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So do I gather strength and hope anew;
For well I know thy patient love perceives
Not what I did, but what I strove to do,–
And though the full, ripe ears be sadly few,
Thou wilt accept my sheaves.

Bringing Our Sheaves with Us (1858)
by Elizabeth Chase Allen
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CHAPTER 1

Introduction

This are the notes of graduate lectures given in the fall semester 2010 at Prince-
ton University, and then as the Eilenberg lectures at Columbia in the spring 2011. The
first part of the symplectic part of the course (chapter 2 to 4) corresponds to a course
given at Beijing Unversity on 2007 and 2009, with notes by Hao Yin (Shanghai Jiao-
tong University). The aim of this course is to present the recent work connecting
sheaf theory and symplectic topology, due to several authors, Nadler ([Nad, Nad-Z],
[Tam], Guillermou-Kashiwara-Schapira [G-K-S]. This is completed by the approach
of [F-S-S], and the paper [F-S-S2] really helped us to understand the content of these
works.

Even though the goal of the paper is to present the proof of the classical Arnold con-
jecture on intersection of Lagrangians, and the more recent work of [F-S-S] and [Nad]
on the topology of exact Lagrangians in T §X , we tried to explore new connections be-
tween objects. We also tried to keep to the minium the requirements in category theory
and sheaf theory necessary for proving our result. Even though the appendices contain
some material that will be useful for those interested in pursuing the sheaf theoretical
approach, much more has been omitted, or restricted to the setting we actually use1

The experts will certainly find that our approach is “not the right one”, as we take ad-
vantage of many special features of the category of sheafs, and base our approach of
derived categories on the Cartan-Eilenberg resolution. We can only refer to the papers
and books in the bibliography for a much more complete account of the theory.

The starting point is the idea of Kontsevich, about the homological interpreta-
tion of Mirror symmetry. This should be an equivalence between the derived cate-
gory of the Db(Fuk(M,!)), the derived cateogory of the category having objects the
(exact) Lagrangians in (M ,!) and morphisms the elements in the Floer cohomology
(i.e. Mor(L1,L2) = F H§(L1,L2)) the derived category of coherent sheafs on the Mirror,
Db(Coh(M̌,J)). Our situation is a toy model, in which (M ,!) = (T §X ,d(pd q)), and
Db(Coh(M̌,J)) is then replaced by Db(Sheafcstr(X£R)) the category of constructible
sheafs (with possibly more restrictions) on X £R.

There is a functor

SS : Db(Sheafcstr(X£R)) °! Db(Fuk(T§X,!))

1For example since the spaces on which our sheafs are defined are manifolds, we only rarely discuss
assumptions of finite cohomological dimension.
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8 1. INTRODUCTION

determined by the singular support functor. The image does not really fall in
Db(Fuk(T§X,!)), since we must add the singular Lagrangians, but this a more a fea-
ture than a bug. Moreover we show that there is an inverse map, called “ Quantiza-
tion” obtained by associating to a smooth Lagrangian L, a sheaf over X , FL with fiber
(FL)x = (C F§(L,Vx),@x) where Vx is the Lagrangian fiber over x and C F§(L,Vx),@x) is
the Floer complex of the intersection of L and Vx . This is the Floer quantization of
L. This proves in particular that the functor SS is essentially an equivalence of cat-
egories. We are also able to explain the condition for the Floer quantization of L
to be an actual quantization (i.e. to be well defined and provide an inverse to SS).
Due to this equivalence, for complexes of sheafs F •,G • on X , we are able to define
H§(F •,G •) = H§(F •≠ (G •)§) as well as F H§(SS(F ),SS(G )) and these two objects co-
incide. We may also define F H§(L,G ) as H§(FL ,G ).

I thank Hao Yin for allowing me to use his lecture notes from Beijing. I am very
grateful to the authors of [Tam], [Nad], [F-S-S] and [F-S-S2] and [G-K-S] from where
theses notes drew much inspiration. It is a special pleasure to thank Stéphane Guiller-
mou for a talk he gave at Symplect’X seminar, and many useful discussions, to Pierre
Schapira for patiently explaining me many ideas of his theory and dispelling some
naive preconceptions, to Paul Seidel and Mohammed Abouzaid for discussions rele-
vant to the General quantization theorem. Finally I thank the University of Princeton,
the Institute for Advanced Study and Columbia University for hospitality during the
preparation of this course. A warm thanks to Helmut Hofer for many discussions and
for encouraging me to turn these notes into book form.

New-York, Spring 2011

This material is based upon work supported by the National Science Foundation
under agreement DMS-0635607 and DMS-0603957. Any opinion, findings and con-
clusions or recommendation expressed in this material are those of the author and do
not necessariy reflect the views of the National Foundation.



