P. HALL'S STRANGE FORMULA FOR ABELIAN p-GROUPS

Dedicated to professor Tsuyoshi Ohyama's 60-th birthday

Tomoyuki YOSHIDA

(Received August 27, 1991)

1. Introduction

The purpose of this paper is to study some summations over non-ssomorphic abelian p-groups. In particular, for a finite group (or a group which has finitely many solutions of the equation $x^{p^{n}}=1$ for each $n \geq 1$) G, we study two Dirichlet series as follows:

$$
\begin{aligned}
S_{G}^{A} p(z) & :=\sum_{A}^{\prime} s(A, G)|A|^{-z}, \\
H_{G}^{A} p(z) & :=\sum_{A}^{\prime} \frac{h(A, G)}{|\operatorname{Aut} A|}|A|^{-z},
\end{aligned}
$$

where the summation is taken over a complete set of representatives of isomorphism classes of finite abelian p-groups and

$$
\begin{aligned}
& s(A, G):=\#\left\{A_{1} \leq G \mid A_{1} \cong A\right\} \\
& h(A, G):=|\operatorname{Hom}(A, G)|
\end{aligned}
$$

(The above series $S_{G}^{A} p(z)$ and $H_{A}^{G} p(z)$ are called the zeta functions of Sylow and Frobenius type in the paper [Yo91] because they appeared in the study of Sylow's third theorem and Frobenius' theorem on the number of solutions of the equation $x^{n}=1$ on a finite group.)

The main theorem states a relation between them:

Theorem 3.1.

$$
H_{G}^{A} p(z) / S_{G}^{A} p(z)=\prod_{m=1}^{\infty}\left(1-p^{-m-z}\right)^{-1}
$$

In particular, the left hand side is independent of G.
The proof of this theorem is based on the LDU-decomposition of the Hom-set matrix of the category of finite abelian p-groups and on the generating functions related to the Hom-set matrix. See [Yo 87], [Yo 91].

As a corollary, we get P . Hall's strange formula ([Ha 38]):

Corollary 4.4.

$$
\sum_{\Delta}^{\prime} \frac{1}{|A|}=\sum_{\Delta}^{\prime} \frac{1}{|\operatorname{Aut} A|},
$$

where the summation is taken over all non-isomorphic abelian p-groups.
In his paper [Ha 38], P. Hall proved this formula as follows: Since the number of isomorphism classes of abelian groups of order p^{n} equals the partition number $p(n)$,

$$
\sum_{A}^{\prime} \frac{1}{|A|}=\sum_{n=0}^{\infty} \frac{p(n)}{p^{n}}=\frac{1}{f_{\infty}(1 / p)}
$$

Here for $0 \leq n \leq \infty$, we define

$$
f_{n}(x):=(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{n}\right) .
$$

Thus an identity of Euler ([An 76,] Corollary 2.2) gives

$$
\begin{equation*}
\sum_{A}^{\prime} \frac{1}{|A|}=\sum_{n=0}^{\infty} \frac{(1 / p)^{n}}{f_{n}(1 / p)} \tag{1}
\end{equation*}
$$

Let A be an abelian group of order p^{n} and of type

$$
\left(1^{\lambda_{1}} 2^{\lambda_{2}} \cdots n^{\lambda_{n}}\right),
$$

that is, A is the direct product of λ_{1} cyclic groups of order p, λ_{2} cylic groups of order p^{2}, and so on. Let

$$
\mu_{i}:=\lambda_{i}+\lambda_{i+1}+\cdots,
$$

so that

$$
\mu_{1} \geq \mu_{2} \geq \cdots \geq 0, \quad \mu_{1}+\mu_{2}+\cdots=n
$$

Then the order of the automorphism group of A is given by

$$
\mid \text { Aut } A \mid=\prod_{i \geq 1} f_{\mu_{i-\mu_{i+1}}}(1 / p) p^{\mu_{i}{ }^{2}}
$$

