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Abstract. We introduce a class of objects which we call ’affine surfaces’.
These provide families of foliations on surfaces whose dynamics we are inter-
ested in. We present and analyze a couple of examples, and we define concepts
related to these in order to motivate several questions and open problems. In
particular we generalise the notion of Veech group to affine surfaces, and we
prove a structure result about these Veech groups.

Notations

• Σg or only Σ is a compact surface of genus g ≥ 2;
• Gl+2 (R) is the group of 2 by 2 matrices whose determinant is positive;
• SL2(R) is the group of 2 by 2 matrices whose determinant is equal to 1;
• Aff(C) is the one dimensional affine complex group, C∗ nC;
• AffR∗+(C) is the subgroup of Aff(C) of elements whose linear parts are real
positive;
• H is the upper half plane of C;

1. Introduction.

A translation structure on a surface is a geometric structure modelled on the
complex plane C with structural group the set of translations. A large part of the
interest that these structures have drawn lies in the directional foliations inherited
from the standard directional foliations of C (the latter being invariant under the
action of translations). Examples of such structures are polygons whose sides are
glued along parallel sides of same length, see Figure 1 below.

Figure 1. A translation surface of genus 2.
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The directional foliation, say in the horizontal direction, can be drawn very
explicitly: a leaf is a horizontal line until it meets a side, and continues as the
horizontal line starting from the point on the other side to which it is identified.
These foliations have been more than extensively studied over the past forty years.
They are very closely linked to one dimensional dynamical systems called interval
exchange transformations, and most of the basic features of these objects (as well
as less basic ones !) have long been well understood, see [Zor06] for a broad and
clear survey on the subject.

The starting point of this article is the following remark: to define the horizontal
foliation discussed in the example above, there is no need to ask for the sides glued
together to have same length, but only their being parallel in which case we can
glue along affine identifications. In terms of geometric structures, it means that
we extend the structural group to all the transformation of the form z 7→ az + b
with a ∈ R∗+ and b ∈ C. Formally, these corresponds to (branched) complex affine
structures whose holonomy group lies in the subgroup of Aff(C) whose linear
parts are real positive. A simple example of such an ’affine surface’ is given by
the gluing below:

Figure 2. An ’affine surface’ of genus 2 and a leaf of its horizontal
foliation.

A notable feature of these affine surfaces is that they present dynamical be-
haviours of hyperbolic type: the directional foliations sometimes have a closed leaf
which ’attracts’ all the nearby leaves. This is the case of the closed leave drawn
in black on Figure 3 below. This situation is in sharp contrast with the case of
translation surfaces and promise a very different picture in the affine case.

Figure 3. A ’hyperbolic’ closed leaf.

It is somewhat surprising to find no systematic study of these ’affine surfaces’
in the literature. However, related objects and concepts have kept poping up every
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now and then, both of geometric and dynamical nature. To our knowledge, their
earliest appearance is in the work of Prym on holomorphic 1-forms with values
in a flat bundle, see [Pry69]. These provide an algebraico-geometric interpreta-
tion of these affine surfaces, see also Mandelbaum([Man72, Man73]) and Gunning
([Gun81]). We would also like to mention Veech’s remarkable papers [Vee93] and
[Vee97] where he investigates moduli spaces of complex affine surfaces with singu-
larities as well as Delaunay partitions for such surfaces. On the dynamical side,
the first reference to related questions can be found in Levitt’s paper on foliations
on surfaces, [Lev82] where he builds an affine interval exchange (AIET) with
a wandering interval (these AIETs must be thought of as the one-dimensional
reduction of the foliations we are going to consider). It is followed by a serie
of works initiated by Camelier and Gutierrez [CG97] and pursued by Bressaud,
Hubert and Maass [BHM10], and Marmi, Moussa, and Yoccoz [MMY10]. They
generalize a well known construction of Denjoy to build out of a standard IET
an AIET having a wandering interval, behaviour which is (conjecturally) highly
non-generic. Very striking is that the question of the behavior of a typical AIET
has been very little investigated. In this direction, we mention the nice article of
Liousse [Lio95] where the author deals with the topological generic behaviour of
transversely affine foliations on surfaces.

Contents of the paper and results. After introducing formal definitions as
well as a couple of interesting examples of ’affine surfaces’, we prove a structure
result about Veech groups of affine surfaces.

The Veech group of an affine surface Σ is the straightforward generalization
of its translation analogue: it is the subgroup of SL2(R) made of linear parts of
locally affine transformation of Σ. It is a well-known fact that the Veech group
of a translation surface is always discrete. This fails to be true in the more
general case of affine surface, although the examples of surfaces whose Veech
group is not discrete are fairly distinguishable. We completely describe the class
of surfaces whose Veech group is not discrete. Roughly, those are the surface
obtained starting from a ribbon graph and gluing to its edges a finite number of
’affine cylinders’. We call such surfaces Hopf surfaces, because they must be
thought of as higher genus analogues of Hopf tori, that are quotients C∗/(z∼λz)
with λ a positive constant different from 1. Precisely we prove

Theorem 1. Let Σ be an affine surface of genus ≥ 2. There are two possible
cases :

(1) V (Σ) is the subgroup of upper triangular elements of SL2(R) and Σ is a
Hopf surface.

(2) V (Σ) is discrete.

We also prove the following theorem on the existence of closed geodesics in
genus 2 :

Theorem 2. Any affine surface of genus 2 has a closed regular geodesic.
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The proof is elementary and relies on combinatoric arguments. Nonetheless
it is a good motivation for a list of open problems we address in Section 6. We
end the article with a short appendix reviewing Veech’s results on the geometry
of affine surfaces contained in the article [Vee97] and the unpublished material
[Vee08] that W. Veech kindly shared.

