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Abstract. In this article we study local rigidity properties of generalised interval exchange maps using
renormalisation methods. We study the dynamics of the renormalisation operator R acting on the space of
C3-generalised interval exchange transformations at fixed points (which are standard periodic type IETs). We
show that R is hyperbolic and that the number of unstable direction is exactly that predicted by the ergodic
theory of IETs and the work of Forni and Marmi-Moussa-Yoccoz. As a consequence we prove that the local
C1-conjugacy class of a periodic interval exchange transformation, with d intervals, whose associated surface
has genus g and whose Lyapounoff exponents are all non zero is a codimension g − 1 + d− 1 C1-submanifold
of the space of C3-generalised interval exchange transformations. This solves a particular case of a conjecture
of Marmi-Moussa-Yoccoz.

1. Introduction

The study of stability and rigidity properties of quasi-periodic and parabolic dynamical systems form a
rather old class of problems in the modern theory of dynamical systems. Trying to determine whether the solar
system is stable led astronomers to formulate simplified mathematical problems, one of which being the famous
three-body problem. Daunted by the many difficulties arising when trying to solve it, Poincaré [22] suggested
that mathematicians turn to even simpler toy models, such as the dynamics of circle diffeomorphisms.
The three-body problem was eventually solved by Kolmogorov in 1954 using a set of methods nowadays
commonly referred to as KAM theory. These methods were subsequently applied by Arnol’d [1] to solve the
problem of the local rigidity for analytic circle diffeomorphisms.
Later on, from the late 1970s onwards, the introduction of renormalisation as a tool in mathematics allowed
mathematicians to discover a few more rigidity and universality phenomena for other classes of parabolic
dynamical systems, in particular unimodal maps [2, 6, 16, 21, 23, 24], circle diffeomorphisms with critical
points [4, 5] or breaks points [12, 14] and more recently circle maps with a flat interval [20]. The general
question that can be asked at this point is the following

Question. What classes of dynamical systems are rigid (in some sense) and what are the mechanisms
responsible for this rigidity?

The notion of rigidity is vague and can mean different things depending on the context. We give here
rigidity themes that we have in mind when writing this text and which are interconnected.

• Geometric rigidity. This is when the topological structure of a dynamical system forces its geometry.
Formally, we say a smooth dynamical system is geometrically rigid if any other system which is
topologically conjugate to it is differentiably conjugate to it. This is the case for certain classes of
circle maps and infinitely renormalisable unimodal maps.

• Universality. We say a class of dynamical systems displays some form of universality if some universal
behaviour can be observed in arbitrary parameter families. An example is parameter families of
unimodal maps displaying period-doubling bifurcations and for which the structure of bifurcations
asymptotically does not depend on the initial family.

• Solving cohomological equations. Analysing local geometric rigidity problems via linearising the
problem often features solving cohomological equations. Understanding the obstructions to solving
cohomological equations is an important step to solving rigidity problems, and describing distributions
realising these obstructions an interesting problem.

Most of known results for geometric rigidity and universality are either in dimension 1 or are local results
where the underlying system is a translation on a torus and KAM theory applies.
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Ergodic theory. A lot geometric rigidity results rely partly on the fact that the combinatorial structure
(and consequently the ergodic theory) of underlying dynamical systems is simple; precisely it is either a
translation on a torus or an odometer. It is the case for results in KAM theory, circle diffeomorphisms,
circle diffeomorphisms with critical or break points and unimodal maps. For instance, KAM theory relies on
Fourier analysis to solve the cohomological equation over rotations of the n-dimensional torus. This is only
made possible because n-dimensional tori are abelian groups, translations preserve this group structure which
makes for an efficient Fourier analysis. More general parabolic systems are more complicated and we do not
always have ready tools for a direct analysis of their ergodic theory, study of the cohomological equation and
deviations of ergodic averages.

There has been important progress in understanding the ergodic theory of parabolic dynamical systems:
[28], [15] and [9] for flows on surfaces, [7, 8] for the horocycle flow and nilflows and [17, 19] for interval
exchange maps. For all these examples it is shown that deviations of ergodic average for smooth observable
are governed by finitely many distributions, and for functions in the kernel of those distributions one can solve
the cohomological equation. These distributions also provide finitely many obstructions to geometric rigidity.

Main result. In this article we prove a local (geometric) rigidity result for generalised interval exchange
transformations. A generalised interval exchange transformation (GIET) is a bijection of the interval which is
piecewise continuous, smooth and increasing on its continuity intervals (see Section 2 for precise definitions).
These maps, which are obtained as first-return of smooth flows on surfaces, have vanishing entropy and are
most of the time uniquely ergodic1. Our main result is
Theorem 1. Let T0 be a periodic IET with hyperbolic Rauzy matrix. The set of generalised IETs which
are C1-conjugated to T0 by a diffeomorphism C1-close to the identity is a C1-submanifold of codimension
d− 1 + g − 1. Here d is the number of intervals of T0 and g is the genus of the associated translation surface,
and we are working in the space of C3-generalised IETs whose total non-linearity vanishes.
This result (and more) had been conjectured by Marmi, Moussa and Yoccoz in [18]. Their main conjecture
(Problem 1 in [18]) is that this result is true for almost every choice of initial IET T0; here we only treat the
case of periodic combinatorics. This result is nonetheless (to the best knowledge of the author) the first result
describing a rigidity class of generalised interval exchange transformations.
We briefly comment on the statement of this theorem which might seem a bit technical at first glance. Consider
T0 a standard interval exchange transformation. We can deform it within the Banach space of C3-generalised
interval exchange transformation and ask whether the new map is differentiably conjugate to T0.

• A necessary condition for this to happen is that they are orbitally equivalent; this condition is
realised if and only their generalised rotation number/Rauzy path (see [26]) is the same. Roughly, this
generalised rotation number takes value in a (d− 1)-dimensional simplex and provides a first set of
combinatorial obstructions.

• Once we know that this first condition is satisfied, the two maps that we get have same ergodic theory
(as it can be shown that they are semi-conjugate). In this case, the ergodic theory (via the work
of Forni [9, 10] and Marmi-Moussa-Yoccoz [17]) provides us with a new set of obstructions which
correspond to obstructions to solving the cohomological equation. There are g − 1 such obstructions,
and correspond to Lyapounov exponents of the Konsevich-Zorich cocyle.

This result shows that these obstructions are the only obstructions to local rigidity. It is very much in the
spirit of standard rigidity results about circle maps or unimodal maps, once the ergodic theory has been
factored in.

Renormalisation. The proof of Theorem 1 makes use of renormalisation methods. A powerful idea to study
parabolic dynamical systems is to consider a renormalisation operator acting on the moduli space of such
systems. A renormalisation operator is a procedure by which one associates to a dynamical system T a
suitably rescaled first-return map, that we denote by R(T ), which is in the same class as T (in our case, a
generalised IET with as many discontinuity intervals).

A general principle is that two maps T1 and T2 are differentiably conjugate if and only if their iterated
renormalisations Rn(T1) and Rn(T2) are getting close at an exponential rate. In this article we make use of a

1In parameter space, one expects the generic GIET to be Morse-Smale, but interesting cases are infinitely renormalisable
maps; their combinatorial structure can be reduced to that of standard IETs which are know to almost always be uniquely
ergodic, see [26].
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renormalisation operator R on generalised IETs (which is an extension of standard Rauzy-Veech induction).
Our main theorem is just a corollary of the following result

Theorem 2. Let T0 be a standard IET which is a fixed point of R and whose standard Rauzy matrix is
hyperbolic. Then R acting on the Banach manifold of C3-generalised IETs is hyperbolic at T0, its unstable
space has dimension (d− 1) + (g − 1) and consequently its stable space has codimension (d− 1) + (g − 1).

Previous work on generalised interval exchange transformations. We discuss briefly previous work
on the question on generalised interval exchange transformations of genus 2. As already mentioned, pioneering
work of Forni followed by Marmi-Moussa-Yoccoz and Marmi-Yoccoz on the solving of the cohomological
equation set the stage for a discussion on rigidity properties of generalised interval exchange maps. They
demonstrated the existence of obstructions to solving the cohomological equation and interpreted them as
cohomology classes of the associated surface (obtained by suspending a generalised interval exchange map).

Subsequent work of Marmi-Moussa-Yoccoz implemented a KAM scheme to describe local smooth conjugacy
classes of generalised IETs in high regularity (Cr-conjugacy classes for r ≥ 2). They give a formula for the
codimension of such conjugacy classes in terms of d and g. Their result cover almost every rotation number,
but they fail to describe C1-rigidity classes which are the generic case in parameter space. Their work was
completed by Forni-Marmi-Matheus [11] to cover other rotation numbers, still in high regularity.

Strategy of the proof. We comment on the proof of Theorem 1 and Theorem 2 (we assume some knowledge
of renormalisation theory). We consider the renormalisation operator acting at a fixed point T0.

(1) We first show the existence of (d − 1) + (g − 1) unstable directions by letting R act on the finite
dimensional subspace of affine interval exchange transformations. This action can be related to the
standard action of the Zorich-Konsevich cocycle and we can achieve our aim by standard ergodic-
theoretic methods.

(2) The difficult part of the problem is to construct the stable space. Indeed the complement of the
(d− 1) + (g − 1) unstable directions is infinite dimensional and we have a priori very little control on
what happens there. In many standard cases deriving from circle maps (circle diffeomorphisms, circle
maps with critical points or break points), a strong control is given by what is nothing short of an
ergodic miracle, the Denjoy-Koksma inequality. It provides what specialists call a priori bounds for
the renormalisation.

(3) We construct a pre-stable space of codimension (d − 1) + (g − 1) satisfying the property that for
any T in this pre-stable space, the sequence

(
Rn(T )

)
is bounded in the C2-topology. We see this

latter statement as an a priori bound. This construction is the heart of the article. It makes use of
the fact that R is hyperbolic restricted to the subspace of affine IETs, various distortion bounds for
one-dimensional dynamical systems and the choice of an appropriate norm using the non-linearity
of one-dimensional maps. A key idea of this construction is to carry out corrections to shadow the
sequence Rn(T ) by renormalisations of affine IETs. This was inspired by the proof of the main
theorem of [17].

(4) Once those "a priori bounds" are constructed, we obtain uniform contraction in the pre-stable space
as a reformulation of Herman’s theory for circle diffeomorphisms.

(5) We derive the main theorem using standard result for renormalisation of one-dimensional maps
borrowed from [4].

(6) The regularity of the stable space is obtained by writing the equation defining it and using a result of
Marmi-Yoccoz [19] on the regularity of solutions of the cohomological equation.

Acknowledgements. The author would like to thank Liviana Palmisano for sharing course notes about
renormalisation, Michael Bromberg and Björn Winckler for interesting discussions, and Giovanni Forni his
careful reading and precious comments on an early versions of this text. The author is greatly indebted to
Corinna Ulcigrai for sparking his interest in the subject, her teaching, the many hours of conversation about
interval exchange maps and her continued support.
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2. Generalised interval exchange transformations

2.1. Basic definitions.

Definition 1. Let d ≥ 2 be an integer. A Cr-generalised interval exchange transformation (GIET) is a map
T from the interval [0, 1] to itself such that

• there are two partitions [0, 1] =
⋃d
i=1 I

t
i =

⋃d
i=1 I

b
i into d open subinterval (the intervals Iti s and Ibi s

are lying on [0, 1] ordered from left to right);
• there exists a permutation σ ∈ Sn such that T restricted to Iti is an orientation preserving diffeomor-
phism onto Ibσ(i) of class C

r;
• T extends to the closure of Iti to a Cr-diffeomorphism onto the closure of Ibσ(i).

