣ςi∣−1

ε

⎛
⎜
⎝
∏
j∈ςi

mj !

M
(r−1)δ
j !

⎞
⎟
⎠

∑
S̄<ri ,S

<r
i ,E<ri

sign(E<ri ) sign(S<r
i )1Z

M
(r−1)δ
ςi

∈Rmin
E<r
i
,S<r
i
,S̄<r
i

(♯(r−1)δ⊗
j∈ςi

φ(j)) ,

where N<r
ςi denotes the number of particles annihilated on the full time interval [θ−(r−1)δ, θ]

and E<ri ,S<r
i , S̄

<r
i is the collection of all signs on that same time interval. Plugging this formula

into (4.14) (and using again Fubini’s identity to pass from the parametrization in terms of
(Er,Sr, S̄r, (S̄<r

i ,S
<r
i ,E<ri )

i
) to a global parametrization (E ,S, S̄)), we recover formula (4.4)
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at time θ − rδ. Thus we obtain the expected decomposition at θ − rδ:

J̄ r−1
M = ∑

Nr
B

∑
ηr∪ρr partition of B

ρr clustering

⎛
⎝∏q

µ
1− ∣ρrq ∣

2
ε Eε[φ̄

(ρrq)
rδ ]

⎞
⎠
Eε[Ξp−1(⍟

q
µ

1
2
− ∣ηrq ∣

2
ε ζε

Mrδ
ηrq
,θ−rδ(φ̄

(ηrq)
rδ ))] +Rint

r .

Proposition 4.9 is proved. �

4.4. Estimates of the remainders. We now establish the following estimates for the re-
mainders, which thanks to Proposition 4.9 imply Proposition 4.8 as an immediate corollary.

Proposition 4.10. Under the assumptions of Proposition 4.8, there is a constant CP depend-
ing only on P such that the remainder Rint

r defined in (4.11) satisfies the following estimate :

∣
R

∑
r=1

Rint
r ∣ ≤ (CPΘ)MB( ∏

i∈B∪{1,...,p−1}
∥h(i)∥L∞)ε

1
8d ,

with R = τ/δ and MB = ∑i∈Bmi.

In our argument, the specific form of the function Ξp−1 (see (4.8)) will be irrelevant. Only
the following two features are needed :

● Ξp−1 depends on the particle configurations before (and at) time θp−1;
● Ξp−1 has a uniformly bounded variance.

Notice indeed that by Hölder’s inequality,

(4.15) Eε[Ξ2
p−1] = Eε[(

p−1

∏
u=1

ζεθu(h
(u)))

2
] ≤

p−1

∏
u=1

Eε[ζεθu(h
(u))2(p−1)]

1
(p−1) ≤ Cp

p−1

∏
u=1

∥h(u)∥2
∞ ,

and thus Ξp−1 is bounded in L2, by Proposition 2.3 which ensures that the fluctuation fields

are bounded in L2(p−1).
The key ingredient will be the following lemma controlling the expectation and variance

of cumulants based on their clustering structure. It will be proved in Sections 7 and 8: see
Section 7 for the proof of (4.16), Paragraph 8.1 for the proof of (4.17) and Paragraph 8.2 for
the proof of (4.18).

Lemma 4.11. Let B ⊂ {p, p + 1, . . . , P}. Consider observables (φ̄(i))i∈B, supported on single
minimal forward clusters as in (4.6) at time θ = θp − kτ . Let σ = (σi)i≤∣σ∣ be a collection of

packets in B, and the corresponding cumulants φ
(σi)
rδ defined by (4.5). Denote by Mσi the

number of particles in σi at time θ, by N r
σi the number of particles to be removed in the last

time interval [θ − rδ, θ − (r − 1)δ], by N<r
σi the number of other particles to be removed in

[θ−(r−1)δ, θ] and by M rδ
σi =Mσi +N r

σi +N
<r
σi the total number of particles in σi at time θ−rδ.

Then there is constant CP > 0 depending on P and Kγ such that such that

(4.16) Eε[∣φ(σi)
rδ ∣] ≤ CP (∏

j∈σi
∥h(j)∥L∞) (CPΘ)Mσi−∣σi∣(CP δ)N

r
σi (CP τ)N

<r
σi
+∣σi∣−1 ,

and

(4.17)

RRRRRRRRRRRR
Eε[ ⍟

i≤∣σ∣
ζεMrδ

σi
,θ−rδ(φ

(σi)
rδ )]

RRRRRRRRRRRR
≤ CP ε∏

i≤∣σ∣
(∏
j∈σi

∥h(j)∥L∞)

× (CPΘ)Mσi−∣σi∣((CP δ)N
r
σi (CP τ)N

<r
σi
+∣σi∣−1)

1/2
,
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as well as
(4.18)

Eε[( ⍟
i≤∣σ∣

ζεMrδ
σi
,θ−rδ(φ

(σi)
rδ ))

2
] ≤ CP ∏

i≤∣σ∣
(∏
j∈σi

∥h(j)∥L∞)
2

× ((CPΘ)2Mσi+N
r
σi
+N<r

σi
−∣σi∣(CP δ)N

r
σi (CP τ)N

<r
σi
+∣σi∣−1) .

The same estimates hold for the minimal cumulants φ̄
(σi)
rδ defined by (4.4).

Recall that the remainders Rint
r in (4.11) are due to the non minimal dynamics. The

smallness will come from the fact that at least one factor in the product of expectations, or
one fluctuation field involves a dynamical graph with a cycle (or multiple dynamical edge)

(4.19) φ
(σi),cyc
rδ ∶= φ(σi)

rδ − φ̄(σi)
rδ .

We will therefore also need the following lemma, proved in Section 7 for (4.20) and Section 8.2
for (4.21).

Lemma 4.12. Consider observables (φ̄(i))i∈B at time θ supported on single minimal forward

cluster as in (4.6). Define φ
(σi),cyc
rδ by (4.19). Then, with the notations of Lemma 4.11, we

have that for any i ≤ ∣σ∣

(4.20)
Eε[∣φ(σi),cyc

rδ ∣] ≤ CP (∏
j∈σi

∥h(j)∥L∞)

× εδ∣ log ε∣(∣ log ε∣Θ)2d+4(CPΘ)Mσi−∣σi∣(CP δ)(N
r
σi
−1)+(CP τ)(N

<r
σi
+∣σi∣−2)+ ,

and

(4.21)

Eε[(ζεMrδ
σi
,θ−rδ(φ

(σi),cyc
rδ )⍟ (⍟

j≠i
ζεMrδ

σj
,θ−rδ(φ

(σj)
rδ )))

2
]

≤ CP ∏
i≤∣σ∣

(∏
j∈σi

∥h(j)∥L∞)
2
εδ∣ log ε∣(∣ log ε∣Θ)2d+4(CPΘ)Mσi+M

rδ
σi
−∣σi∣(CP τ)(N

<r
σi
+∣σi∣−2)+

× (CP δ)(N
r
σi
−1)+∏

j≠i
((CPΘ)2Mσj+N

r
σj
+N<r

σj
−∣σj ∣(CP δ)

Nr
σj (CP τ)

N<r
σj
+∣σj ∣−1)) .

The same estimates hold when replacing the cumulants φ
(σj)
rδ by the minimal cumulants φ̄

(σj)
rδ

defined by (4.4).

Proof of Proposition 4.10. Using the homogeneity, we can assume without loss of generality
that ∥h(i)∥L∞ ≤ 1 so we do not keep track of ∥h(i)∥L∞ in the estimates. Recall the defini-
tion (4.11) of Rint

r . The fluctuation terms in Rint
r can be decoupled from the function Ξp−1

by using the Cauchy-Schwarz estimate, leading in the case of Rint,1
r to

∣Rint,1
r ∣ ≤ ∑

Nrδ
B

∑
ηr∪ρr partition of B

ρr clustering

∣ρr ∣
∏
q=1

µ
1− ∣ρrq ∣

2
ε Eε[φ̄

(ρrq)
rδ ]E

1
2
ε [Ξ2

p−1]

×E
1
2
ε

⎡⎢⎢⎢⎢⎣

⎛
⎝

∣ηr ∣
⍟
q=1

µ
1
2
− ∣ηrq ∣

2
ε ζεMrδ

q ,θ−rδ(φ
(ηrq)
rδ ) −

∣ηr ∣
⍟
q=1

µ
1
2
− ∣ηrq ∣

2
ε ζεMrδ

q ,θ−rδ(φ̄
(ηrq)
rδ )

⎞
⎠

2⎤⎥⎥⎥⎥⎦

≤ CP ∑
Nrδ
B

∑
ηr∪ρr partition of B

ρr clustering

∣ρr ∣
∏
q=1

Eε[φ̄
(ρrq)
rδ ]E

1
2
ε

⎡⎢⎢⎢⎢⎣

⎛
⎝

∣ηr ∣
⍟
q=1

ζεMrδ
q ,θ−rδ(φ

(ηrq)
rδ ) −

∣ηr ∣
⍟
q=1

ζεMrδ
q ,θ−rδ(φ̄

(ηrq)
rδ )

⎞
⎠

2⎤⎥⎥⎥⎥⎦
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thanks to (4.15) and the fact that µ
1−∣ηrq ∣
ε ≤ 1. Then, since there is at least one factor

φ
(ηrq),cyc

rδ = φ(ηrq)
rδ − φ̄(ηrq)

rδ , using (4.16) and (4.21) we find that Rint,1
r is bounded by

CP (εδ∣ log ε∣)1/2(∣ log ε∣Θ)d+2 (CP δ)N
r
ρr (CP τ)N

<r
ρr +∑i ∣ρ

r
i ∣−∣ρr ∣(CPΘ)Mρr−∑i ∣ρri ∣

× (CPΘ)(Mηr−∑i ∣ηri ∣+Mrδ
ηr )/2(CP δ)(N

r
ηr−1)+/2(CP τ)(N

<r
ηr+∑i ∣η

r
i ∣−∣η∣−1)+/2 .

The reasoning is similar for Rint,2
r , using (4.18) and (4.20). Summing over (Nr′)r′≤r, then

over r ≤ R = τ
δ , we get

(4.22) ∣
R

∑
r=1

Rint
r ∣ ≤ (CPΘ)MB(εδ∣ log ε∣)1/2(∣ log ε∣Θ)d+2 τ

δ
≤ (CPΘ)MBε

1
8d ,

with the choice δ = ε1− 1
2d in (2.9) and τ satisfying (2.2). This concludes the proof of Propo-

sition 4.10, and thus of Proposition 4.8.
Notice that the choice of the parameter δ is an optimisation between the fact that δ has

to be small so that Υε
N is a typical event and the necessity for δ to be larger than ε for the

estimate (4.22) to converge to 0. �

5. Almost-preserving of the fluctuation structure

5.1. Subexponential clusters. In Proposition 4.8, we proved that the fluctuation structure
at a time θ can be pulled back to time θ−τ up to small error terms. We now want to iterate this
formula to pull back the fluctuation on any macroscopic time interval [θp−1, θp] (2 ≤ p ≤ P ).

For this, we choose the parameter τ so that for all i ∈ [1, P ], (θi − θi−1)/τ is not an integer.
Each time interval [θi−1, θi] is cut into ki = [(θi − θi−1)/τ] + 1 slices (of size τ , except for the

last slice [θi−1, θi − (ki − 1)τ] which is smaller due to this assumption on τ). This leads to a

decomposition of [0,Θ] into KP ∶=
P

∑
i=2

ki slices, denoted I` = [τ`+1, τ`] (in decreasing order):

thus I1 ∶= (Θ − τ,Θ), I2 = (Θ − 2τ,Θ − τ) . . . .
In particular, we introduce the decreasing sequence of integers {κp}p≤P such that

(5.1) θp = τκp and we set Lp = {κp, . . . , κp−1 − 1}.

I1

= τκp−1θ1 θ2 θp−1 θp = τκp
θP

I2

 intervals of size kp τ
IKP

Figure 7. The time interval [θ1, θP ] is split into KP intervals of smaller size
τ denoted by I1, . . . , IKP and ranked in a decreasing order.

In the next definition, we are going to strengthen the notion of single minimal forward
cluster introduced in Definition 4.2.

Definition 5.1 (Subexponential cluster). Let i ∈ {1, . . . , P} and τ` < θi = τκi be given. We
consider a single minimal forward cluster during the time interval [τ`, θi], originating from
a single particle. This cluster is said to be subexponential at τ` if on each time interval Ik
for κi ≤ k < ` the number of annihilations nki in the forward dynamics is less than 2k.

The corresponding single minimal cumulant φ̄(i) is defined as in (4.6) as the pullback

during [τ`, θi] of the function h(i), with the appropriate subexponential restrictions on the
annihilation numbers.
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Note that the reference time for the subexponential growth is chosen to be Θ rather
than θi as one might have expected (since the backward flow only starts at time θi). As will
be apparent later (see Proposition 5.6), the reason for this choice is that the contribution of
one single superexponential cluster must be small enough to compensate the size of all other
subexponential clusters, so the reference time has to be the same for all i ∈ {1, . . . , P}.

The main result of this section is the following: it shows that the fluctuation struc-
ture involving single subexponentials cumulants is preserved on any macroscopic time in-
terval [θp−1, θp]. Its proof is the goal of the following paragraphs.

