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Abstract. In this article we prove that iterated renormalisations of Cr, r > 2 circle diffeo-
morphisms with d breaks of a fixed size, converge to an invariant family of piecewise Moebius
maps, of dimension 2d. We prove that this invariant family identifies with a relative character
variety χ(π1Σ,PSL(2,R),h) where Σ is a d-holed torus, and that the renormalisation oper-
ator identifies with a sub-action of the mapping class group MCG(Σ). This action is known
to preserves a symplectic form, thanks to the work of Guruprasad-Huebschmann-Jeffrey-
Weinstein [GHJW97]. Its pull-back through the aforementioned identification provides a
symplectic form invariant by renormalisation.

1. Introduction

Renormalisation is a powerful method to analyse the dynamics of low-dimensional dynami-
cal systems. It is of major importance in the study of many cases in one-dimensional dynamics,
such as unimodal maps at the boundary of chaos [F78, CT78, Sul92, McM94, L99, AL11],
Lorenz maps [Win10, MWin14] or circle diffeomorphisms with singularities. For the lat-
ter case, renormalisation methods allowed to successfully understand universality and rigidity
phenomena in the case of circle diffeormorphisms [Her79, SK89, KT09], circle diffeomorphisms
with one critical point [dFdM99, dFdM00, Yam03] and circle diffeomorphisms with one break
[KK03, KT13, KK14, KY15, KKM17].
Circle diffeomorphisms with breaks. We will discuss in this article the renormalisation
theory of circle diffeomorphisms with several break points. A circle diffeomorphism with
breaks (or break points) is a circle homeomorphism smooth away from finitely many points
(the breaks) where the derivative has a discontinuity. The size of a break is the ratio between
the right and the left derivative. The case of a single break was extensively studied in the
series of articles [KK03] [KT13], [KK14], [KY15] and [KKM17]. The major achievement is
the following rigidity theorem

Theorem 1 (Khanin-Kocic and Khanin-Kocic-Mazzeo, [KK14, KKM17]). There is a full
measure set of numbers ρ ∈ [0, 1[ such that the following holds. If T1 and T2 are two circle
diffeomorphisms with one break, with same size of the break and same irrational rotation
number ρ, then T1 and T2 are C1-conjugate.

Many rigidity statements are seen to be equivalent to the following fact: two dynamical sys-
tems which are topologically conjugate, with the same type of singularities are exponentially
asymptotically close under the action of renormalisation. This convergence of renormalisation
can be shown to hold true when the renormalisation operator is hyperbolic.
Hyperbolicity of renormalisation was established in many important cases, including uni-
modal maps, critical circle maps and circle maps with a break point. In the latter case,
renormalisation can be reduced to the study of the renormalisation operator R restricted
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to a two-dimensional parameter space, which allows for an efficient explicit analysis. A dif-
ficulty one encounters when trying to extend these results to an arbitrary number of break
points is that the dimension of the attractor of renormalisation increases, rendering an explicit
description more arduous.
Renormalisation and geometry of surfaces. An invertible one-dimensional dynamical
system can always be turned into a singular flow on a topological surface, by means of a
suspension. This topological remark has allowed, in certain cases, for fruitful connections
between the geometry of surfaces and the renormalisation of associated dynamical systems
to be made. A good example of this is the connection between the Gauss map, which is the
renormalisation operator for rigid rotations, and the geodesic flow on the modular surface
H/PSL(2,Z), which is the moduli space of elliptic curves/flat tori. This can be generalised to
interval exchange transformations together with the Rauzy-Veech induction, which is formally
equivalent to the Teichmüller flow on the moduli space of Abelian differentials on Riemann
surfaces.

Note that the above cases correspond to linear dynamical systems and the renormalisation
theory is concerned with their ergodic and combinatorial properties. We are going to intro-
duce a similar correspondence in a case which is essentially non-linear, via moduli spaces of
representations of surface groups. In this case, convergence of renormalisation is related to
geometric properties of the associated dynamical systems.
Character varieties and renormalisation. Given a topological surface Σ and a reductive
Lie group G, one can construct the associated character variety

χ(π1Σ, G)

which is roughly the space of representations of π1Σ in G up to the action of G by conjugation.
These character varieties naturally identify with the space of flat principal G-bundle over Σ.
Attiyah and Bott showed in [AB83] the existence of a natural symplectic form on χ(π1Σ, G)
when Σ is closed and orientable. In the particular case G = PSL(2,R), this symplectic form
was shown by Goldman in [Gol84] to agree with the Weil-Petersson metric on Teichmüller
space (which itself identifies with a connected component of χ(π1Σ,PSL(2,R))). This sym-
plectic form is defined in purely topological term and is therefore invariant by the action of
MCG(Σ) the modular group of Σ.

In this article we put forward a conceptual approach to the renormalisation of circle dif-
feomorphisms with d breaks, based on a connection with representations of the fundamental
group of a d-holed torus into PSL(2,R). The above material developed in the case of closed
surfaces can be extended to surfaces with boundary, and for the theory to unfold nicely one
has to work with relative character varieties, which are conjugacy classes of representations
whose conjugacy classes are fixed for images of boundary components. Our main theorem is

Theorem. For all d ≥ 1, there exists a 2d dimensional submanifold E(c) of the space of
Moebius circle diffeomorphisms with d breaks and fixed size of breaks c such that, for all T
with irrational rotation number and breaks of sizes c, the following holds:

(1) iterated renormalisations of T converge exponentially fast to E(c);
(2) connected components of E(c) identify with open sets of the relative character variety

χ(Σ1,d,PSL(2,R),h) where h is entirely determined by c;
(3) the action of the renormalisation operator R on E(c) identifies with a sub-action of

the mapping class group MCG(Σ1,d).
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An important corollary of this theorem, implied by fundamental work of Guruprasad-Huebschmann-
Jeffrey-Weinstein [GHJW97] on relative character varieties, is the following

Corollary. The renormalisation operator R : E(c) −→ E(c) preserves a symplectic form.