Examples of such generalised interval exchange transformations include standard interval exchange trans-
formations (IET) for which the map T is further restricted to be a translation on each of the Iti s and affine
interval exchange transformations (AIET) for which T is an affine map restricted to the Iti s.

In what follows we make the standing assumption that r ≥ 2. Let T be a Cr-GIET. We define

(1) ηT = D log DT

which is called the non-linearity of T and is well-defined because we have assumed T is C2.
If f : I −→ J is a continuous function from a bounded interval I to another J , we use the following notation

||f || = ||f ||0 = sup
x∈I
|f(x)|.

2.2. The moduli space and coordinates. We define

X rσ = {generalised interval exchange transformation of class Cr with associated permation σ}.

Let T be a Cr-GIET, with associated permutation σ and let (Iti )1≤i≤d and (Ibi )1≤i≤d be the "top" and
"bottom" partitions of [0, 1] associated to it. We make the two following observations.

• There is a unique affine interval exchange transformation AT mapping Iti to Ibσ(i).
• Furthermore, for all i ≤ d, there is a unique element ϕiT of Diffr([0, 1]) such that the restriction of T

to Iti is equal to

ci ◦ ϕi ◦ bi
where bi is the unique orientation preserving affine map mapping Iti onto [0, 1] and ci is the unique
orientation preserving affine map mapping [0, 1] onto Ibσ(i).

This operation can be inverted and therefore the map

T 7−→ (AT , ϕ
1
T , · · · , ϕdT )

gives an identification between X rσ and Aσ ×
(
Diffr([0, 1])

)d where Aσ the space of AIETs with permutation
σ. In the sequel we denote by P the space

(
Diffr([0, 1])

)d and so we have a canonical identification

X rσ = Aσ × P.

Using this parametrisation we can endow X rσ with the structure of a Banach space directly inherited from
that of Diffr([0, 1]). When there is no possible ambiguity, we will drop the indexes σ and r and simply write

X = A×P.
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2.3. Renormalisation. We introduce in this paragraph a map acting upon X rσ which is a renormalisation
operator. A fully-fledged renormalisation theory for GIETs would require that we introduce the Rauzy-Veech
induction, as it is done in [18]. However, because we are only going to treat a particular combinatorial case,
we can spare such machinery and define everything in more elementary terms.

In the sequel T0 is a standard IET which satisfies the following self-similarity property: there exists x0 ∈]0, 1[
such that the first-return map of T0 on [0, x0] is equal, up to affine rescaling, to T0. Consequently, there is a
neighbourhood W of T0 in X and a smooth map X : X −→ [0, 1[ such that the following holds.

• X(T0) = x0;
• For every T ∈ W, the first return map of T on [0, X(T )] is a GIET with permutation σ;
• if RT denotes this first return map rescaled to define a function from [0, 1] to itself, the map

R :W −→ X
is continuous;

• if we denote by RA and RP the projection of R on the coordinates A and P respectively the map

RA :W −→ A
is of class C1;

• R(T0) = T0;
• for all T ∈ X , DRA(T ) is a bounded operator for the Cr-norm.

The facts that R is of class C1 and DRA(T ) is a bounded operator are a consequence of the fact that R(T ) is
obtained by taking compositions of the restrictions of T to its continuity intervals on intervals whose endpoints
themselves depend smoothly on T (the proof of these facts is discussed in greater detail in Appendix A).
In the sequel we will be calling R the renormalisation operator. For a given GIET T ∈ W, we will call
RT = R(T ) its renormalisation and when well-defined, we call the sequence T,RT,R2T, · · · ,RnT, · · · its
consecutive renormalisations. When it is the case that consecutive renormalisation of T are defined for all
n ≥ 0, i.e. RnT ∈ W for all n ≥ 0, we say that T is infinitely renormalisable.

Remark 3. The reason why we care about such a renormalisation operator is the following: a GIET in W is
C1-conjugate to T0 if and only if its consecutive renormalisations converge fast enough to T0. This rather
loose statement will be made precise in Section 7.

2.4. Dynamical partitions. Let T be an element ofW and assume further that T is infinitely renormalisable.
For any n ≥ 0, RnT is the rescaling of a first return map of T on an interval of the form [0, xn]. The interval
[0, xn] is partitioned into

[0, xn] = ∪dj=1I
j
n

and RnT rescaled down to [0, xn] is equal to T l
j
n on each of the Ijns. For 1 ≤ j ≤ d, we introduce

Pjn = {Ijn, T (Ijn), T 2(Ijn), · · · , T l
j
n−1(Ijn)}

and we call

Pn =

d⋃
j=1

Pjn

the dynamical partition of level n. One easily verifies that Pn is a partition of [0, 1] into subintervals.

3. Affine interval exchange transformations

An affine interval exchange transformation is simply a generalised IET which is affine restricted to its intervals
of continuity. In this subsection, we aim at computing the derivative of the renormalisation operator restricted
to AIETs, at the fixed point T0. We will see that this derivative can be understood fairly simply in terms of
the combinatorial structure of T0.
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3.1. Coordinates on A. Let T be an AIET with permutation σ. Denote by λ1, · · · , λd the lengths of its
continuity intervals. Because these form a partition of [0, 1], they must satisfy the following equation:

λ1 + · · ·+ λd = 1.

Furthermore, if we denote by ρ1, · · · , ρd the derivatives of T on intervals of respective lengths λ1, · · · , λd, we
must also have

ρ1λ1 + · · ·+ ρdλd = 1.

These two equations, together with the further restrictions that ∀i, λi > 0 identify Aσ to a submanifold of
R2d of dimension 2d− 2. For any affine interval exchange transformation T , we denote by λ(T ) its associated
lengths and ρ(T ) its slopes.

Surface associated to an IET. To an IET can be associated a a topological surface with marked points by
an operation of suspension. If s is the number of marked points of this surface and g its genus we have the
following relation

d = 2g + s− 1.

We make the standing assumption that s is equal to 1 and that g ≥ 2.

3.2. Intersection matrix. Recall T0 the fixed point of R and the Pjns the sub-partitions associated with
the dynamical partitions Pn. Define aij to be the number of elements of Pin which intersect Ij0 . The I

j
0 are

just by definition the intervals of continuity of T0. We will denote by A the d× d = 2g × 2g matrix whose
entry in place (i, j) is aij . We call A the intersection matrix of A. We have the following well-known facts
about A (we refer to [27] for details and proofs).

(1) All coefficients of A are positive(possibly requires passing to a power of R).
(2) (λ01, · · · , λ0d) the lengths of T0 is an eigenvector of tA.
(3) The associated eigenvalue is simple and is the the largest eigenvalue of tA.
(4) A preserves a (non-degenerate) symplectic form.

We want to understand the action of R on A close to T0. Note that R stabilises the subset of standard IETs
(defined in coordinates by ρ1 = · · · = ρd = 1). This subset identifies with the simplex ∆ = {(λ1, · · · , λd) ∈
R+ |

∑
λi = 1} and the action of R restricted to it is nothing but the projective action of (tA)−1. From all

these considerations we get the following fact:

T0 is an expanding fixed point of R restricted to IETs.
By that we mean that (DR)T0

the derivative of R satisfies for all v ∈ TT0
∆, ||(DR)T0

v|| > α||v|| for a certain
norm || · || and α > 1.

Another important fact is that the action of R on the slopes ρ = (ρ1, · · · , ρd) satisfies the following: if
µ(T ) = log ρ(T ) =

(
log ρ1(T ), · · · , log ρd(T )

)
we have

µ(RT ) = A · µ(T ).

irrespective of the value of λ(T ).

3.3. Derivative of R restricted to A at T0. We make the following standing assumption for the rest of
the article:

A is a hyperbolic matrix.
Because A preserves a symplectic form, it has g eigenvalues which are (strictly) larger than 1 and g which are
(strictly) smaller than 1. We briefly discuss how little restrictive this assumption in 3.4.
Using coordinates (λ, µ) introduced above, we write R = (Rλ,Rµ).

Proposition 4. The following statements hold true:
(1) (DλRµ)T0 = 0;
(2) there exists α > 1 such that (DλRλ)T0 is α-expanding;
(3) (DµRµ)T0

is hyperbolic and has g − 1 expanding directions.
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Proof. The proof is straightforward. A neighbourhood of T0 can be parametrised using coordinates (λ, µ)
has above. If λ0 is the coordinates associated to T0, the tangent space of X at T0 is defined by the following
equations ∑

λi0 = 0

and ∑
µiλ

i
0 = 0.

(1) (DλRµ)T0 = 0 is a simple consequence of the fact that the space of linear IETs is stable by R;
(2) as said above, the restriction of R to ∆ is the projective action of A. Since the line spanned by λ0

is the eigenline of the (simple) largest eigenvalue of A, there exists α > 1 such that (DλRλ)T0
is

α-expanding;
(3) The action of (DµRµ)T0 is that of A restricted to the subspace defined by the equation

∑
i µiλ

i
0 = 0.

This space is stabilised by the action of A and consequently the action of (DµRµ)T0 is diagonalisable
with g − 1 eigenvalues larger than 1 and g smaller than one.

�

This proposition in particular implies that T0 is a hyperbolic fixed point of R and that the unstable space at
T0 has dimension exactly (d− 1) + (g − 1).

3.4. On the standing assumption. We wanted to point out that the assumption that A be hyperbolic is
not very restrictive. For any d and combinatorics giving rise to a surface with only one marked point, there
are infinitely many periodic T0 and most of them have an intersection matrix which is hyperbolic. However,
we would like to point out that it is not the case for all of them: Bressaud-Bufetov-Hubert have constructed
infinitely many periodic IETs violating this condition, see [3].

4. Estimates

In this section we prove estimates on the distortion, the second derivative and third derivatives of iterated
renormalisations. These will be crucial for the analysis of the renormalisation operator.

4.1. Distortion bounds. We prove a standard distortion lemma and apply it to show that the "profile"
coordinate remains uniformly bounded under iteration of renormalisation. This fact will be the starting point
of the correction operation carried out in Section 5.

Lemma 5. Let T be a GIET. Let J ⊂ [0, 1] be an interval such that J, T (J), T 2(J), · · · , Tn(J) are pairwise
disjoint and do not contain any singularities of T . Then for all x, y ∈ J we have

D(Tn)(x)

D(Tn)(y)
≤ exp(

∫ 1

0

|ηT |dLeb).

Proof. The proof is classical. We have that

log DTn(x) =

n−1∑
i=0

log DT (T i(x))

and therefore

| log DTn(x)− log DTn(y)| ≤
n−1∑
i=0

| log DT (T i(x))− log DT (T i(x))| ≤
n−1∑
i=0

|
∫ T i(x)

T i(y)

ηT |.

Since the intervals [T i(y), T i(x)] are pairwise disjoints we get

| log DTn(x)− log DTn(y)| ≤
∫ 1

0

|ηT |dLeb

and exponentiating gives the expected result.
�
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In the sequel we use the following notation for f : [0, 1] −→ R of class Cr,

||f ||Cr = max
0≤i≤d

||f (i)||

where f (i) is the i-th derivative of f . We extend this norm to (Cr([0, 1],R))d simply by taking the sum of the
norms on each coordinate. From the lemma above, we derive the following

Proposition 6. Recall that X 2 was defined to be the set of C2-GIETs with a given combinatorial type. Let
K be a pre-compact set of X 2 with respect to the C2-topology. There exists a constant M(K) > 0 such that
for any T GIET renormalisable n times belonging to K we have

||πP
(
Rn(T )

)
− (Id)d||C1 ≤M ||πP(T )||C2

where (Id)d = (Id, · · · , Id) ∈ P =
(
Diff2

+([0, 1])
)d.