Thus in order to prove Corollary 4.4, it will suffice to show that

$$
\begin{equation*}
\frac{x^{n}}{f_{n}(x)}=\sum_{\Sigma \mu_{i}=n} \frac{x^{\mu_{1}{ }^{2}+\mu_{2}{ }^{1}+\cdots}}{f_{\mu_{1}-\mu_{2}}(x) f_{\mu_{1}-\mu_{3}(x) \ldots . .}(x) \cdots}, \tag{2}
\end{equation*}
$$

where the summation is taken over all $(\mu)=\left(\mu_{1}, \mu_{2}, \cdots\right)$ such that $\mu_{1} \geq \mu_{2} \geq \cdots$ ≥ 0 and $\mu_{1}+\mu_{2}+\cdots=n$.
P. Hall proved (2) by a combinatorial method in his paper ([Ha-38]). His
formula (3) implies another strange formula:
Corollary 4.3. For any $n \geq 0$,

$$
\begin{equation*}
\sum_{|A|=p^{n}}^{\prime} \frac{1}{|\operatorname{Aut} A|}=\sum_{\mathrm{rk}(\mathcal{A})=u}^{\prime} \frac{1}{|A|}, \tag{3}
\end{equation*}
$$

where the summations are taken over all non-isomorphic abelian p-groups of order p^{n}, resp. of rank n.
In fact, the RHS of (3) equals the n-th term of the RHS of (1).
As a more general corollary of the main theorem, we have the following identity, which is not found in P. Hall's papers [Ha 38], [На 40]:

Corollary 4.2. Let C be an abelian group of order p^{n}. Then

$$
\begin{equation*}
\sum_{|A|=p^{m}}^{\prime} \frac{|\operatorname{Epi}(C, A)|}{|\operatorname{Aut} A|}=\sum_{\mathrm{rk}(A)=m-n}^{\prime} \frac{1}{|A|} \tag{4}
\end{equation*}
$$

where $\operatorname{Epi}(C, A)$ denotes the set of epimorphic homomorphisms from C to A.
We can develop a similar theory for the summations on any category of groups which is closed under subgroups and homomorphic images. Furthermore, in the case of elementary abelian p-groups, it is related with a topological property of p-subgroup complex of a finite group G. See [Yo 91].

I would like to thank the referee of this paper for reading carefully it and pointing out many errors.

2. The Hom-set matrix

In this section, we study the relation between the number of homomorphisms from abelian p-groups into a finite group G and the number of abelian p-subgroups in G. The categroy of finite groups has the unique epi-monofactorization property, and so we can apply the method of [Yo 87] to this category

Let A, B, G be finite groups, and define

$$
\begin{aligned}
h(A, G) & :=|\operatorname{Hom}(A, G)| \\
s(A, G) & :=\#\{H \leq G \mid H \cong A\} \\
q(A, B) & :=\#\left\{A^{\prime} \unlhd A|A| A^{\prime} \cong B\right\} \\
d(A, B) & :=\left\{\begin{array}{lr}
|\operatorname{Aut} A| & \text { if } A \cong B \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

where Aut A denotes the automorphism group of A. Then $q(A, B) \cdot \mid$ Aut $B \mid$ (resp. |Aut $A \mid \cdot s(A, B)$) equals the number of epimorphic (resp. monomorphic) homomorphisms from A to B. We view these families of integers
$(h(A, G)),(s(A, G)),(q(A, G)),(d(A, B))$ as matrices H, A, Q, D, respectively, indexed by isomorphism classes of finite groups.

Lemma 2.1. $H=Q D S$ as matrices, that is,

$$
\begin{equation*}
|\operatorname{Hom}(A, G)|=\sum_{C}^{\prime} \#\left\{A^{\prime} \unlhd A|A| A^{\prime} \cong C\right\} \cdot \mid \text { Aut } C \mid \cdot s(C, G), \tag{1}
\end{equation*}
$$

where Σ ' denotes the summation over a set of complete representatives of isomorphism classes of finite groups.