Proposition 5.2. Given a subset B of {p, . . . , P}, consider for each i ∈ B a single minimal

cumulant φ̄(i) of mi variables, supported on a subexponential cluster at time θp = τκp as in

Definition 5.1. Then denoting by N` ∶= (n`i)i∈B the number of particles annihilated in each

block on the time step `, and by M
κp−1

i = mi +∑`∈Lp n`i the number of particles at time θp−1,
there holds

∣Eε[Ξp−1(⍟
i∈B

ζεmi,θp(φ̄
(i)))] − ∑

(N`)`∈Lp
subexp

Eε[Ξp−1(⍟
i∈B

ζε
M
κp−1
i ,θp−1

(φ̄(i)
θp−θp−1

))]∣

≤ CP ( ∏
i∈B∪{1,...,p−1}

∥h(i)∥L∞) ((CPΘ)P ⋅2
κp
ε

1
8d + (CPΘ2P−1τ)2κp−1) ,

where φ̄
(i)
θp−θp−1

is supported on a (single minimal) subexponential cluster at time θp−1.

Using the homogeneity, we can assume without loss of generality that ∥h(i)∥L∞ ≤ 1 so from

now on we no longer keep track of ∥h(i)∥L∞ in the estimates.

5.2. The main term and the remainders on a small time step. Let us start by con-
sidering one time step I` = [τ`+1, τ`] ⊂ [θp−1, θp]. Given a subset B of {p, . . . , P}, consider for

each i ∈ B a function φ̄(i) of m`
i variables, supported on a (single minimal) subexponential

cluster at time τ`. Define

I`M` ∶= Eε [Ξp−1⍟
i∈B

ζε
m`i ,τ`

(φ̄(i))] .

Let us apply Proposition 4.8: we are going to show that asymptotically as µε → ∞, the
fluctuation structure at time τ`+1 is similar to the fluctuation structure at time τ`. For this,
consider the principal part Ī`

M` defined in Proposition 4.9, but now on the time interval I`

Ī`M` ∶=∑
N`

∑
η∪ρ partition of B

ρ clustering

∏
q

µ
1− ∣ρq ∣

2
ε Eε[φ̄(ρq)

∣I`∣ ] ×Eε[Ξp−1(⍟
q
µ

1
2
− ∣ηq ∣

2
ε ζεM`+1

ηq ,τ`+1
(φ̄(ηq)

∣I`∣ ))] ,

where

(5.2) ∣I`M` − Ī`M` ∣ ≤ (CPΘ)M`
Bε

1
8d

by Propositions 4.9-4.10, and split in turn Ī`
M` into different contributions

Ī`M` = I`+1
M`+1 + Iexp,`

M + I2,`
M + I>,`M

which are defined below. We have written M `+1
ηq for the number of particles in ηq at time τ`+1,

and N` the number of particles annihilated on [τ`+1, τ`].
The main contribution is a product where each of the ∣B∣ terms has evolved indepen-

dently (∣ρ∣ = ∅, η consisting only of singletons) in a controlled way

I`+1
M`+1 ∶= ∑

N` subexp

Eε[Ξp−1(⍟
i∈B

ζε
m`i+n`i ,τ`+1

(φ̄(i)
∣I`∣))] ,
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where the sum is restricted to subexponential N`, meaning that for all i ∈ B, n`i ≤ 2`. The

function φ̄
(i)
∣I`∣ is thus supported on a (single minimal) subexponential cluster at time τ`+1 as

in Definition 5.1. We stress the fact that I`+1
M`+1 has the same product structure as I`

M` .

The remainder Ī`
M` − I`+1

M`+1 is split into the following three terms:

— the higher order cumulants
(5.3)

I>,`M ∶= ∑
η∪ρ partition of B

ρ clustering

∑
N`
ρ

1>∏
q

µ
1− ∣ρq ∣

2
ε Eε[φ̄(ρq)

∣I`∣ ] ×∑
N`
η

Eε[Ξp−1(⍟
q
µ

1
2
− ∣ηq ∣

2
ε ζεM`+1

ηq
,τ`+1

(φ̄(ηq)
∣I`∣ ))] ,

where 1> indicates that either at least one ηq has more than one element, or at least one ρq
has more than two elements;

— a term collecting pair cumulants in ρ

I2,`
M ∶= ∑

η∪ρ partition of B
η singletons, ρ pairs

∑
N`
ρ

∏
q

Eε[φ̄(ρq)
∣I`∣ ] ×∑

N`
η

Eε[Ξp−1(⍟
q
ζεM`+1

q ,τ`+1
(φ̄(q)

∣I`∣))] ,

— a term with only single minimal cumulants but at least one has a superexponential
growth

(5.4) Iexp,`
M ∶= ∑

N`superexp

Eε[Ξp−1(⍟
i∈B

ζε
m`i+n`i ,τ`+1

(φ̄(i)
∣I`∣))],

where the sum is restricted to superexponential N`, meaning that at least one i ∈ B satisfies
that n`i > 2`.

The following Paragraphs 5.3, 5.4 and 5.5 of this section consist in proving that the

terms I>,`M , I2,`
M and Iexp,`

M are small. As a consequence of Propositions 5.4, 5.5, 5.6 and
of (5.2), we deduce the following result on the time step [τ`+1, τ`].
Proposition 5.3. The following estimate holds:

∣Ī`M` − I`+1
M`+1 ∣ ≤ (CPΘ)2`P ε

1
8d + (CPΘ2P−1τ)2`−1

.

Proof of Proposition 5.2. Using repeatedly the results of (5.2) and Proposition 5.3, which
transports the fluctuation structure on any intermediate interval I`, we can recover the fluc-
tuation structure on the longer time interval [θp−1, θp].

Recall that θp = τκp with the notation (5.1). We consider the following fluctuation structure
at time θp

IM ∶= Eε[Ξp−1(⍟
i∈B

ζεmi,θp(φ̄
(i)))],

where B is a subset of {p, . . . , P} and for each i ∈ B, φ̄(i) is a function of mi variables,
supported on a subexponential minimal cluster at time θp.

Using repeatedly Proposition 5.3 on I` for ` in Lp, we get that

IM = ∑
(N`)`∈Lp

subexp

Eε[Ξp−1(⍟
i∈B

ζε
M
κp−1
i ,θp−1

(φ̄(i)
θp−θp−1

))] + ∑
`∈Lp
R`M,

where for each i ∈ B, φ̄
(i)
θp−θp−1

is a function of M
κp−1

i ∶=mi +∑`∈Lp n`i variables, supported on

a subexponential minimal single cluster at time θp−1.
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The remainders R`M come from the terms which are neglected at each step : big clusters,

vanishing pairings, and superexponential terms, as well as the remainder terms ∑rRint
r . By

Propositions 4.10 (see Eq. (5.2)) and 5.3, we get at each step `

R`M ≤ (CPΘ)2`P ε
1
8d + (CPΘ2P−1τ)2`−1

.

Note that the exponential factor takes also into account the sum over all choices of (Nk)k≤`
since 21+⋅⋅⋅+` ≤ 2`

2
. �

5.3. Removing big clusters. We treat here the high order cumulants collected in I>,`M
(see (5.3)). These cumulants describe dynamical correlations which are negligible at the scale
of the fluctuations. More precisely, we have the following result.

Proposition 5.4. The remainder accounting for big clusters satisfies the following estimate:

(5.5) ∣I>,`M ∣ ≤ (CPΘ)2`P µ
− 1

2
ε τ

1
2 .

Proof. By construction each cumulant φ̄
(ρq)
∣I`∣ appearing in (5.3) is supported on a minimal

cluster and the product of the expectations can be estimated by Lemma 4.11:

∣Eε[φ̄(ρq)
∣I`∣ ]∣ ≤ C (CPΘ)M

`
ρq−∣ρq ∣ (CP τ)N

`
ρq+∣ρq ∣−1,(5.6)

where N `
ρq is the total number of particles annihilated in ρq during I` and M `

ρq = ∑i∈ρqm`
i .

The functions φ̄(i) at time τ` are supported on (single minimal) subexponential clusters whose
sizes are bounded by

(5.7) m`
i ≤ 2` so that ∑

q

M `
ρq ≤ 2`P.

In the inequality (5.6), the power of τ keeps track of the total number N `
ρq of annihilated

particles and of the ∣ρq ∣ − 1 clusterings in the time interval I`. Since τ ≪ 1, the sums with

respect to N`
ρq converge and a factor τ ∣ρq ∣−1 remains. We get

(5.8)

RRRRRRRRRRRRR
∑
N`
ρ

∏
q

µ
1− ∣ρq ∣

2
ε Eε[φ̄(ρq)

∣I`∣ ]
RRRRRRRRRRRRR
≤ (CPΘ)2`P∏

q

µ
1− ∣ρq ∣

2
ε τ ∣ρq ∣−1 .

If one of the ρq is not a pair then ∣ρq ∣/2 ≥ 3/2 and this leads to an additional decay in τµ
− 1

2
ε .

We turn now to the estimate of the part of I>,`M which is weighted by a product of fluctuation
fields. By Hölder’s inequality and Lemma 4.11, we have that

(5.9)

∣Eε[Ξp−1 (⍟
q
µ

1
2
− ∣ηq ∣

2
ε ζεM`+1

ηq ,τ`+1
(φ̄(ηq)

∣I`∣ ))]∣

≤
p−1

∏
u=1

Eε [ζε(h(u))2(p−1)]
1

2(p−1) Eε[(⍟
q
µ

1
2
− ∣ηq ∣

2
ε ζεM`+1

ηq ,τ`+1
(φ̄(ηq)

∣I`∣ ))
2
]

1
2

≤ CP ∏
q

(CPΘ)M
`
ηq+

1
2
N`
ηq−

1
2
∣ηq ∣ (CP τ)

N`η
2 (CP τ

µε
)

∣ηq ∣

2
− 1

2

,

where the moments of the fluctuation field are bounded by Proposition 2.3. Summing over N`
η

gives

(5.10) ∑
N`
η

∣Eε[Ξp−1 (⍟
q
µ

1
2
− ∣ηq ∣

2
ε ζεM`+1

ηq ,τ`+1
(φ̄(ηq)

∣I`∣ ))]∣ ≤ (CPΘ)2`P∏
q

(Cτ
µε

)
∣ηq ∣

2
− 1

2

.
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In particular if one ηq satisfies ∣ηq ∣ > 1, we gain at least one power of µ
−1/2
ε τ1/2. Combining

(5.10) with (5.8), we recover

∣I>,`M ∣ ≤ (CPΘ)2`P µ
− 1

2
ε τ

1
2

and (5.5) follows thanks to the fact that τ ≤ 1. We stress that the combinatorial factors arising
from partitioning B ⊂ {1, . . . , P} into ρ, η depend only on P . Proposition 5.5 is proved. �

5.4. Control of pair cumulants at equilibrium. If ρ is made only of pairs and η of
singletons, then (5.8) and (5.10) do not provide any decay as a power of µε. In fact out of
equilibrium, these pairings contribute to the covariance and they were first analysed in [31]
in terms of a recollision operator (see also [7]). Instead at equilibrium, these terms vanish in
the limit µε → ∞ due to a symmetry property of the limiting measure. Thus to avoid the
bookkeeping exercise of tracking these terms in the iteration, we prefer to show that they do
not contribute in the equilibrium regime considered in this paper.

Proposition 5.5. The remainder accounting for pair cumulants is estimated as follows :

(5.11) ∣I2,`
M ∣ ≤ (CPΘ)2`P ε

1
8d .

Proof. The key estimate is to show that for pairs the expectation Eε[φ̄(ρq)
∣I`∣ ] vanishes in the

limit when µε → ∞. To fix ideas, we consider a clustering ρq of the form {1,2} connecting

the single minimal cumulants φ̄(1), φ̄(2) supported on subexponential clusters at time τ` by
an encounter on I` = [τ`+1, τ`]. Let us show that

(5.12) ∣ ∑
N`

{1,2}

Eε[φ̄({1,2})
∣I`∣ ] ∣ ≤ (CPΘ)m`1+m`2 ε

1
8d ,

from which Proposition 5.5 follows immediately by summing over the partitions and taking
into account the size (5.7) of the subexponential clusters at time τ`.

Using Proposition 4.8 with ∣B∣ = 2, p = 1 on the time interval I` leads to the explicit
decomposition

Eε[
2

⍟
i=1

ζε
m`i ,τ`

(φ̄(i))] = ∑
N`

{1,2}

Eε[φ̄({1,2})
∣I`∣ ] + ∑

n`1,n
`
2

Eε[
2

⍟
i=1

ζε
m`i+n`i ,τ`+1

(φ̄(i)
∣I`∣)](5.13)

+O((CPΘ)m`1+m`2ε
1
8d ) .

In this way, estimating the expectation of the pair correlations φ̄
({1,2})
∣I`∣ can be achieved

by controlling the two ⍟-products : one at time τ` and the other one at time τ`+1. By

construction φ̄
(i)
∣I`∣ is supported on a single minimal cluster, thus by (4.17) in Lemma 4.11, the

expectation is small

(5.14)

RRRRRRRRRRRRRR
∑

N`
{1,2}

Eε[
2

⍟
i=1

ζε
m`i+n`i ,τ`+1

(φ̄(i)
∣I`∣)]

RRRRRRRRRRRRRR
≤ (CPΘ)m`1+m`2 ∑

n`1,n
`
2

(CP τ)(n
`
1+n`2)/2 ε .