Proof. Consider φ a coordinate of πP
(
Rn(T )

)
. It is obtained by taking finitely many restrictions of T to k

pairwise disjoint intervals I1, · · · , Ik, composing them and rescaling them. We can therefore apply Lemma 5
to such a composition to find that for all x, y ∈ [0, 1],

Dφ(x)

Dφ(y)
≤ exp(

∫ 1

0

|ηT |dLeb).

Since φ is a diffeomorphism of [0, 1] there exists z ∈ [0, 1] such that Dφ(z) = 1. T belongs to a precompact
set with respect to the C2-topology so in particular DT and D(T−1) are bounded by a uniform constant.
Because ηT = D2T

DT and the fact that the exponential is Lispchitz on compact sets of R we get the existence of
a constant L > 0 such that for all x

Dφ(x)

Dφ(y)
≤ L||D2T ||.

Comparing an arbitrary point x to z gives the expected result.
�

4.2. C2-bounds. In this paragraph we prove an estimate which give some uniform bounds on the second
derivative of iterated renormalisation of elements in X close to T0. The proof builds upon Lemma 5. To the
best knowledge of the author, this estimate is new.

Lemma 7. Let ϕ1, · · · , ϕn ∈ C2(R,R). For all k ≤ n define fk = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1 and set f0 = Id. Then
we have for all n ≥ 2 the formula

f ′′n = (f ′n−1)2 · (ϕ′′n ◦ fn−1) +

n∑
k=2

(f ′n−k)2 · (ϕ′′n−k+1 ◦ fn−k) · (ϕn ◦ · · · ◦ ϕn−k+2)′ ◦ fn−k+1

Proof. We proceed by induction on n. We check that the statement holds true for n = 2:

f ′′2 = (ϕ2 ◦ ϕ1)′′ = (ϕ′1 · ϕ′2 ◦ ϕ1)′ = (ϕ′1)2 · ϕ′′2 ◦ ϕ1 + ϕ′′1 · ϕ′2 ◦ ϕ1.

Assume the statement holds true for n ≥ 2. We have

f ′′n+1 = (ϕn+1 ◦ fn)′′ = ϕ′′n+1 ◦ fn · (f ′n)2 + f ′′n · ϕ′n+1 ◦ fn.
Replacing f ′′n in the formula we get

f ′′n+1 = (ϕn+1 ◦ fn)′′ = ϕ′′n+1 ◦ fn · (f ′n)2 + (ϕ′n+1 ◦ fn) · (f ′n−1)2 · (ϕ′′n ◦ fn−1)

+

n∑
k=2

(f ′n−k)2 · (ϕ′′n−k+1 ◦ fn−k) · (ϕ′n+1 ◦ fn) · (ϕn ◦ · · · ◦ ϕn−k+2)′ ◦ fn−k+1.

By the chain rule we have

(ϕ′n+1 ◦ fn) · (ϕn ◦ · · · ◦ ϕn−k+2)′ ◦ fn−k+1 = (ϕn+1 ◦ ϕn ◦ · · · ◦ ϕn−k+2)′ ◦ fn−k+1

Injecting in the formula above for f ′′n+1 gives the expected result. �
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Consider a C2, increasing diffeomorphism f : I −→ J where I and J are two connected intervals. We denote
by N(f) the normalisation or rescaling of f , it is by definition the map f pre-composed by the unique affine
map sending [0, 1] onto I and post-composed by the unique affine map sending J onto [0, 1]. We have the
following easy lemma:

Lemma 8. Let f as above. Then we have

||N(f)′′|| ≤ ||f ′−1|| · ||f ′′|| · |I|

Proof. Let a = |I| and b = |J |. By definition we have

N(f) := x 7−→ 1

b
f(ax).

Thus

N(f)′′(x) =
a2

b
f ′′(ax) = a

a

b
f ′′(ax).

There exists x0 ∈ I such that 1
f ′(x0)

= |I|
|J| = a

b . Hence the result.
�

Using Lemma 7 and Lemma 8, we prove the following

Proposition 9. Let V be a pre-compact neighbourhood of T0 in X 2 with respect to the C2-topology. There
exists a constant M ′ such that the following holds. Let T ∈ V be a C2 GIET renormalisable n times. We use
the following notation πP

(
Rn(T )

)
= (ϕn1 , · · · , ϕnd ) ∈

(
Diff2

+([0, 1])
)d. Then we have for all i ≤ d and for all

n ∈ N

||(ϕni )′′|| ≤M ′||(T−1)′|| · ||T ′′||

Proof. The proof is an application of Lemma 7 to the composition of restrictions of T to the dynamical partition.
Recall that ϕni is the renormalised of T l

i
n restricted to an interval Iin such that Iin, T (Iin), T 2(Iin), · · · , T lin−1(Ijn)

are disjoint. We denote by Sk the restriction of T to T k(Iin). We have the following properties

• ϕni = N(Sljn−1) ◦ · · · ◦N(S1) ◦N(S0)

• any partial product ψk = N(Sljn−1) ◦ · · · ◦N(Sk) is such that || log(ψk)′|| ≤ K||T ′′|| (ψk is a diffeomor-
phism of [0, 1] and therefore there exists x0 ∈ [0, 1] such that logψ′k(x0) = 0 and the claim follows
from Lemma 5);

• same holds for partial products φk = N(Sk) ◦ · · · ◦N(S0);
• for any k, ||N(Sk)′|| ≤ ||(T−1)′|| · ||T ′′|| · |T k(Ijn)|.

The result is a consequence of Lemma 7 applied to N(Slin−1) ◦ · · · ◦N(S1) ◦N(S0). Indeed

||ϕni )′′|| ≤
lin∑
k=1

||φ′n−k||2 · ||N′′(Sn−k+1)|| · ||ψ′n−k+2||

and replacing in the inequality

||ϕni )′′|| ≤ e3K||T
′′|| · ||(T−1)′|| · ||T ′′||

lin−1∑
k=0

|T k(Iin)|.

The T k(Ijn)s are all disjoint, the exp is bounded on bounded sets and ||T ′′|| is bounded (because T belongs to
a C2-precompact subset of X ) thus we get the result.

�
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4.3. Bounds on Dη. We prove in this paragraph bounds on the function D(ηT ) along renormalisation when
r ≥ 3. The proofs follow the same line of thought as the previous section.

Lemma 10. Let ϕ1, · · · , ϕn ∈ Diff3
+([0, 1]). Set ψk = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1 and ψ0 = Id. Then

(1) logD(ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1) =
∑n
k=1 logD(ϕk) ◦ ψk−1;

(2) η(ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1) = D(logD(ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1)) =
∑n
k=1D logD(ϕk) ◦ ψk−1 ·Dψk−1;

(3) Dη(ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1) =
∑n
k=1D

2 logD(ϕk) ◦ ψk−1 · (Dψk−1)2 +D logD(ϕk) ◦ ψk−1 ·D2ψk−1;

These formulae directly derive from the definition of the non-linearity η(f) = D logDf and their proofs
are left to the reader. Let f be a C2, increasing diffeomorphism I −→ J where I and J are two connected
intervals.

Lemma 11. Recall that N(f) is the rescaling of f . Then we have

|D
(
η(N(f))

)
| ≤ (||f ′′′|| · ||f ′||+ ||f ′′||2) · ||(f−1)′||4 · |I|2

Proof. We have that

D
(
η(N(f))

)
= D(

N(f)′′

N(f)′
) =

N(f)′′′N(f)′ − (N(f)′′)2

(N(f)′)2

. By the exact same reasoning as in the proof of Lemma 8 we get that ||N(f)′′′|| ≤ ||f−1|| · ||f ′′′|| · |I|2. We
already had ||N(f)′′|| ≤ ||f−1|| · ||f ′′|| · |I| and because N(f)−1 = N(f−1) we get the expected result. �

We are now ready to prove

Proposition 12. Let V be a precompact neighbourhood of T0 in the C3-topology. Let T ∈ V be a C3 GIET
renormalisable n times. We use the following notation πP

(
Rn(T )

)
= (ϕn1 , · · · , ϕnd ) ∈

(
Diff3

+([0, 1])
)d. Then

we have for all i ≤ d and for all n ∈ N

||D(η(ϕni ))|| ≤ K(sup(||T ′′||, ||T ′′′||))
where K : R∗+ −→ R∗+ is a continuous function which tends to 0 in 0.

Proof. Again we follow the lines of the proof of Proposition 9 but using formulae of Lemma 10. Recall that ϕni
is the renormalised of T l

i
n restricted to an interval Iin such that Iin, T (Iin), T 2(Iin), · · · , T lin−1(Iin) are disjoint.

We denote by Sk the restriction of T to T k(Iin). We have the following properties
• ϕni = N(Slin−1) ◦ · · · ◦N(S1) ◦N(S0)
• any partial product ψk = N(Slin−1) ◦ · · · ◦N(Sk) is such that || log(ψk)′|| ≤ K||T ′′|| (ψk is a diffeomor-
phism of [0, 1] and therefore there exists x0 ∈ [0, 1] such that logψ′k(x0) = 0 and the claim follows
from Lemma 5);

• same holds for partial products φk = N(Sk) ◦ · · · ◦N(S0);
• for any k, ||N(Sk)′′|| ≤ ||(T−1)′|| · ||T ′′|| · |T k(Iin)|;
• ||(φk)′′|| ≤M ′||(T−1)′|| · ||T ′′|| by Lemma 9;
•

|D
(
η(N(Sk))

)
| ≤ (||T ′′′|| · ||T ′||+ ||T ′′||2) · ||(T−1)′||4 · |T k(Iin)|2

We can now apply the third formulae of Lemma 10 to the product ϕni = N(Slin−1) ◦ · · · ◦N(S1) ◦N(S0) to
get

Dη(ϕni ) =

lin−1∑
k=0

D2 logD(N(Sk)) ◦ φk−1 · (Dφk−1)2 +D logD(N(Sk)) ◦ φk−1 ·D2φk−1.

Recall that D2 logD(N(Sk)) = Dη(N(Sk)) and η(N(Sk)) = N(Sk)
′′

N(Sk)′
. Putting all the inequalities above

together we get

|Dη(ϕni )| ≤ exp(K||T ′′||) ·
∑
k

(||T ′′′|| · ||T ′||+ ||T ′′||2) · ||(T−1)′||4 · |T k(Iin)|2

+M ′||(T−1)′|| · ||T ′′||
∑
k

||(N(Sk)−1)′|| · ||(T−1)′|| · ||T ′′|| · |T k(Iin)|.
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Finally, because ||(N(Sk)−1)′|| is uniformly controlled by ||T ′||
||(T−1)′|| , that

∑
|T k(Iin)| and

∑
|T k(Iin)|2 are

smaller than 1 and that T belongs to a bounded C3 neighbourhood of T0, we get the expected result. �

5. Construction of a pre-stable space

This section is the heart of the article. We construct what we call a "pre-stable" space which is a submanifold
of X of codimension d− 1 + g − 1, satisfying a priori bounds for the geometry of the dynamical partitions.
We now make the standing assumption r = 3.