2. Circle diffeormorphisms with breaks

In this section we collect standard material on circle diffeomorphisms with breaks.

Definition 1. A circle Cr-diffeomorphism with breaks is a circle homeomorphism T satisfying
the following two conditions:

• there are finitely many points p1 = 0 < · · · < pd < 1 = p1 ∈ S1 such that T is Cr away
from these points;
• T extends to a Cr-diffeomorphism on every segment of the form [pi, pi+1];

The points (pi) are called the break points of T . For each pi, the ratio T ′(p+
i )

T ′(p−i ) is called the size
of the break. Here, T ′(p+

i ) and T ′(p−i ) respectively denote the derivative of T at pi on the
right and on the left. It is also assumed that T ′(x), T ′(p−i ) and T ′(p+

i ) are positive.

In this article, we make the standing assumption that r > 2.

Rotation number and decorated rotation number. For T a circle homeomorphism we
denote by ρ(T ) ∈ S1 its rotation number. We have the following theorem due to Denjoy

Theorem 2 (Denjoy). Let T be a circle homeomorphism which is differentiable away from
finitely many points and assume that the logarithm of its derivative has bounded variation.
Assume further that ρ(T ) is irrational. Then T is minimal and is topologically conjugate to
the rotation of angle ρ(T ). Furthermore, the conjugating map is unique up to composition
with a rigid rotation.

Denjoy’s theorem in particular applies to circle diffeomorphisms with breaks. If T is a diffeo-
morphism with breaks with irrational rotation number, there is a unique map conjugating it
to its linear model which maps p1 to 0. The decorated rotation number of T is in that case
the data of ρ together with the images in S1 by the conjugating map of p2, · · · , pd−1 and pd.

Continued fraction algorithm. The continued fraction algorithm is a procedure which
allows to find the best rational approximations of a given irrational number. Let G := x 7→ 1

x

if x 6= 0 and let G(0) = 0, G is called the Gauss map. Define a(x) = [ 1
x ] where [·] denotes the

integral part. Given α ∈ [0, 1[, we define the sequence a1, · · · , an, · · · by

ai = a(Gi(α)).
We use the notation

[a1, · · · , an] = pn
qn

= 1
a1 + 1

a2+ 1
···+ 1

an

The convergents pn
qn

are good rational approximations of α in the sense that they satisfy
|α− pn

qn
| < 1

q2
n
. Diophantine approximation is a topic in its own right and we do not intend to

say anything more about it. We just want to point out that given a circle homeomorphism
T with rotation number α /∈ Q, the iterates T qn will play an important in the theory, as it is
illustrated by the next result.
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The Denjoy-Koksma inequality. The Denjoy-Koksma inequality is a remarkable result
on the ergodic theory of circle homeomorphism. Recall that any circle homeomorphism with
irrational rotation number is uniquely ergodic.

Theorem 3 (Denjoy-Koksma inequality). Let α be an irrational rotation number. Let T be
a circle homeomorphism of rotation number α and let µ be the unique invariant measure of
T . Let f : S1 −→ R be a measurable function of bounded variation. Assume further that∫
fdµ = 0. Then, for all n ∈ N∗ and for all x ∈ S1

|
qn−1∑
i=0

f ◦ T k(x)| ≤ Var(f)

where Var(f) is the total variation of f .

The interested reader will find the proof of this statement in [Her79], Chapitre VI.3.

Distortion bounds. This paragraph is dedicated to proving the following result.

Lemma 1. Let T be a circle diffeomorphim with breaks. Let J ⊂ [0, 1] be an interval such that
J, T (J), T 2(J), · · · , Tn(J) are pairwise disjoint and do not contain break points of T . Then
for all x, y ∈ J we have

D(Tn)(x)
D(Tn)(y) ≤ exp(

∫ 1

0
|D log DT |dLeb).

Proof. The proof is classical. We have that

log DTn(x) =
n−1∑
i=0

log DT (T i(x))

and therefore

| log DTn(x)−log DTn(y)| ≤
n−1∑
i=0
| log DT (T i(x))− log DT (T i(y))| ≤

n−1∑
i=0
|
∫ T i(x)

T i(y)
D log DTdLeb|.

Since the intervals [T i(y), T i(x)] are pairwise disjoints we get

| log DTn(x)− log DTn(y)| ≤
∫ 1

0
|D log DT |dLeb

and exponentiating gives the expected result.
�

3. Rauzy induction for generalised interval exchange transformations

The formalism of generalised interval transformations is a convenient setting to define the
renormalisation scheme we will need for circle diffeomorphisms with breaks. In this section
we introduce both this formalism and the renormalisation scheme, and explain how these
relate to circle diffeomorphisms with breaks.
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3.1. Generalised interval exchange transformations and Rauzy induction. In this
subsection, we introduce some notation.

• A is an alphabet on d letters/symbols.
• A marked permutation is the datum of two bijections π = (πt, πb) between the sets
{1, . . . , d} and A. Here t stands for top and b stands for bottom.
• Let 0 < ut1 < . . . < utd−1 < 1 and 0 < ub1 < . . . < ubd−1 < 1. For all i ∈ {1, . . . , d},
denote by Itπt(i) the interval [uti−1, u

t
i[ and by Itπb(i) the interval [ubi−1, u

b
i [.