About Bill Veech’s contribution. Bill Veech’s sudden passing away encour-
aged us to account for his important contribution to the genesis of the present
article. About twenty years ago, he published a very nice paper called Delaunay
partitions in the journal Topology (see [Vee97]), in which he investigated the
geometry of complex affine surfaces (of which our ’affine surfaces’ are particular
cases). A remarkable result contained in it is that affine surfaces all have geodesic
triangulations in the same way flat surfaces have. We used it extensively when we
first started working on affine surfaces, overlooking the details of [Vee97]. But at
some point, we discovered a familly of affine surfaces that seemed to be a counter-
example to Veech’s result and which provides an obstruction for affine surfaces
to have a geodesic triangulation. We then decided to contact Bill Veech, who
replied to us almost instantly with the most certain kindness. He told us that
he realized the existence of the mistake long ago, but since the journal Topology
no longer existed and that the paper did not draw a lot of attention, he did not
bother to write an erratum. However, he shared with us courses notes from 2008
in which he ’fixed the mistake’. It was a pleasure for us to discover that in these
long notes (more than 100p) he completely characterizes the obstruction for the
slightly flawed theorem of Delaunay partitions to be valid, overcoming serious
technical difficulties. We extracted from the notes the Proposition 5 which is
somewhat the technical cornerstone of this paper.

A few weeks before his passing away, Bill Veech allowed us to reproduce some
of the content of his notes in an appendix to this article. It is a pity he did not live
to give his opinion and modify accordingly to his wishes this part of the paper.

Acknowledgements. We are very grateful to Vincent Delecroix, Bertrand Deroin,
Pascal Hubert, Erwan Lanneau, Leonid Monid and William Veech for interesting
discussions. The third author is grateful to Luc Pirio for introducing him to the
paper [Vee97]. The third author acknowledges partial support of ANR Lambda
(ANR-13-BS01-0002).

2. Affine surfaces.

We give in this section formal definitions of affine surfaces and several concepts
linked to both their geometry and dynamics.

2.1. Basics. An affine structure on a complex manifold M of dimension n is an
atlas of chart (Ui, ϕ) with values in Cn such that the transition maps belong to
Affn(C) = Gln(C)nCn. It is well known that the only compact surfaces (thought
of as 2-dimensional real manifolds) carrying an affine structure are tori. We
make the definition of an affine structure less rigid, by allowing a finite number of
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points where the structure is singular, in order to include the interesting examples
mentioned in the introduction:

Definition 1. (1) An affine surfaceA on Σ is a finite set S = {s1, . . . , sn} ⊂
Σ together with an affine structure on Σ \ S such that the latter extends
to a euclidean cone structure of angle a multiple of 2π at the si’s.

(2) A real affine surface is an affine surface whose structural group has been
restricted to AffR∗+(C).

The type of singularities we allow results of what seems to be an arbitrary
choice. We could have as well allowed singular points to look like affine cones, or
the angles to be arbitrary. We will justify our choice very soon. A first important
remark is that an affine surface satisfy a discrete Gauss-Bonnet equality. If S =
{s1, . . . , sn} is the set of singular points of an affine structure on Σ; and ki ≥ 2 is
the integer such that the cone angle at si is 2kiπ, then

n∑
i=1

1− ki = χ(Σ) = 2− 2g

From now on and until the end of the paper, we will consider only real affine
surfaces, and therefore we will refer to those only as affine surface.

A general principle with geometric structures is that any object that is defined
on the model and is invariant under the transformation group is well defined on
the manifolds carrying such a structure. In our case the model is C with structure
group AffR∗+(C). Among others, angles and (straight) lines are well defined on
affine surfaces. More striking is the fact that it makes sense to say that the
orientation of a line is well defined, and for each angle θ ∈ S1 we can define a
foliation oriented by θ that we denote by Fθ, whose leaves are exactly the lines
oriented by θ.
Finally remark that although the speed of a path is only defined up to a fixed
constant, it makes sense to say that a path has constant speed (speed which is
not itself well defined), as well as to say that a path has finite or infinite length.

Formally:
• a geodesic is an affine immersion of a segment ]a, b[ (a or b can be ±∞);
• a saddle connection is a geodesic joining two singular points;
• a leaf of a directional foliation is a maximal geodesic in the direction of
the foliation;
• a closed geodesic (or closed leaf if the direction of the foliation is
unambiguous) is an affine embedding of R/Z;
• the first return on a little segment orthogonal to such a closed geodesic is
a map of the form x 7→ λx with λ ∈ R∗+. We say it is flat if λ = 1 and
that it is hyperbolic otherwise.

2.2. Cylinders. These definitions being set, we introduce a first fundamental
example, the Hopf torus. Consider a real number λ 6= 1 and identify every two
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points on C∗ which differ by scalar multiplication by λ. The quotient surface
C∗/(z ∼ λz) through this identification is a called a Hopf torus and we call λ its
affine factor.

Figure 4. Hopf’s torus

These provide a 1-parameter family of affine structures on the torus. These
surfaces have a very specific kind of dynamics. Foliations in all directions have
two closed leaves (the one corresponding to the ray from zero in this direction)
one of which is attracting and the other repulsive.

Based on this torus, we can construct higher genus examples by gluing two of
these tori along a slit in the same direction (see Figure 4). Take an embedded
segment along the affine foliation in one direction on one torus, and an other one
in the same direction on the second torus. We cut the two surfaces along these
segments and identify the upper part of one with the lower part of the other with
the corresponding affine map.

Figure 5. The franco-russian slit construction

Another construction based on the Hopf torus is given by considering a finite
covers. Denote by a the closed curve of the Hopf torus in direction of the dilation
and b the closed curve turning around zero once in the complex plane as in Figure
4. Take the k index subgroup of π1(T 2) generated by a and bk and consider the
associated cover with the induced affine structure. It is also a torus which makes
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k turns around zero. We call it a k-Hopf torus. Similarly, a ∞-Hopf cylinder will
be the cover associated to the subgroup generated by a.

Remark. We can also construct this structure as a slit construction along hori-
zontal closed leaves of k different Hopf tori.

These structures have the remarkable property to be a disjoint union of closed
geodesics in different directions. Each of these geodesics is an attractive leaf of
the foliation in their direction. This is the property we want to keep track of, that
is why we want to consider angular sectors of these tori embedded in an affine
surfaces. This is the motivation for the following definition:

Definition 2. Consider Σ an affine surface. Let Cθ2,θ1 be an angular domain of
a ∞-Hopf cylinder between angles θ1 ∈ R∗+ and θ1 < θ2 such that θ2 − θ1 = θ. A
cylinder of angle θ is the image of a maximal affine embedding of some Cθ2,θ1 in
Σ.
We call λ the affine factor of the cylinder and θ its angle.