The expectation Eε[⍟2
i=1 ζ

ε
mi,τ`

(φ̄(i))] can be estimated in the same way. Since τ ≪ 1,

summing over n`1, n
`
2 completes the proof of (5.12). �
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5.5. Removing superexponential collision trees. In this section, we estimate dynamical

flows exhibiting a superexponential number of annihilations, namely Iexp,`
M defined in (5.4).

The result is the following.

Proposition 5.6. The remainder corresponding to superexponential clusters is estimated as
follows :

∣Iexp,`
M ∣ ≤ (CPΘ2P−1τ)2`−1

.

Proof. Compared to the previous sections, the control of Iexp,`
M requires a more careful de-

scription of the functions φ(i), taking into account the time sampling. They are supported
on subexponential clusters at time τ` (see Definition 5.1). As a consequence each function
depends at most on 2` particles and the total number of particles at time τ` is at most ∣B∣2`.

By definition of Iexp,`
M , there is i ∈ B such that on I`, the number n`i of annihilated particles

associated with i is larger than 2`. This means that on a time step of size τ , at least half of
the particles (up to the factor ∣B∣) are removed.

By Hölder’s inequality as in (4.15) and by (4.18) (without microscopic time splitting), we
then have that

∣Iexp,`
M ∣ ≤ ∑

N` superexp

∣Eε[Ξp−1 (⍟
i∈B

ζε
m`i+n`i ,τ`+1

(φ̄(i)
∣I`∣))]∣

≤ ∑
N` superexp

p−1

∏
u=1

Eε [ζε(h(u))2(p−1)]
1

2(p−1) Eε[(⍟
i∈B

ζε
m`i+n`i ,τ`+1

(φ̄(i)
∣I`∣))

2
]

1
2

≤ CP ∑
N` superexp

∏
i∈B

((CPΘ)2m`i+n`i−1τn
`
i)

1/2

≤ (CPΘ2∣B∣−1τ)
2`/2

.

Proposition 5.6 follows using that ∣B∣ ≤ P . �

6. Asymptotics of the principal term

As explained in Section 2, our goal is to pull back the test functions in time in order to build
pairings and establish the Wick factorisation of the moments. In Section 5, we have been
able to pull back minimal cumulants from one sampling time θp to the next θp−1. In order to
proceed to the next step and reach θp−2, one has to take into account the new structure of

the expectation at time θp−1 after the multiplication by the function h(p−1). This will induce
the pairing mechanism identified in Section 2 which will be quantified in this section.

In Section 6.1, we analyse the repeated indices at time θp−1 when taking the product of

the fluctuation field ζεθp−1
(h(p−1)) with the ⍟-product obtained in Proposition 5.2 from the

iteration. The induction for the derivation of Proposition 2.1 is completed in Section 6.2.

6.1. Asymptotic pairing. Recall that at time θp−1, for any i ∈ {p, . . . , P}, the function φ̄
(i)
θi−θp−1

is the pullback of the test function h(i) on [θp−1, θi] (in the sense of Definition 5.1). We now
study the product

ζεθp−1
(h(p−1)) × (⍟

i∈B
ζε
m
κp−1
i ,θp−1

(φ̄(i)
θi−θp−1

))

= µ(∣B∣+1)/2
ε (πεθp−1

(h(p−1)) −Eε[h(p−1)]) (∑
A⊂B

∏
i∈B∖A

Eε[ − φ̄(i)
θi−θp−1

]πε
M
κp−1
A ,θp−1

(⍟
i∈A

φ̄
(i)
θi−θp−1

)) ,
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where

(6.1) m
κp−1

i ≤ 2κp−1 ,

as by definition, the number of particles added in a subexponential cluster on I` is smaller
than 2`. In particular, the following crude bound holds : M

κp−1

A = ∑i∈Am
κp−1

i ≤ 2κp−1 ∣A∣. For
the sake of readability, we will omit the superscript κp−1 in the rest of this paragraph.

We split the sum in πεθp−1
(h(p−1)) according to the repeated indices : when the index does

not appear in the sum πεMA,θp−1
, we get a ⍟-product, else we get a contracted product:

ζεθp−1
(h(p−1)) × (⍟

i∈B
ζεmi,θp−1

(φ̄(i)
θi−θp−1

))

= µ(∣B∣+1)/2
ε ∑

A⊂B

⎛
⎝ ∏
i∈B∪{p−1}∖A

Eε[ − φ̄(i)
θi−θp−1

]
⎞
⎠
πεMA,θp−1

(⊗
i∈A

φ̄
(i)
θi−θp−1

)

+ µ(∣B∣+1)/2
ε ∑

A⊂B
( ∏
i∈B∖A

Eε[ − φ̄(i)
θi−θp−1

]) πεMA+1,θp−1
(h(p−1)⊗

i∈A
φ̄
(i)
θi−θp−1

)

+ µ(∣B∣−1)/2
ε ∑

A⊂B
( ∏
i∈B∖A

Eε[ − φ̄(i)
θi−θp−1

]) πεMA,θp−1
(∑
j∈A

ψ(j,p−1)⊗
i∈A
i≠j

φ̄
(i)
θi−θp−1

),

where φ̄
(p−1)
0 ∶= h(p−1) and

(6.2) ψ(j,p−1)(Zmj) ∶= φ̄
(j)
θj−θp−1

(Zmj)
mj

∑
`=1

h(p−1)(z`) .

Using the definition of the ⍟-product, we get the identity

ζεθp−1
(h(p−1)) × (⍟

i∈B
ζεmi,θp−1

(φ̄(i)
θi−θp−1

)) = ⍟
i∈B∪{p−1}

ζεmi,θp−1
(φ̄(i)

θi−θp−1
)

+ µ(∣B∣−1)/2
ε ∑

j∈B
∑

Ã⊂B∖{j}
( ∏
i∈(B∖{j})∖Ã

Eε[ − φ̄(i)
θi−θp−1

])πεMÃ+mj ,θp−1
(ψ(j,p−1)⊗

i∈Ã
φ̄
(i)
θi−θp−1

) .

Decomposing µ
−mj
ε ∑ψ(j,p−1) in its expectation plus a fluctuation as in (3.38)

πεmj ,θp−1
(ψ(j,p−1)) = Eε[ψ(j,p−1)] + µ−

1
2

ε ζεmj ,θp−1
(ψ(j,p−1)) ,

we finally obtain, using again the definition of the ⍟-product,
(6.3)

ζεθp−1
(h(p−1)) × (⍟

i∈B
ζεmi,θp−1

(φ̄(i)
θi−θp−1

)) = ⍟
i∈B∪{p−1}

ζεmi,θp−1
(φ̄(i)

θi−θp−1
)

+ ∑
j∈B

Eε[ψ(j,p−1)]⍟
i≠j
ζεmi,θp−1

(φ̄(i)
θi−θp−1

)

+ µ−1/2
ε ∑

j∈B
ζεmj ,θp−1

(ψ(j,p−1))⍟ (⍟
i≠j
ζεmi,θp−1

(φ̄(i)
θi−θp−1

)) .

As the function ψ(j,p−1) has the same cluster structure of φ̄
(j)
θj−θp−1

(with only a slightly dif-

ferent weight), the inequalities of Lemma 4.11 apply also for ψ(j,p−1). Proceeding as in (5.9),
we apply Hölder’s inequality and Lemma 4.11 to show that the last term in the previous
decomposition has a vanishing contribution in the limit

µ−1/2
ε

RRRRRRRRRRR
Eε[Ξp−2 (∑

j∈B
ζε
m
κp−1
j ,θp−1

(ψ(j,p−1))⍟
i≠j
ζε
m
κp−1
i ,θp−1

(φ̄(i)
θi−θp−1

))]
RRRRRRRRRRR
≤ µ−1/2

ε (CPΘ)M ,
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with M = ∑i∈Bmi ≤ 2κp P and Ξp−2 ∶=∏p−2
u=1 ζ

ε
θu

(h(u)) was introduced in (4.8).

Thus we obtain the following result.

Proposition 6.1. For any j ≥ p, let φ̄
(j)
θj−θp−1

be the generic subexponential dynamical cluster

from the expansion of h(j), and denote ψ(j,p−1) its contraction with h(p−1) defined by (6.2).

We set φ
(p−1)
0 = h(p−1). Then

(6.4)

RRRRRRRRRRR
Eε[Ξp−1 (⍟

i∈B
ζε
m
κp−1
i ,θp−1

(φ̄(i)
θi−θp−1

))] −Eε[Ξp−2 ( ⍟
i∈B∪{p−1}

ζε
m
κp−1
i ,θp−1

(φ̄(i)
θi−θp−1

) )]

− ∑
j∈B

Eε[ψ(j,p−1)]Eε[Ξp−2( ⍟
i∈B∖{j}

ζε
m
κp−1
i ,θp−1

(φ̄(i)
θi−θp−1

))]
RRRRRRRRRRR
≤ CPµ−1/2

ε (CPΘ)2κp P .

The second term in (6.4) has the required structure to be pulled back up to time θp−2 by
considering cumulants indexed by the larger set B ∪ {p − 1}. The sum in (6.4) involves the

product of Eε [ψ(j,p−1)], which will be linked to a covariance in Corollary 6.2, and a⍟-product
which has the right structure to be pulled back up to time θp−2 by considering cumulants
indexed by the smaller set B ∖ {j}.

Corollary 6.2. For any j ≥ p, denote by φ̄
(j)
θj−θp−1

the subexponential minimal cumulants

issued from h(j), and denote by ψ(j,p−1) their contraction with h(p−1) defined by (6.2). Then,
one has

RRRRRRRRRRR
∑
Nj

subexp

Eε [ψ(j,p−1)] −Eε[ζεθp−1
(h(p−1)) ζεθj(h

(j))]
RRRRRRRRRRR
≤ (CPΘ)2κpε

1
8d + (CPΘ3τ)2κp−1 ⋅

In particular, one has the uniform bound

RRRRRRRRRRRRRRRR
∑
Nj

subexp

Eε [ψ(j,p−1)]

RRRRRRRRRRRRRRRR

≤ C .

Proof of Corollary 6.2. Using repeatedly Proposition 5.2 with only two test functions h(p−1), h(j)

but with the same time sampling I`, we get

RRRRRRRRRRRRRRRR

Eε[ζεθp−1
(h(p−1))ζεθj(h

(j)))] − ∑
Nj

subexp

Eε[ζεθp−1
(h(p−1))ζε

m
κp−1
j ,θp−1

(φ̄(j)
θj−θp−1

))]

RRRRRRRRRRRRRRRR
≤ (CPΘ)2κpε

1
8d + (CPΘ3τ)2κp−1

.

Then, from Proposition 6.1 with B = {j}, we get

RRRRRRRRRRR
Eε[ζεθp−1

(h(p−1))ζε
m
κp−1
j ,θp−1

(φ̄(j)
θj−θp−1

))]

−Eε[ζεθp−1
(h(p−1))⍟ ζε

m
κp−1
j ,θp−1

(φ̄(j)
θj−θp−1

)] −Eε[ψ(j,p−1)]
RRRRRRRRRRR
≤ C µ−1/2

ε (CΘ)2κp .
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It remains to sum over the subexponential annihilation numbers Nj = (n`j)κj<`≤κp−1−1. Since Nj

takes at most 21+⋅⋅⋅+2κp values, the error terms remain under control and we get
RRRRRRRRRRRRRRRR

Eε[ζεθp−1
(h(p−1))ζεθj(h

(j))] − ∑
Nj

subexp

Eε[ψ(j,p−1)] − ∑
Nj

subexp

Eε[ζεθp−1
(h(p−1))⍟ ζε

m
κp−1
j ,θp−1

(φ̄(j)
θj−θp−1

)]

RRRRRRRRRRRRRRRR
≤ (CPΘ)2κpε

1
8d + (CPΘ3τ)2κp−1

.

By (5.14), we find that the first term in the right-hand side vanishes in the limit :

RRRRRRRRRRR
∑
Nj

subexp

Eε[ζεθp−1
(h(p−1))⍟ ζε

m
κp−1
j ,θp−1

(φ̄(j)
θj−θp−1

)]
RRRRRRRRRRR
≤ (CPΘ)2κp+1

ε .

This completes Corollary 6.2. �

In the following section, we are going to iterate these propositions in order to decompose
the moments of the field as a product of covariances and some remainder terms.

6.2. Proof of Proposition 2.1 : convergence of the moments. We are now going to
combine the previous results to prove Proposition 2.1. We proceed by induction and at
time θp, we assume that the following decomposition holds, with notation (6.2):

(6.5)

Eε[
P

∏
u=1

ζεθu(h
(u))] ∼ ∑

B∪Bc={p,...,P}

Bc∩B=∅

∑
ηp∈Spairs

Bc

∏
{i,j}∈ηp
i<j

( ∑
Nj

subexp

Eε[ψ(j,i)])

× ∑
NB

subexp

Eε[(
p−1

∏
u=1

ζεθu(h
(u)))(⍟

i∈B
ζε
m
κp−1
i ,θp−1

(φ̄(i)
θi−θp−1

))] ,

where ∼ means that the difference is bounded by (CPΘ)P ⋅2κP ε 1
8d + (CPΘ2P−1τ)1/2. Notice

that the decomposition is valid at time Θ with B = {P} and Bc = ∅.