Proof. Since each homomorphism from A to G induces a unique epimorphism from A onto its image in G, we have that

$$
|\operatorname{Hom}(A, G)|=\sum_{H \leq G}|\operatorname{Epi}(A, H)|
$$

where $\operatorname{Epi}(A, H)$ denotes the set of epimorphisms from A to H. By the homomorphism theorem,

$$
|\operatorname{Epi}(A, H)|=\#\{B \unlhd A|A| B \cong H\} \cdot \mid \text { Aut } H \mid=q(A, H) d(H, H),
$$

and hence

$$
|\operatorname{Hom}(A, G)|=\sum_{C}^{\prime} \#\left\{A^{\prime} \unlhd A|A| A^{\prime} \cong C\right\} \cdot \mid \text { Aut } C \mid \cdot s(C, G),
$$

as required.
Remark. Arranging the isomorphism classes of finite groups in order of the orders, Q (resp. S) makes a lower (resp. upper) uni-triangular matrix. Thus this lemma give an LDU-decomposition of the hom-set matrix H. Similar decomposition holds for any locally finite category with unique epi-mono factorization property. See [Yo 87].

Let p be a prime. We are mainly interested in abelian-groups. First of all, we introduce the Möbius function of abelain p-groups:

$$
\mu(B):= \begin{cases}(-1)^{r} p^{\binom{r}{2}} & \text { if } B \cong C_{p}^{r} \tag{2}\\ 0 & \text { else. }\end{cases}
$$

Then the following lemma is well-known:
Lemma 2.2. For an abelian p-group A,

$$
\sum_{B \leq A} \mu(B)= \begin{cases}1 & \text { if } A=1 \\ 0 & \text { else } .\end{cases}
$$

For the proof, refer to P. Hall [Ha 36] (2.7), [St 86] Example 3.10.2, [Mc 79], p. 97. Note that it suffices to prove it only for an elementary abelian group A. We can now prove the inversion formula.

Proposition 2.3. Let A be a p-group and G a finite group. Then

$$
\begin{equation*}
s(A, G)=\frac{1}{|\operatorname{Aut} A|} \sum_{B \leq A} \mu(B) h(A / B, G) \tag{3}
\end{equation*}
$$

Proof. By lemma 2.1 we have that

$$
\begin{aligned}
\mathrm{RHS} & \left.=\sum_{B \leq A} \frac{\mu(B)}{|\operatorname{Aut} A|} \sum_{C}^{\prime} q(A \mid B, C) \right\rvert\, \text { Aut } C \mid s(C, G) \\
& =\sum_{\sigma}^{\prime} \frac{\mid \text { Aut } C \mid}{\mid \text { Aut } A \mid}\left(\sum_{B \leq A} \mu(B) q(A \mid B, C)\right) s(C, G)
\end{aligned}
$$

where Σ^{\prime} denotes the summation over a complete set of representatives of all finite abelian p-gropus. Thus it will suffice to show that

$$
\sum_{B \leq A} \mu(B) q(A / B, C)= \begin{cases}1 & \text { if } A \cong C \tag{4}\\ 0 & \text { else }\end{cases}
$$

But this is proved as follows:

$$
\begin{aligned}
\mathrm{LHS} & =\sum_{B \leq A} \mu(B) \cdot \#\{D / B \leq A / B|A| D \cong C\} \\
& =\sum_{: S \leq A}\left(\sum_{B \leq D} \mu(B)\right) \\
& = \begin{cases}1 & \text { if } A \cong C \\
0 & \text { else }\end{cases}
\end{aligned}
$$

by Lemma 2.2, as required. Hence the proposition was proved.

3. Zeta functions of Sylow and Frobenius type

Throughout this section, G denotes a finite group, and $A, B, C \cdots$ denote abelian p-groups. Furthermore, Σ^{\prime} means a summation over a complete set of isomorphism classes of abelian p-groups. As before, let $s(A, G)$ be the number of subgroups of G isomorphic to A, and let $h(A, G)$ be the number of homomorphisms from A to G.