Remark the isomorphism class of an affine cylinder is completely determined
by the two numbers θ and λ.

Proposition 1. Let Σ be an affine surface and not a k-Hopf torus. Then the
boundary of a maximal cylinder embedded in Σ is a union of saddle connections.

Proof. Suppose we embedded C0,θ in the surface Σ. If θ =∞ we would have a half-
infinite cylinder in the surface. But this half-cylinder would have an accumulation
point at ∞ in Σ which contradicts its being embedded.

When θ <∞, there are two reasons why C0,θ′ cannot be embedded for θ′ > θ

(1) The embedding C0,θ → Σ extends continuously to the boundary of the
cylinder in direction θ, if the surface is not a k-Hopf torus the image
contains a singular point. The image of the boundary is closed, and it is
an union of saddle connections.

(2) The embedding does not extend to the boundary, then there is a geodesic
γ : [0, 1) → C0,θ starting close to the boundary and ending orthogonally
in the θ boundary of C0,θ such that γ has no limit in Σ when approaching
1. Consider an open disk in C0,θ tangent to the boundary at the point
to which γ is ending and centered on γ trajectory. Then Proposition 5
implies that γ starting from the center of the circle is a closed hyperbolic
geodesic in Σ. This cannot happen since γ is embedded in Σ

�

Again a cylinder will be the union of closed leaves. The dynamics of a geodesic
entering such a cylinder is clear. If the cylinder is of angle less than π and the
direction of the flow is not between θ1 and θ2 modulo 2π, then it will leave the
cylinder in finite time. Otherwise it will be attracted to the closest closed leaf
corresponding to its direction, and be trapped in the cylinder.
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As to enter a cylinder we have to cross its border, we see that for cylinder of
angle larger than π every geodesic entering the cylinder is also trapped. These
’trap’ cylinders can be ignored when studying dynamics. We can study instead
the surface with boundaries where we remove all these cylinders. We will see
in the following section that these cylinders are also responsible for degenerate
behaviour when trying to triangulate the surface.

Remark. A degenerate case of affine cylinder are flat cylinders. It is an embed-
ding of the affine surface Ca =

{
z ∈ C | 0 < =(a) < a

}
/(z ∼ z + 1). In this case,

the length a of the domain of the strip we quotient by z 7→ z + 1 will be called the
modulus of the cylinder.

2.3. Triangulations. An efficient way to build affine surfaces is to glue the par-
allel sides of a (pseudo-)polygon. A surface obtained this way enjoys the property
to have a geodesic triangulation. It is a triangulation whose edges are geodesic
segments and whose set of vertices is exactly the set of singular points. It is nat-
ural to wonder if any affine surface has such triangulation from which we could
easily deduce a polygonal presentation. Remark that the question only makes
sense for surfaces of genus g ≥ 2, for in genus 1 there are no singular points.
Unfortunately, a simple example shows that it is not to be expected in general.
The double Hopf torus constructed above cannot have a geodesic triangulation:
any geodesic issued from the singular point accumulates on a closed regular geo-
desic, except for those coming from the slit. This obstruction can be extended to
any affine surface containing an affine cylinder of angle ≥ π: any geodesic entering
such a cylinder never exits it which is incompatible with the fact that a trian-
gulated surface deprived of its 1-skeleton is a union of triangles. A remarkable
theorem of Veech proves that this obstruction is the only one:

Theorem (Veech, [Vee97, Vee08]). Let A be an affine structure which does not
contain any affine cylinder of angle larger or equal to π. Then A admits a geodesic
triangulation.

The exact theorem generalizes a classical construction known as Delaunay par-
titions to a more general class of affine surfaces. We review this construction and
more of the material contained in [Vee97, Vee08] in Appendix A.

3. Examples.

3.1. The two chambers surface. By gluing the sides of same color of Figure
6 below, we get a genus 2 affine surface with a unique singular point of angle 6π.
For completely random reasons, we call it the two-chambersurface.

We believe that this example is particularly interesting because it is a first
non trivial example for which we can describe the directional foliation in every
direction.

Proposition 2. Let Fθ be the directional foliation oriented by θ on the two-
chamber example.
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Figure 6. The two-chamber surface.

(1) If θ = ±π
2 , then the foliation is completely periodic; the surface decomposes

into two euclidean cylinders.
(2) If θ = arctan(n) or arctan(n + 1

2) for n ∈ Z and θ 6= ±π
2 , the foliation

accumulates on a closed saddle connection.
(3) For any other θ, the foliation accumulates on a hyperbolic closed leave.

Proof. Consider the case when θ = arctan(1
4). Here the segment linking the

middle of the yellow sides projects to a closed leave of the directional foliation of
angle θ = arctan(1

4). Take a little segment transverse to this leaf, the first return
map is a dilation of factor 1

2 (resp 2). This closed leaf is therefore attractive in
the sense that every leaf passing close by winds around and accumulate on it.

The other cases are similar, the reader can convince himself by looking for the
two closed leafs in the given direction and remark that one will be attractive and
the other repulsive. �

3.2. Affine interval exchange transformations. We mention in this subsec-
tion a construction of Camelier and Gutierrez ([CG97]), improved by Bressaud,
Hubert and Maas ([BHM10]), and generalised by Marmi, Moussa and Yoccoz
([MMY10]).

An affine interval exchange is a piecewise affine bijective map from [0, 1] in itself.
It can be thought of as a generalization of either standard interval exchanges
or of piecewise affine homeomorphisms of the circle. To such an AIET (Affine
Interval Exchange Transformation), we can associate an affine surface which is its
suspension. It consists in taking a rectangle, identifying two vertical parallel sides
in the standard way, and identifying the two horizontal according to the AIET,
Figure 7b.