5.1. Notations and preliminaries. In the sequel, we place ourselves in a neighbourhood W of T0 for the
C3-topology. Up to restricting this neighbourhood further, we can identify it with an open neighbourhood of
0 in the Banach space upon which X = A× P is modelled. In these coordinates, we will use the notation
T0 = (0A, 0P) where 0P represents the point (Id, Id, · · · , Id) ∈ Diffr+([0, 1]) and 0A represents T0 seen as an
element of A. Note that

ηT0 ≡ 0

therefore by restricting W further we can assume that

∀T ∈ W, ||ηT || ≤ ε
for any choice of a positive ε (this is possible since r = 3).

Some more notation. We then write a neighbourhood of T0 in A as a product U×S where U is the subspace
of unstable directions of R at T0 and S is the subspace of stable directions. Consequently, we identify a
neighbourhood of T0 in X to a product S × U × P where P abusively denotes (a neighbourhood of 0 in) the
Banach space upon which (Diffr+([0, 1]))d is modelled. In these coordinates, we write

R = (RA,RP) = (RS ,RU ,RP).

Finally, we denote by πA, πS , πU and πP the projection from X onto A,S,U and P respectively.

5.2. Action of R. Recall from Section 3 that T0 is a hyperbolic fixed point of R restricted to A. We collect
in this paragraph important properties of R.

(1) R(0) = 0;
(2) R(A) = A;
(3) R is continuous;
(4) RA is of class C1;
(5) 0A is a hyperbolic fixed point of R restricted to A;
(6) DRA is a bounded operator.

A difficulty that we face is that R is not smooth, it is not derivable in the P direction. It is a simple
consequence of the fact that the map (ϕ,ψ) 7→ ϕ ◦ ψ

Diffr+([0, 1])×Diffr+([0, 1]) −→ Diffr+([0, 1])

is not differentiable. To be able to perform the construction to come, we nonetheless need some control on
this map.

An appropriate choice of a distance. Recall that Diffr+([0, 1]) is Banach manifold whose tangent space
at any point identifies with the Banach space Cr0([0, 1],R) of Cr real-valued functions which vanish at 0 and 1.
We endow Diff2

+([0, 1]) with the following distance

dη(f, g) =

∫ 1

0

|ηf − ηg|.

Because the tangent space at any point of Diff2
+([0, 1]) identifies with C20([0, 1],R) we can also use the formula∫ 1

0
|ηf − ηg| to define a distance on C20([0, 1],R). We refer to it as the η-distance. It is more refined than the

C1-norm but less than the C2-norm. We then endow P = (Diff3
+([0, 1]))d with the η-distance: precisely, if

ϕ = (ϕ1, · · · , ϕd) ∈ P and ψ = (ψ1, · · · , ψd) ∈ P then
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dη(ϕ,ψ) =

d∑
i=1

dη(ϕi, ψi).

Proposition 13. For any δ > 0 there exists a neighbourhood (for the C3-norm) of T0 such that the restriction
of RP to the P coordinates is (1 + δ)-Lipschitz, with respect to dη, restricted to this neighbourhood.

The key to the proof of this proposition are the following facts

Lemma 14. For any two function f, g ∈ C2(R,R), we have
(1) for any real number a, η(a · f) = η(f);
(2) for any real number a, η(f ◦ma) = a · η(f) ◦ma where ma := x 7→ ax;
(3) η(f ◦ g) = g′ · ηf ◦ g + η(g).

We leave the proof of these elementary statements to the reader. We are now ready to give the proof of
Proposition 13.

Proof. Fix ε > 0. Let T1 and T2 be two GIETs close to T0 such that πA(T1) = πA(T2) . Let πP(T1) =
(ϕ1

1, · · · , ϕ1
d) and πP(T2) = (ϕ2

1, · · · , ϕ2
d). We want to show that

dη(RP(T1),RP(T2)) ≤ (1 + ε)dη(πP(T1), πP(T2))

provided T1 and T2 are in a sufficiently small C2-neighbourhood of T0. We have the following facts
(1) for all i, ||(ϕ1

i )
′ − (ϕ2

i )
′||0 ≤ K1dη(ϕ1

i , ϕ
2
i ) for a certain constant K1;

(2) for all i, ||ϕ1
i − ϕ2

i ||0 ≤ K2dη(ϕ1
i , ϕ

2
i ) for a certain constant K2;

(3) the symmetric difference of the dynamical partition associated with T1 and T2 is less than K0 ·
supi ||ϕ1

i − ϕ2
i ||0 where K is a uniform constant depending on the combinatorics of the dynamical

partition only.
The first two facts derive from the facts that ηf = f ′′

f ′ and that we are in a C2-neighbourhood of T0. Let us
give a proof of the first fact. First we show that there exists x0 such that (ϕ1

i )
′(x0) = (ϕ2

i )
′(x0). This derives

from the fact that if it were never the case we would have (ϕ1
i )
′(x) > (ϕ2

i )
′(x) (or the opposite inequality) for

all x, contradicting that the range of both ϕ1 and ϕ2 is [0, 1]. Now for all x ∈ [0, 1]

| logDϕ1(x)− logDϕ2(x) = |
∫ x

x0

η(ϕ1)− η(ϕ2)| ≤ dη(ϕ1
i , ϕ

2
i )

and we get (1) because the exponential map is Lipschitz on bounded sets. The second point is proved
in a similar fashion. The third fact is a consequence of the first two facts together with the hypothesis
πA(T1) = πA(T2).
We now want to find an estimate of

dη(ψ1, ψ2) =
∑
i

∫ 1

0

|ηψ1
i
− ηψ2

i
|

where πP(R(T1)) = (ψ1
1 , · · · , ψ1

d) and πP(R(T2)) = (ψ2
1 , · · · , ψ2

d). The strategy is to decompose this sum in
order to rewrite it as a new sum of integral of difference of the form |ηφ1

i
− ηφ2

i
| over the dynamical partition,

neglecting the subset of [0, 1] for which the the dynamical partition of T1 differs from that of T2. First, let us
point out that because of Lemma 14, all the quantities we are dealing with are invariant by rescaling of the
ϕεi at the source and/or at the target by affine maps (η scales by a factor a when the source is scaled by a but
the Lebesgue measure scales by 1

a which makes
∫
η globally invariant). We can therefore think of the ϕε=1,2

i s
as the (non-rescaled) restrictions of Tε=1,2 to its branches.

If I11 , · · · I1d and I21 , · · · I2d are the base intervals of the respective partitions associated with T1 and T2, let
Ji = I1i ∩ I2i for all i. By the facts stated above we have that the iterated images(up to times defining
R) of the Jis cover all of [0, 1] up to a set of measure at most K0 · dη(ϕ1, ϕ2). Therefore we have that
dη(ψ1, ψ2) ≤

∑
i

∫
∪Ji |ηψ1

i
− ηψ2

i
|+
∫
Q
|ηT1
|+
∫
Q
|ηT2
| where Q = [0, 1] \ ∪Ji. Each ψ1

i (and respectively ψ2
i )

is a composition of restrictions of T1 (respectively T2) to elements of dynamical partitions. Recall that by
Lemma 14 we have for any two functions f, g
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η(f ◦ g) = g′ · ηf ◦ g + η(g).

Assume for the sake of simplicity that ψ1
i and ψ2

i are obtained by composition only two restrictions of T1 and
T2. We would then have ∫

Ij

|ηψ1
i
− ηψ2

i
| =

∫
Ij

|η(T1)2 − η(T2)2 |.

Injecting using the composition formula gives∫
Ij

|ηψ1
i
− ηψ2

i
| =

∫
Ij

|ηT1
+DT1 · ηT1

◦ T1 − (ηT2
+DT2 · ηT2

◦ T2)|

and we get∫
Ij

|ηψ1
i
− ηψ2

i
| ≤

∫
Ij

|ηT1
− ηT2

|+
∫
Ij

DT1|ηT1
◦ T1 − ηT2

◦ T1|+
∫
Ij

DT1|ηT2
◦ T1 − ηT2

◦ T2|+
∫
Ij

|DT1 −DT2| · |ηT2
◦ T2|.

To control each term of this sum we use the following facts
• a simple change of variable gives

∫
Ij
DT1|ηT1

◦ T1 − ηT2
◦ T1| =

∫
T1(Ij)

|ηT1
− ηT2

|;
•
∫
Ij
DT1|ηT2

◦ T1 − ηT2
◦ T2| ≤ ||DT1||

∫
Ij
||DηT2

|| · |T1 − T2| ≤ |Ij |K2||DT1||||DηT2
||dη(ϕ1

j , ϕ
2
j) since

T1 restricted to Ij is equal to ϕ1
j up to rescaling;

• Finally
∫
Ij
|DT1 −DT2| · |ηT1

◦ T1| ≤ ||ηT1
|| · ||DT1 −DT2|| ≤ ||ηT1

||K1dη(ϕ1
j , ϕ

2
j ).

Putting everything together and by taking a sufficiently small C3-neighbourhood we get∫
Ij

|ηψ1
i
− ηψ2

i
| ≤

∫
Ij∪T1(Ij)

|ηT1
− ηT2

|+ ε

d
dη(ϕ1

j , ϕ
2
j ).

This reasoning directly carries over to the case where ψ1
i and ψ2

i are obtained by a fixed but arbitrarily larger
number of iterations of T1 and T2. We thus obtain that

∑
i

∫ 1

0

|ηψ1
i
− ηψ2

i
| ≤ (1 + ε)

∑
i

∫ 1

0

|ηϕ1
i
− ηϕ2

i
|

which is the expected result.
�

5.3. Invariant cones. We now construct a continuous family of cones in a neighbourhood of T0 which are
invariant for the action of R on X . Recall that we are using the distance dη on the coordinate P. This
distance induces a distance of X 2 = A×P (the space of twice continuously differentiable GIETs).

• In the sequel, we restrict our attention to a neighbourhood of T0 for the C3-topology.
• The Banach space structure of X is induced by an identification of X with an open subset of an affine

space modelled on R2d−2 × (C20([0, 1]))d. Consider any norm || · || on A ' R2d−2 which derives from a
scalar product and makes the stable and unstable spaces in A of R at T0 orthogonal and make the
product with d times the η-distance to get a distance on R2d−2 × (C20([0, 1]))d.

• The neighbourhood W of T0 in X identifies canonically with a neighbourhood of 0 in R2d−2 ×
(C30([0, 1]))d. In this section we make this identification; the η-distance is thus the distance induced by
the η-distance on R2d−2 × (C20([0, 1]))d.

• We will use coordinates (s, u, h) ∈ S × U × (C20([0, 1]))d in this identification. In particular h =
(h1, · · · , hd) corresponds to diffeomorphisms (Id + h1, · · · , Id + hn) ∈ P.

For any x ∈ W and any δ > 0 we define the following cone

Cδx := {x+ u+ (s+ h) | u ∈ U , s ∈ S, h ∈ (C20([0, 1]))d and ||s|| ≤ δ||u||, dη(πP(x), πP(x) + h) ≤ δ||u||}.

Lemma 15 (Invariant cones). There exists λ1 > 1, δ > 0, ε1 > 0 and α1 > 0 such that, up to restricting W
further we have that ∀x ∈ W

(1) R(Cδx ∩Bx(ε1)) ⊂ Int(CδR(x));



14 SELIM GHAZOUANI

(2) R restricted to Cδx ∩Bx(ε1) is λ1-expanding.
(Balls considered here are balls with respect to the η-distance).

Proof. Note that both properties are open in x, so we only have to check that these are true in 0. Recall that
RA is of class C1. We have the following facts

(1) (DURU )0 is λ-expanding for a certain λ > 1;
(2) (DSRU )0 = 0;
(3) (DURS)0 = 0;
(4) up to rescaling coordinates we can ensure ||(DPRU )0|| ≤ 1 and ||(DPRS)0|| ≤ 1;
(5) (DSRS)0 is contracting.