For any abelian p-groups A, B, C, we define the Hall polynomial $g_{B, c}^{A}$ by

$$
g_{B, C}^{A}:=\#\left\{B_{i} \leq A\left|B_{1} \cong B, A\right| B_{1} \cong C\right\}
$$

See [Mc 79] for the general theory of Hall polynomials.
We now define the zeta functions of Sylow and Frobenius types as follows:

$$
\begin{align*}
S_{G}^{A}(z) & :=\sum_{A}^{\prime} s(A, G)|A|^{-z} \tag{1}\\
H_{G}^{A p}(z) & :=\sum_{A}^{\prime} \frac{h(A, G)}{|\operatorname{Aut} A|}|A|^{-z} \tag{2}
\end{align*}
$$

where, of course, A runs over a complete set of representatives of isomorphism classes of abelian p-groups. Clearly,

$$
S_{G}^{A p}(z) \in \boldsymbol{Z}\left[p^{-z}\right], \quad H_{G}^{A p}(z) \in \boldsymbol{Q}\left[\left[p^{-y}\right]\right] .
$$

The following theorem is the main theorem of this paper:
Theorem 3.1. For any finite group G,

$$
\begin{equation*}
\frac{H_{G}^{A p}(z)}{S_{G}^{A p}(z)}=\prod_{m=1}^{\infty}\left(1-p^{-m-z}\right)^{-1} \quad(\operatorname{Re} z>-1) \tag{3}
\end{equation*}
$$

In particular, the left hand side is independent of the finite group G.
To prove this theorem, we need the following lemma due to P. Hall [Ha 40] (10). The proof given here is different from the one by P. Hall. See Corollary 4.5.

Lemma 3.2. (P.Hall). For any finite abelian p-group B, C,

$$
\begin{equation*}
\sum_{A}^{\prime} \frac{1}{|\operatorname{Aut} A|} g_{B, C}^{A}=\frac{1}{|\operatorname{Aut} B| \cdot|\operatorname{Aut} C|}, \tag{4}
\end{equation*}
$$

where A runs over non-isomorphic abelian p-groups.
Proof. Define a set

$$
\mathcal{E}_{A}(C, B):=\{(f, g) \mid 1 \rightarrow B \xrightarrow{f} A \xrightarrow{g} C \rightarrow 1\}
$$

and a map

$$
\left.\begin{array}{rl}
\pi & : \mathcal{E}_{A}(C, B) \\
& :(f, g)
\end{array}\right)\{f(B) .
$$

Clearly, π is surjective, and if $\pi(f, g)=\pi\left(f^{\prime}, g^{\prime}\right)$, then there exist unique $\tau \in$ Aut B and $\rho \in$ Aut C such that $f^{\prime}=f \tau, g^{\prime}=\rho g$. Thus the cardinality of each fiber equals \mid Aut $B|\cdot|$ Aut $C \mid$, and so

$$
\begin{equation*}
g_{B, C}^{A}=\frac{\left|\mathcal{E}_{A}(C, B)\right|}{|\operatorname{Aut} B| \cdot|\operatorname{Aut} C|} . \tag{5}
\end{equation*}
$$

Next we let Aut A act on $\mathcal{E}_{A}(C, B)$ by

$$
\sigma \cdot(f, g):=\left(\sigma f, g \sigma^{-1}\right)
$$

for $\sigma \in$ Aut $A,(f, g) \in \mathcal{E}_{A}(C, B)$. There exists a bijective correspondence between the stabilizer of (f, g) and the group homomorphisms:

$$
(\text { Aut } A)_{(f, g)} \leftrightarrow \operatorname{Hom}(C, B),
$$

by $\sigma \leftrightarrow \eta$, where $a \cdot f(\eta(g(a)))=\sigma(a)$, and so the cardinality of each Aut A-orbit equals

$$
|\operatorname{Aut} A| /|\operatorname{Hom}(C, B)|
$$

Thus

$$
\begin{equation*}
\left|\mathcal{E}_{A}(C, B)\right|=\frac{|\operatorname{Aut} A|}{|\operatorname{Hom}(C, B)|} \cdot\left|\mathcal{E}_{A}(C, B) / \operatorname{Aut} A\right| \tag{6}
\end{equation*}
$$