Part 1

Elementary symplectic geometry





CHAPTER 2

Symplectic linear algebra

1. Basic facts

Let V be a finite dimensional real vector space.

DEFINITION 2.1. A symplectic form on V is a skew-symmetric bilinear nondegen-
erate form, i.e. a two-form satisfying:

(1)
8x, y 2V !(x, y) =°!(y, x)

(hence 8x 2V !(x, x) = 0);
(2) 8x,9y such that !(x, y) 6= 0.

Examples:

(1) V =R2 with the symplectic form æ1((x, y), (x 0, y 0)) = x y 0 °x 0y .
(2) If (V1,!1), (V2,!2) are symplectic spaces, V = V1 ©V2, ! = !1 ©!2 defined by

!(v1 + v2, v 0
1 + v 02) =!1(v1, v 01)+!2(v2, v 0

2) for vi , v 0I 2Vi is also symplectic.
(3) Combining the above two examples, we get a symplectic structure æn = æ1 ©

....©æ1 on R2n .
(4) If L is a vector space, and L§ its dual space, L©L§ endowed withæL(x, x§), (y, y§)) =

x§(y)° y§(x) is symplectic. Taking L = R we get the symplectic form æ1 on R2

and taking L =Rn we get (R2n ,æn).

For a general 2-form ! on a vector space, V , we denote by Ker(!) the subspace
given by

Ker(!) = {v 2 V |8w 2 V!(v,w) = 0}

The second condition implies that Ker(!) reduces to zero, so when! is symplectic,
there are no “preferred directions” in V .

DEFINITION 2.2. Let (V ,!) be a symplectic vector space. We denote by Sp(V ,!) the
group of automorphisms of V preserving!. In other terms, T 2 Sp(V ,!) if!(T x,T y) =
!(x, y) for all x, y 2V .

LEMMA 2.3. Let W be a subspace of the symplectic space (V ,!). Setting K = (W \
W !) = Ker(!|W), we have a decomposition W = K ©S with S symplectic. Moreover there
is a subspace K 0 Ω S! such that K ©K 0 © S is symplectic, where K 0 is identified to K §

through the map x 7!!(x,•). In other words, (K ©K 0,!|K©K 0) is isomorphic to K ©K §.

11



12 2. SYMPLECTIC LINEAR ALGEBRA

PROOF. Indeed, if S is a complement of K , then !|S is non-degenerate, since if v 2
W \S! we have v 2 K!\S! Ω W \ (K ©S)! = W \W ! Ω K . Now the map V § °! K §

induced by inclusion is onto and since ! induces an isomorphism from V to V §, the
map induced by ! from V to K § is onto, and has kernel containing S. It is thus again
onto on any complementary subspace of S, in particular in S!. If K 0 is a subspace of
S! of the same dimension as K , such that the map ! restricted to K 0 is onto, we have
the decomposition described in the lemma. ⇤

PROPOSITION 2.4. The group SP (V ,!) acts transitively on V \ {0}.

PROOF. Obviously there is no symplectic vector space in dimension one. Indeed,
assume first we proved the theorem for 2-dimensional symplectic spaces. So assume
dim(V ) ∏ 3. Let x, y be two vectors in V , such that !(x, y) 6= 0. We set U the vector
space generated by x, y and since !|U is nondegenerate, V =U ©U!. Let TU such that
TU (x) = y . Set T = TU © IdU! . Then T is in Sp(V ,!) and T (x) = y . If now we have
two vectors such that !(x, y) = 0 we can find z such that !(z, x),!(z, y) 6= 0. Otherwise
!(x, z)!(y, z) = 0 for all z, hence V is the union of two proper hyperplanes which is
impossible1. When dim(V ) = 2, we can see that if x, y are independent, x 7! y, y 7! °x
is symplectic so Sp(V ,!) acts transitively on the set of pairs of linearly independent
vectors. If x, y are linearly dependent, we can always find z such that the pairs x, z and
z, y are pairs of independent vectors. ⇤

There are special types of subspaces in symplectic manifolds. For a vector subspace
F , we denote by

F! = {v 2V |8w 2 F , !(v, w) = 0}

the symplectic orthogonal of F . From Grassmann’s formula applied to the surjective
map 'F : V ! F§ given by 'F (v) = !(v,•), it follows that dim(F!) = dim(Ker('F)) =
codim(F) = dim(V)°dim(F). Moreover the proof of the following two formulas is left to
the reader

PROPOSITION 2.5.
(F!)! = F

(F1 +F2)! = F!
1 \F!