The dynamics of the vertical foliation of such an affine surface is exactly the
same as the affine interval exchange we started from, for the orbits of the latter are
in correspondence with the leaves of the foliation, singular leaves corresponding
to discontinuity points of the AIET.
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The construction mentioned above brings to light a surprising behaviour for
certain affine interval exchanges.

Theorem (Marmi-Moussa-Yoccoz, [MMY10]). For all combinatorics of genus at
least 2, there exists a uniquely ergodic affine interval exchange whose invariant
measure is supported by a Cantor set in [0, 1].

The implication of the theorem for the affine surfaces associated is that there are
some leaves of the vertical foliation whose closure in the surface is union of leaves
which intersects every transverse curve along a Cantor set. This in sharp contrast
with both standard interval exchanges and piecewise affine homeomorphisms of
the circle.

The construction is quite involved and we will not give any detail. Nonetheless
it is worth noticing that in the example we have presented before, we have seen
no trace of such a behaviour: the two-chambersurface has a very simple dynamics
in every direction.

3.3. The disco surface. We build a first surface whose dynamics is a priori non-
trivial. Choose a, b two positive real numbers, we consider the AIET associated
to the permutation (1, 2)(3, 4), and with top and bottom lengths a, b, b, a. Now
take the suspension of this AIET with a rectangle of height 1, it defines an affine
surface which two singularities of angle 4π and genus 2, see Figure 7a. We call
it the disco surface and denote it by Da,b. Notice that the surface contains at
hand several affine cylinders. We represent some of them on the following Figure
7b. These cylinders can overlap, and some zones can a priori be without cylinder
coverage.

(a) Suspension construction (b) Cylinders

Figure 7. The disco surface with a horizontal cylinder

We give an alternative representation of the surface which makes a vertical flat
cylinder decomposition appear. To do so we cut out the left part of the surface
of width a along a vertical line. We now rescale it by a factor b

a and reglue it on
the top b interval. Reproduce the same surgery with the right part of the surface
and the new surface is the one drawn on Figure 8

4. Veech groups.

Given a matrix M ∈ Gl+2 (R) and an affine structure A on Σ, there is a way to
create a new affine structure by replacing the atlas (Ui, ϕi)i∈I by (Ui,M.ϕi)i∈I .
This new affine structure is denoted by M · A. A way to put our hands on this
operation is to describe it when A is given by gluing sides of a polygon p. If one
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Figure 8. An alternative representation of the disco surface

sees P embedded in the complex plane C ' R2, M · A is the structure one gets
after gluing sides of the polygon M · P along the same pattern.

We have defined this way an action of Gl+2 (R) on the set of affine surfaces which
factors through SL2(R), since the action of dilation is obviously trivial. If A is an
affine structure on Σ, we introduce its Veech group V(A) which is the stabilizer
in SL2(R) of A, namely

V(A) = {M ∈ SL2(R) | M · A = A}

The Veech group is the set of real affine symmetries of the considered affine
surface. It is the direct generalisation of the Veech group in the case of translation
surfaces (see [HS06] for a nice introduction to the subject). For example, if T is a
Hopf torus, V(T ) = SL2(R). It is a consequence of the fact that T = C∗/(z ∼ λz)
for a certain λ > 1, and that the action of SL2(R) commutes to z 7→ λz. This fact
is in sharp contrast with the case of translation surfaces where the Veech group
is known to always be discrete.

4.1. The Veech group of the two-chambersurface. We carry on the par-
ticular analysis of the examples introduced in the last section, beginning with
the two-chambersurface. Our exhaustive understanding of the dynamics of every
directional foliation will enable us to describe its Veech group completely.

Proposition 3. The Veech group of the two-chambersurface is the group generated
by the two following matrices(

−1 0
0 −1

)
and

(
1 0
1 1

)
Proof. The are only two directions on the two-chambersurface which are com-
pletely periodic which are π

2 and −π
2 . Any element of the Veech group must

preserve this set of directions, this is why it must lie in the set of lower triangu-
lar matrices. The rotation of angle π belongs to the Veech group since both the
polygon that defines the two-chambersurface and the identification are invariant
under this rotation. Up to multiplying by the latter, we can always assume that
an element of the Veech group fixes the direction π

2 .
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We prove now that if a matrix of the form
(
λ 0
∗ −λ−1

)
belongs to the Veech

group with λ > 0, then λ = 1. The two-chambersurface contains two flat cylinders
of modulus 1. The image of these two cylinders by the action of such a matrix

are two cylinders of modulus 1. So for
(
λ 0
∗ −λ−1

)
to belong to the Veech of the

two-chambersurface, λ must equal 1.

Now remark that
(

1 0
1 1

)
is in the Veech group. A simple cut and paste oper-

ation proves this fact, see Figure 9 below.

Figure 9

To complete the proof of the theorem, remark that the set of vectors of saddle
connection must be preserved. This implies that t = 1 is the smallest positive
number such that ( 1 0

t 1 ) belongs to the Veech group of Σ. �

4.2. The Veech group of the disco surface. Let us describe some elements
of the Veech group of the disco surface. First remark that when we act by the
matrix (

1 t
0 1

)
on a vertical cylinder of height 1 and width t, we can rearrange the surface and
end up back to the same cylinder. It is exactly a Dehn twist on its core curve.
This works also for any cylinder of modulus t. Hence if we have a surface which
we can decompose in cylinders of same modulus t in the horizontal direction, the
matrix above is in its Veech group.

As we remarked when introducing the disco surface Da,b, they decompose into
one cylinder of modulus 2(a+ b) in horizontal direction (Figure 7b) and into two
cylinders of modulus 1+b/a

b = 1
a + 1

b in vertical direction (Figure 8).
As a consequence,(

1 2(a+ b)
0 1

)
,

( 1 0
1
a + 1

b 1

)
∈ V(Da,b)
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Remark that these two matrices never generate a lattice in SL2(R) since it
would imply that 2(a+ b)( 1

a + 1
b ) ≤ 4 which never happens.

4.3. Hopf surfaces. We present in this subsection a general construction of affine
surfaces whose Veech group is conjugate to

{(λ t
0 λ−1

)
| t ∈ R and λ ∈ R∗+

}
and we prove that these are the only surfaces whose Veech group is not discrete.
In particular this construction includes the Hopf torus and their derivatives in-
troduced in Section 2.2.