On the other hand, by the definition of the equivalence of module-extensions, we have that

$$
\begin{equation*}
\left|\operatorname{Ext}^{1}(C, B)\right|=\sum_{A}^{\prime} \mid \mathcal{E}_{A}(C, B) / \text { Aut } A \mid \tag{7}
\end{equation*}
$$

By (5), (6), (7), we have that

$$
\sum_{A}^{\prime} \frac{1}{|\operatorname{Aut} A|} g_{B, C}^{A}=\frac{\left|\operatorname{Ext}^{1}(C, B)\right|}{|\operatorname{Aut} B| \cdot|\operatorname{Aut} C| \cdot|\operatorname{Hom}(C, B)|}
$$

It remains to prove that

$$
\begin{equation*}
\left|\operatorname{Ext}^{1}(C, B)\right|=|\operatorname{Hom}(\mathrm{C}, B)| . \tag{8}
\end{equation*}
$$

Since there exists an exact sequence $1 \rightarrow F \rightarrow F \rightarrow C \rightarrow 1$, where F is a finitely generated free abelian group, the long exact seqeunce gives an exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}(C, B) \rightarrow \operatorname{Hom}(F, B) \rightarrow \operatorname{Hom}(F, B) \\
\rightarrow \operatorname{Ext}^{1}(C, B) \rightarrow \operatorname{Ext}^{1}(F, B)=0,
\end{gathered}
$$

which implies that $\left|\operatorname{Ext}^{1}(C, B)\right|=|\operatorname{Hom}(C, B)|$. This proves the lemma.
Lemma 3.3. Let $\mu(B)$ denote the Mobius function of finite abelian p groups. Then

$$
\begin{equation*}
\sum_{B}^{\prime} \frac{\mu(B)}{|\operatorname{Aut} B|}|B|^{-z}=\prod_{m=1}^{\infty}\left(1-p^{-m-z}\right), \quad \operatorname{Re} z>-1 \tag{9}
\end{equation*}
$$

where B runs over non-ssomorphic abelian p-groups.
Proof. Since

$$
\mu(B)= \begin{cases}(-1)^{n} p^{\binom{2}{2}} & \text { if } B \cong C_{p}^{n} \\ 0 & \text { if } B \text { is not elementary abelian }\end{cases}
$$

we have

$$
\begin{aligned}
\mathrm{LHS} & =\sum_{u=0}^{\infty} \frac{(-1)^{n} p^{\binom{n}{2}}}{|\mathrm{GL}(n, p)|} p^{-n z} \\
& =\sum_{n=0}^{\infty} \frac{\left(-p^{-2}\right)^{n}}{(p-1)\left(p^{2}-1\right) \cdots\left(p^{n}-1\right)}
\end{aligned}
$$

Thus the required identity follows from the q-binomial theorem ([An 76], Theorem 2.1):

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{x^{n}}{(p-1)\left(p^{2}-1\right) \cdots\left(p^{n}-1\right)}=\prod_{m=1}^{\infty}\left(1+p^{-m} x\right), \quad|x|<p \tag{10}
\end{equation*}
$$

Proof of Theorem 3.1. The inversion formula Proposition 2.3 gives

$$
\begin{aligned}
s(A, G) & =\frac{1}{|\operatorname{Aut} A|} \sum_{B \leq A} \mu(B) h(A \mid B, G) \\
& =\frac{1}{|\operatorname{Aut} A|} \sum_{B, C}^{\prime} \mu(B) h(C, G) g_{B, C}^{A}
\end{aligned}
$$

Thus

$$
\begin{aligned}
S_{G}^{A} p(z) & =\sum_{A}^{\prime} s(A, G)|A|^{-z} \\
& =\sum_{A \cdot B, C}^{\prime} \frac{\mu(B) h(C, G)}{|\operatorname{Aut} A|} g_{B, C}^{A}|A|^{-z} \\
& =\sum_{B, C}^{\prime}\left(\sum_{A}^{\prime} \frac{g_{B, C}^{A}}{|\operatorname{Aut} A|}\right) \mu(B) h(C, G)|B|^{-z}|C|^{-z} .
\end{aligned}
$$