Given B,ηp ∈Spairs
Bc , we are going to apply the procedure described in the previous sections

to expand the expectation in the second line of (6.5) and to derive the induction relation at
time θp−1. Combining (6.4) and (6.5), we obtain

(6.6)

Eε[
P

∏
u=1

ζεθu(h
(u))] ∼ ∑

B∪Bc={p,...,P}

Bc∩B=∅

∑
ηp∈Spairs

Bc

∏
{i,j}∈ηp
i<j

( ∑
Nj

subexp

Eε[ψ(j,i)])

× ∑
NB

subexp

Eε[(
p−2

∏
u=1

ζεθu(h
(u)))( ⍟

i∈B∪{p−1}
ζε
m
κp−1
i ,θp−1

(φ̄(i)
θi−θp−1

))]

+ ∑
B∪Bc={p,...,P}

Bc∩B=∅

∑
ηp∈Spairs

Bc

∏
{i,j}∈ηp
i<j

( ∑
Nj

subexp

Eε[ψ(j,i)])

× ∑
j′∈B

⎛
⎜⎜
⎝
∑
Nj′

subexp

Eε[ψ(j′,p−1)]
⎞
⎟⎟
⎠

∑
NB∖{j′}
subexp

Eε[(
p−2

∏
u=1

ζεθu(h
(u)))( ⍟

i∈B∖{j′}
ζε
m
κp−1
i ,θp−1

(φ̄(i)
θi−θp−1

))] .

In the first contribution, since there is no new pairing, we set ηp−1 = ηp and the product form
holds now on the set B ∪ {p − 1} ⊂ {p − 1, . . . , P}. For the second contribution, we define the
new set ηp−1 = ηp ∪ {(p − 1, j′)} with the additional pair. The ⍟-product at time θp−1 holds
on the reduced set B ∖ {j′}.
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Thus the induction assumption (6.5) is also valid at θp−1 and it can be iterated up to
time θ1:

Eε[(
P

∏
u=1

ζεθu(h
(u)))]

∼ ∑
B⊂{1,...,P}

∑
η1∈Spairs

Bc

∏
{i,j}∈η1
i<j

( ∑
Nj

subexp

Eε[ψ(j,i)]) ∑
NB

subexp

Eε[⍟
i∈B

(ζε
m
κ1
i ,θ1

(φ̄(i)
θi−θ1))].

As the induction is applied only P times, the difference remains bounded by (CPΘ)P ⋅2κP ε 1
8d +

(CPΘ2P−1τ)1/2.
By (4.17) in Lemma 4.11, the terms for which B /= ∅ can be neglected. Thus the only

remaining term is B = ∅ and η1 is an element of Spairs
P :

Eε[
P

∏
u=1

ζεθu(h
(u))] ∼ ∑

η1∈Spairs
P

∏
{i,j}∈η1
i<j

( ∑
Nj

subexp

Eε[ψ(j,i)]).(6.7)

Recall that ∼ means that the difference is bounded by (CPΘ)P ⋅2KP ε 1
8d + (CPΘ2P−1τ)1/2, so

the factorisation estimate (6.7) is quantitative and remains valid for (slowly) diverging times.

Identifying the covariances with Corollary 6.2 concludes the proof of Proposition 2.1. �

7. Geometric estimates

In this section, we adapt previous results from [8] to the present context, allowing to
prove the first parts of Lemma 4.11 and Lemma 4.12: we control the cluster functions by
establishing the bound on the expectation (4.16) as well as the smallness estimate (4.20) for
non minimal clusters.

In this section, since we will consider only one packet σi, we will drop the index i to
lighten the notation, as well as the time dependence in the test functions. We thus consider a
collection (φ̄(j))j∈σ of single minimal cumulants originating from single particles at times θj
as in (4.6). These cumulants are aggregated on [θ − rδ, θ] as in (4.5) to form the cumulant

φ(σ) at time θ − rδ supported on forward clusters as in Definition 4.5.
We therefore have ∣σ∣ blocks of cardinalities Mrδ = (M rδ

j )j∈σ at time θ − rδ. We denote by

● Nr the number of annihilations in the different blocks on Iδ ∶= [θ − rδ, θ − (r − 1)δ];
● N<r the number of annihilations in the different blocks on Iτ ∶= [θ − (r − 1)δ, θ];

and define N r = ∑j∈σN r
j , N<r = ∑j∈σN<r

j , M rδ =M +N r +N<r = ∑j∈σM rδ
j .

To determine the forward dynamics on [θ − rδ,Θ], we also need to fix as in Definition 4.5

● K ∈ {0, . . . ,Kγ}M
rδ

counting for each particle the internal encounters without annihi-
lation on Iδ (recall that the number of such encounters is under control by construction

of φ(σ));

● (S, S̄) ∈ {1,−1}2(Mrδ−∣σ∣) prescribing the encounters with annihilation on Iδ ∪ Iτ ∪ Iθ,
among which we denote by (Sr, S̄r) ∈ {1,−1}2Nr

the signs prescribing the encoun-

ters on Iδ, (S<r, S̄<r) ∈ {1,−1}2N<r
those prescribing the encounters on Iτ and fi-

nally (Sθ, S̄θ) ∈ {1,−1}2(M−∣σ∣) the signs prescribing the encounters on Iθ;
● a partition ς of σ prescribing the packets at time θ − (r − 1)δ, as well as a partition λ

of these packets in forests, prescribing the external encounters on Iδ;
● E = (Ei) where for each packet ςi, Ei ∈ {1,−1}∣ςi∣−1 prescribing the external encounters

on Iτ .
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With this notation, plugging (4.4) into (4.5) provides

φ
(σ)
rδ (ZMrδ) = (∏

j∈σ

M
(r−1)δ
j !

M rδ
j !

) ∑
ς∈Pσ

µN
r+∣ς ∣−1

ε ∑
K,Sr,S̄r,λ

ς↪λ

sign(Sr)ϕ{λ1,...,λ∣λ∣}

×
∣λ∣
∏
`=1

(♯δ ⊗
ςi⊂λ`

φ̄
(ςi)
(r−1)δ)1{Z

Mrδ
λ`

∈Rλ`
Kλ`

,Sr
λ`
,S̄r
λ`

}

=
⎛
⎝∏j∈σ

mj !

M rδ
j !

⎞
⎠
µN

r+N<r+∣σ∣−1
ε ∑

ς∈Pσ
∑

K,S≤r,S̄≤r,E,λ
ς↪λ

sign(E) sign(S≤r)ϕ{λ1,...,λ∣λ∣}

× 1{Z
Mrδ forward cluster associated with (S≤r, S̄≤r, ς, λ,K,E)}

∣λ∣
∏
`=1

∏
ςi⊂λ`

(♯(r−1)δ⊗
j∈ςi

φ̄(j))

where we wrote (S≤r, S̄≤r) = (S<r,Sr, S̄<r, S̄r), and sign(S≤r) for the product of all the com-
ponents of S≤r. On the other hand by the assumption (4.6) on the structure of the test
functions, one has

(7.1) φ̄(j)(Zmj) =
µ
mj−1
ε

mj !
∑

Sθj ,S̄
θ
j

sign(Sθj)1Zmj ∈Rmin

Sθ
j
,S̄θ
j

(♯θj−θh(j)) ,

Recall that we can assume without loss of generality that ∥h(j)∥∞ ≤ 1 for all j ∈ σ.
Since 1ΥεN

≤ 1, inequalities (4.16) and (4.20) follow from their counterparts at equilibrium

(7.2) Eeq
ε [∣φ(σ)∣] ≤ CP (∣σ∣Kγ)M

rδ (CΘ)M−∣σ∣(Cδ)Nr(Cτ)N<r+∣σ∣−1 ,

and
(7.3)

Eeq
ε [∣φ(σ),cyc∣] ≤ εδ∣ log ε∣(Θ∣ log ε∣)2d+4 CP (∣σ∣Kγ)M

rδ(CΘ)M−∣σ∣(Cδ)(Nr−1)+(Cτ)(N<r+∣σ∣−2)+ ,

which we now prove.

Estimating roughly the L∞ norm of the cumulant ϕ{λ1,...λ∣λ∣} by ∣λ∣! (note that ∣λ∣! ≤ ∣σ∣!),
and using that

(7.4)
M rδ!

∏j∈σM
rδ
j !

≤ ∣σ∣Mrδ

,

we infer that

(7.5) ∣φ(σ)(ZMrδ)∣ ≤ ∣σ∣Mrδ(∏
j∈σ

∥h(j)∥∞) µ
Mrδ−1
ε

M rδ!
∑

S̄,S,K,ς,λ,E
∣λ∣! 1{Z

Mrδ forward cluster} ,

where the forward cluster in the indicator refers to the dynamics in [θ − rδ,Θ] constructed
as described above and depends on the whole set of global parameters S̄,S,K, ς, λ,E . Note

that the cardinality of such parameters is bounded by CP (CKγ)M
rδ

for some pure constant
C, and CP depending only on P .

We now need to describe more precisely the support of φ(σ), i.e. to extract from the cluster

structure some “independent” geometric conditions. To show Inequality (7.2) on Eeq
ε [∣φ(σ)∣]
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it is enough to prove that the size of the support is controlled by

(7.6)

sup
x
Mrδ ∈Td

∫ 1{Z
Mrδ forward cluster}M⊗Mrδ (VMrδ)dXMrδ−1dVMrδ

≤ C M rδ!

µMrδ−1
ε

(CΘ)M−∣σ∣(Cδ)Nr(Cτ)N<r+∣σ∣−1

for some pure constant C > 0, uniformly in (S̄,S,K, ς, λ,E). Indeed, assuming (7.6), we
deduce from (7.5) that
(7.7)

Eeq
ε [ ∣φ(σ)∣ ] = ∫ Gε,eq

Mrδ ∣φ(σ)∣dZMrδ

≤ ∣σ∣Mrδ µM
rδ−1

ε

M rδ!
∏
j∈σ

∥h(j)∥∞ ∑
S̄,S,K,ς,λ,E

∣λ∣! ∫ Gε,eq
Mrδ 1{Z

Mrδ forward cluster} dZMrδ

≤ ∣σ∣Mrδ µM
rδ−1

ε

M rδ!
∏
j∈σ

∥h(j)∥∞ ∑
S̄,S,K,ς,λ,E

∣λ∣! ∫ M⊗Mrδ

1{Z
Mrδ forward cluster} dZMrδ

≤ CP ∣σ∣Mrδ (CKγ)M
rδ(CΘ)M−∣σ∣(Cδ)Nr(Cτ)N<r+∣σ∣−1 ,

where the sums over the parameters S̄,S,K, ς, λ,E have been bounded by (CKγ)M
rδ

and
combinatorial factors depending only on P . Notice that, to compute the expectation, we
have made use of the correlation functions of the invariant measure (1.4), which we recall:

Gε,eq
M (ZM) ∶=M

⊗M

Zε
∞
∑
n=0

µnε
n!
∫(Td×Rd)n

dzM+1 . . . dzM+n 1DεM+n
(ZM+n)M⊗n , M = 1,2,⋯

with Zε given by (1.5). Since 1DεM+n
(ZM+n) ≤ 1DεM (ZM)1Dεn(zM+1, . . . , zM+n), these correla-

tion functions satisfy the pointwise bound Gε,eq
M (ZM) ≤M⊗M , which justifies the third line

of (7.7). This concludes the derivation of inequality (7.2) and therefore of (4.16).

The proof of (7.6) follows the strategy of Lemma 4.2 in [8]. We adapt it to this new
framework.

Definition 7.1 (Forward tree). A forward tree T≺ = (qi, q̄i)1≤i≤Mrδ−1 is constructed by record-
ing in increasing order of times, denoted by ti, the encounters of the forward dynamics (recall
Definition 3.5) which do not create any cycle (nor multiple edge). These encounters are said
to be clustering.

Note that qi, q̄i are generic notations for the indexes of the two particles involved in the i-th
encounter, they can of course take several times the same value.

Even though the encounters can be of different nature, they lead to similar geometric
constraints in the forward dynamics and they are coded in the same way in terms of the
dual variables. The type of each link (qi, q̄i) (with or without annihilation, with or without
scattering) is encoded in the set of parameters ς, λ,S, S̄,K,E . Then,

∑
ς,λ,S,S̄,K,E

1{Z
Mrδ forward cluster} = ∑

ς,λ,S,S̄,K,E
∑

T≺∈T ≺
Mrδ

1{Z
Mrδ ∈Rcomp

T≺
},

whereRcomp
T≺

is the set of configurations compatible with (ς, λ,S, S̄,K,E , T≺), and T ≺
Mrδ stands

for the set of all ordered trees with M rδ − 1 edges. The above sum over ordered trees corre-
sponds to a partition, meaning that for any given ZMrδ , at most one term is non zero. Note,
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for future reference (see Section 8 below), that (7.5) implies

(7.8) ∣φ(σ)(ZMrδ)∣ ≤ CP ∣σ∣M
rδ

(∏
j∈σ

∥h(j)∥∞)µ
Mrδ−1
ε

M rδ!
∑

S̄,S,K,ς,λ,E
∑

T≺∈T ≺
Mrδ

1{Z
Mrδ ∈Rcomp

T≺
} .