Definition 3. A ribbon graph is a finite graph with a cyclic ordering of its semi-
edges at its vertices.

We can think of a ribbon graph as an embedding of a given graph in a sur-
face, the manifold structure giving the ordering a the vertices. The structure of a
tubular neighbourhood of the embedding of the graph completely determines the
ribbon graph.
Given a ribbon graph, we can make the following construction: along the bound-
ary components of the infinitesimal thickening of the ribbon graph, we can glue
cylinders of angle kπ respecting the orientation of the foliation to get an affine
surface. We have to be careful to the factors of the cylinders we glue if we want
the singular points to be Euclidean; we give an example from which it will be easy
to deduce the general pattern.

Figure 10. A ribbon graph with two vertices.

that we turn into a genus two surface by gluing three cylinders Di to the boundary
components, each joining Ci to C ′i for i = 1, 2, 3.

Let λi be the affine factor of Di. For the angular points to be euclidean, it is
necessary that the product of the factor of the cylinders adjacent at a singular
point is trivial. In our case we get for an appropriate choice of orientation:

λ1 = λ2λ3
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Figure 11. A cylinder decomposition of the surface of genus 2.

This constraint straightforwardly generalizes to the general case and is the only
obstruction to complete the construction. We call an affine surface obtained by
this construction a Hopf surface, because it generalizes the variations on the Hopf
torus explained in Section 2.2.

We will see in the next section that this example corresponds exactly to the
case when the Veech group is not discrete and is not SL2R

4.4. Veech group dichotomy. First we deal with the case of genus 1 with the
following lemma,

Lemma 1. An affine torus is the exponential of some flat torus C/αZ⊕(β + 2ikπ)Z
where α, β ∈ R+ and k ∈ N. Moreover its Veech group is SL2(R)

Proof. Consider an affine torus. Its developing map goes from C to C and its holo-
nomy is commutative. Hence its holonomy is generated either by two translation
or two affine maps with the same fixed point (which we assume to be zero). The
former case is to be excluded since we are only considering strictly affine surface.

In the second case, we can choose a developing map f which avoids zero, and
associate to it the 1-form d log f = df

f . As the surface has no singularity, the
derivative of f is never zero, and the 1-form is invariant with respect to the
holonomy. Thus this a priori meromorphic form is defined on the torus, has no
zeroes and by residue formula no poles, therefore it is holomorphic.

In conclusion, the logarithm form gives a flat structure on the torus that is
isomorphic to C/αZ⊕ τZ where α ∈ R+ and τ ∈ C∗. The exponential of this flat
torus is the initial affine structure, thus eτ ∈ R∗+ and =(τ) ≡ 0 mod 2π.

Any matrix of SL2(R) commutes with the scalar multiplications, thus the Veech
group of such a surface is the whole SL2(R). �
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This structure is like taking one α-Hopf torus which we slit at one horizontal
closed curve and glue k copies of it. When we glue back the k-th copy to the first
one, we apply a β dilation.

Now that we have set aside the peculiar case of genus 1, we prove a classification
theorem on affine surfaces of higher genus depending on the type of their Veech
group.
Theorem 1. Let Σ be an affine surface of genus ≥ 2. There are two possible
cases :

(1) Σ is a Hopf surface and V (Σ) is the subgroup of upper triangular elements
of SL2(R), {(λ ∗

0 λ−1

)
|λ ∈ R∗

}
(2) V (Σ) is discrete.
The end of the section is devoted to proving Theorem 1. To do so, we will

distinguish between affine surfaces having saddle connections in at least two di-
rections and those who do not. The former enjoy the property that their Veech
group is automatically discrete thanks to a classical argument inspired by the case
of translation surfaces (see Section 3.1 of [HS06]). The latter will turn out to be
Hopf surfaces introduced in section 4.3.
Lemma 2. Let Σ be an affine surface having two saddle connections in different
directions. Then V (Σ) is a discrete subgroup of SL2(R).
Remark. As a direct corollary both the two-chambersurface and the disco surface
have a discrete Veech group.
Proof. Consider V0 (Σ) the subgroup of V (Σ) fixing point-wise the set of singular
points of Σ. This subgroup has finite index in V (Σ) and its being discrete implies
discreteness for V (Σ).
Choose an arbitrary simply connected subset U ⊂ Σ containing all the singulari-
ties and an arbitrary developing map of the affine structure on U . Thanks to this
developing map, we can associate to each oriented saddle connection a vector in
R2. The set of such vectors enjoys two nice properties:

• it is discrete;
• it is invariant under the action of V0 (Σ).

We have made the hypothesis that a pair of those vectors (v1, v2) form a basis in
R2. If an is a sequence of elements of V0 (Σ) going to identity and An the matrices
of their action in the normalization induced by U (notice that an element of V (Σ)
is an element of the quotient Gl+2 (R)/R∗+ and therefore the matrix of its action
depends on normalization both at the source and at the target). An · v1 → v1 and
An · v2 → v2 but the discreteness of the set of saddle connection vectors implies
that for n large enough An · v1 = v1 and An · v2 = v2, and thus An = Id. Which
proves the discreteness of the Veech group. �
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We will now characterize the affine surfaces having saddle connections in at
most one direction. The two following lemmas will complete the classification.

Lemma 3. If all the saddle connections of an affine surface Σ are in the same
direction it is a Hopf surface.

Proof. Wemake the assumption that Σ has at least a singular point (if not, Lemma
1 settles the question). We are going to prove that every singular point has a least
a saddle connection in every angular sector of angle π. An affine surface whose
all separatrices in one direction are saddle connection is easily seen to be a Hopf
surface, see Subsection 4.3.