By Lemma 3.2, we have

$$
\begin{aligned}
S_{G}^{A p}(z) & =\sum_{B, C}^{\prime} \frac{1}{\mid \text { Aut } B|\cdot| \text { Aut } C \mid} \mu(B) h(C, G)|B|^{-z}|C|^{-z} \\
& =\left(\sum_{B}^{\prime} \frac{\mu(B)}{|\operatorname{Aut} B|}|B|^{-z}\right) \cdot\left(\sum_{C}^{\prime} \frac{h(C, G)}{|\operatorname{Aut} C|}|C|^{-z}\right) .
\end{aligned}
$$

By lemma 3.3, we conclude that

$$
S_{G}^{A p}(z)=\prod_{m=1}^{\infty}\left(1-p^{-m-z}\right) \cdot H_{G}^{A} p(z) .
$$

This proves the theorem.

4. Corollaries

Theorem 3.1 implies some identities as a special cases.
Corollary 4.1. Let $\mathcal{A}_{p}(G)$ denote the set of abelian p-subgroups of a finite group G. Then

$$
\begin{equation*}
\frac{1}{\left|\mathcal{A}_{p}(G)\right|} \sum_{A}^{\prime} \frac{h(A, G)}{|\operatorname{Aut} A|}=\sum_{A}^{\prime} \frac{1}{|A|}, \tag{1}
\end{equation*}
$$

where the summation is over non-isomorphic abelian p-groups.

Proof. Put $z=0$ in Theorem 3.1.
Corollary 4.2. Let C be an abelian group of order p^{n}. Then for any $m \geq 0$,

$$
\sum_{|A|=p^{m}}^{\prime} \frac{|\operatorname{Epi}(C, A)|}{|\operatorname{Aut} A|}=\sum_{\mathrm{rk}(A)=m-n}^{\prime} \frac{1}{|A|}
$$

where $\operatorname{Epi}(C, A)$ denotes the set of epimorphic homomorphisms from C to A.
Proof. By Lemma 2.1, we have

$$
\begin{equation*}
H_{G}(z)=\sum_{A}^{\prime} \frac{h(A, G)}{|\operatorname{Aut} A|}|A|^{-z}=\sum_{C}^{\prime} \sum_{A}^{\prime} \frac{|\operatorname{Epi}(A, C)|}{|\operatorname{Aut} A|}|A|^{-z} s(C, G) \tag{2}
\end{equation*}
$$

The following formula is well-known ([An 76]), (2.1.1)):

$$
\begin{align*}
\prod_{m=1}^{\infty}\left(1-x p^{-m}\right)^{-1} & =\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} p(k, n) p^{-k} x^{n} \\
& =\sum_{A}^{\prime} \frac{1}{|A|} x^{\mathrm{rk}(A)} \tag{3}
\end{align*}
$$

where $p(k, n)$ denotes the number of partitions of k into n parts and, of course, it is equal to the number of non-siomorphic abelian p-groups of order p^{k} and of rank n. Thus Theorem 3.1 yields that

$$
\begin{align*}
H_{G}(z) & =S_{G}(z) \cdot \prod_{m=1}^{\infty}\left(1-p^{-z-m}\right)^{-1} \\
& =\sum_{G}^{\prime} s(C, G)|C|^{-z} \cdot \sum_{A}^{\prime} \frac{1}{|A|^{-z}} p^{-\mathrm{rk}(A)} \\
& =\sum_{G}^{\prime}\left(\sum_{A}^{\prime} \frac{1}{|A|} p^{-z \mathrm{rk}(A)}\right)|C|^{-z} s(C, G) . \tag{4}
\end{align*}
$$

Thus comparing (2) and (4), an easy induction argument yields that

$$
\begin{equation*}
\sum_{A}^{\prime} \frac{|\operatorname{Epi}(A, C)|}{|\operatorname{Aut} A|}|A|^{-z}=\sum_{A}^{\prime} \frac{1}{|A|} p^{-z \cdot \mathrm{rkk}(A)}|C|^{-z} . \tag{5}
\end{equation*}
$$