We then need to integrate over the variables ZMrδ restricted to the set Rcomp
T≺

. This
set is a collection of constraints which are not independent one from the other. However,
exploiting the ordering of edges in T≺, we can identify a sequence of “independent” variables
(see Definition 7.2 below). The basic idea is that, when we follow the dynamics forward
in time, each new edge corresponds to an encounter involving at least one new variable. A
convenient way to proceed is by using as new variables the relative positions between particles
realizing encounters, keeping all velocities fixed. More precisely, given an admissible tree T≺,
let us define the relative positions at time θ − rδ

(7.9) x̂i ∶= xqi − xq̄i .

Given the relative positions (x̂s)s<i and the velocities VMrδ , we fix a forward flow with clus-
tering encounters at times t1 < ⋅ ⋅ ⋅ < ti−1. By construction, qi and q̄i belong to two forward
pseudo-trajectories that have not interacted yet. In other words, qi and q̄i do not belong
to the same connected component in the graph Gi−1 ∶= (qj , q̄j)1≤j≤i−1. Inside each connected
component, relative positions are fixed by the previous constraints, and one degree of freedom
remains. Therefore we can vary x̂i so that an encounter at time ti occurs between qi and q̄i
(moving rigidly the corresponding connected components). This encounter condition defines
recursively the sets BT≺,i(x̂1, . . . , x̂i−1, VMrδ) prescribing the constraints on x̂i.

Definition 7.2. We say that the sets (BT≺,i)i≤Mrδ−1 are sequentially independent if for all i
the set BT≺,i is defined by constraints depending only on x̂1, . . . , x̂i−1, VMrδ .

Suppose that the time ti belongs to the set I ∈ {Iδ,Iτ ,Iθ}. If the particles qi and q̄i move
in straight lines, then the measure of BT≺,i can be estimated by

∣BT≺,i∣ ≤
C

µε
∣vεqi(t

+
i−1) − vεq̄i(t

+
i−1)∣∫ 1ti∈I 1ti≥ti−1dti .(7.10)

Thus, by a Cauchy-Schwarz inequality there holds

(7.11) ∑
qi,q̄i

∣BT≺,i∣ ≤
C

µε
(V 2

Mrδ +M rδ)M rδ ∫ 1ti∈I 1ti≥ti−1dti .

Note however that, by definition of the forward tree, particles qi, q̄i may encounter on [ti−1, ti]
with other particles from their respective connected component in the graph Gi−1. In this
case the particle trajectories are piecewise affine but a bound similar to (7.10) is obtained by
summing over all the portions of the trajectory and the upper bound (7.11) still holds (see
Section 8.1 of [7] for details).

At this point we proceed as in [8] (the proof of Lemma 4.1 therein contains the same
computation that follows, except for the time sampling condition ti ∈ I appearing in (7.10)-
(7.11)).

We first apply the change of variables

XMrδ−1 Ð→ X̂Mrδ−1

and observe that, for any fixed xMrδ , this is a map of translations with dXMrδ−1 = dX̂Mrδ−1.
The constraints, imposed by the M rδ − 1 encounters, can be evaluated one after the other
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following the order prescribed above. Hence by Fubini’s theorem

∑
T≺∈T ≺

Mrδ

∫ dX̂Mrδ−1

Mrδ−1

∏
i=1

1BT≺,i ≤ ∑
T≺∈T ≺

Mrδ

∫ dx̂11BT≺,1 ∫ dx̂2⋯∫ dx̂Mrδ−11BT≺,Mrδ−1

≤ ( C
µε

)
Mrδ−1

(V 2
Mrδ +M rδ)M

rδ−1 (M rδ)Mrδ−1∫ dt1 . . . dtMrδ−11samp,

(7.12)

where 1samp is the constraint on the encounter times respecting the sampling. Retaining only
the information on the number of encounters in each time interval, we get by integrating over
these ordered times an upper bound of the form

(7.13)
δN

r

N r!

τN
<r+∣σ∣−1

(N<r + ∣σ∣ − 1)!
ΘMrδ

M !
≤ 3M

rδ−1

(M rδ − 1)! δ
Nr τN

<r
+∣σ∣−1

ΘMrδ

,

where we used the inequality

(M rδ − 1)!
N r! (N<r + ∣σ∣ − 1)!M !

≤ 3M
rδ−1.

Up to a factor CM
rδ

, the factorial (M rδ − 1)! compensates the factor (M rδ)Mrδ
in (7.12).

Furthermore, in any dimension, for any R,N

(7.14) sup
V

{ exp ( − 1

8
∣V ∣2) (∣V ∣2 +R)N} ≤ CNeR NN .

After integrating the velocities with respect to the measure M⊗Mrδ
, we deduce from the

previous inequality that the term (V 2
Mrδ +M rδ)M

rδ

gives another factor of order (M rδ)Mrδ

which leads, up to a factor CM
rδ

, to the term M rδ! in (7.6). This completes the proof of (7.6)
and therefore of the inequality (7.2). �

We turn now to the proof of Inequality (7.3). We proceed as for (7.6) and our purpose is
to show that

(7.15)

sup
x
Mrδ ∈Td

∫ 1{Z
Mrδ non minimal forward cluster}M⊗Mrδ (VMrδ)dXMrδ−1dVMrδ

≤ C M rδ!

µMrδ−1
ε

εδ∣ log ε∣(Θ∣ log ε∣)2d+4 (CΘ)M−∣σ∣(Cδ)(Nr−1)+(Cτ)(N<r+∣σ∣−2)+ ,

for some pure constant C > 0, uniformly in (S̄,S,K, ς, λ,E).
By construction, there is at least one encounter violating the minimality, and therefore

at least one clustering in Iδ. The support estimate (7.6) can be refined by using that the
graph encoding all encounters has strictly more than (M rδ − 1) edges (i.e. it strictly contains
the forward tree T≺), which means that there will be at least one cycle in this graph. This
reinforces one of the geometric conditions on the sets BT≺,i (see (7.10)), leading to the following
estimate

(7.16)

∑
T≺∈T ≺

Mrδ

∫ M⊗Mrδ(VMrδ)dVMrδ ∫ dX̂Mrδ−11cycle

Mrδ−1

∏
i=1

1BT≺,i

≤ ( C
µε

)
Mrδ−1

ε∣ log ε∣(VΘ)2d+4(M rδ)2+2Mrδ

∫
θ−(r−1)δ

θ−rδ
dt1⋯∫

Θ

t
Mrδ−2

dtMrδ−1 1samp .

We refer to [8] for the proof of this estimate (see Eq. (5.12) in [8], which is derived under
the same assumptions on the sets BT≺,i except for the minor difference in the time sampling
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condition ti ∈ I). We recall the choices (2.9) for V and Θ. Then integrating over the simplex
in time represented by 1samp leads to (7.15), where the contribution δ comes from the first
edge of the forward tree. Since we did not track the nature of this edge, the terms (N r − 1)+
and (N<r + ∣σ∣ − 2)+ have been adjusted to take into account all the possibilities.

This concludes the proof of (7.15), hence of (7.3). �

8. Expectation and variance of ⍟-products

The aim of this section is to control the expectation and variance of ⍟-products in order
to complete the proofs of Lemma 4.11 and Lemma 4.12.

Without loss of generality, we suppose from now on that the sets σi are indexed by i ∈
{1, . . . , q}.

We start by proving the estimates on the equilibrium measures (in Paragraphs 8.1 and 8.2),
and then show in Paragraph 8.3 how to conclude to Estimates (4.17), (4.18) and (4.21).

8.1. Expectation of centered ⍟-products. In this section, we prove the following in-
equality:

(8.1) ∣Eeq
ε [

q

⍟
i=1

ζε,eq

Mrδ
i

(φ(σi))]∣ ≤ Cqε
q

∏
i=1

(∣σi∣Kγ)M
rδ
i × ((CΘ)Mi−∣σi∣(Cδ)Nr

i (Cτ)N<r
i +∣σi∣−1) .

Inequality (8.1) follows from the control on the structure of the test functions φ(σi) given
by Eq. (7.5). Notice that in the latter estimate, the function on the right-hand side is in-
variant by translations (simultaneous of the M rδ

i particles in the space Td), and bounded in
an L1−weighted norm (by (7.6)). Using these two ingredients we shall now prove that

(8.2)

∣Eeq
ε [

q

⍟
i=1

ζε,eq

Mrδ
i

(φ(σi))]∣ ≤ Cq ε
q

∏
i=1

(C ∣σi∣µε)M
rδ
i −1

M rδ
i !

× ∑
S̄,S,K,ς,λ,E

sup
x
Mrδ
i
∈Td
∫ 1{Z

Mrδ
i

forward cluster}M⊗Mrδ
i dXMrδ

i −1dVMrδ
i

where the sum is taken over the collection (ς, λ,K,S, S̄,E) parametrising the clusters and Mrδ
i

codes the cardinalities of the blocks in σi (as in (7.5)). The small factor ε will be obtained by
a cluster expansion of the invariant measure, tracing the small correlations between different
fluctuation fields. Eq. (8.1) follows then from (8.2) and (7.6).

In order to establish (8.2), we first use the definition of ⍟-product given by (2.7) and write

q

⍟
i=1

⎛
⎝

1

µ
Mrδ
i

ε

∑φ(σi) −Eeq
ε [φ(σi)]

⎞
⎠
= ∑
A⊂{1,...,q}

πε
Mrδ
A

(ΦMrδ
A
) ∏
j∈Ac

Eeq
ε [−φ(σj)] ,

with M rδ
A = ∑j∈AM rδ

j , Mrδ
A = (M rδ

j )j∈A and ΦMrδ
A
∶= ⊗j∈Aφ(σj) and where Ac is the comple-

ment of A in {1, . . . , q}. Then,

Eeq
ε [

q

⍟
i=1

ζε,eq

Mrδ
i

(φ(σi))] = 1

Zεµ
q/2
ε ∑

A⊂{1,...,q}
∏
j∈Ac

Eeq
ε [−φ(σj)]

×∑
p≥0

µpε
p!
∫ dZMrδ

A
dZ̄pΦMrδ

A
(ZMrδ

A
)1Dε

Mrδ
A

+p
(ZMrδ

A
, Z̄p)M⊗(Mrδ

A +p)(VMrδ
A
, V̄p) .

We decompose ZMrδ
A

in ∣A∣ subconfigurations (Z(i)
Mrδ
i

)i∈A (each one containing possibly several

blocks). We then use a cluster expansion of the exclusion 1Dε
Mrδ
A

+p
, representing each Z

(i)
Mrδ
i

by
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one vertex, and (z̄j)1≤j≤p as p separate vertices. We denote by d(y, y∗) the minimum relative

distance (in position) between elements y, y∗ ∈ S∣A∣+p ∶= {(Z(i)
Mrδ
i

)i∈A, z̄1, . . . z̄p}.

We define the cumulants

ϕ(ZMrδ
A
, z̄1, . . . z̄p) ∶= ∑

G∈CS∣A∣+p

∏
{y,y∗}∈E(G)

(−1d(y,y∗)≤ε) ,

and more generally for any subpart of Y ⊂ S∣A∣+p

(8.3) ϕ(Y ) = ∑
G∈CY

∏
{y,y∗}∈E(G)

(−1d(y,y∗)≤ε) ,

denoting by CY the connected graphs with vertices in Y and by E(G) the edges of the
graph G. Notice that this definition is analogous to the one used to treat the dynamical
correlations in (3.31), but now the exclusion is static

∏
y≠y∗

y,y∗∈Y

1d(y,y∗)>ε = ∑
G∈GY

∏
{y,y∗}∈E(G)

(−1d(y,y∗)≤ε) = ∑
ρ∈PY

∣ρ∣
∏
q=1

ϕ(ρq) ,

where ϕ(ρq) is defined by (8.3).
We then have the following cumulant expansion

1Dε
Mrδ
A

+p
(ZMrδ

A
, Z̄p) = (∏

i∈A
1Dε

Mrδ
i

(Z(i)
Mrδ
i

))
⎛
⎜⎜⎜
⎝

∏
y,y∗∈S∣A∣+p

y≠y∗

1d(y,y∗)>ε

⎞
⎟⎟⎟
⎠
(ZMrδ

A
, Z̄p)

= (∏
i∈A

1Dε
Mrδ
i

(Z(i)
Mrδ
i

)) ∑
σ̄0⊂{1,...,p}

1Dε
∣σ̄0 ∣

(Z̄σ̄0) ∑
η∈PA

∑
σ̄1,...,σ̄∣η∣

∪∣η∣
i=0σ̄i={1,...,p}
σ̄i∩σ̄i′=∅,i≠i′

∣η∣
∏
i=1

ϕ(Zηi , Z̄σ̄i),

where PA is the set of partitions of A, and Zηi = (Z(j)
Mrδ
j

)
j∈ηi

. Note that the σ̄i may be empty

(in particular all σ̄i are empty if ∣σ̄0∣ = p). Using the symmetry in the exchange of particle
labels, we get, denoting ni ∶= ∣σ̄i∣,

( p
n0

)(p − n0

n1
) . . .(p − n0 − ⋅ ⋅ ⋅ − n∣η∣−1

n∣η∣
) = p!

n0! . . . n∣η∣!

choices for the repartition of the background particles Z̄p.
Then, using the definition of the partition function Zε, we obtain

1

Zε ∑p≥0

µpε
p!
∫ dZ̄p 1Dε

Mrδ
A

+p
(ZMrδ

A
, Z̄p)M⊗p(V̄p)

= 1

Zε (∏
i∈A

1Dε
Mrδ
i

(Z(i)
Mrδ
i

)) ∑
η∈PA

∑
p≥0

∑
n0,...,n∣η∣≥0

∑ni=p

(µ
n0
ε

n0!
∫ M⊗n01Dεn0

(Z̄n0)dZ̄n0)

×
∣η∣
∏
i=1

µniε
ni!