Consider the exponential map at a singular point p associated to a local affine
normalization and let r > 0 be smallest radius such that ∆r the (open) semi-disk
of radius r, bounded below by two horizontal separatices and containing a vertical
separatrix, immerses in Σ by means of the exponential map. If r =∞, we would
have a maximal affine immersion of H, whose boundary would project to a closed
leaf containing p and there would be two saddle connections in the horizontal
direction. Otherwise r < ∞. There can be two different reasons why ∆r′ does
not immerse for r′ > r:

(1) either the immersion ∆r −→ Σ extends continuously to the boundary of
∆r and the image of this extension contains a singular point. In that
case this singular point must be in the unique direction containing saddle
connections (say the vertical one) and the vertical separatrix was actually
a saddle connection;

(2) or ∆r −→ Σ does not extend to the boundary of ∆r.
We prove that the latter situation cannot occur. Otherwise there would be a

geodesic γ issued at p affinely parametrized by [0, r) such that γ(t) does not have
a limit in Σ when t tends to r. We make the confusion between γ as a subset
of Σ and its pre-image in ∆r. Considering an open disk in ∆r which is tangent
at the boundary to the point in ∂∆r towards which γ is heading and such that
its center belongs to γ. By means of the immersion of ∆r in Σ, it provides an
affine immersion of D satisfying the hypothesis of Proposition 5. γ would therefore
project to a closed hyperbolic geodesic, which contradicts its being a separatrix.

�

4.5. The Veech group of an affine surface is probably not a lattice. We
start by showing the following lemma,

Lemma 4. If V (Σ) is discrete it cannot be cocompact.

Proof. To show this we only need to find a continuous function on H/V (Σ) that
is not bounded. For flat surface the systole does the trick, here we cannot define
length of saddle connections but the ratio of the two lengths of saddle connections
that intersect. Thus we can define the shortest and the second shortest simple
saddle connections starting at a given singular point, and we denote by l and
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L their length in one arbitrary chart around the singularity. These two distinct
saddle connections exist since we assume V (Σ) discrete according to Theorem 1.
Now the ratio L/l is independent from the previous choice of chart. And if we take
the minimum value of this ratio on all the singularities, it will be a continuous
function on the H orbit of the surface invariant by the Veech group.

To finish the argument, apply the Teichmüller deformation of the surface with
matrices of the form (

et 0
0 e−t

)
where the horizontal direction will be the direction of the smallest saddle con-
nection with the smallest ratio. This deformation will decrease the length l and
increase L as t goes to infinity and thus make this function go to infinity. �

As we saw in Section 2.2, cylinders trap the linear flow in their correspond-
ing angular sector. This behaviour restricts the potential directions for saddle
connections around a singularity in the boundary of cylinders and prevent Veech
groups from being lattices.

Figure 12. Angular section on which leaves are hyperbolic

Consider Σ an affine surface endowed with an affine cylinder, take any singular
point at the border of this cylinder and flow a leaf heading inside the cylinder
whose angular direction falls just in-between the two extreme angles of the cylin-
ders. This leaf will be trapped inside the cylinder and accumulate to a close leaf
(Figure 12). As a consequence none of these leaves will meet a singular point.
There won’t be any saddle connection starting from the chosen point in the an-
gular sector define by the cylinder.

This implies the following proposition :

Proposition 4. If Σ is an affine surface with an affine cylinder then V (Σ) is
not a lattice.

Proof. Assume for a contradiction that V (Σ) is a lattice. Take a finite index
subgroup which stabilizes all the singularities of the surface. As an assumption
on Σ there is an affine cylinder in the surface, Proposition 1 implies that there
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is a singularity in the boundary of the cylinder, and a small angular section in
which any separatrix from this singularity will accumulate to a closed leaf. As the
subgroup is a lattice it contains a parabolic element and its limit set is the whole
border of H. Then we can conjugate this parabolic element to see that there is
a dense set of direction in which there is a parabolic. In parabolic directions,
the separatrices are all saddle connections. Indeed, if not there would be an
accumulation point, and a neighborhood of this point would be crossed infinitely
many times by the separatrix on which the parabolic acts as the identity. Hence
the parabolic element would act as the identity on the whole neighborhood, which
is a contradiction. This shall not be since we showed that there cannot be saddle
connection in an open set of directions around the singularity. �

5. Cylinders on genus 2 surfaces.

The purpose of this section is to show the following result

Theorem 2. Any affine surface of genus 2 has a cylinder.

First, remark that Veech’s theorem on Delaunay triangulation (see Veech’s
theorem in 2.3) tells us that if an affine surface does not have a triangulation,
it must contain an affine cylinder (of angle at least π). We can therefore forget
about this case and assume that all the surfaces we are looking at have geodesic
triangulations.
The theorem is also easy to prove when the surface has two singular points which
both must be of angle 4π. Consider a triangle of a Delaunay triangulation of the
surface, at least two of its vertices are equal to the same singular point and the
side corresponding to these two vertices is a simple closed curve. It must cut the
angle of the associated singular point into two angular sectors of respective angle
3π and π. Which implies that it bounds a cylinder on the side of the angle π.

For the remainder of the section, Σ is a surface of genus 2 together with a
strictly affine structure whose unique singular point of angle 6π is denoted by p.
A geodesic triangulation of Σ must have exactly 9 edges and 6 triangles. In this
particular case where the triangulation has a unique vertex, each edge defines a
simple closed curve, geodesic away from p and cutting the latter into two angular
sector. Because each directional foliation is oriented, such an edge must cut the
angle 6π into two angles of respective values either 5π, π or 3π, 3π.
The lemma below proves that any such geodesic triangulation has at least one
edge cutting the singular point into two angles 5π and π. The theorem is a direct
consequence of this lemma.

Lemma 5. A geodesic triangulation of Σ cannot have its 9 edges cutting p into
two sectors of angles 3π.

Proof. The property on the edges implies that they all intersect with number
±1 at the only vertex of the triangulation. Since every closed leaf separates the
cylinder at p in two angular sectors of angle 3π an oriented leaf can’t have it’s
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in-going and outgoing parts in the same sector cut by any other leaf (the angle
would have to be smaller).