Definition 2. A Cr-generalised interval exchange transformation (GIET) is a bijection of
[0, 1[ which satisfies the following conditions:

(1) for any α ∈ A, it maps Itα onto Ibα;
(2) for any α ∈ A, it is Cr diffeomorphism between, Itα and Ibα ;
(3) for any α ∈ A, it extends to the closure of Itα , is differentiable at the end points of Itα

and the derivative is positive.
The points 0 < ut1 < . . . < utd−1 < 1 are called the singularities of the GIET.

Note that there is a natural way to associate a GIET to a circle diffeomorphism with breaks
which we denote by f . By arbitrarily choosing one of the break b, one can "cut" the circle
at this break to get an identification of S1 \ {b} with ]0, 1[. The map induced by f on ]0, 1[
extends to a GIET whose singularities are exactly the images of the break points under this
identifications.
We define hereafter an algorithm on GIETs which will provide us with a renormalisation
scheme for GIETs and circle diffeomorphisms with breaks in particular.

Elementary step of Rauzy induction. The Rauzy induction consists in taking a first
return map on a well-chosen subinterval. Consider T a GIET. One should think of the points
utπ(d−1) and ubπ(d−1) as the rightmost singularities at the top and the bottom respectively.
The elementary step of Rauzy induction consists in taking the first return map of T on
[0, utπ(d−1)[ if u

t
π(d−1) > ubπ(d−1) or on [0, ubπ(d−1)[ if u

b
π(d−1) > utπ(d−1). After affinely rescaling

to [0, 1], this operation returns E(T ) a new GIET with a different marked permutation π′.
We make the following observation: π′ only depends on π and on whether utπ(d−1) > ubπ(d−1)
or ubπ(d−1) > utπ(d−1). These two cases will be referred to as "top wins" and "bottom wins"
respectively. In each case, the letter corresponding to the longest interval ( πt(d − 1) if top
wins and πb(d− 1) if bottom wins) is called the winner.

3.2. Rauzy diagram, Rauzy classes and Rauzy paths. A Rauzy diagram is a graph
whose set of vertices are marked permutations on d intervals and oriented arrows between
two vertices π and π′ if π′ is obtained from π after an elementary step of Rauzy induction.
A Rauzy class is a connected component of a Rauzy diagram. One will find examples and
detailed discussions in [Yoc10].
A generalised interval exchange transformation T is said to be infinitely renormalisable if
En(T ) is well-defined for all n ≥ 0. Such an infinitely renormalisable GIET defines an ad-
missible path in the Rauzy diagram called its Rauzy path and which we will denote by γ(T ).
Finally, a Rauzy path γ is called ∞-complete if every letter of A is a winner at a step of the
induction infinitely many times along γ (which does not necessarily mean that γ visits all
vertices of the Rauzy classes it lives in).



6 SELIM GHAZOUANI AND KOSTANTIN KHANIN

3.3. Circular Rauzy classes and circle diffeomorphisms with breaks. As sketched
above, a circle diffeomorphism with d− 1 breaks can be turned into a GIET in the following
way. Choose a break p0 ∈ S1 and identify S1 \ {p0} with ]0, 1[. The induced map extends
to a GIET on d intervals. Note that there are different ways to perform this operation, all
corresponding to the choice of a break point. At any rate, the associated permutation π
will be circular. However, not all permutations contained in the Rauzy class of a circular
permutation are circular. We have the following Proposition:

Proposition 1. The following statements hold true.
(1) A GIET is infinitely renormalisable if and only if its singular points lies on different

orbits.
(2) A GIET induced by a circle diffeomorphism with breaks has ∞-complete Rauzy path

if and only if its rotation number is irrational.
(3) Two minimal circle diffeomorphisms with breaks have same decorated rotation number

if and only if their induced GIETs have same Rauzy paths.

For the proof of this rather elementary result, we refer to [Yoc05].
Projection to 2-GIETs and acceleration of the induction. Another important remark
at this point is that a Cr-GIET with d intervals whose permutation is circular induces a C0-
GIET on two intervals (by grouping together adjacent intervals mapped to adjacent intervals).
Rauzy induction is also well-defined for such 2-GIETs and defines an algorithm which is
formally different from the Rauzy induction on the same GIET thought as a d-GIET. These
two are nonetheless related the following way: the algorithm on two intervals is an acceleration
of the algorithm on d intervals. Formally this means that for any renormalisable GIET there
exists an integer k such that applying k steps of the Rauzy induction on d intervals produces
the same outcome as one application of the Rauzy induction on two intervals. It is important
for us to make this distinction as we want to keep track of the combinatorial structure of the
orbits of the breaks points.
Standard renormalisation for circle homeomorphisms. As just explained above, circle
homeomorphism can be turned into 2-GIETs. There exists several equivalent definitions of
renormalisation for such maps. We describe here the one which uses Rauzy induction. The
definition consists in grouping elementary steps of the Rauzy induction the following way.

• If top is the winner, apply E as long as top keeps winning. When bottom eventually
wins, apply E once more.
• If bottom is the winner, apply E as long as bottom keeps winning. When top even-
tually wins, apply E once more.

Note that it can be the case that this algorithm gets stuck in a loop and does not terminate.
When the algorithm terminates, we can define R the standard renormalisation for circle
homeomorphism. We have the following Proposition

Proposition 2. Let T be a 2-GIET corresponding to a circle homeomorphism with irrational
rotation number. Then RnT is well-defined for all n ≥ 0.

