Stefan Suhr

Postdoctoral Researcher

Équipe Analyse
CEREMADE - Université Dauphine et DMA - Ecole Normale Supérieure
45, rue d'Ulm
75230 Paris Cedex 05 - France
E-mail: stefan.suhr_AT_ens.fr
Office: C15 / Rez-de-chaussée, espace Cartan
Phone: +33 (0)1 44 32 20 38
Fax: +33 1 44 32 20 80
St

Research interests:

Theory of optimal transportation and Aubry-Mather theory
Closed orbits in dynamical systems
Lorentzian geometry
Geometric calculus of variations

Publications:

1. (with Pierre Mounoud) On spacelike Zoll surfaces with symmetries. JDG, Vol. 102 (2) (2016), pp. 243-284. project euclid
2. (with K. Zehmisch) Linking and closed Orbits. Abh. Math. Semin. Univ. Hambg. springerlink
3. (with Vicente Cortés and Marc Nardmann) Completeness of hyperbolic centroaffine hypersurfaces. to appear in Comm. Anal. Geom. arXiv
4. A counterexample to Guillemin's Zollfrei conjecture. J. Topol. Anal., 05, 251 (2013). worldscientific
5. (with P. Mounoud) Pseudo-Riemannian geodesic foliations by circles. Math. Z. 274 (2013), 225--238. springerlink
6. Closed geodesics in Lorentzian surfaces. Trans. Amer. Math. Soc. 365 (2013), 1469-1486. Trans. Amer. Math. Soc.
7. Class A spacetimes. Geom. Dedicata, 160 (2012), 91--117. springerlink
8. Homologically Maximizing geodesics in conformally flat tori, 125--143, AMS/IP Stud. Adv. Math., 49, Amer. Math. Soc., Providence, RI, 2011. arXiv

Thesis:

Maximal geodesics in Lorentzian geometry. Dissertation. Freiburg (2010). freidok


Preprints:

1. Theory of optimal transport for Lorentzian cost functions. arXiv
2. On the existence of steep temporal functions. arXiv
3. (with K. Zehmisch) Polyfolds, Cobordisms, and the Strong Weinstein Conjecture. arXiv
4. Aubry-Mather Theory and Lipschitz Continuity of the Time Separation. arXiv
5. Length Maximizing Invariant Measures in Lorentzian Geometry. arXiv
CV