We can always see topologically our surface as an octagon which boundary
are edges of the triangulation. Take for example the maximal sub-graph of the
1-skeleton of the triangulation such as the complementary of it in the surface is
connected and simply-connected, this complement will be the fundamental do-
main we are looking for. Now the intersection number property tells us that the
configuration of the path at the order will be in the setting of Figure 13

Figure 13. Topological setting of the separatrix diagram

Now consider yet another of the 9 edges, as it has to intersect all of the other
path with ±1 the only possibility is when the curves starts between two colors
and end up between the two same colors.

Let’s add one of these edges as in Figure 14. It is clear now that we won’t be
able to add any curve with the same property since they can’t intersect a curve
in other point than p.

Figure 14. Adding one curve

�

This completes the proof of Theorem 2. It is not completely satisfactory: we
would like to prove that every affine surface contains strictly affine cylinders.

6. Open problems.

We hope that at this point, most of the problems we are about to suggest seem
natural to the reader.
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We have so far put our hands on several dynamical behaviours for the direc-
tional foliations on our affine surfaces. Very often it happens that a finite number
of hyperbolic closed leaves attract all the others, as it the case for all but one
direction on the two-chambersurface. We say in that case that the dynamics is
hyperbolic. The Camelier-Gutierrez construction discussed in Section 3.2 also
proves the existence of directional foliations such that every leaf accumulates to
a closed union of leaves which is transversely a Cantor set. Finally it is not to be
excluded that some directional foliations are minimal (it is actually very easy to
build examples of such affine surfaces). Because of the conjectural picture we are
about to draw, we call both late cases exceptional.

We begin our list of open problems by very specific questions concerning the
D1,2 example. It is a simple and very explicit one, but the dynamical questions
that it raises are not straightforwardly answerable.

(1) Does there exist a dense direction on the D1,2 example?
(2) Does there exist a ’Cantor like’ direction on the D1,2 example?
(3) What does the set of hyperbolic directions on the D1,2 example look like?

Is it dense? Has it full Lebesgue measure?

These might be a good starting point on the way to the general case. Al-
though the combinatorial arguments used in its proof are unlikely to generalize
to higher genus, Theorem 2 suggests that systematic dynamical behaviours are to
be expected. Is it true that

(4) every affine surface has a closed regular geodesic?
(5) every affine surface has a closed, regular and hyperbolic geodesic?
(6) the set of hyperbolic direction of every affine surface is dense? has full

measure?

These questions have natural generalizations to the moduli space of affine sur-
faces together with a directional foliation. It is possible that in this setting some
of the aforementioned questions are easier to answer, and that specific surfaces
have a very different behaviour from the generic one. We conjecture that the
answers to these three questions are positive, with a greater reserve about the full
measure one. There are most probably very interesting things to say about the
loci of exceptional directions, but making guesses without a clear picture of what
happens for hyperbolic ones seems quite dairy. A very natural direction at this
point is to investigate the geometrical properties of these affine surfaces:

(7) Which are the affine surfaces having only finitely many saddle connections?
(8) Is it true that trough a given point on an affine surface always passes

either a closed geodesic or a saddle connection? It is the case in the
two-chamberexample.

(9) What does the set of vectors of saddle connections on a given surface look
like?
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Proposition 4 most probably prevents the Veech group of an affine surface to be
a lattice in SL2(R). Nonetheless, it seems to be an interesting invariant of these
affine surfaces.

(10) What kind of Fuchsian groups can appear as Veech groups ?

Finally we want to suggest that a nice source of questions is trying to describe
the set of surfaces having specific interesting dynamical/geometric properties. For
instance:

(11) Is the set of affine surfaces having an exceptional direction dense? generic?
(12) Is the set of affine surfaces having no exceptional direction dense? generic?
(13) Does there exists a surface having infinitely many ’Cantor like’ directions?

Appendix A. Veech’s results on the geometry of affine surfaces.

We review in this appendix results of Veech on the geometry of affine surfaces
appearing in [Vee97] and [Vee08]. Note that Veech works in the more general
context of affine surfaces with singularities.

For the sake of clarity, we will restrict his results to the case under scrutiny
in this paper namely branched affine surface with real positive linear holonomy.
The notes [Vee08] remain unpublished and Veech kindly allowed us to reproduce
here proofs that are contained in these notes.

A.1. The property V. We say an affine surface Σ satisfies the property V if
there is no affine immersion of H in Σ. It is equivalent to ask that Σ has no affine
cylinder of angle larger than π.

Theorem (Veech, [Vee08]). An equivalent formulation of the property V is the
following:

(V ′) Every affine immersion of the open unit disk D ⊂ C in Σ extends contin-
uously to a map D→ Σ.

We will only give the proof of one sense of the equivalence, namely that the
property V implies the property V ′, which will be sufficient for our purpose.

Lemma 6. Let ϕ be an affine immersion of the open unit disk D ⊂ C in Σ that
does not extend continuously to a map D → Σ. Then ϕ extends to an affine
immersion H −→ Σ.

Proof. Since ϕ does not extend to ∂D, there exists z ∈ ∂D such that
lim
t→1

ϕ(tz)

does not exist. Let γ be the path t 7→ ϕ(tz). Let x be an accumulation point of
γ. Since [0, 1] is connected, we can assume that x is not singular. Let tk → 1 be
an increasing sequence such that γ(tk)→ x and f an affine chart at x, f : U 7→ ∆
where ∆ is the unit disk centered at 0 et U an open set containing x such that
f(x) = 0. We denote by 1

2U the pre-image by f in Σ of the disk centered at 0 or
radius 1

2 .
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For k large enough, we can assume that γ(tk) belongs to 1
2U . Denote by Vk

the pre-image by in Σ of the disk of radius 1
2 centered at ϕ(γ(tk)). In particular

Vk contains x. We claim that the image under ϕ of Dk the open disk centered at
tkz ∈ U tangent to ∂U at z contains Vk. Since ϕ does not extend at z, there is
a closed disk centered a tkz strictly contained in Dk whose image under ϕ is not
contained in Vk. Since this image is a disk concentric at tkz it must contain Vk
and in particular x. Let wk be a pre-image of x in Dk.