This is a standard fact about circle homeomorphisms and generalised interval exchange trans-
formations. The interested reader will find proofs and further discussions in [Yoc05].
We now explain how renormalisation relates to the continued fraction expansion of ρ(T ).
Assume T is a 2-GIET such that ρ(T ) is irrational. Denote by kn ≥ 2 the integer such that
Rn(Rn−1T ) = Ekn(Rn−1T ). Let (an)n∈N∗ the sequence of positive integers such that
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ρ(T ) = 1
a1 + 1

a2+ 1
a3+···

.

We then have
∀n ≥ 1, an = kn − 1.

Remark 1. Here R is defined using renormalisations for 2-GIETs. However, R is an operator
acting on d-GIET. In particular, two d-GIET T1 and T2 may have different Rauzy paths when
there associated 2-GIETs have same Rauzy paths. It is the case when T1 and T2 having same
rotation number but their decorated rotation numbers differ.

3.4. Dynamical partitions. Let T be a GIET and assume further that T is n times renor-
malisable. For any n ≥ 0, RnT is the rescaling of a first return map of T on an interval of
the form [0, xn]. The interval [0, xn] is partitioned into

[0, xn] = ∪dα∈AItα(n)
and RnT rescaled down to [0, xn] is equal to T lnα on each of the Itα(n). For α ∈ A, we introduce

Pnα = {Ijn, T (Itα(n)), T 2(Itα(n)), · · · , T lnα−1(Itα(n))}
and we call

Pn =
⋃
α∈A
Pnα

the dynamical partition of level n. One easily verifies that Pn is a partition of [0, 1] into
subintervals.

4. Fast convergence of renormalisation towards Moëbius maps

We fix d ∈ N∗ and c ∈ Rd+ a break-size profile. In this section we prove the following theorem
(which is a straightforward generalisation of a well-known fact for the case d = 1 and should
not be considered as new material). In the sequel P denotes the set of generalised IETs with
circular permuations which are Moebius maps restricted to their branches.

Theorem 4. Let T be circle diffeomorphism with d − 1 break points whose rotation number
is irrational. Then there exists CT > 0 and µT < 1 such that

d1(RnT,P) ≤ CTµnT ,
where d1 is the C1 distance.

4.1. Size of the dynamical partition. Let T be a minimal (equivalently irrational rotation
number) GIET with cyclic permutation. We denote by ∆n(T ) = ∆n = supJ∈Pn |J |.

Proposition 3. For all T , there exists DT > 0 and αT such that

∀n ∈ N, |∆n| ≤ DT · αnT .

Proof. Note that the derivative of T is a piecewise Cr−1 function and therefore has bounded
variation. We can think of T as a C0 GIET on 2-intervals, with derivative well-defined ev-
erywhere but at finitely many points, and with bounded variation. We can consider P ′n
the dynamical partition associated with the renormalisation of this 2-GIET. The dynamical
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partion Pn is just a refinement of P ′n, and therefore if we denote by ∆′n := supJ∈P ′n |J | we
have

∆n ≤ ∆′n.
We give only a quick sketch for the rest of the proof. By Denjoy-Koksma inequality (Theorem
3), the derivative of consecutive renormalisations remain uniformly bounded below and above.
Using that fact, one can prove that the intervals at the base of the dynamical partition see their
lengths divided by a uniform constant every two iterations ofR. The dynamical partition P ′n+2
is the refining of P ′n obtained by propagating the partition of interval the of RnT . Because
of the distortion bound of Proposition 1 applied to the dynamical partition, the induced
subdivision of each element of Pn is "balanced" and altogether this gives the existence of a
constant κ < 1 such that

∆′n+2
∆′n

≤ κ.

The Proposition is implied by the inequality ∆n ≤ ∆′n. A quantitative version of the above
reasoning can be found in [SK89], see Lemma 2 therein and its proof. �

In this paragraph we prove an estimate which gives some uniform bounds on the second
derivative of iterated renormalisations. The proof builds upon Lemma 1.

4.2. C2-bounds.

Lemma 2. Let ϕ1, · · · , ϕn ∈ C2(R,R). For all k ≤ n define fk = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1 and set
f0 = Id. Then we have for all n ≥ 2 the formula

f ′′n = (f ′n−1)2 · (ϕ′′n ◦ fn−1) +
n∑
k=2

(f ′n−k)2 · (ϕ′′n−k+1 ◦ fn−k) · (ϕn ◦ · · · ◦ ϕn−k+2)′ ◦ fn−k+1

Proof. We proceed by induction on n. We check that the statement holds true for n = 2:

f ′′2 = (ϕ2 ◦ ϕ1)′ = (ϕ′1 · ϕ′2 ◦ ϕ1)′ = (ϕ′1)2 · ϕ′′2 ◦ ϕ1 + ϕ′′1 · ϕ′2 ◦ ϕ1.

Assume the statement holds true for n ≥ 2. We have

f ′′n+1 = (ϕn+1 ◦ fn)′′ = ϕ′′n+1 ◦ fn · (f ′n)2 + f ′′n · ϕ′n+1 ◦ fn.
Replacing f ′′n in the formula we get

f ′′n+1 = (ϕn+1 ◦ fn)′′ = ϕ′′n+1 ◦ fn · (f ′n)2 + (ϕ′n+1 ◦ fn) · (f ′n−1)2 · (ϕ′′n ◦ fn−1)

+
n∑
k=2

(f ′n−k)2 · (ϕ′′n−k+1 ◦ fn−k) · (ϕ′n+1 ◦ fn) · (ϕn ◦ · · · ◦ ϕn−k+2)′ ◦ fn−k+1.