Consider u ∈ U and (s, h) ∈ S × P such that ||s|| ≤ δ||u|| and dη(πP(x), πP(x) + h) ≤ δ||u||. Recall that RU
is differentiable, with respect to the C1-norm in the coordinate h and that the C1-norm is controlled by the
η-distance i.e. there exists a uniform constant K such that for all h1 and h2 is a bounded neighbourhood of 0,
we have ||h1 − h2||C1 ≤ Kdη(Id + h1, Id + h2). We have

RU (u, s, h) = (DURU )0(u) + (DPRU )0(h) + o(||u||)
and by restricting to a small enough ball we get ||RU (u, s, h)|| ≥ (λ− δ − ε)||u|| for any arbitrarily fixed ε.
Then we have

RS(u, s, h) = (DSRS)0(s) + (DPRS)0(h) + o(||u||)
from which we get

||RS(u, s, h)|| ≤ (δ + ε)||u||
Finally

dη
(
RP(u, s, h)−RP(u, s, 0)

)
≤ (1 + ε)dη

(
Id, Id + h

)
because the restriction of RP to the variable P can be taken made (1 + ε)-Lipschitz by restricting W further
(this is given by Proposition 13). But we have that RP(u, s, 0) = 0 which gives

dη
(
RP(u, s, h), Id

)
≤ (1 + ε) · dη

(
Id, Id + h

)
Taking ε and δ small enough (such that 1 + ε < λ− δ − ε), we get the expected result.

�

In what follows we will get rid of the dependency in δ in the notation and use the notation Cδx = Cx. We
now turn to prove a lemma that is going to be the technical cornerstone we will rely upon in the course of the
construction the "pre-stable" space.

Lemma 16. There exists λ2 > 1 such that for all x = (s, u, p) ∈ W such that ∀k ≤ n, Rn(x) ∈ W the
following holds true. Set Rn(x) = (sn, un, pn). Pick u′ such that ||un − u′|| ≤ ε1. Then there exists vn such
that

• ||vn|| ≤ λ−n2 ||un − u′||;
• πU (Rn(s, u+ vn, p)) = u′

• for all k ≤ n, dη
(
Rk(s, u+ vn, p)−Rk(s, u, p)

)
≤ λk−n2 ||un − u′||.

• vn depends continuously on s, u, p and u′.

Just before entering the proof of this lemma, we comment on the qualitative meaning of it. This lemma
essentially tells us that initial perturbations in the U-direction propagate at an exponential rate in the
U-direction and allow for cheaper and cheaper corrections as we renormalise further and further.

Proof. Let B0 ⊂ U the ball of radius ε1 in U centred at T0 = 0 and let D0 = x+B0. The image of D0 under
the action of R is an embedded ball of dimension dim(U) = d− 1 + g − 1 enjoying the following properties

• it projects injectively onto a neighbourhood of 0 in U (with the coordinate re-centred to R(x));
• at any point of y ∈ R(D0), there is a neighbourhood of y in R(D0) which is contained in Cy.
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These two properties are a consequence of Lemma 15. We now consider the set of points of R(D0) which
project onto the ball of radius ε1 in U(ball centred at R(x)); we call this set D1. Using the same construction
we can construct D2 which is the set of points in R(D1) which project onto the ball of radius ε1 in U (ball
centred at R2(x)). Again, by applying Lemma 15 we get that this set is a ball which has a neighbourhood at
y that is contained in Cy for all y. We thus construct the sequence (Di)i≤n satisfying the following

• for all i ≤ n, Di is a embedded ball of dimension dim(U) containing Rn(x);
• for all i ≤ n, Di ⊂ CRi(x)
• for all i ≤ n, Di+1 ⊂ R(Di);
• the restriction of R to each R−1(Di) is λ2-expanding for a certain 1 < λ2 ≤ λ1.
• for all i ≤ n, Di projects bijectively on the ball of radius ε1 centred at Ri(x) in U .

Since ||u′ − un|| < ε1, there exists x′n ∈ Dn such that πU (x′n) = u′. By considering the iterated pre-images of
xn by R we find vn such that πU (Rn(s, u+ vn, p)) = u′. Since R is λ2-expanding restricted to Di for all i, we
get the conclusions of the Lemma.

Continuity of vn comes from that of R.
�

5.4. Construction of the pre-stable space. In this paragraph we prove the following theorem.

Theorem 17. There exists a continuous function φ :W ′ ⊂ S ×P −→ U and a positive constant K1 such that

∀n ∈ N, ∀(s, h) ∈ S × P, ||Rn(s, φ(s, h), h)||C1 ≤ K1

where W ′ is a neighbourhood of 0 in S × P for the topology induced by the C2-norm.

A couple of comments before entering the proof of Theorem 17
(1) This "pre-stable" space is a submanifold for which corresponding GIETs satisfy a priori bounds or

in other words a "Denjoy-Koksma" inequality for the logarithm of the derivative. This means that
derivatives at the special times corresponding to the induction are uniformly bounded above and
below away from zero.

(2) The codimension of this pre-stable space is exactly that of the stable space for the renormalisation
restricted to AIETs.

(3) We actually prove that the renormalisation in this pre-stable space remain bounded with respect to
the C3 distance, which is stronger than the C1.

Proof. We first make the following general remark. If we consider W a neighbourhood of T0 in X for the
C3-norm, we know by Proposition 6, Proposition 9 and Proposition 12 that for any T ∈ W , RnP(T ) remains in
a small neighbourhood of (Id, · · · , Id)d ∈ P = (Diff3

+[0, 1])d in the C3-norm. This is a very important point as
the construction of invariant cones only works for a neighbourhood of T0 in the C3-norm, even though we are
working in practice with the C1-norm. Thus, to show that the sequence Rn(T ) stays close to T0 we only need
to check that the projection on A stays close to T0.

We consider ε ≤ ε1 from Lemma 16 and (s, h) ∈ S × P such that ||h||C2 ≤ ε
2M and ||s|| ≤ ε

2 , where M is the
constant of Proposition 6. We warn the reader that we will restrict ε further in the course of the proof.
We build the function φ by an inductive process which consist in adding, for all n ≥ 0, small perturbations
in order to compensate for the error in the unstable direction that is brought by the non-vanishing of the
"profile" coordinate. The ultimate goal is to show that the sum of all these corrections converges.
Set V0 = 0. We write R(s, 0, h) = (s1, u1, h1) with

||s1|| ≤
ε

2
, ||u1|| ≤

ε

2
and ||h1||C1 ≤

ε

2
.

For the remainder of the proof, the norm we use in the P-coordinate is the C1-norm. The fact that ||h1||C1 ≤ ε
2

is a consequence of Proposition 6.

There exists constants K2,K3 > 0 such that in a C1-neighbourhood of (0, 0, 0) we have

||πS(R(s, u, h))|| ≤ λ−12 ||s||+K2||u||+K3||h||C1 .
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Therefore if we restrict h further so that its C2 norm is less than ε(1−λ−1
2 )

2MK3
and by applying Lemma 16 we get

the existence of v1 ∈ U such that
• ||v1|| ≤ λ−12

ε
2 ;

• R(s, v1, h) = (s′1, 0, h
′
1)

• ||s′1|| ≤ ε
2

We are now in a good position to iterate the process.

Set V1 = v1. We define inductively Vn+1 = Vn + vn+1 by making the choice of vn+1 explained below. We
want the three following properties

(1) for all k ≤ n, ||πS(Rk(s, Vn, h))|| ≤ ε
2 ;

(2) for all k ≤ n, ||πU (Rk(s, Vn, h))|| ≤ ε
2

∑n−k
i=0 λ

−i
2 ;

(3) πU (Rn(s, Vn, h)) = 0.
We write

Rn(s, Vn, h) = (s′n, 0, h
′
n).

Note that since ||h||2 ≤ ε
2M , ||hn||1 ≤ ε

2 by Proposition 6. Also sn ≤ ε
2 by the same reasoning as in the

first step described above. We therefore get that Rn+1(s, Vn, h) = R(s′n, 0, h
′
n) = (sn+1, un+1, hn+1) with

||un+1|| ≤ K4ε for a certain constant K4. 2 This constant K4 comes from writing a first order approximation
of RU in an ε1-neighbourhood of 0.

By initially choosing ε such that K4ε ≤ ε1, we can apply Lemma 16 to get the existence of vn+1 such that

Rn+1(s, Vn + vn+1, h) = (s′n+1, 0, h
′
n+1)

with vn+1 satisfying the following

• ||vn+1|| ≤ λ−(n+1)
2 ε;

• for all k ≤ n+ 1, dη
(
Rk(s, Vn + vn+1, p))−Rk(s, Vn, p))

)
≤ λk−(n+1)

2 ε.
It follows that Vn+1 = Vn + vn+1 satisfies the induction hypothesis.

Finally we set

V (s, h) =

∞∑
n=1

vn(s, h).

Since vn(s, h) depends continuously upon the variable (s, h) (this is given by Lemma 16) and since the series
defining V (s, h) converges uniformly, we can conclude that φ is a continuous function satisfying the conclusion
of the theorem.

�

6. Convergence of renormalisations

This section is dedicated to proving that elements belonging to the space defined by Theorem 17 have
successive renormalisation actually converging exponentially fast to T0. Recall that we have made the
assumption that r = 3. Define

K := {graph of V }
which is a codimension d− 1 + g − 1 submanifold of U .
There is just a natural obstruction for this to happen that we have to take care of. Note that the function

T 7−→
∫ 1

0

ηT

is invariant under R and vanishes for IETs (and for AIETs as well). Define

2This is the key argument. Because of the distortion bounds and Proposition 6 , ||hn|| is uniformly small. In turn, because
DRA is a bounded operator, the error un+1 is small and we only need to make smaller and smaller corrections using Lemma 16.
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U0 = {T ∈ U |
∫ 1

0

ηT = 0}

and
K0 = U0 ∩ K

which is a codimension d− 1 + g − 1 submanifold of U0 (this is easily seen as
∫ 1

0
ηT only depends upon the

coordinate in P). In this section we prove the following theorem

Theorem 18. Up to reducing U further the following hold true.

(1) There exists a constant ρ1 < 1 such that for all T in K there exists CT

dC1(Rn(T ),M) ≤ CT ρn1
(2) There exists a constant ρ2 < 1 such that for all T in K0 there exists DT

dC1(Rn(T ), T0) ≤ DT ρ
n
2

Note that we are working with C3-GIET and that we ultimately obtain results of convergence with respect to
the C1-norm.

6.1. Size of dynamical partitions. We introduce for a given T

∆n = sup
I∈Pn

|I|

which we call the size of the dynamical partition Pn. We prove the following statement

Proposition 19. There exists α < 1 such that for all T ∈ K there exists LT such that

∆n ≤ LT · αn

This statement is a rather easy consequence of Theorem 17. The fact that it holds true is a key fact that will
allow us to derive fast convergence of iterated renormalisations to Moebius IETs for elements of K, and to T0
for elements of K0.

Proof. Because T is close to T0, there is β < 1 such that ∆1 < β∆0. Now we show that so long as RnT
remains in a vicinity of T0 there exists α < 1 such that

∆n+1 ≤ α ·∆n.