Let Ek be the largest disk with center wk to which ϕ admits analytic continu-
ation. Since wk → z, the radius of Ek converges to 0. Necessarily ϕ(Ek) contains
U = f−1(∆) because ϕ(Ek) is a maximal embedded disk of center x. Extending
the map f−1 : ∆ → U ⊂ Σ by means of ϕ defines Fk : ∆k → Σ. The functions
(Fk)k∈N have the following properties:

• ∆k is a disk;
• ∆ ⊂ ∆;
• ∀ζ ∈ ∆ we have that Fk(ζ) = f−1(ζ);
• ∀k, k′ ∈ N, Fk = Fk′ on ∆k ∩∆k′ ;
• the radius of ∆k tends to +∞, because the radius of Ek tends to 0.

Since all the Dk are connected and
⋂
k∈N ∆k is non empty, the Fk define an

affine immersion

F :
⋃
k∈N

∆k −→ Σ

and
⋃
k∈N ∆k must contain a half-plane since it is the union of disk whose radius

tend to infinity whose intersection is not empty. This proves the lemma.
�

Lemma 7. Any affine immersion ϕ : H −→ Σ can be extended to ϕ′ : H′ −→ Σ
such that the latter is invariant by the action by multiplication by a positive real
number λ 6= 1.
Proof. We show first that such an immersion cannot be one-to-one. Consider the
geodesic γ[0,∞[→ [i, i∞[⊂ H. Its image by ϕ cannot have a limit in Σ for it has
infinite (relative) length. Let x ∈ Σ be an accumulation point of this image, and
U ⊂ Σ a closed embedded disk with center x such that ϕ(γ) is not completely
contained in U . Since ϕ(γ) is a leaf of a directional foliation on Σ, it must cross U
twice along parallel segment and therefore cannot be injective because the image
of horizontal stripes at the first and second crossing will overlap.

There exists then v 6= w ∈ H such that ϕ(z) = ϕ(w). There exists then an
affine map z 7→ λz + a with a ∈ R∗+ and b in C such that w = λv + a and for all
z in a neighborhood of v

ϕ(z) = ϕ(λz + a).
The union of the iterated images of H by z 7→ λz+a is a half-plane H′ to which

ϕ extends by analytic continuation and on which the above invariance relation
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holds for all z. If λ = 1, the image of ϕ′ in Σ is an infinite flat cylinder, which
is impossible since Σ is compact; therefore λ 6= 1. The fixed point of z 7→ λz + a
must lie in ∂H′ and up to an affine transformation we can suppose that b = 0.

�

A.2. Delaunay decompositions and triangulations. The main result of [Vee97]
and [Vee08] combined is establishing the existence of geodesic triangulations for
surfaces not verifying the only natural obstruction for this to happen. It is given
by the following theorem:

Theorem (Veech). An affine surface admits a geodesic triangulation if and only
if it does not contain an embedded open affine cylinder of angle π. Equivalently,
an affine surface admits a geodesic triangulation if and only if it satisfies the
property V.

This theorem is a corollary of the existence of Delaunay partitions for affine
surfaces that Veech deals with. We explain in the sequel the construction. Let Σ
be an affine surface satisfying the property V and let x ∈ Σ be a regular point.
We are going to distinguish points depending on the number of singular points on
the boundary of the largest immersed disk at x. We denote this number by ν(x).
The set

{
ν(x) = 1

}
is a open dense set in the surface. The special points a those

such that ν(x) ≥ 3, who form a discrete and therefore finite set in the surface.
At these points one can consider the largest embedded disk in the surface and
consider in this disk the convex hull of the (at least) three singular point on the
boundary. The crucial (but not completely obvious) facts are that:

• this convex hull projects onto an embedded convex polygon in the sur-
face;
• the union of such polygons covers the whole surface;
• such polygons only intersects at their boundary;
• an intersection of two such polygons is union of some their (shared) sides;
• the set of vertices of such polygons is exactly the set of singular points;
• the union of the interior of these polygons is exactly the set

{
ν(x) = 1

}
;

• the union of the interior of their sides is exactly the set
{
ν(x) = 2

}
.

This decomposition of the surface in convex polygons is called its Delaunay
polygonations, is unique and only depends on its geometry. A triangulation of
each polygon leads to a geodesic triangulation of the surface.

The crucial fact (we refer to [Vee97] for details) is that having the property
V implies that maximal affine embeddings of the disk extend to their boundary,
which is the technical point that one needs to make sure the construction hinted
above can be carried on.

Remark. The converse of the triangulation theorem is quite easy. Any cylinder
of angle at least π behave like a ’trap’: any geodesic entering it never escapes. A
surface containing such a cylinder therefore cannot be geodesically triangulated,



24 EDUARD DURYEV, CHARLES FOUGERON, AND SELIM GHAZOUANI

because no edge of the triangulation could enter the cylinder and the complement
of the 1-skeleton of such a triangulation would not be a union of cells.

A.3. Closed geodesics and wild immersions of the disk. We consider in
this subsection a surface Σ which does not satisfy the property V. This implies
that there is an affine immersion ϕ : D −→ Σ which does not extend to ∂D the
boundary of D. This also implies the existence of an affine cylinder and therefore
closed hyperbolic geodesics. We give in this subsection a way to localize such a
closed hyperbolic geodesic starting from ϕ. We believe that this result should
be attributed to Veech. Even though not stated explicitly in [Vee08] (probably
because Veech did not have in mind the dynamical questions we are interested
in), the statement is obvious for anyone who has read carefully the sections 23
and 24 of [Vee08].

Proposition 5 (Veech, [Vee08]). Let ϕ : D −→ Σ be a wild immersion of the disk,
i.e. that does not extend to ∂D, and let z ∈ ∂D such that the path γ : t 7→ ϕ(tz)
does not have a limit in Σ when t → 1. Then γ([0, 1)) is a hyperbolic closed
geodesic in Σ .

Proof. According to both Lemma 6 and 7 ϕ extends to a maximal ϕ′ : H −→ Σ
which is invariant by multiplication by a certain positive number λ 6= 1. γ in this
extension must head toward 0 ∈ ∂H for otherwise it would have a limit in Σ. Its
image is therefore a closed hyperbolic leave because it is invariant by the action
of λ. �
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