By the chain rule we have

(ϕ′n+1 ◦ fn) · (ϕn ◦ · · · ◦ ϕn−k+2)′ ◦ fn−k+1 = (ϕn+1 ◦ ϕn ◦ · · · ◦ ϕn−k+2)′ ◦ fn−k+1

Injecting in the formula above for f ′′n+1 gives the expected result. �
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Consider a C2, increasing diffeomorphism f : I −→ J where I and J are two connected
intervals. We denote by N(f) the normalisation or rescaling of f , it is by definition the map f
pre-composed by the unique affine map sending [0, 1] onto I and post-composed by the unique
affine map sending J onto [0, 1]. We have the following easy lemma:

Lemma 3. Let f be as above. Then we have

||N(f)′′|| ≤ ||f ′−1|| · ||f ′′|| · |I|

Proof. Let a = |I| and b = |J |. By definition we have

N(f) := x 7−→ 1
b

[f(ax+ s)− t].
Thus

N(f)′′(x) = a2

b
f(ax+ s) = a

a

b
f ′′(ax+ s).

There exists x0 ∈ I such that 1
f ′(x0) = |I|

|J | = a
b . Hence the result.

�

Using Lemma 2 and Lemma 3, we prove the following

Proposition 4. Let T be a C2-generalised IET and assume T is renormalisable n times.
There exists a constantM(T ) > 0 such that the following holds. We use the following notation
πP
(
Rn(T )

)
= (ϕn1 , · · · , ϕnd ) ∈

(
Diff2

+([0, 1])
)d. Then we have for all i ≤ d and for all n ∈ N

||πP
(
Rn(T )

)′′|| ≤M ′||(T−1)′|| · ||T ′′||

Proof. Let (ϕn1 , · · · , ϕnd ) be the renormalized branches of T . The proof is an application of
Lemma 2 to the composition of restrictions of T to the dynamical partition. By definition ϕni
is renormalized T lin restricted to an interval Iin such that Ijn, T (Ijn), T 2(Ijn), · · · , T l

j
n−1(Ijn) are

disjoint. We denote by Sk the restriction of T to T k(Ijn). We have the following properties
• ϕni = N(S

ljn−1) ◦ · · · ◦N(S1) ◦N(S0)
• any partial product ψk = N(S

ljn−1)◦· · ·◦N(Sk) is such that || log(ψk)′|| ≤ K||T ′′|| (ψk is
a diffeomorphism of [0, 1] and therefore there exists x0 ∈ [0, 1] such that logψ′k(x0) = 0
and the claim follows from Lemma 1);
• same holds for partial products φk = N(Sk) ◦ · · · ◦N(S0);
• for any k, ||N(Sk)′′|| ≤ ||(T−1)′|| · ||T ′′|| · |T k(Ijn)|.

The result is a consequence of Lemma 2 applied to N(S
ljn−1) ◦ · · · ◦N(S1) ◦N(S0). Indeed

||(ϕni )′′|| ≤
n∑
k=1
||φ′n−k|| · ||N′′(Sn−k+1)|| · ||ψ′n−k+2||

and replacing in the inequality

||ϕni )′′|| ≤ e2K||T ′′|| · ||(T−1)′|| · ||T ′′||
n−1∑
k=0
|T k(Ijn)|.

The T k(Ijn)s are all disjoint and the exp being bounded on bounded sets, we get the uniform
bound for the (ϕni )′′. But because of the Denjoy-Koksma inequality (Theorem 3) applied to
log T ′, we get that | log(Ri(T ))′| ≤ Var(log T ′), the ratio between (ϕni )′ and the derivative of
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the corresponding branch of Ri(T ) is bounded by a uniform constant depending only on T .
This implies the Proposition.

�

4.3. Convergence to P. We give a sketch of the proof as it is already covered in many
places in the literature, see [KT09] for instance. The fast decay of the size of the dynamical
partition implies that branches of RnT look more and more like Moebius maps. This can be
quantified using material borrowed from [KT09]. In this article, the authors introduce what
they call the distortion of a diffeomorphism f of the interval which encodes how cross-ratios
are modified under the action of f . This distortion behaves nicely under compositions and it
is easy to show using Lemma 6 in [KT09] that the log of the distortion of (each branch of)
Rn is proportional to ∆n. The distortion of a map is close to 1 if and only if it C0-close to
a Moëbius map. But because of the C2-bounds, C0-closeness implies C1-closeness. From this
discussion we get Theorem 4.

Remark 2. Theorem 4 can be strengthen to convergence in C2-norm by proving uniform
bounds on the third derivative. These bounds can be obtained by a similar reasoning to the
one used in the proof of Proposition 4.

5. Character varieties and symplectic structure

In this section we show how connected components of P naturally identify with open sets
of the space of representations of the fundamental group of a punctured torus into PSL(2,R).
We then show that consecutive renormalisation are attracted by a codimension 1 submanifold
of P and that this submanifold identifies with a character variety. This allows to endow
the attractor of renormalisation with a natural symplectic structure, thanks to the structural
understanding of character varieties.
In the sequel we make the standing assumption that all the ci’s are different from
1.

5.1. Associating a representation to a projective IET. Fix a circular permutation σ
once and for all. Let P = Pσ be the set of piecewise projective IETs with permutation σ.
From now on, we allow PIETs to be maps from any interval [a, b] to itself.