RnT is defined to be the first return map of T on a certain interval [0, xn]. Recall that I1n, · · · , Idn are continuity
intervals of RnT . Let ∆̃n+1 the supremum of the lengths of the iterated images of the I1n+1, · · · , Idn+1 by
RnT before they come back to [0, xn+1]. Because RnT is close to T0, we have

∆̃n+1 ≤ β sup
j
|Ijn|.

These images form a partition of [0, xn] and the partition Pn+1 is obtained by propagating this partition using
T until it comes back to [0, xn]. In turn, by applying Lemma 5 we get that restricted to Ijn, the iteration T k
of T have uniformly bounded distortion. It means that the subdivision of each element of Pn that defines
Pn+1 is uniformly smaller, namely that the length of each element of Pn+1 is less that α times the length of
the element of Pn in which it is contained for an α < 1. This proves that

∆n+1 < α ·∆n.

�
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6.2. Fast convergence to projective IETs. When one can prove a control of the size of the dynamical
partition as in Proposition 19, it is a well-known fact that iterated renormalisations converge in C1-norm
to the projective or Moebius IETs. The group PSL(2,R) acts projectively by analytic diffeomorphisms on
RP1 = R ∪ {∞}, a projective or Moëbius map is any restriction of such a map to an interval I ⊂ R. A
generalised interval exchange transformation is said to be projective or Moëbius (PIET) if the projection on
the coordinate P = Diffr

+([0, 1]) consists of projective diffeomorphisms of [0, 1].

This part is very classical, we are only going to quickly brush over the standard arguments which allow to
prove this fast convergence. We follow the elegant proof due to Khanin and Teplinsky. In [13], the authors
introduce what they call the distortion of a diffeomorphism f of the interval which encodes how cross-ratios
are modified under the action of f . This distortion behaves nicely under compositions and it is easy to show
using Lemma 6 in [13] that the log of distortion of (each branch of) RnT is proportional to ∆n The distortion
of a map is close to 1 if and only if it is C0-close to a Moëbius map.

Because we have proved in Propositon 19 that for T ∈ K, ∆n converges exponentially fast to 0 with respect
to the C0-norm. Because of the C2-bounds, this implies fast convergence with respect to the C1-norm and
therefore we get the first part of Theorem 18.

6.3. Fast convergence to AIETs. We begin to show that this fast convergence to AIETs occurs for PIETs.

Proposition 20. Let T be a PIET belonging to X0. Then there exists a constant µ1 < 1 such that

d1(RT,A) ≤ µ1 · d1(T,A)

Proof. We first remark that a projective diffeomorphism of [0, 1] is entirely determined by the integral of its
non-linearity. We also have the following chain rule for the non-linearity

ηf◦g(x) = Df(x) · ηf (g(x)) + ηg(x).

We deduce from this formula that if f is a diffeomorphism J −→ K and a diffeomorphism I −→ J we have∫
I

ηf◦g =

∫
J

ηf +

∫
I

ηg.

We apply this fact to the dynamical partition induced by RT . Recall that I10 , · · · , Id0 are the intervals of
continuity of T and P1

1 , · · · ,Pd1 the dynamical partition associated with RT . For each branch φj ∈ Diff3
+([0, 1])

of RT , according to the chain rule for the non-linearity, we have for all 1 ≤ j ≤ d∫
I1j

ηφj =

∫
Pj1
ηT .

If we take T in a sufficiently small neighbourhood of T0 we can impose that there exists c > 0 such that

|Pj1 ∩ Ik|
|Ik|

> c

for any j, k. This is derived form the fact that for any periodic (linear) IET, any Pj1 intersects any Ik
non-trivially and the continuity in T of the dynamical partition. The hypothesis T ∈ X0 is equivalent to∫ 1

0

ηT =

∫
I10

ηϕ1 + · · ·+
∫
Id0

ηϕd = 0

where the ϕis are the branches of T . Since the ϕis are projective, the ηϕis are of constant sign. We get that
supj |

∫
ηφi | ≤ µ1 supj |

∫
ηϕi | because the

∫
Ii0
ηφis are a obtained by subdividing "in a balanced way" the∫

Ii0
ηϕis and rearranging so each

∫
Ii0
ηφi is the sum of subparts of each of the

∫
Ii0
ηϕi . By taking a sufficiently

small neighbourhood of the identity in Diffr+([0, 1]) intersected with projective maps, we can make the norm
f 7→ |

∫
ηf | and the C1-norm(precisely the C1-norm of the difference with the identity map) as close as we like,

which gives the result.
�
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Proposition 21. Let T ∈ K0. Then there exists C ′T > 0 and µ2 < T such that

d1(RnT,A) ≤ C ′T · µn2 .

Proof. R is K-Lipschitz with respect to the C1-norm in a neighbourhood of T0 for a certain K > 0. Up
to restricting K0 to this neighbourhood we can assume that R is K-Lipschitz. Let P be a PIET realising
d1(T,P). We have that

d1(RT,A) ≤ Kd1(T,P) + d1(RP,A).

Applying to RnT we get

d1(Rn+1T,A) ≤ Kd1(RnT,P) + d1(RPn,A).

for Pn realising d1(RnT,P). Using estimate of Proposition 20 and fast convergence to projective maps we get

d1(Rn+1T,A) ≤ KCT ρn1 + µ1d1(Pn,A)

where Pn is the PIET realising d1(RnT,P). We then have d1(Pn,A) ≤ d1(RnT,A) + d1(RnT,P) ≤
d1(RnT,A) + CT ρ

n
1 . We thus get

d1(Rn+1T,A) ≤ (K + µ1)CT ρ
n
1 + µ1d1(RnT,A).

This is easily shown to imply the existence of C ′T and µ2 < 1 such that the proposition holds true.
�

6.4. Fast convergence to the fixed point. We conclude by explaining how Proposition 21 implies the
second part of Theorem 18. An element in A ∩ K0 is exactly an element of the stable space of R at T0.
We can use a reasoning analogous to that of the proof of Proposition 21 to show that an element of K0 is
exponentially close to the stable space of R restricted to A. This implies that iterated renormalisations of T0
converge exponentially fast to T0.

Let p0 = (s0, u0, h0) an element of K0 and let pn = (sn, un, hn) be Rn(p0). We know by Proposition 21
that

||hn||C1 −→ 0

exponentially fast i.e. there exists C(p0) > 0 and µ2 < 1 such that ||hn||C1 ≤ C(p0)µn2 . Recall that RU is
differentiable in a neighbourhood of T0 = (0, 0, 0) and we have

RU (u, s, h) = DURU (u) +DPRU (h) + o(||s||+ ||u||+ ||h||C1)

and
RS(u, s, h) = DSRS(s) +DPRS(h) + o(||s||+ ||u||+ ||h||C1).

In particular we can derive that (up to restricting the neighbourhood of T0 we are working with),

||RU (u, s, h)|| ≥ λ−1||u|| −K||h||C1 − ε||s||
and

||RS(u, s, h)|| ≤ λ||s||+K||h||C1 + ε||u||
for an arbitrarily small ε, a constant K > 0 and a certain λ < 1. Assume there exists n0 such that ||un0

|| is
significantly larger than both ||hn0

|| and ||sn0
||. Formally, assume the existence of constants K1 such that

• ||un0
|| ≥ K1C(p0)µn2 ≥ K1||hn0

||;
• ||un0

|| ≥ ||sn0
||.

If K1 is chosen sufficiently large and ε sufficiently small, this property holds for all n ≥ n0, in practice K1, ε
such that λ+ ε+ K

K1
≥ 1 suffice.In this case one can show by induction that

∀n ≥ n0, ||un+1|| ≥ (λ−1 − ε− K

K1
)||un||.
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Up to modifying K1 and ε further so that (λ−1 − ε− K
K1

) > 1 we get that the sequence ||un|| increases at a
geometric rate. In particular it implies that Rn(p0) leaves the neighbourhood W ′ which is a contradiction.
We can therefore assume that there exists K1 such that

∀n, ||un|| ≤ max(||sn||,K1||hn||) ≤ ||sn||+K1||hn||.
Now we have

||sn+1||+K1||hn+1|| ≤ λ||sn||+ ε||un||+K||hn|| ≤ (λ+ ε)(||sn||+K1||hn||) +K ′µn2

where K ′ is another constant. From this inequality (and because λ+ ε < 1) one finds that ||sn+1||+K1||hn+1||
decreases at an exponential rate which implies the second part of Theorem 18.

7. Rigidity theorems

In this section we show how the fast convergence theorem (Theorem 18) implies C1-conjugacy for elements of
K0 which is Theorem 1 and how this C1-conjugation can be improved to C1+δ using a method that was first
used for the rigidity of critical circle mappings (see [4]).

7.1. C1-rigidity. Consider T a GIET belonging to K0. It is infinitely renormalisable, and displays the same
combinatorics as that of T0. It is classical this in that case T is semi-conjugate to T0 (we refer to [25],
Proposition 7). By a theorem of Masur and Veech, a periodic interval exchange transformation is always
uniquely ergodic and its unique invariant measure is the Lebesgue measure. In turn, T is also uniquely ergodic.
We are interested in the case where T is conjugate via a C1 diffeomorphism of [0, 1] to T0. In this case, the
image of the Lebesgue measure by the C1 conjugacy is a measure of the form

µ(x)dx

where dx denotes the Lebesgue measure and h is a continuous positive function. This measure is in this case
the unique invariant measure of T . Conversely, if T preserves a measure of this form, it is C1-conjugate to T0.
The invariance of such a measure is equivalent to the following equation

(2) ∀x, µ(T (x)) =
1

DT (x)
µ(x).

Our approach is to construct h building upon the following remark: the equation above is equivalent to the
following cohomological equation

(3) logµ ◦ T − logµ = − log DT

It is a standard fact (often referred to as Gottschalk-Hedlund theorem) that if U : X −→ X is a minimal
homeomorphism of a compact space X, the equation above as a solution if and only if the Birkhoff sums
of DT are uniformly bounded. Unfortunately, T is not a homeomorphism of [0, 1] since it has discontinuity
points. However, Marmi-Moussa-Yoccoz [17] have shown that an equivalent statement still holds for minimal
GIETs.

Lemma 22 (Marmi-Moussa-Yoccoz, [17], Corollary 3.6). Let T be a minimal GIET without connections. Let
ϕ : [0, 1] −→ R be a function which is continuous on continuity intervals of T . Assume that Birkhoff sums of
ϕ are uniformly bounded. Then there exists a continuous φ : [0, 1] −→ R such that

φ ◦ T − φ = ϕ.

We will now move on to proving that Birkhoff sums of log DT are uniformly bounded. This statement is
equivalent to the following proposition.

Proposition 23. Assume T ∈ K0. There exists FT > 1 such that for all x and for all n ∈ N

F−1T < D(Tn)(x) < FT .
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Proof. The proof of this proposition relies on classical estimates of Birkhoff sums, via interpolating using
special times corresponding to first returns of the induction. Precisely, we utilise to following fact: for any
x ∈ [0, 1] and n ∈ N there exists integers a0, a1, · · · , ak all smaller than a uniform constant M (which can be
taken as the larger first-return time used to define RT0) such that

Tn(x) = (RkT )ak ◦ (Rk−1T )ak−1 ◦ · · · (RT )a1 ◦ T a0(x).

Using the chain rule and passing to the logarithm gives

log D(Tn)(x) =

k∑
i=0

log D(RkT )ak)(xi)

where xi = (RiT )ak ◦ (Ri−1T )ai−1 ◦ · · · (RT )a1 ◦ T a0(x). We get

| log D(Tn)(x)| ≤
k∑
i=0

ak|| log D(RkT )||∞.