2

DEFINITION 2.6. A map ' : (V1,!1) ! (V2,!2) is a symplectic map if '§(!2) = !1
that is

8x, y 2V1,!2('(x),'(y)) =!1(x, y)

It is a symplectomorphism if and only if it is invertible- its inverse is then necessarily
symplectic. A subspace F of (V ,!) is

1If the field is infinite, z 7!!(x, z)·!(y, z) would be a second degree polynomial vanishing identically
on the field, so it is zero, but then either z 7!!(x, z) or z 7!!(y, z) is identically zero, hence x or y are zero.
This is also impossible for a vector space on a finite field Fq , since a hyperplane has cardinal qdim(V )°1

so the union of two hyperplanes has cardinal at most 2qdim(V )°1 °1 < qdim(V )
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• isotropic if F Ω F! (()!|F = 0);
• coisotropic if F! Ω F
• Lagrangian if F! = F .

PROPOSITION 2.7. (1) Any symplectic vector space has even dimension. If (V1,!1),
(V2,!2) are symplectic vector spaces fo the same dimension, they are symplecto-
morphic.

(2) Any isotropic subspace is contained in a Lagrangian subspace and Lagrangians
have dimension equal to half the dimension of the total space.

(3) If (V1,!1), (V2,!2) are symplectic vector spaces with L1,L2 Lagrangian sub-
spaces, and if dim(V1) = dim(V2), then there symplectomorphism ' : V1 ! V2
such that '§!2 =!1 and '(L1) = L2.

PROOF. We first prove that if I is an isotropic subspace it is contained in a La-
grangian subspace. Indeed, I is contained in a maximal isotropic subspace. We denote
it again by I and we just have to prove 2dim(I ) = dim(V ).

Since I Ω I! we have dim(I ) ∑ dim(I!) = dim(V )°dim(I ) so that 2dim(I ) ∑ dim(V ).
Now assume the inequality is strict. Then there exist a non zero vector, e, in I! \ I , and
I ©Re is isotropic and contains I . Therefore I was not maximal, a contradiction.

We thus proved that a maximal isotropic subspace I satisfies I = I! hence 2dim(I ) =
dim(V ), and dim(V ) is even.

Since {0} is an isotropic subspace, maximal isotropic subspaces exist2, and we
conclude that we may always find a Lagrangian subspace, hence V is always even-
dimensional.

This proves the first part of (1) and (2).
Let us now prove (3) and the second part of (1).
We know according to lemma 2.3 that (Vi ,!i ) is isomorphic to Li ©L§

i . But since L1
is isomorphic to L2 , we see that L1 ©L§

1 is isomorphic to L2 ©L§
2 by an isomorphism

sending L1o L2. We shall consider a standard symplectic vector space (R2n ,æn) isomor-
phic to Ln ©L§

n , where Ln =Rn

Let (V ,!) be a symplectic vector space and L a Lagrangian. We are going to prove
by induction on n = dim(L) = 1

2 dim(V ) that there exists a symplectic map 'n sending
Zn to L.

Assume this has been proved in dimension less or equal than n°1, and let us prove
it in dimension n.

Pick any e1 2 L. Since! is nondegenerate, there exists an f1 2V such that!(e1, f1) =
1. Then f1 › L. Define

V 0 =V ect (e1, f1)! = {x 2V |!(x,e1) =!(x, f1) = 0}.

It is easy to see that (V 0,!|V 0) is symplectic since only non-degeneracy is an issue, which
follows from the fact that

Ker(!|V0) = V0 \ (V0)! = {0}

2no need to invoke Zorn’s lemma, a dimension argument is sufficient.
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We now claim that L0 = L\V 0 is a Lagrangian in V 0 and L = L0©Re1. First, since!|L0 is the
restriction of !|L , we see that L0 is isotropic. It is maximal isotropic, since otherwise,
there would be an isotropic W such that V 0 æ W ) L0, and then W ©Re1 would be a
strictly larger isotropic subspace than L, which is impossible. Since L Ω L0 ©Re1 our
second claim follows by comparing dimensions.

Now the induction assumption implies that there is a symplectic map, 'n°1 from
(R2n°2,æ) to (V2,!) sending Zn°1 to L0. Then the map

'n :(R2,æ2)© (R2n°2,æ) °!(V ,!)

(x1, y1; z) °!x1e1 + y1 f1 +'n°1(z)

is symplectic and sends Zn to L.
Now the last statement of our theorem easily follows from the above: given two

symplectic manifolds, (V1,!1), (V2,!2) of dimension 2n, and two lagrangians L1,L2, we
get two symplectic maps

√ j : (R2n ,æn) °! (Vj ,! j )

sending Zn to L j . Then the map √2 ±√°1
1 is a symplectic map from (V1,!1) to (V2,!2)

sending L1 to L2.
⇤

REMARKS 2.8. (1) As we shall see, the map ' is not unique.
(2) Replacing F by F!, we see that from (2), it follows that any coisotropic vector

space contains a Lagrangian one.