A polygonal model for the n-punctured torus. For any such permutation σ, we associate
a presentation of the n-punctured torus: we consider a 2(n + 1)-gon and we label its sides
in this order a1, a2, · · · , an+1, aσ(n+1), aσ(n), · · · , aσ(1) and (topologically) glue together sides
with the same label, as in the picture below:

a1

a2
a3

a4

a5

a4

a5 a1
a2

a3

Figure 1. Presentation of a 5-punctured torus.
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The boundary can be split into two broken lines, on at the top with consecutive sides labelled
a1, a2, · · · , an and one at the bottom with consecutive sides labelled aσ(n), aσ(n−1), · · · , aσ(1).
These two lines are to be thought of as a geometric representation of the permutation σ, as
it is classical to do in the world of interval exchange transformations.

The fundamental group of Σ1,n. Fix a point p inside the polygon. For all i, consider a
loop γi based at p joining the middle points of the two sides labelled ai (one on the top line
and one on the bottom line). We get this way n+ 1 closed loops (γ1, · · · , γn) based at p. See
picture below

a1

a2
a3

a4

a5

a4

a5 a1
a2

a3

Figure 2. Presentation of a 5-punctured torus.

Proposition 5. The classes [γ1], · · · , [γn+1] freely generate the fundamental group of Σ1,n.

Proof. This is direct application of Van Kampen theorem. Another way to see it is to remark
that Σ deformation retracts onto the union

⋃
γi whose fundamental group is the free group

generated by the classes [γi]s.
�

The representation associated to a PIET. Now consider f an element of Pσ. Let
I1, · · · , In+1 be its consecutive intervals of continuity. By definition, there exists an element
fi ∈ PSL(2,R) such that f|Ii = fi.
Considering the above presentation of π1Σ1,n, we define for all f a representation ρ : π1Σ1,n −→
PSL(2,R) by the following pairing

ρ : γi 7−→ fi.

Since π1Σ1,n is free and freely generated by the γis, this defines a representation. We have
defined a map

ψ : Pσ −→ Hom
(
π1Σ1,n,PSL(2,R)

)
.

Because π1Σ1,n is a free group of rank n+1, Hom
(
π1Σ1,n,PSL(2,R)

)
identifies with PSL(2,R)n+1

and can therefore be endowed with a natural structure of smooth manifold. We now prove:

Proposition 6. ψ : Mσ −→ Hom
(
π1Σ1,n,PSL(2,R)

)
is a (local) diffeomorphism onto an

open set of Hom
(
π1Σ1,n,PSL(2,R)

)
.

Proof. The proof rests on the following observation: the discontinuity points of the derivative
(or say the ends of the intervals I1, · · · , In) are given as fixed points of the image by the asso-
ciated representation of certain (fixed) elements of the group π1Σ1,n. For instance, the right
end point of the interval I1 is one of the two fixed points of ρ(γ1γ

−1
2 ). The element (γ1γ

−1
2 )
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represents a simple closed curve going around the singularity in the torus corresponding to
the first discontinuity of the derivative. One can therefore locally extract the break points of
a given PIET from its associated representation. Assume two PIETs have the same represen-
tation. Then by the above reasoning we have same break points and this breaks points have
same image. By definition, the associated representation is defined by associating to certain
curves the elements in PSL(2,R) which define the PIET when restricted to its intervals of
smoothness. Therefore the datum of break points and the representation is enough to charac-
terise a given PIET. The break points being themselves characterised by the representation,
which implies that the map ψ is locally injective.
To deduce local surjectivity, it is enough to reconstruct the PIET associated to a representation
ρ by using the inverse operation described above. Identify the position of the break points
as they appear as fixed points of the image of certain elements π1Σ1,n and define the PIET
which is the restriction of ρ(γ1), · · · , ρ(γn+1) to the intervals defined by the breaks points.

�

Remark 3. The above isomorphism is interesting but contains some useless information.
Indeed, every PIET can be conjugated by an affine map to a map whose domain is [0, 1].
This correspond to conjugating Hom

(
π1Σ1,n,PSL(2,R)

)
by the subgroup of PSL(2,R) of affine

maps, i.e. the subgroup of matrices of the form

{
(
λ t
0 λ−1

)
|λ > 1 and t ∈ R}.

Renormalisation from the representation viewpoint. Geometrically, each step of renor-
malisation corresponds to a ’cut and paste’ operation at the level of polygonal models. This
cut and paste is coherent with the representation point of view, in the following sense:

(1) a cut and paste realises a diffeomorphism
φ : Σ1,n −→ Σ1,n

(2) this diffeormorphism realises a group homomorphism

φ∗ : π1Σ1,n −→ π1Σ1,n

(3) Renormalisation, read at the level of the parametrisation by Hom
(
π1Σ1,n,PSL(2,R)

)
is equal to

ρ 7−→ ρ ◦ φ∗
The attracting family. We prove in this paragraph that there is a codimension 1 family of
Pσ which is invariant by renormalisation and which represents the renormalisation attractor.
This family is analogous to that of [KK03].
This subfamily is defined by forcing a preferred representative in Hom

(
π1Σ1,n,PSL(2,R)

)
for

a certain loop going around a singularity. Precisely, the loop going around the ’distinguished’
point crossing first the leftmost side at the ’top’ of the polygon associated to a permutation.

For every σ permutation of genus 1, we define the subfamily Eσ ⊂ Pσ by the following:
f ∈ Eσ if and only if

(1) the associated PIET has domain [0, 1];
(2) the loop around the ’distinguished’ point belongs to the affine group.

Proposition 7. (1) The family
⋃
σ Eσ is invariant by Rauzy induction.

