An arithmetic lattice of $\operatorname{Isom}\left(\mathbb{H}^{d}\right)$

March 12, 2020

A lattice in \mathbb{R}^{n} is a discrete \mathbb{Z}-submodule of \mathbb{R}^{n} of rank n. The group $\mathrm{GL}(n, \mathbb{R})$ acts transitively on the space of lattices, and the stabilizer of the standard lattice \mathbb{Z}^{n} is the discrete subgroup $\mathrm{GL}(n, \mathbb{Z})$. The space \mathcal{L}_{n} of lattices in \mathbb{R}^{n} thus identifies witht the orbifold quotient $\mathrm{GL}(n, \mathbb{R}) / \mathrm{GL}(n, \mathbb{Z})$. This endows \mathcal{L}_{n} with a natural topology.

We will admit the following compactness criterion, due to Mahler:
Theorem 0.1. A subset A of \mathcal{L}_{n} has compact closure if and only if there exist constants $\varepsilon>0$ and R such that for every lattice Λ in A we have

$$
\operatorname{Vol}\left(\mathbb{R}^{n} / \Lambda\right) \leq R
$$

and

$$
\Lambda \cap B(0, \varepsilon)=\{0\} .
$$

Let q be the quadratic form on \mathbb{R}^{n} given by

$$
q(x)=x_{1}^{2}+\ldots+x_{n-1}^{2}-\sqrt{2} x_{n}^{2} .
$$

Define $\Gamma=\mathrm{O}(q) \cap \mathrm{GL}(n, \mathbb{Z}[\sqrt{2}])$. The goal of this exercise is to prove that Γ is a uniform lattice in the group $\mathrm{O}(q)$ of linear transformations preserving q. Since q has signature $(n-1,1), \Gamma$ is a uniform lattice in $\operatorname{Isom}(n-1,1)$.

Let \bar{q} denote the quadratic form

$$
\bar{q}(x)=x_{1}^{2}+\ldots+x_{n-1}^{2}+\sqrt{2} x_{n}^{2},
$$

Image of q by the Galois automorphism of $\mathbb{Q}[\sqrt{2}]$. Let Q and Q^{\prime} be the quadratic forms on $\mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ given respectively by

$$
Q(u, v)=q(u+\sqrt{2} v)+\bar{q}(u-\sqrt{2} v)
$$

and

$$
Q^{\prime}(u, v)=\frac{1}{\sqrt{2}}(q(u+\sqrt{2} v)-\bar{q}(u-\sqrt{2} v)) .
$$

1. Show that Q and Q^{\prime} take integral values on $\mathbb{Z}^{n} \times \mathbb{Z}^{n}$.

Let G be the subgroup of $\mathrm{GL}\left(\mathbb{R}^{2 n}\right)$ preserving Q and Q^{\prime}. Let Λ_{0} denote the lattice $\mathbb{Z}^{n} \times \mathbb{Z}^{n}$ in $\mathbb{R}^{2 n}$.
2. Assume that there exists a sequence $\left(u_{n}\right) \in \Lambda_{0}$ and a sequence $\left(g_{n}\right) \in G$ such that $g_{n} \cdot u_{n} \xrightarrow[n \rightarrow+\infty]{\longrightarrow} 0$. Show that for n large enough, $Q\left(u_{n}\right)=Q^{\prime}\left(u_{n}\right)=0$.
3. Show that $u_{n}=0$ for n large enough. Deduce that the G-orbit of Λ_{0} is relatively compact in $\mathcal{L}_{2 n}$.

Let $\left(g_{n}\right)$ be a sequence in G such that $g_{n} \cdot \Lambda_{0}$ converges to a lattice Λ.
4. Show the existence of $h_{n} \in \mathrm{GL}(2 n, \mathbb{Z})$ such that $g_{n} h_{n}$ converges to some $g \in \operatorname{GL}(2 n, \mathbb{R})$.

5 . For every $u \in \Lambda_{0}$, show that

$$
Q\left(h_{n} \cdot u\right)=Q(g \cdot u)
$$

for n large enough.
6. Deduce that the G-orbit of Λ_{0} is closed in \mathcal{L}_{n}.

Define

$$
\begin{array}{llll}
\varphi: \quad \begin{array}{ccc}
\Gamma & \rightarrow & \mathrm{GL}\left(\mathbb{Z}^{n} \times \mathbb{Z}^{n}\right) \\
A+\sqrt{2} B & \mapsto & \left(\begin{array}{cc}
A & 2 B \\
B & A
\end{array}\right)
\end{array} .
\end{array}
$$

7. Show that φ is an injective group morphism and that

$$
\varphi(\Gamma)=G \cap \mathrm{GL}\left(\mathbb{Z}^{n} \times \mathbb{Z}^{n}\right) .
$$

8. Show that there exists an isomorphism $\psi: G \rightarrow \mathrm{O}(q) \times \mathrm{O}(\bar{q})$ such that

$$
\pi \circ \psi \circ \varphi=i,
$$

where $\pi: \mathrm{O}(q) \times \mathrm{O}(\bar{q}) \rightarrow \mathrm{O}(q)$ denotes the projection on the first factor and $i: \Gamma \rightarrow \mathrm{O}(q)$ denotes the inclusion.
9. Conclude.