∫ M⊗niϕ(Zηi , Z̄ni)dZ̄ni

= (∏
i∈A

1Dε
Mrδ
i

(Z(i)
Mrδ
i

)) ∑
η∈PA

∣η∣
∏
`=1

⎛
⎝∑n`≥0

µn`ε
n`!

∫ M⊗n`ϕ(Zη` , Z̄n`)dZ̄n`
⎞
⎠
.(8.4)
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By Fubini’s equality, we finally get that

Eeq
ε [

q

⍟
i=1

ζε,eq

Mrδ
i

(φ(σi))] = µq/2ε ∑
A⊂{1,...,q}

⎛
⎝∏j∈Ac

Eeq
ε [−φ(σj)]

⎞
⎠

× ∑
η∈PA

∣η∣
∏
`=1

⎡⎢⎢⎢⎢⎣
∑
n`≥0

µn`ε
n`!

∫ M
⊗(Mrδ

η`
+n`)ϕ(Zη` , Z̄n`)

⎛
⎝∏j∈η`

φ(σj)1Dε
Mrδ
j

(Z(j)
Mrδ
j

)
⎞
⎠
dZ̄n`dZη`

⎤⎥⎥⎥⎥⎦
.

By definition, if one part η` is a singleton, say {j}, we find that the corresponding factor
of the product is (using again Eq. (8.4) with A = {j})

(8.5) ∑
n`≥0

µn`ε
n`!

∫ M
⊗(Mrδ

j +n`)ϕ(ZMrδ
j
, Z̄n`)φ(σj)1Dε

Mrδ
j

(ZMrδ
j
) dZ̄n`dZMrδ

j
= Eeq

ε [φ(σj)] .

We will therefore split any partition η of A in a union of singletons {j} for j ∈ A ∖ B,
and a partition η̃ of B with no singleton. In particular, we have that η̃ has a number of
parts ∣η̃∣ ≤ 1

2 ∣B∣. Thus absorbing the sum over singletons as in (3.39), we get that
(8.6)

Eeq
ε [

q

⍟
i=1

ζε,eq

Mrδ
i

(φ(σi))] = µq/2ε ∑
B⊂{1,...,q}

∑
A⊂Bc

(−1)∣Bc∣−∣A∣ ⎛
⎝∏j∈Bc

Eeq
ε [φ(σj)]

⎞
⎠

× ∑
η∈(PB)∗

∣η∣
∏
`=1

⎡⎢⎢⎢⎢⎣
∑
n`≥0

µn`ε
n`!

∫ M
⊗(Mrδ

η`
+n`)ϕ(Zη` , Z̄n`)

⎛
⎝∏j∈η`

φ(σj)1Dε
Mrδ
j

(Z(j)
Mrδ
j

)
⎞
⎠
dZ̄n`dZη`

⎤⎥⎥⎥⎥⎦

= µq/2ε ∑
η∈(P{1,...,q})

∗

∣η∣
∏
`=1

⎡⎢⎢⎢⎢⎣
∑
n`≥0

µn`ε
n`!

∫ M
⊗(Mrδ

η`
+n`)ϕ(Zη` , Z̄n`)

⎛
⎝∏j∈η`

φ(σj)1Dε
Mrδ
j

(Z(j)
Mrδ
j

)
⎞
⎠
dZ̄n`dZη`

⎤⎥⎥⎥⎥⎦
where (PA)∗ stands for the partitions without singletons of a set A.

Recall that the cumulants defined by (8.3) can be controlled by the tree inequality (see
e.g. [26, 27])

(8.7) ∣ϕ(Y )∣ ≤ ∑
T ∈TY

∏
{y,y∗}∈E(T )

1d(y,y∗)≤ε ,

where TY is the set of minimally connected graphs (trees) with vertices in Y . Thus inside

each connected component η`, a tree connects the ∣η`∣ vertices Z
(j)
Mrδ
j

and the n` background

particles (where each edge corresponds to the distance being smaller than ε).
For a given tree T , let d1, . . . , d∣η`∣+n` be the degrees of the graph (number of edges per

vertex). Integrating with respect to Z̄n` , Zη` leads to
(8.8)

∫ M
⊗(Mrδ

η`
+n`) ∏

{y,y∗}∈E(T )
1d(y,y∗)≤ε

⎛
⎝∏j∈η`

∣φ(σj)∣1Dε
Mrδ
j

(Z(j)
Mrδ
j

)
⎞
⎠
dZ̄n`dZη`

≤ Cq (C ′εd)∣η`∣+n`−1 ∏
j∈η`

(M rδ
j )dj

×∏
j∈η`

(C ∣σj ∣µε)M
rδ
j −1

M rδ
j !

∑
S̄,S,K,ς,λ,E

sup
x
Mrδ
j
∈Td
∫ 1{Z

Mrδ
j

forward cluster}M⊗Mrδ
j dXMrδ

j −1dVMrδ
j
,

where the constant C ′ > 0 depends only on d.

To justify (8.8), we first notice that for each j in η`, the subconfiguration X
(j)
Mrδ
j

covers a

volume of order M rδ
j ε

d. Thus overlapping two such configurations indexed by j, j′ leads to
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a factor M rδ
j M

rδ
j′ ε

d, and overlapping the subconfiguration j and a single particle to a factor

M rδ
j ε

d, while overlapping two particles leads to a simple factor εd. Therefore, overall each

edge of the tree brings a factor εd, and each subconfiguration X
(j)
Mrδ
j

brings a factor M rδ
j

per edge attached to the vertex j of the tree. Furthermore the integral in the last line is a
consequence of (7.5) and of the translation invariance of the indicator functions of forward
clusters. Indeed the tree T encoding the static overlaps imposes a geometrical constraint only

on the position of a single particle in each X
(j)
Mrδ
j

, say x
(j)
Mrδ
j

. Therefore by Fubini, we can first

fix the variables (X̂(j)
Mrδ
j −1

, V
(j)
Mrδ
j

) defined by (7.9) in such a way that the dynamical constraints

are satisfied, integrate the variables (X̄n` ,(x
(j)
Mrδ
j

)
j
) according to the tree structure, and then

integrate with respect to (X̂(j)
Mrδ
j −1

, V
(j)
Mrδ
j

) for all j. This leads to (8.8).

There are (n − 2)!/∏j (dj − 1)! trees of size n with specified vertex degrees (see e.g. Lemma
2.4.1 in [7]), so that summing (8.8) over all trees leads to the combinatorial factor

(∣η`∣ + n` − 2)! ∑
d1,⋯,d∣η` ∣+n`≥1

⎛
⎝∏j∈η`

(M rδ
j )dj

(dj − 1)!
⎞
⎠
⎛
⎝∏j∉η`

1

(dj − 1)!
⎞
⎠
≤ ∣η`∣!n`!2∣η`∣+n` ⎛

⎝∏j∈η`
M rδ
j e

Mrδ
j
⎞
⎠
en` .

Thus, enlarging the constants Cq,C,C
′ from line to line and recalling that M rδ = ∑qi=1M

rδ
i ,

we deduce that
(8.9)

∣Eeq
ε [

q

⍟
i=1

ζε,eq

Mrδ
i

(φ(σi))]∣ ≤ Cq C ′Mrδ

µq/2ε ∑
η∈(P{1,...,q})

∗

∣η∣
∏
`=1

(C ′εd)∣η`∣−1 ∑
n`≥0

(C ′µεε
d)n`

×
q

∏
i=1

(C ∣σi∣µε)M
rδ
i −1

M rδ
i !

∑
S̄,S,K,ς,λ,E

sup
x
Mrδ
i
∈Td
∫ 1{Z

Mrδ
i

forward cluster}M⊗Mrδ
i dXMrδ

i −1dVMrδ
i

≤ Cq C ′Mrδ(µεεd)
q/2

×
q

∏
i=1

(C ∣σi∣µε)M
rδ
i −1

M rδ
i !

∑
S̄,S,K,ς,λ,E

sup
x
Mrδ
i
∈Td
∫ 1{Z

Mrδ
i

forward cluster}M⊗Mrδ
i dXMrδ

i −1dVMrδ
i

≤ Cq C ′Mrδ

ε

×
q

∏
i=1

(C ∣σi∣µε)M
rδ
i −1

M rδ
i !

∑
S̄,S,K,ς,λ,E

sup
x
Mrδ
i
∈Td
∫ 1{Z

Mrδ
i

forward cluster}M⊗Mrδ
i dXMrδ

i −1dVMrδ
i
,

where in the second inequality we used that ε is small to sum the series and that for ∣η∣ ≤ q/2,
q ≥ 2

µq/2ε

∣η∣
∏
`=1

(εd)∣η`∣−1 = µq/2ε (εd)q−∣η∣ ≤ (µεεd)
q/2

.

Equation (8.2) is proved. �
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8.2. Variance of ⍟-products. We aim at proving the bound (4.18), let us compute

(8.10)

Eeq
ε [(

q

⍟
i=1

ζε
Mrδ
i
(φ(σi)))

2
] = Eeq

ε

⎡⎢⎢⎢⎢⎣
µqε

⎛
⎝
q

⍟
i=1

⎛
⎝

1

µ
Mrδ
i

ε

∑φ(σi) −Eε[φ(σi)]
⎞
⎠
⎞
⎠

2⎤⎥⎥⎥⎥⎦

= ∑
A⊂{1,...,q}

A′⊂{1′,...,q′}

∏
j∈Ac∪(A′)c

Eε[−φ(σj)] ×
min(Mrδ

A ,Mrδ
A′

)

∑
`=0

EA,A′,`

where the joint expectation with ` repeated indices is denoted by

EA,A′,` ∶=
1

µ
Mrδ
A +Mrδ

A′
−q

ε

Eeq
ε

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
∣(i1,...,iMrδ

A
)∩(i′1,...,i′Mrδ

A′

)∣=`
ΦMrδ

A
(zεi1 , . . . ,z

ε
i
Mrδ
A

)ΦMrδ
A′
(zεi′1 , . . . ,z

ε
i′
Mrδ
A′

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
with notations introduced above, which we recall again: M rδ

A = ∑j∈AM rδ
j , Mrδ

A = (M rδ
j )j∈A,

ΦMrδ
A
= ⊗j∈A φ

(σj) and M rδ
A′ = ∑j∈A′M rδ

j , Mrδ
A′ = (M rδ

j )j∈A′ , ΦMrδ
A′

= ⊗j∈A′ φ
(σj). Denoting

by Λ and Λ′ the subsets of indices selecting the ` contracted variables, we get

(8.11)

EA,A′,` =
µq−`ε

Zε ∑
Λ⊂{1,...,Mrδ

A
}

Λ′⊂{1,...,Mrδ
A′

}

∣Λ∣=∣Λ′ ∣=`

∑
χ`∶Λ↦Λ′

∑
p≥0

µpε
p!
∫ dZMrδ

A
dZ ′

Mrδ
A′
dZ̄pδχ`(ZMrδ

A
, Z ′

Mrδ
A′
)

×ΦMrδ
A
(ZMrδ

A
)ΦMrδ

A′
(Z ′

Mrδ
A′
)1Dε

Mrδ
A

+Mrδ
A′

−`+p
M⊗(Mrδ

A +Mrδ
A′
−`+p),

where the injective map χ` ∶ Λ↦ Λ′ encodes the repetition of the indices in ZMrδ
A
, Z ′

Mrδ
A′

δχ` =∏
j∈Λ

δzj−z′χ`(j)
.

A factor µ−`ε is gained from these repetitions.

Step 1. A graph structure with M rδ
A +M rδ

A′ −` vertices, depicted in Figure 8, can be extracted

from the constraints ΦMrδ
A
,ΦMrδ

A′
, χ` in (8.11) :

● the dynamical constraints corresponding to (Z(j)
Mrδ
j

)j∈A and (Z(j)
Mrδ
j

)j∈A′ , coded by the

functions φ(σj) according to (7.5), lead to vertices forming ∣A∣+ ∣A′∣ connected orange
packets;

● the constraint χ` from the ` repetitions in the variables is represented by green lines
(contractions) in Figure 8. The vertices linked by green lines correspond in fact to
the same repeated variable, and are therefore identified.

We consider a partition η of A ∪ A′ into s connected components η1, . . . , ηs (represented in
blue in Figure 8): in each component ηi, all orange packets are connected by green lines.
Denote by `i the number of green lines in the component ηi. By definition

`i ≥ ∣ηi∣ − 1,
s

∑
i=1

`i = ` ,

where ∣ηi∣ is the number of orange packets in ηi. We denote by δχ`i the identification of
particles restricted to ηi, so that

δχ` =
s

∏
i=1

δχ`i ,

and recall that a green line can only join a packet j ∈ A and a packet j ∈ A′.
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Figure 8. A partition η with ∣A∣ = ∣A′∣ = 4 and s = 3. The first component is
η1 = {1,2,1′,2′}, the second component is η2 = {3,3′,4′} and the third component
η3 = {4}. The number of green lines is `1 = 4, `2 = 2 and `3 = 0.