We now assume that $|C|=p^{n}$. Then the right hand side of (5) is

$$
\begin{aligned}
\text { RHS } & =\sum_{A}^{\prime} \frac{1}{|A|} p^{-2 \cdot(\operatorname{rk}(A)+n)} \\
& =\sum_{m=0}^{\infty} \sum_{\mathrm{rk}(A)=m-n}^{\prime} \frac{1}{|A|} .
\end{aligned}
$$

Hence

$$
\sum_{|A|=p^{m}}^{\prime} \frac{|\operatorname{Epi}(A, C)|}{|\operatorname{Aut} A|}=\sum_{\mathrm{rk}(A)=m-n}^{\prime} \frac{1}{|A|}
$$

as required.
As a special case of this corollary, we have the following identites (refer to [Ha 40], (7)).

Corollary 4.3. For any $n \geq 0$,

$$
\begin{equation*}
\sum_{|A|=p^{n}}^{\prime} \frac{1}{|\operatorname{Aut} A|}=\sum_{\mathrm{rk}(A)=n}^{\prime} \frac{1}{|A|} \tag{6}
\end{equation*}
$$

where the summations are taken over all non-isomorphic abelian p-groups of order p^{n}, resp. of rank n.

Corollary 4.3 implies P. Hall's strange tormula ([Ha 38]):
Corollary 4.4 (P.Hall): $\quad \sum_{\Delta}^{\prime} \frac{1}{|\operatorname{Aut} A|}=\sum_{\Delta}^{\prime} \frac{1}{|A|}$.
The final corollary is the fundamental theorem of finite abelian groups.
Corollary 4.5. Any finite abelian p-group is a direct product of soem cyclic groups.

Proof. The formula which P. Hall proved in his paper [Ha 38] is

$$
\sum_{A: \text { known }}^{\prime} \frac{1}{\mid \text { Aut } A \mid}=\prod_{m=1}^{\infty}\left(1-p^{-m}\right)^{-1}=\sum_{A: \text { known }}^{\prime} \frac{1}{|A|}
$$

where A runs over all non-isomorphic abelian p-groups which are direct products of some cyclic groups. On the other hand, the formula proved in this section is just

$$
\begin{equation*}
\sum_{A: \text { all }}^{\prime} \frac{1}{|\operatorname{Aut} A|}=\sum_{A: \text { known }}^{\prime} \frac{1}{|A|} \tag{7}
\end{equation*}
$$

where in the first summation, A runs over all non-isomorphic abelain p-groups. Comparing the above two formulae, we conclude that all abelian p-groups are known.

Remark. In the proof of (7), we used only the property that a finite abelian group A has a free resolution of the type

$$
1 \rightarrow F \rightarrow F \rightarrow A \rightarrow 1
$$

See (8) in the proof of Lemma 3.2.

References

[An 76] G.E. Andrews: The Theory of Partitions, Addison-Wesley, London, 1976.
[Ha 38] P. Hall: A partition formula connected with Abelian groups, Comment. Math. Helvet. 11 (1938), 126-129.
[Ha 40] P. Hall: On groups of automorphisms, J. reine angew. Math. 182 (1940), 194204.
[Mc 79] I.G. Macdonalc: Symmetric Functions and Hall Polynomials, Clarendon Press, 1979.
[St 81] R.P. Stanley: A Book Review of I.G. Macdonald's book 'Symmetric functions and Hall polynomials" (Oxford 1979), Bull. Amer. Math. Soc. (New Series), 4 (1981), 254-265.
[St 86] R.P. Stanley: Enumerative Combinatiorics, Vol. I, Wadsworth \& Brooks, 1986.
[Yo 87] T. Yoshida: On the Burnside rings of finite groups and finite categories, Advanced Studies in Pure Math. 11 (1987), '"Commutative Algebra and Combinatorics", 337-353.
[Yo 91] T. Yoshida: $|\operatorname{Hom}(A, G)|$, J. Algebra, to appear.

Department of Mathematics
Kumamoto University
Kurokami 2-3 9-1
Kumamoto 860
Japan