(2) Renormalisation converges to
⋃
σ Eσ exponentially fast(up to natural acceleration).
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Proof. By definition, renormalisation (before normalisation) does not change the image of
the corresponding representations evaluated on the distinguished loop. Rescaling by an affine
element corresponds to conjugating by an affine element. It therefore

• preserves
⋃
σ Eσ;

• makes everything converge to
⋃
σ Eσ.

Indeed, take any element in f ∈ PSL(2,R), and let gλ := x 7→ λx. It is easily shown that

gλ ◦ f ◦ g−1
λ

converges to the affine group when λ goes to 0 with a rate of convergence of the order
of λ. We can therefore deduce from this remark that consecutive renormalisations of T a
∞-renormalisable PIET converge towards Eσ at the same speed as the first-return interval
corresponding to RnT converges to 0. By estimates of Proposition 3, we get the exponential
convergence.

�

Fixing the size of the break. Each loop around a marked point of Σ1,n defines a conjugacy
class in π1Σ1,n.
Consider the representation ρ : Σ1,n −→ PSL(2,R) which represents a PIET.

Proposition 8. Let t1 be a break point of f and let p1 be the associated marked point of Σ1,n
and let γ1 a loop around that point. Then the size of the break at p1 is exactly determined by
the trace of ρ(γ1) ∈ PSL(2,R).

Proof. Let f ∈ PSL(2,R) be a hyperbolic element and let λ be Tr(f) (the trace of an element
in PSL(2,R) is the absolute value of the trace of a representative in SL(2,R)). Let x be a
fixed point of f . Then we have the following formula

Tr(f) = (f ′(x))2 + (f ′(x))−2.

Indeed, any hyperbolic element in PSL(2,R) is conjugate to an element of the form
(
λ 0
0 λ−1

)
whose action on R is t 7→ λ2t hence the result. But the size of the break at p1 is exactly the
derivative of γ1 at one of its fixed points. Consequently, the size of the break at t1 is(locally)
entirely determined by the trace of ρ(γ1).

�

By Proposition 8, fixing the size of all breaks, say c = (c1, · · · , cn) leads to a subfamily in
both Pσ and Eσ that we denote by Pc

σ and Eσ(c).

5.2. Character varieties. In the sequel, we introduce material about representations of sur-
face groups into a reductive Lie group, and quickly specialise to the case where this reductive
Lie group is PSL(2,R). Representations of surface groups are objects of interest in their own
right, they appear naturally in many contexts such as Teichmüller theory, complex differential
equations, the study of geometric structures on surfaces and non-abelian Hodge theory. Given
a Lie group G and a topological surface Σ, one might be interested in the moduli space of
representations of π1Σ into G which we naturally denote by Hom(π1Σ, G). This moduli space
carries a natural G action by conjugation, and in many geometric contexts, it is the quotient
of Hom(π1Σg,n, G) by this action which is the relevant object to consider (for instance, the
holonomy representation of a geometric structure is well-defined up to conjugation and only
defines an element in this quotient).



14 SELIM GHAZOUANI AND KOSTANTIN KHANIN

Definition 3 (Character varieties). Let G be a reductive Lie group. The character variety
of Σg,n into G is

χg,n(G)
and defined to be the Hausdorff quotient of Hom(π1Σg,n, G) by the action of G by conjugation.
Such character varieties are naturally endowed with an action of the mapping class group of
Σg,n which is just the quotient of the action of the automorphism group of π1Σ (see [FM12]).
Suppose n > 0. Let γ1, · · · , γn ∈ π1Σg,n simple closed loops around p1, · · · , pn the marked
points of Σg,n. A free homotopy class of a loop in a manifold corresponds to a conjugacy class
in its fundamental group.
Definition 4 (Relative character varieties). Let G be a reductive Lie group. Let h =
(h1, · · · , hn) be conjugacy classes in G. The relative character variety of Σg,n into G is

χg,n(G,h)
the subset of χg,n(G) for which element in π1Σg,n representing γi is mapped to an element of
the conjugacy class hi.
From now onwards we assume that G = PSL(2,R).
Theorem 5 ([GHJW97]). Assume that for all i, hi is a non-trivial conjugacy class. Then
the relative character variety χg,n(G,h) carries a symplectic form ω which is invariant by the
action of the mapping class group of Σg,n.
We refer to [GHJW97] for a complete proof of this result (which is way beyond the scope
of this article) and [Gol84] for the case of closed surfaces which, although not being directly
relevant to the situation at hand, provides a very nice exposition of the construction of the
symplectic form in a simpler case.

Identification with Eσ. We explain here the link between these character varieties and
renormalisation. Note that conjucagy classes in PSL(2,R) correspond exactly to level sets of
the trace function (apart from the pre-image of {1}).

Tr : PSL(2,R) −→ R+
In particular, fixing the size of the breaks of a PIET corresponds to fixing the conjugacy
class of loops around marked points of the associated representation in PSL(2,R). Let h =
(h1, · · · , hn) be the conjugacy classes in PSL(2,R) corresponding to the choice of breaks
c = (c1, · · · , cn).
Proposition 9. The projection π : Eσ(c) −→ χ1,n(PSL(2,R),h) is a local diffeomorphism.
Proof. Consider T an element of Pσ and ρ its associated representation. Conjugating ρ by an
element g ∈ PSL(2,R) is equivalent to conjugating T by g. The claim above is equivalent to
the existence of a unique element of Eσ(c) in each PSL(2,R)-conjugacy classes. This is shown
to be true the following way: any hyperbolic element of PSL(2,R) is conjugate to an affine
map. We can therefore conjugate T in order to make the distinguished loop (the one going
around the distinguished point) affine. The resulting PIET is a map form an interval [a, b] to
itself. From this point it suffices to conjugate by an affine map mapping [a, b] onto [0, 1]. The
uniqueness is guaranteed by the following fact: an orientation preserving affine map which
maps [0, 1] to itself is the identity.