Recall that Zηi = Z
(ηi)
Mrδ
ηi

is the collection of particles in the connected component ηi, where

M rδ
ηi = ∑

j∈A∩ηi
M rδ
j + ∑

j∈A′∩ηi
M rδ
j .

We should keep in mind now that, as `i particles of A′ are identified with particles in A, then
the total number of particles is actually M rδ

ηi − `i.
Step 2. We need now to define new forward tree graphs to be associated with each component

ηi. We denote by Tj for j ∈ A (j ∈ A′), the orange forward tree describing the cluster structure

of φ(σj) used in estimate (7.8), coding the geometric constraints on the configuration Z
(j)
Mrδ
j

associated with the forward dynamics in terms of minimally connected graphs (we drop here
the index ≺, but remember that the graphs are equipped with an ordering of edges). We
recall that, in such forward dynamics, each configuration of M rδ

j particles is partitioned in

blocks, and that the cardinalities of such blocks are coded in the notation Mrδ
j in (7.8);

the component ηi inherits then a partition in blocks Mrδ
ηi . In each connected component ηi,

we extract a minimally connected graph Tηi on the set of vertices Z
(ηi)
Mrδ
ηi

(equipped with an

ordering of edges) by means of the following procedure (see also Figure 9). We collect first all
edges coming from Tj for j ∈ A ∩ ηi (note that this cannot produce any cycle by definition).

This will form the skeleton of the graph and will be denoted by T 1A
ηi . Then we look in turn

at the edges in the remaining orange forward tree graphs Tj with j ∈ A′ ∩ ηi. Following the
ordering, we keep only edges that do not produce cycles after identification of vertices linked
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by green lines (note that this peeling is unique). We end up with a forward tree TAηi on the

Choice (a) Choice (b) 

Figure 9. Two sets A (on the left in both cases (a) and (b)) and A′ (on the right
in both cases (a) and (b)) are connected by green lines representing identification of
particles. (a) The skeleton is the set of all orange edges in ηi ∩A, and the minimally
connected graph TAηi is obtained by discarding the orange edges in A′ which create
cycles in the graph (dotted orange edges). (b) The skeleton is the set of all orange

edges in ηi ∩ A′, and the minimally connected graph TA
′

ηi is obtained by discarding
the orange edges in A which create cycles in the graph (dotted orange edges).

set of vertices Z
(ηi)
Mrδ
ηi

encoding some of the dynamical constraints of the orange forward trees,

which will produce small factors. We stress that by construction, the admissible tree graphs
TAηi depend on Λ,Λ′, χ` and on the arbitrary choice of constructing the skeleton over A ∩ ηi.
The superscript A in TAηi is a shortened notation reminding us of this dependence.

Thus in (8.11), for each component ηi we have a product of test functions controlled by
the following estimate, which extends (7.8) to the case of products with repeated variables:

(8.12)

µ−`iε δχ`i ∣∏
j∈ηi

φ(σj)∣ (ZMrδ
ηi
)

≤ Cq
⎛
⎝∏j∈ηi

∣σj ∣M
rδ
j
⎞
⎠
∣ηi∣M

rδ
ηi
µ
Mrδ
ηi
−∣ηi∣−`i

ε

M rδ
ηi !

δχ`i ∑
ς, λ, S, S̄,K, E
ς′,λ′,S′,S̄′,K′,E′

∑
TAηi

1{Z
Mrδ
ηi

∈Rcomp

TAηi

}

where (ς, λ, S, S̄, K, E) and (ς ′, λ′,S′, S̄′,K′,E ′) are the whole collections of variables which

are necessary to parametrise the orange clusters in A and in A′ respectively. Here, Rcomp
TAηi

is

the corresponding set of compatible configurations for a given ordered tree graph on M rδ
ηi −

`i vertices. Therefore for each orange edge in TAηi , there exist two particles which will be
dynamically constrained by encounters, according to the specified forward dynamics (and
respecting the time sampling).

Step 3. To control the background particles Z̄p in (8.11), we use a cluster expansion of the

exclusion 1Dε
Mrδ
A

+Mrδ
A′

−`+p
as in (8.4). We consider now (Z(ηi)

Mrδ
ηi

)
1≤i≤s

as s blocks represented
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each by one vertex, and (z̄j)1≤j≤p as p separate vertices. We then have

(8.13)

1

Zε ∑p≥0

µpε
p!
∫ dZ̄p1Dε

Mrδ
A

+Mrδ
A′

−`+p
(ZMrδ

A
, Z ′

Mrδ
A′
, Z̄p)M⊗p(V̄p)

=
s

∏
i=1

1Dε
Mrδ
ηi

−`i

(Z(ηi)
Mrδ
ηi

) ∑
ω∈Ps

∣ω∣
∏
u=1

⎛
⎝ ∑nu≥0

µnuε
nu!

∫ M⊗nuϕ(Zωu , Z̄nu)dZ̄nu
⎞
⎠
,

where Zωu = (Z(ηi)
Mrδ
ηi

)
i∈ωu

.

Figure 10. The s components η1, . . . , ηs (represented in blue) are grouped in ∣ω∣
parts (represented in black) according to the partition ω, and each of these parts ωu is
provided with an arbitrary number nu of background particles (black dots). In each
part, because of the tree inequality, all vertices are connected by a tree (represented
by the dotted black lines).

Step 4. By Fubini, we finally get from (8.10), (8.11) and (8.13) that

Eeq
ε

⎡⎢⎢⎢⎢⎢⎣
µqε

⎛
⎜
⎝

q

⍟
j=1

⎛
⎜
⎝

1

µ
Mrδ
j

ε

∑φ(σj) −Eε[φ(σj)]
⎞
⎟
⎠

⎞
⎟
⎠

2⎤⎥⎥⎥⎥⎥⎦
= µqε ∑

A⊂{1,...,q}

A′⊂{1′,...,q′}

∏
j∈Ac∪(A′)c

Eε[−φ(σj)]

× ∑
ω∈PA∪A′

∣ω∣
∏
u=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑
nu≥0

µnuε
nu!

∑
η∈Pωu

∑
`i≥∣ηi ∣−1

1≤i≤∣η∣

∑
Λi,Λ

′
i
,χ`i

1≤i≤∣η∣

× ∫ M⊗(Mrδ
ωu−∑

∣η∣
i=1 `i+nu)ϕ(Zη1 , Zη2 , . . . , Z̄nu)

∣η∣
∏
i=1

(1Dε
Mrδ
ηi

−`i

µ−`iε δχ`i ∏
j∈ηi

φ(σj)dZηi)dZ̄nu
⎤⎥⎥⎥⎥⎦
.

The set ωu corresponds to M rδ
ωu−∑

∣η∣
i=1 `i particles, to which nu background particles are added,

as depicted in Figure 10. Here we denote abusively by η = {η1, . . . , η∣η∣} the generic partition
of one ωu. There are ∣η∣ components in the partition η and, in each component ηi, we recall
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that `i ≥ ∣ηi∣−1 denotes the number of green edges and δχ`i the identification of the `i particles

in Λ′
i with the `i particles in Λi.

Using (8.5) and proceeding as in (8.6), we split any partition ω of A ∪ A′ in a union of
singletons {j} for j ∈ (A ∖ B) ∪ (A′ ∖ B′), and a partition ω̃ of B ∪ B′ with no singleton
(and at most 1

2(∣B∣ + ∣B′∣) parts). Compared with the previous situation, we cannot absorb
the sum over singletons due to the defect of centering, and we have (noticing that `j = 0 for
singletons)

(8.14)

Eeq
ε

⎡⎢⎢⎢⎢⎢⎣
µqε

⎛
⎜
⎝

q

⍟
j=1

⎛
⎜
⎝

1

µ
Mrδ
j

ε

∑φ(σj) −Eε[φ(σj)]
⎞
⎟
⎠

⎞
⎟
⎠

2⎤⎥⎥⎥⎥⎥⎦

= µqε ∑
B⊂{1,...,q}

B′⊂{1′,...,q′}

⎛
⎝ ∏
j∈cB∪cB′

(Eeq
ε [φ(σj)] −Eε[φ(σj)])

⎞
⎠ ∑
ω∈(PB∪B′)∗

∣ω∣
∏
u=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑
η∈P∣ωu ∣

∑
`i≥∣ηi ∣−1

1≤i≤∣η∣

∑
Λi,Λ

′
i
,χ`i

1≤i≤∣η∣

× ∑
nu≥0

µnuε
nu!

∫ M⊗(Mrδ
ωu−∑

∣η∣
i=1 `i+nu)ϕ(Zη1 , . . . , Zη∣η∣ , Z̄nu)

×
∣η∣
∏
i=1

(1Dε
Mrδ
ηi

−`i

µ−`iε δχ`i ∏
j∈ηi

φ(σj)dZηi)dZ̄nu
⎤⎥⎥⎥⎥⎦
.

To estimate from above the latter formula, some of the constraints on the clustering struc-
ture can be forgotten. Indeed we know from Step 2 that, to each component ηi and each χ`i ,

we can associate a minimally connected graph TBηi , encoding dynamical constraints associated
with orange edges: see Eq. (8.12) and Figure 9. The next and final step will be to integrate
these dynamical constraints. At this stage, the assumptions from Lemma 4.11 on the cu-
mulant structure will become relevant to describe precisely the set Rcomp

TBηi
including the time

sampling.

First of all, we proceed by estimating the integral over the background particles as already
done in Section 8.1. For each ωu and η ∈ Pωu , the functions ϕ can be controlled by the
tree inequality (8.7), this time applied over the vertices (Zηi)1≤i≤∣η∣ (considered as subconfig-

urations) and the nu background particles. Using (8.12) and the translation invariance, we
obtain (as in (8.8)-(8.9)) that the term in the last two lines in (8.14) is bounded in absolute
value by

(8.15)

CPC
Mrδ
η

P (Cεd)∣η∣−1
∣η∣
∏
i=1

µ
Mrδ
ηi
−∣ηi∣−`i

ε

M rδ
ηi !

∑
ς, λ, S, S̄,K, E
ς′,λ′,S′,S̄′,K′,E′

∑
TBηi

sup∫ 1Dε
Mrδ
ηi

−`i

(Zηi)M
⊗(Mrδ

ηi
−`i)1{Z

Mrδ
ηi

∈Rcomp

TBηi

}δχ`idZηi .

As in (8.8), (8.12), the first sum is taken over the whole collections parametrising the forward

dynamics (and the sums over such parameters can be bounded by C
Mrδ
η

P and combinatorial
factors depending only on q ≤ P ); moreover the supremum is taken over one single positional
variable and, for brevity, Z ′

ηi is the configuration Zηi deprived of such variable.
The remaining integral is now estimated in a similar way as in the proof of (7.6) above.

We may follow the same strategy devised in Section 7, ordering the orange edges in time in
a way to respect the sampling, and identifying a sequence of independent degrees of freedom
which can be progressively estimated; see (7.9)-(7.14). However, particles in the skeleton play
a special role, as explained in what follows.
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Recall that, by Step 2, the tree TBηi is constructed asymmetrically so that the union of the

skeletons ⋃i T 1B
ηi records all the dynamical constraints in (φ(σj))j∈B (Figures 8-9). For these

edges, we proceed exactly as in Section 7 and recover a bound of the form (7.12)-(7.13) taking
into account the time sampling. Instead, the orange edges which are outside the skeleton are
estimated more crudely, discarding the dynamical constraints associated with the sampling.
This leads to the estimate

(8.16)

∑
TBηi

sup∫ 1Dε
Mrδ
ηi

−`i

(Zηi)M
⊗(Mrδ

ηi
−`i)1{Z

Mrδ
ηi

∈Rcomp

TBηi

}δχ`idZηi ≤ C ( 1

µε
)
Mrδ
ηi
−`i−1

× ∏
j∈ηi∩B

(M rδ
j )2(Mrδ

j −1) 3M
rδ
j −1

(M rδ
j − 1)!

(CP δ)
Nr
σj (CP τ)

N<r
σj
+∣σj ∣−1 (CPΘ)Mj−∣σj ∣

× (M rδ
ηi∩B′)2(Mrδ

ηi∩B
′−`i) (CPΘ)M

rδ
ηi∩B

′−`i

(M rδ
ηi∩B′ − `i)!