But RkT converges exponentially fast to T0 in C1-norm, and by concavity of the log fuction we get that
|| log D(RkT )||∞ ≤ DT · ρn2 which implies that for all x and all n ∈ N

| log D(Tn)(x)| ≤M
k∑
i=0

ρn2

and this concludes the proof of the proposition.
�

We easily deduce from Proposition 23 that Birkhoff sums of the function log DT are uniformly bounded.
Consequently, according to Lemma 22, there exists a positive continuous function µ such that

logµ ◦ T − logµ = − log DT.

The measure

µ(x)dx

is absolutely continuous with continuous, never vanishing density. Thus T is C1-conjugate to T0.

We conclude this section by remarking that the above discussion implies an estimate on the C1-norm of the
conjugating map.

Proposition 24. There exists K > 0 such that for any T ∈ K0, if we denote by ϕ the map conjugating T to
T0 we have

||Id− ϕT ||C1 ≤ K · d(T, T0)

where d is the C2 distance on χ.

Proof. This is a consequence of the fact the C0-norm of the solution to the cohomological equation in Lemma
22 depend linearly on the supremum of the C0-norm of the Birkhoff sums.

�

7.2. Improving C1-conjugation to C1+δ. In this paragraph we point out a result coming from the thoery
of renormalisation of (critical) circle diffeomorphisms used in [4] which allows for an improvement of the
regularity of the conjugating map in Theorem 1.

Theorem 25. There exists δ > 0 such that the following holds. Let T1 and T2 be two elements of K0. The
map that conjugates T1 to T2 is of class C1+δ, and this map converges to the identity if T2 converges to T1 in
the C1+δ-topology.

The construction by de Faria-de Melo [4] is explained in Appendix B. This result actually allows for an
improvement of the regularity of the manifold K0.
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8. C1-regularity of K0

We show in this section how results of Marmi and Yoccoz on the cohomological equation actually imply
that the function V constructed in Section 5 is of class C1.

8.1. Precise description of the tangent space at T0. In Section 3, we discussed coordinates on the
space of affine interval exchange transformations that we recall here. The space A of affine interval exchange
transformations (AIETs) on d intervals with fixed combinatorics identifies with{

λ = (λi)1≤i≤d;µ = (µi)1≤i≤d |
∑
i

λi =
∑
i

eµiλi = 1
}
.

In this identification, T0 corresponds to the coordinates (λ0, 0) =
(
(λ0i ), (µ

0
i = 0)

)
and the space of (stan-

dard/linear) interval exchange transformations (IETs) to the subset {µ = ~0}.

The tangent space at T0 of A canonically identifies with

TpA =
{
λ = (λi)1≤i≤d;µ = (µi)1≤i≤d |

∑
i

λi =
∑
i

µiλ
0
i = 0

}
.

The matrix of DT0
R at T0 in these coordinates is of the form

M =

[
Q ∗
0 A

]
where Q is the matrix of the restriction of DR to the tangent space to the subspace of IETs and A is the
matrix introduced in 3.2. As we have already seen

• Q is an expanding matrix i.e. there exists a norm on Rd−1 and α > 1 such that for all v ∈ Rd−1,
||Q · v|| ≥ α||v||.

• A is a hyperbolic matrix with exactly g − 1 eigenvalues strictly larger than 1.
Recall that we denote by U (respectively S) the unstable (respectively stable) space of DR. Note that
the subspace generated by the coordinates (λi) belongs to U . Denote by U ′ the subspace generated by the
coordinates (λi) and the unstable space of the matrix A acting only on the coordinate (µi), and let S ′ be
subspace of TpA generated by the stable space of the matrix A acting only on the coordinate (µi). U ′ and S ′
are not exactly the unstable and stable spaces of DR but S ′ satisfies the following.

Proposition 26. The knowledge of both the coordinate of a vector in U ′ (with respect to the decomposition
TpA = U ′⊕S ′) and its coordinate in S (with respect to the decomposition TpA = U ⊕S) completely determines
it.

Proof. This is a simple consequence of the fact a matrix taking the decomposition TpA = U⊕S to TpA = U ′⊕S ′
is going to be triangular by blocks, by definition of U ′ and S ′.

�

8.2. Marmi-Yoccoz’s work on the cohomological equation. In the series of articles [17], [18] and [19]
the authors give an analysis of the cohomological equation over Roth type interval exchange transformations.
It is important to point out that periodic interval exchange maps considered in this article satisfy their Roth
type condition.
There are many results of interest contained in the aforementioned articles and we think it is fair to say that
their most precise versions are contained in the most recent one [19]. Consider T0 a standard interval exchange
map which is of Roth type. The definition of Roth type was first given in [18] and generalises the notion of
Roth type rotation number. We will not recall this definition here as it would require the introduction of too
much material. It will be enough for our purpose to know that periodic interval exchange maps as considered
in this article are of Roth type.

In the coordinates introduced in the previous paragraph, the coordinates µ = (µi) naturally identifies with
the space of piecewise constant functions (constant on the intervals of continuity of T0) whose average vanish.
We denote by

• Cδ([0, 1]) the space of real-valued observables which are continuous everywhere, which are δ-Hölder
and whose average vanish;
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• C1+δm ([0, 1]) the space of real-valued observables which are continuous on intervals of continuity of T0,
which are of class C1+δ restricted to those continuity intervals and whose average vanish;
• Γu the unstable space of the matrix A (thought of as acting on the space of piecewise constant

observables);
• Γs the stable space of the matrix A.

We state Marmi-Yoccoz’s result specified to our context (see [19], p127 Theorem 3.7 and Theorem 3.10
therein).

Theorem 27 (Marmi-Yoccoz, [19]). Let T0 be a linear interval exchange transformation of Roth type. Let
δ > 0. There exist two bounded linear operators L0 : C1+αm ([0, 1]) −→ Cδ([0, 1]) and L1 : C1+δm ([0, 1]) −→ Γu
such that for all ϕ ∈ C1+αm ([0, 1]) we have

ϕ = L1(ϕ) + L0(ϕ) ◦ T0 − L0(ϕ).

This theorem says in substance that every sufficiently regular observable of mean zero is cohomologous to an
essentially unique piecewise constant function. The fact that this result is true in regularity C1+δ is going to
prove crucial in the proof of the regularity of the submanifold K0.

8.3. Differentiability at T0. In this paragraph we first show that the manifold K0 has a tangent space at
the point T0. The proof actually works for any point of K0, but in order to lighten notation we first carry it
out in this particular case. Recall that we have built in Section 5 a map

V : S × P −→ U
such that the interval exchange map Ts,h of coordinates (s, h, V (s, h)) is C1+δ-conjugate to T0. We denote by
ϕs,h the map conjugating Ts,h to T0. The C1+δ-distance of ϕs,h goes to zero as (s, h) goes to (0, 0) (Theorem
25). By suitably rescaling Id+h, one can think of its derivative as a piecewise continuous map whose continuity

intervals are exactly that of Ts,h. We also denote by µ(h, s) = (µi(h, s))i≤d the multiplier of the affine interval
exchange map that is the shape of Th,s. By definition, we have

DTh,s = eµ · (1 + Dh)

where we think of µ as a piecewise constant map of the intervals of continuity of Th,s. We also have the
equation

ϕh,s ◦ T0 = Th,s ◦ ϕh,s.
Differentiating and taking the logarithm we get

(log Dϕh,s) ◦ T0 − log Dϕh,s = (log D(Th,s)) ◦ ϕh,s
and thus

(log Dϕh,s) ◦ T0 − log Dϕh,s = µ(h, s) + (log(1 + Dh)) ◦ ϕh,s.
Note that this equation resembles a lot that of Theorem 27. The only difference is that there is no reason that
µ(h, s) be an element of Γu. This is not too much of a problem for our purpose, as s is fixed the projection of
µ(h, s) onto Γu completely determines µ(h, s) by Proposition 26. To be perfectly rigorous, we can rewrite it

(log Dϕh,s) ◦ T0 − log Dϕh,s = µ(h, s)− s+ s+ (log(1 + Dh)) ◦ ϕh,s
and thus find that

µ(h, s)− s = L1

(
s+ (log(1 + Dh)) ◦ ϕh,s

)
and

log Dϕh,s = L0

(
s+ (log(1 + Dh)) ◦ ϕh,s

)
.

We have the following easy Proposition

Proposition 28. If both µ(h, s)− s and ϕh,s are depend C1 on (h, s) then V is of class C1.
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Proof. V (h, s) is completely determined by the datum of (λi)i≤d and (µi). But λ = (λi) are the lengths of
the images by ϕh,s of the intervals of continuity of T0. �

The rest of the Section is dedicated to proving that µ(h, s)− s and ϕh,s are of class C1. Because µ(h, s)− s =
L1

(
s + (log(1 + Dh)) ◦ ϕh,s

)
and log Dϕh,s = L0

(
s + (log(1 + Dh)) ◦ ϕh,s

)
. Because both L0 and L1 are

bounded operators, it suffices it to show that ||(log(1 + Dh)) ◦ ϕh,s − log(1 + Dh)||1+α = o(||h||3 + ||s||).

We now prove this inequality. To simplify notation, we put g = log(1 + Dh) which by hypothesis is of class C2
and which is such that ||g||2 → 0 when h→C3 Id.

Control of the C0-norm. We compute

g ◦ ϕh,s(x)− g(x) = g(x+ ϕh,s(x)− x)− g(x) = g′(x)(ϕh,s(x)− x) + o(ϕh,s(x)− x).

Since ||g′|| is of the order of ||h− Id||3) and that ||ϕh,s− Id||0 = o(||h||3 + ||s||) we get that |g◦ϕh,s(x)−g(x)| =
o(||h||3 + ||s||).

Control of the C1+δ-norm. First we recall the following general facts about δ-Hölder functions.

Lemma 29. Assume u and v are two δ-Hölder functions. We have
(1) ||u · v||δ ≤ ||u||0 · ||v||δ + ||v||0 · ||u||δ;
(2) if u is C1, we have ||u ◦ v|| ≤ ||u′||0 · ||v||δ;
(3) If u is C1, we have ||u||δ ≤ max(||u||0, 21−δ||u||1−δ0 ||u′||δ0).

Proof. These facts are elementary and their proofs are left to the reader. �

Recall that g is of class C2 and that by definition of g and from Theorem 25 we have
• ||g||0 = O(||h||3);
• ||g′||0 = O(||h||3);
• ||g′′||0 = O(||h||3);
• ||ϕs,h − Id||1 = o(1);
• ||ϕ′s,h − 1||α = o(1).

We have

(g ◦ ϕ− g)′ = g′ ◦ ϕh,s · ϕ′h,s − g′ = (g′ ◦ ϕh,s − g′) + g′ ◦ ϕh,s(ϕ′h,s − 1).

We first take care of the term A = (g′ ◦ ϕh,s − g′). A is differentiable and A′ = g′′ ◦ ϕh,s · ϕ′h,s − g′′. In
particular

||A′||0 ≤ ||g′′||0(1 + ||ϕ′h,s||0)

and in a bounded neighbourhood of (0, 0) , ||ϕ′h,s|| is uniformly bounded by a constant K. We can thus write
||A′||0 = O(||h||3).
Then, for all x we have

g′ ◦ ϕh,s(x)− g′(x) =

∫ ϕh,s(x)

x

g′′(t)dt

from which we get ||A||0 ≤ ||g′′||0 · ||ϕh,s − Id||0. We can thus write ||A||0 = o(||h||3 + ||s||). Applying the
third point of Lemma 29 to A we get

||A||δ = o(||h||3 + ||s||).