�



THE SYMPLECTIC STRUCTURE OF RENORMALISATION FOR CIRCLE DIFFEOMORPHISMS WITH BREAKS15

We deduce from that the following corollary

Corollary 1. The pull-back of the natural symplectic form defines a symplectic form ω on⋃
σ Eσ(c locally invariant by the renormalisation operator R.

Proof. Combination of Theorem 5 and Subsection 5.1.
�

Dimension counts. We give here the dimension of character varieties for g = 1.

dimχ1,d(PSL(2,R)) = 3d

dimχ1,d(PSL(2,R),h) = 2d
In particular, the dimension of Eσ is 3d and for any c the dimension of Eσ(c) is 2d

6. Comments and open problems

6.1. Dynamics of the renormalisation operator. One important objective of renormali-
sation theory in the context of circle diffeomorphisms is to characterise C1-conjugacy classes.
It has been conjectured for a long time that under mild arithmetic conditions, the decorated
rotation number determines rigidity classes.

Conjecture 1. There is a full-measure set Γ of decorated rotation numbers γ for which the
following statement holds. Let T1 and T2 be circle diffeomorphisms with breaks of the same
size and same decorated rotation number in Γ. Then T1 and T2 are smoothly conjugate.

This conjecture is implied by a sufficiently refined understanding of the dynamics of R. Pre-
cisely, we have that, under arithmetic conditions of the Diophantine type, exponentially fast
convergence of dC2(RnT1,RnT2) to 0 implies C1-conjugacy between T1 and T2.
In [KY15], the authors show that in the case of one break point, restricted to the set of
irrational rotation numbers, the renormalisation operator is hyperbolic and that level sets of
the rotation number function are stable manifolds of R. This is enough to prove Conjecture
1 in this case. This motivates the following conjecture

Conjecture 2. The renormalisation operator R is hyperbolic restricted to its attractor.

Recall that the dimension of Ec is equal to 2d. Heuristically, the decorated rotation number
accounts for d unstable directions. The existence of these unstable directions is known in the
linear case, it is the hyperbolicity of the Rauzy-Veech induction restricted to standard interval
exchange transformations. The existence of an invariant symplectic form would allow us to
immediately construct the stable directions. Indeed, it is a standard property of symplectic
matrices that an eigenvalue λ 6= 1 comes with the eigenvalue λ−1 with equal multiplicity. Thus,
if the above Conjecture 2 holds, then one can immediately prove exponential convergence of
renormalisation for maps with the same sizes of breaks and the same decorated rotation
number, and, hence, prove the Conjecture 1.

6.2. Connected components of character varieties. Understanding the topology of char-
acter varieties is a challenging problem in itself, even more so in the case of surfaces with
boundary components. Classification of connected components of PSL(2,R)-relative charac-
ter varieties is worked out in Mondello’s article [Mon16].

To a representation ρ : π1Σg,n −→ PSL(2,R) one can associate an algebraic invariant called
its Euler number, which we denote by eu(ρ) ∈ R. In the case n = 0 it is nothing but the
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characteristic class defined by the flat bundle of rank 2 over Σg of monodromy ρ and is integer-
valued. The definition in the case with boundary is slightly more involved as it requires to
take care of extra terms coming from the boundary.

If h is fixed, it is well-known that
eu : χg,n(PSL(2,R),h) −→ R

takes only finitely many values and is constant on connected components. Modello shows
in [Mon16] using the theory of Higgs bundles, that this Euler number actually characterises
connected components. We ask the following question

Question 1. To which connected components belong representations constructed from piece-
wise Moebius circle diffeomorphisms with breaks?

There is at least one component that can be excluded. The component with maximal Euler
number identifies with the Teichmüller space of complete hyperbolic metrics. It is easily
shown that the mapping class group acts properly discontinuously on this component. But
on the other hand, recurrence properties of the renormalisation operator(which identifies with
a "sub-action" of the mapping class group) ensure that the mapping class group action on a
component appearing in the study of circle diffeomorphisms with breaks is not proper and
discontinuous. Another question we think is interesting is the following

Question 2. What are the representations which can arise as the representation of a minimal
circle diffeomorphism with breaks?

6.3. Links to mapping class group dynamics. As mentioned in the previous paragraph,
the renormalisation operator and the mapping class group action on χg,n(PSL(2,R),h) are
closely related. In general, we know of the existence of special components for which the
latter action is properly discontinuous. However, for other components it is suspected that
this action is going to be ergodic with respect to the symplectic volume. This conjecture
remains widely open in the general case although it has been proven in the (closed) genus 2
case by Marché and Wolff [MWol16]. Another notable piece of work in the SL(2,C)-case is
[Gol03], where the ergodic properties of the mapping class group action is completely analysed
in the case of the one-holed torus.
Although it is not so clear to the authors what Conjecture 2 implies for the mapping class
group action on relative character varieties, it would certainly provide some interesting insight
into its topological dynamics. Indeed, it would imply that a small sub-action displays some
relatively rich dynamical behaviour. This sub-action could be replicated in many different
way by conjugating in MCG(Σ1,n), potentially offering a path to a proof of the existence of
dense orbits.
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