Note that one factor (M rδ
j )M

rδ
j −1

is compensated by the factorial at the denominator in the

second line, and the same can be said for one factor (M rδ
ηi∩B′)M

rδ
ηi∩B

′−`i in the third line.
Hence, enlarging the constants, we get
(8.17)

∑
TBηi

sup∫ 1Dε
Mrδ
ηi

−`i

(Zηi)M
⊗(Mrδ

ηi
−`i)1{Z

Mrδ
ηi

∈Rcomp

TBηi

}δχ`idZηi ≤ C ( 1

µε
)
Mrδ
ηi
−`i−1

× (M rδ
ηi

)M
rδ
ηi (M rδ

ηi∩B′)−`i
⎛
⎝ ∏
j∈ηi∩B

(CP δ)
Nr
σj (CP τ)

N<r
σj
+∣σj ∣−1 (CPΘ)Mj−∣σj ∣⎞

⎠
(CPΘ)M

rδ
ηi∩B

′−`i

where the factor (M rδ
ηi

)M
rδ
ηi compensates, up to geometric terms, the factorial in (8.15). On

the other hand, the number of possible contractions at `i fixed is

(8.18) ∑
Λi,Λ

′
i
,χ`i

1≤i≤∣η∣

1 = (M
rδ
ηi∩B
`i

)(M
rδ
ηi∩B′

`i
)`i! ≤ 2

Mrδ
ηi∩B (M rδ

ηi∩B′)`i

which compensates the factor (M rδ
ηi∩B′)−`i in (8.17). Therefore by (8.14), (8.15), (8.17) and

(8.18) we deduce that (recalling ∑i ∣ηi∣ = ∣B∣ + ∣B′∣)
(8.19)

Eeq
ε

⎡⎢⎢⎢⎢⎢⎣
µqε

⎛
⎜
⎝

q

⍟
j=1

⎛
⎜
⎝

1

µ
Mrδ
j

ε

∑φ(σj) −Eε[φ(σj)]
⎞
⎟
⎠

⎞
⎟
⎠

2⎤⎥⎥⎥⎥⎥⎦

≤ CPµqε ∑
B⊂{1,...,q}

∑
B′⊂{1′,...,q′}

µ−∣B∣−∣B′∣
ε

⎛
⎝ ∏
j∈cB∪cB′

∣Eeq
ε [1cΥε

N
φ(σj)]∣

⎞
⎠ ∑
ω∈(PB∪B′)∗

∣ω∣
∏
u=1

∑
η∈Pωu

× (Cεdµε)
∣η∣−1

µε
⎛
⎜
⎝
∏
j∈ηBi

(CP δ)
Nr
σj (CP τ)

N<r
σj
+∣σj ∣−1 (CPΘ)Mj−∣σj ∣

⎞
⎟
⎠
(CPΘ)M

rδ
ηi∩B

′
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for some constant CP as in the statement of Lemma 4.11 and some pure constant C. As
ηi ∩B can be replaced by ηi ∩B′ by symmetry, we also deduce that
(8.20)

Eeq
ε

⎡⎢⎢⎢⎢⎢⎣
µqε

⎛
⎜
⎝

q

⍟
j=1

⎛
⎜
⎝

1

µ
Mrδ
j

ε

∑φ(σj) −Eε[φ(σj)]
⎞
⎟
⎠

⎞
⎟
⎠

2⎤⎥⎥⎥⎥⎥⎦

≤ CPµqε ∑
B⊂{1,...,q}

∑
B′⊂{1′,...,q′}

µ−∣B∣−∣B′∣
ε

⎛
⎝ ∏
j∈cB∪cB′

∣Eeq
ε [1cΥε

N
φ(σj)]∣

⎞
⎠ ∑
ω∈P∗

B∪B′

∣ω∣
∏
u=1

∑
η∈Pωu

× (C ′εdµε)
∣η∣−1

µε
⎛
⎝∏j∈ηi

(CP δ)
Nr
σj (CP τ)

N<r
σj
+∣σj ∣−1 (CPΘ)2Mj+N<r

σj
+Nr

σj
−∣σj ∣⎞

⎠

1/2

.

Recall that Cεdµε = Cε, so that we obtain a rough upper bound

(8.21)

∣ω∣
∏
u=1

∑
η∈Pωu

(C ′εdµε)
∣η∣−1

µε
⎛
⎝∏j∈ηi

(CP δ)
Nr
σj (CP τ)

N<r
σj
+∣σj ∣−1 (CPΘ)2Mj+N<r

σj
+Nr

σj
−∣σj ∣⎞

⎠

1/2

≤ µ∣ω∣
ε

⎛
⎝ ∏
j∈B∪B′

(CP δ)
Nr
σj (CP τ)

N<r
σj
+∣σj ∣−1 (CPΘ)2Mj+N<r

σj
+Nr

σj
−∣σj ∣⎞

⎠

1/2

.

We are left with the cost of the conditioning in the singletons

(8.22) Eeq
ε [1cΥε

N
φ(σj)] ≡ Eeq

ε [1cΥε
N
πεMrδ

σj

(φ(σj))]

which, recalling that πε
Mrδ
σj

(φ(σj)) = Eeq
ε [πε

Mrδ
σj

(φ(σj))] + µ−1/2
ε ζε,eq

Mrδ
σj

(φ(σj)), is bounded as fol-

lows:

(8.23)

∣Eeq
ε [1cΥε

N
πεMrδ

σj

(φ(σj))]∣ = ∣Peq
ε [cΥε

N ]Eeq
ε [φ(σj)] + µ−1/2

ε Eeq
ε [1cΥε

N
ζε,eq
Mrδ
σj

(φ(σj))] ∣

≤ Peq
ε [cΥε

N ]Eeq
ε [ ∣φ(σj)∣ ] + µ−1/2

ε Peq
ε [cΥε

N ]
1/2

Eeq
ε [ (ζε,eq

Mrδ
σj

(φ(σj)))
2

]
1/2

≤ CP [Θεd(CPΘ)Mj−∣σj ∣(CP δ)
Nr
σj (CP τ)

N<r
σj
+∣σj ∣−1

+ µ−1/2
ε (Θεd)1/2 ((CPΘ)2Mj+Nr

σj
+N<r

σj
−∣σj ∣(CP δ)

Nr
σj (CP τ)

N<r
σj
+∣σj ∣−1)

1/2
] .

In the last step we used (2.10), together with (7.2) to bound the first term, and the estimate
(4.18) at equilibrium in the case of one single factor to bound the second term (this estimate
has been proved in [8] and follows also from the previous computation). Notice that the
second term is dominant for µε large (and Θ > 1). We will actually only keep the rough
estimate
(8.24)

∣Eeq
ε [1cΥε

N
πεMrδ

σj

(φ(σj))]∣ ≤ µ−1/2
ε ((Θεd)(CPΘ)2Mj+Nr

σj
+N<r

σj
−∣σj ∣(CP δ)

Nr
σj (CP τ)

N<r
σj
+∣σj ∣−1)

1/2
.

When inserting this into (8.20)-(8.21), we obtain the following power counting

(8.25) µqεµ
−∣B∣−∣B′∣
ε µ∣ω∣

ε µ
−(∣cB∣+∣cB′∣)/2
ε = µ−(∣B∣+∣B′∣)/2

ε µ∣ω∣
ε ≤ 1

because the partition in ω has no singleton. Notice from (8.24) that each contribution in
cB,cB′ has an additional factor εd/2 so that the leading order terms in the power counting
(8.25) are associated with ∣B∣ = ∣B′∣ = q and with partitions ω which are pairing of the sets,
as expected from the Gaussian asymptotics.
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In conclusion, we arrive to

(8.26)

Eeq
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⎛
⎜
⎝
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+Nr
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Nr
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N<r
σj
+∣σj ∣−1) .

A similar proof leads to the estimate
(8.27)
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.

To obtain (8.27), we repeat the above argument leading to (8.26). In what follows, we only
discuss the main differences. In the derivation of the product bound (8.12), we used the
elementary estimates (7.4), (7.8) where the cluster structure is given by minimally connected

graphs. In the case of (8.27), one factor of type φ(σi),cyc is present which satisfies the different
estimate

∣φ(σi),cyc(ZMrδ
i
)∣ ≤ CP ∣σi∣M

rδ
i
µ
Mrδ
i −1

ε

M rδ
i !

∑
S̄,S,K,ς,λ,E

∑
T≺∈T ≺

Mrδ
i

1{Z
Mrδ
i

∈Rcomp,rec
T≺

} .

Here the set Rcomp,rec
T≺

is defined as the set Rcomp
T≺

, with the additional constraint that the
graph encoding all encounters in the forward dynamics should contain at least one edge on Iδ
and at least one cycle. The construction in step 2 proceeds then as before, but the set Rcomp

in (8.12) is replaced by Rcomp,rec if the factor φ(σi),cyc belongs to the skeleton (i ∈ A). This
leads to a formula as (8.14) where, depending on B,B′, we distinguish several possibilities:

● i belongs to B and B′. The estimates (8.16)-(8.17) are then improved by applying
(7.16) (instead of (7.12)), which uses the reinforced geometric condition on the cycle to
bring an additional small factor εδ∣ log ε∣(Θ∣ log ε∣)2d+4. One gets then a contribution
as in the right hand side of (8.20) with such an additional smallness.

● i belongs to B and cB′ (or viceversa). Similarly, (8.20) is modified by a small factor

(εδ∣ log ε∣(Θ∣ log ε∣)2d+4)1/2. An even smaller factor (ε2d−1Θεδ∣ log ε∣(Θ∣ log ε∣)2d+4)1/2

is produced by the estimate of Eeq
ε [1cΥε

N
φ(σi),cyc] (performed as in (8.23)), thanks to

(7.3) and (4.21) in the case of one single factor.

● i belongs to cB and cB′. Then we have two factors Eeq
ε [1cΥε

N
φ(σi),cyc] estimated as

previously.

In all the cases we end up with a gain εδ∣ log ε∣(Θ∣ log ε∣)2d+4, which proves (8.27).

8.3. Conclusion of the proofs. In this section, we shall derive (4.17), (4.18) and (4.21)
from the analogous results obtained above under the equilibrium measure. Finally we will
prove Proposition 2.3.
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Proof of (4.17). Recalling (2.12) there holds

∣Eε [
q

⍟
i=1

ζε
Mrδ
i

(φ(σi))]∣ = ∣Eε [
q

⍟
i=1

(ζε,eq

Mrδ
i

(φ(σi)) +√
µεEeq

ε [1cΥε
N
πε
Mrδ
i
(φ(σi))])]∣

≤ ∑
A⊂{1,...,q}

(∣Eeq
ε [⍟

i∈A
ζε,eq

Mrδ
i

(φ(σi))]∣ + ∣Eeq
ε [1cΥε

N
⍟
i∈A

ζε,eq

Mrδ
i

(φ(σi))]∣)

× ∏
j∈Ac

√
µε ∣Eeq

ε [1cΥε
N
πε
Mrδ
j
(φ(σj))]∣ .

The second line can be bounded by (8.23), while the first term in the first line is bounded by
(8.1). Finally the second term in the first line is bounded by

Eeq
ε [1cΥε

N
⍟i∈A ζ

ε,eq

Mrδ
i

(φ(σi))] ≤ Peq
ε [cΥε

N ]
1/2

Eeq
ε [(⍟i∈A ζ

ε,eq

Mrδ
i

(φ(σi)))
2

]
1/2

≤ (Θεd)1/2
CP ∏j∈A ((CPΘ)2Mj+N<r

σj
+Nr

σj
−∣σj ∣(CP δ)

Nr
σj (CP τ)

N<r
σj
+∣σj ∣−1)

1/2

where we used (2.10) and the analogue of (8.26) in the simpler case of centered fluctuations.

Using that (Θεd)1/2 ≪ ε for d > 2 we obtain that

(8.28) ∣Eε [
q

⍟
i=1

ζε
Mrδ
i
(φ(σi))]∣ ≤ Cqε

q

∏
i=1

((CPΘ)2Mi+N<r
σi
+Nr

σi
−∣σi∣(CP δ)N

r
σi (CP τ)N

<r
σi
+∣σi∣−1)

1/2
,

which concludes the proof. �

Proof of (4.18) and (4.21). Both estimates follow immediately as

Eε[(
q

⍟
i=1

ζε
Mrδ
i
(φ(σi)))

2
] ≤ Eeq

ε [(
q

⍟
i=1

ζε
Mrδ
i
(φ(σi)))

2
] .

�

Proof of Proposition 2.3. Proceeding as before,

∣Eε((ζε(h))
p)∣ = ∣Eε( (ζε,eq(h) +√

µεEeq
ε [1cΥε

N
πε(h)])p )∣

≤
p

∑
k=0

(p
k
)(∣Eeq

ε ((ζε,eq(h))k)∣ + ∣Eeq
ε (1cΥε

N
(ζε,eq(h))k)∣)µ

p−k
2
ε ∣Eeq

ε [1cΥε
N
πε(h)]∣p−k

≤
p

∑
k=0

(p
k
)(Ck∥h∥k∞ + (Θεd)1/2 √

C2k∥h∥k∞)

×µ
p−k
2
ε ((Θεd) E

eq
ε [N ]
µε

∥h∥∞ + µ−1/2
ε (Θεd)1/2 √

C2∥h∥∞)
p−k

≤ Cp∥h∥p∞
for some constant Cp > 0, where in the second inequality we used (2.15) (derived in Proposition
A.1 from [8]) and (2.10). This proves (2.16).

To prove (2.17), we write

Eε
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P

∏
p=1

ζεθp(h
(p))

⎤⎥⎥⎥⎥⎦
= ∑
A⊂{1,⋯,P}

Eε
⎡⎢⎢⎢⎢⎣
∏
p∈A

ζε,eq
θp

(h(p))
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µ∣Ac∣/2
ε

⎛
⎝∏p∈Ac

Eeq
ε [1cΥε

N
πε(h(p))]

⎞
⎠
,
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from which we get

∣Iε,eq
P − IεP ∣ =

RRRRRRRRRRRR
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RRRRRRRRRRRR
.

Using once again (2.10) and (8.23), together with Hölder’s inequality to bound the moments
of fluctuation fields, one deduces the estimate

∣Iε,eq
P − IεP ∣ ≤ CP (Θεd)1/2

.

This concludes the proof of Proposition 2.3. �
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