We now deal with the second term B = g′ ◦ ϕh,s(ϕ′h,s − 1). Using the first point of Lemma 29, we get

||B||δ ≤ ||g′ ◦ ϕh,s||0 · ||ϕ′h,s − 1||δ + ||g′ ◦ ϕh,s||δ · ||ϕ′h,s − 1||0.
Recall that ||g′||0 = O(||h||3) and ||ϕ′h,s − 1||δ = o(1). In addition to that, we can apply the second point of
Lemma 29 to get that ||g′ ◦ ϕh,s||δ ≤ ||g′′||0 · ||ϕh,s||δ. Using the fact that ||ϕh,s||δ is uniformly bounded, we
get
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||B||δ = o(||h||3 + ||s||).
Altogether this implies that

||(g ◦ ϕ− g)′||δ = o(||h||3 + ||s||).
This terminates the proof of the following statement :

Proposition 30. The function V : S × P −→ U is differentiable at the point (0, Id).

8.4. Differentiability at an arbitrary point of K0. From this point it is not too difficult too derive the
differentiability at any point of K0. One can run the exact same argument as the one of 8.3 at an arbitrary
point using Theorem 25. One will find that :

• the function V is differentiable at any point of K0;
• that its derivative can be expressed using the bounded operator L0 and L1 from Theorem 27;
• the derivative at (s, h) is actually the same as that at T0 = (0, 0) up to a precomposition by ϕh,s; this

implies that the derivative varies continuously with (s, h) as ϕh,s does.
This terminates the proof that the function V is of class C1.

Appendix A. Properties of the renormalisation operator

A.1. The Banach structure on X r. Let r be an integer greater or equal to 1. Recall that X rσ = X r is the
space of GIETs with permutation σ on d intervals of class Cr. In Section 2.2 we explained how X r naturally
identifies with

A×P
where A is the space of affine IETs with permutation σ and P is the product of d copies of Diffr+([0, 1]) the
set of orientation preserving Cr diffeomorphism of the interval. The set Diffr+([0, 1]) can be seen as a subset
of the vector space of real valued Cr-maps of the interval taking value 0 in 0 and value 1 in 1. The latter
can be endowed with the Cr-norm to give the structure of a Banach affine space modelled on the vector
space Cr0([0, 1],R) of Cr-maps vanishing at both 0 and 1. Diffr+([0, 1]) is easily seen to be an open subset
of this Banach affine space with respect to the topology induced by the Cr-norm, this naturally endows
Diffr+([0, 1]) with the structure of a Banach manifold whose tangent space at any point naturally identifies
with Cr0([0, 1],R).

On the other hand, A naturally identifies with an open subset of the projective space RP2d−2 and by that
mean is naturally endowed with a structure of finite dimensional smooth manifold which specialises into a
structure of Banach manifolds. In turn, X r seen as the product A×P is naturally endowed with the structure
of a Banach manifold as a product of Banach manifold.

A.2. An easy lemma on smooth functions.

Lemma 31. Let I ⊂ R be an open connected interval. The map

Cr(I,R)× I −→ R
(ϕ, p) 7−→ ϕ(p)

is of class C1.

Proof. We compute

(ϕ+ h)(p+ ε) = ϕ(p+ ε) + h(p+ ε) = ϕ(p) + ϕ′(p)ε+ o(ε) + h(p) + h′(p)ε+ o(ε).

But h′(p)ε is a o(sup(ε, ||h||C1) therefore

Cr(I,R)× I −→ R
(ϕ, p) 7−→ ϕ(p)

is of class C1 with derivative at (ϕ, p) equal to

(h, ε) 7−→ ϕ′(p)ε+ h(p)
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.
�

An easy but important for our purpose consequence of this lemma is that if f1, · · · , fn are C1 maps then

(f1, · · · , fn, p) 7→ fn ◦ fn−1 ◦ · · · ◦ f1(p)

is of class C1, provided the for all k the range of fk belongs to the interval of definition of fk+1.

A.3. Analytic properties of the renormalisation operator. Recall the following definitions and notation
from Section 5. We can identify a neighbourhood of X r with an open neighbourhood of 0 in the Banach space
upon which X = A×P is modelled. In these coordinates, we will use the notation T0 = (0A, 0P) where 0P
represents the point (Id, Id, · · · , Id) ∈ Diffr+([0, 1]). Here P abusively denotes (a neighbourhood of 0 in) the
Banach space upon which (Diffr+([0, 1]))d is modelled. In these coordinates, we write

R = (RA,RP).

Finally, we denote by πA and πP the projection from X onto A and P respectively.

Proposition 32. R is continuous in a neighbourhood of T0 for the C0-topology.

Proof. This results from the continuity of the following functions, with respect to the C0-topology
(1) restriction of a function to an interval;
(2) evaluation of a function at a given point;
(3) composition of functions.

�

We now move to proving that RA is differentiable. To achieve this we need a set of coordinates on A. Recall
that A is the set of affine interval exchange maps on d intervals with permutation d. A point in A is completely
determined by the its discontinuity points 0 < ut1 < · · · < utk < · · · < utd−1 < 1 at the "top" and their images
0 < ub1 < · · · < ubk < · · · < ubd−1 < 1 at the "bottom". These 2d − 2 parameters provide a set coordinates
compatible with the smooth structure of A.

Proposition 33. There exists a neighbourhood of T0 in X r such that RA is of class C1 in this neighbourhood
for the Cr-norm.

Proof. As indicated in the above discussion above, RA(T ) is entirely determined by the positions of finitely
many iterates of T on finitely many points. We explain how positions can all be expressed as a finite combination
of the functions from Lemma 31 applied to coordinates of πA(T ) = (ut1(T ), · · · , utd−1(T ), ub1(T ), · · · , ubd−1(T )
and πP(T ) = (ϕ1(T ), · · · , ϕd(T )) which will give the result.

R(T ) is the (rescaled) first return map of T on an interval of the form [0, T k(uti(T ))] for a certain k ∈ Z
and a certain i ≤ d− 1. Moreover, the discontinuities of R(T ) are also of the form T k(uti(T )) and therefore
it is enough to show that for any k and i there exists a neighbourhood of T0 in X r for which the function
T 7→ T k(uti(T )) is of class C1. Now denote by ltk = utk − utk−1 the length of the k-th interval of continuity of
T at the top and ltk(T ) = utk(T )− utk−1(T ) the length of the k-th interval of continuity of T at the bottom.
These maps (depending upon T ) are smooth. The restriction of T to the interval ]uti−1, u

t
i[ is of the following

form

x 7→ lbj · ϕi(
x− uti−1

li
) + ubj

for a certain j ≤ d− 1.

Now, T k(uti(T )) can be expressed as finitely many compositions of the function of Lemma 31 applied to the
ϕi(T ) and affine maps depending smoothly upon the uti(T )s and ubi (T )s. This implies (by Lemma 31) that
T 7→ T k(uti(T )) is of class C1. This concludes the proof.

�

Appendix B. Fine grids and C1+δ homeomorphisms

We reproduce here some material from [4] and apply it to the special case of periodic GIETs.
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B.1. Fine grids. A fine grid is a sequence of finite partitions (Qn)n∈N of [0, 1] such that
• ∀n ∈ N, Qn+1 is a refinement of Qn;
• there exists an integer a > 0 such that for all n, each atom of Qn is the union of at most a atoms of
Qn+1;

• there exists c > 0 such that for all I, J adjacent atoms of Qn we have

c−1|I| ≤ |J | ≤ c|I|.
One easily checks the following fact

Proposition 34. Let T be a GIET which is C1 conjugate to T0. Then the dynamical partition (Pn)n∈N of T
form a fine grid.

The main technical tool of [4] is the following proposition

Proposition 35 (de Faria-de Melo, [4]). Let h : [0, 1] −→ [0, 1] be a homeomorphism and assume that (Qn)
is a fine grid. Assume furthermore that there exist positive constants C > 0 and λ < 1 such that for every
I, J adjacent atoms in Qn we have

| I
J
− h(I)

h(J)
| ≤ Cλn.

Then
(1) There exists δ such that h is of class C1+δ.
(2) supx,y∈[0,1]

|h′(x)−h′(y)|
|x−y|δ ≤ C.

This Proposition is not exactly stated as such in [4]: the second point is implicit and one will find it in the
proof of Proposition 4.3, p358.

B.2. Application to the conjugating map. In this Section we apply the above material to our context.
We prove the following

Proposition 36. There exists a uniform δ depending only on T0 and a continuous positive function A :
(0, ν)→ R+ such that limε→0A(ε) = 0 such that the following holds. Assume T1 and T2 belong to K0. Then
the map conjugating T1 to T2 is A(dC1(T1, T2))-close to the identity in the C1+δ.

The fact that the conjugating is A(dC1(T1, T2) close to the identity was already implicit in Section 7. Indeed,
we have the following fact :

there exists κ < 1 such that for T1 and T2 as in the Proposition above the following holds

dC1(Rn(T1), Rn(T2)) ≤ A(dC1(T1, T2))κn.

for a certain function A whose limit in 0 is 0. This is, as in the proof of Proposition 24, because the C0-norm
the solution to the cohomological equation depend linearly on that of the Birkhoff sums of the variable. In the
case we are studying, the conjugating map is given by integrating the solution to the cohomological equation
for the difference

log DT1 − log DT2.

Because dC1(Rn(T1), Rn(T2)) ≤ A(dC1(T1, T2))κn, Birkhoff sums of this difference are never any bigger that
D ·A(dC1(T1, T2)) where D is a uniform constant depending only on T0.

Thus the only bit missing to prove Proposition 36 is the fact that the derivative of the conjugating map is
δ-Hölder and that its Hölder-norm is controlled by A(dC1(T1, T2)). This will be a consequence of the following

Proposition 37. Let T1 and T2 be as in Proposition 36, let h be the map conjugating T1 to T2 and let (Pn)
be the sequence of dynamical partitions of T1. Then there exists κ′ < 1 such that for all n ∈ N and adjacent
I, J in Pn we have

| I
J
− h(I)

h(J)
| ≤ A(dC1(T1, T2)) · κ′n.
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Proof. We only give a sketch of the proof as it is already done in [12][Section 9, p113-121] for circle
diffeomorphisms with break points. The proof works exactly the same in this context. We describe below the
main steps:

(1) Because of the exponential convergence of renormalisations of T1 and T2, the estimate obviously holds
for adjacent intervals that are in the base of the dynamical partition. This is just because h maps the
dynamical partition of T1 to that of T2 and that renormalisation converge exponentially fast at a rate
depending only on T0.

(2) Now assume that I and J belong to the partition of level m+ n. There exists an integer k such that
T k1 (I ∪ J) belongs to a base interval for the partition Pm. This integer can be made small enough
to guarantee that the measure of the union

⋃
i≤k T i(I ∪ J) is of the order ιn for a certain ι < 1

depending on T0.
(3) Because iterated renormalisations of T1 and T2 converge very fast, if m is taken sufficiently large then

comparing T k(I) and T k(J) with their respective images in the base partition of Pm+n induces in a
error that is exponentially small with m.

(4) Next, the error induced when initially bringing back I and J to the base of Pm can be controlled by
the fact that the distortion of T k is proportional to the measure of

⋃
i≤k T i(I ∪ J) (by applying the

standard distortion Lemma 5) which is exponentially small.
(5) An appropriate choice of p > 0 makesm = p×n big enough so that the control of the dC1(Rm(T1),Rm(T2))

is sufficient.
�
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