Since any symplectic vector space is isomorphic to (R2n ,æ), the group of symplectic
automorphisms of (V ,!) denoted by Sp(V ,!) = {' 2GL(V )|'§!=!} is isomorphic to
Sp(n) = Sp(R2n ,!).

THEOREM 2.9 (Witt’s theorem). Let (V1,!1), (V2,!2) be symplectic spaces such that
dim(V1) ∑ dim(V2), and W1,W2 be subspaces such that there exists ' : W1 °! W2 such
that ¡§(!2|W2 ) =!1|W2 . Then ' extends to a symplectic map '̃ : (V1,!1),°! (V2,!2).

PROOF. If (W1,!1|W1 ) is symplectic, then V1 =W1 ©W !
1 and V2 =W2 ©W !

2 , and it is
enough to prove the existence of a symplectic map W !

1 °! W !
2 whenever dim(W1) ∑

dim(W2). This follow easily by induction. When W1 is not symplectic, W1 = K1 © S1
with K1 = W1 \W !

1 , S1 symplectic, and similarly W2 = K2 ©'(S2) where necessarily
'(K1) = K2. Then it is enough to send V 0

1 = S!1 to V 0
2 = '(S1)! extending ' : K1 °! K2.

In other words it is enough to reduce to the isotropic case. But since any isotropic
is contained in a Lagrangian, and any symplectic embedding of isotropic subspaces
extends to embeddings of Lagrangians, we may assume W1,W2 are Lagrangian. But
this follows from (3) above.

⇤
EXERCICE 2.10. Prove all results in this section for vector spaces on any field of

characteristic different from 2.
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We now give a better description of the set of lagrangian subspaces of (V ,!).

PROPOSITION 2.11. (1) There is a homeomorphism between the set

§L = {T | T ; is Lagrangian and T \L = {0}}

and the set of quadratic forms on L§. As a result,§L is contractible, and§(n) is
a smooth manifold of dimension n(n+1)

2 .
(2) The action of Sp(n) = {' 2 GL(V )|'§! = !} on the set of pairs of transverse

Lagrangians is transitive.

PROOF. For (1), we notice that W = L©L§ with the symplectic form

æ((e, f ), (e 0, f 0)) = he 0, f i°he, f 0i
is a symplectic vector space and that L©0 is a Lagrangian subspace.

According to the previous proposition there is a symplectic map √ : V °! W such
that √(L) = L©0, so we can work in W .

Let § be a Lagrangian in W with §\L = {0}. Then § is the graph of a linear map
A : L§ ! L, more precisely

§= {(Ay§, y§)|y§ 2 L§}.

The subspace§ is Lagrangian if and only if

æ((Ay§
1 , y§

1 ), (Ay§
2 , y2)) = 0, for all y1, y2

i.e. if and only if

hy§
1 , Ay§

2 i= hy§
2 , Ay§

1 i
that is if h·, A·i is a bilinear symmetric form on L§. But such bilinear form are in 1-
1 correspondence with quadratic forms. The second statement immediately follows
from the fact that the set of quadratic forms on an n-dimensional vector space is a vec-
tor space of dimension n(n+1)

2 , and the fact that to any Lagrangian L0 we may associate
a transverse Lagrangian L0

0, and L0 is contained in the open set of Lagrangians trans-
verse to L0

0 (Well we still have to check the change of charts maps are smooth, this is
left as an exercise).

To prove (2) let (L1,L2) and L0
1,L0

2) be two pairs of transverse Lagrangians. By the
previous proposition, we may assume V = (L © L§,æ) and L1 = L0

1 = L. It is enough
to find ' 2 Sp(V ,!) such that '(L) = L,'(L§) = §. The map (x, y) °! (x + Ay§, y§) is
symplectic provided A is symmetric and sends L ©0 to L ©0 and L§ to §= {(Ay§, y§) |
y§ 2 L§}. ⇤

EXERCICES 1. (1) Prove that if K is a coisotropic subspace, K /K! is symplec-
tic.

(2) Compute the dimension of the space of Lagrangians containing a given isotropic
subspace I . Hint: show that it is the space of Lagrangians in I!/I .
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(3) (Witt’s Theorem) Let V1 and V2 be two symplectic vector spaces with the same
dimension and Fi Ω (Vi ,!i ), i = 1,2. Assume that there exists a linear isomor-
phism ' : F1

ª= F2, i.e. '§(!2)|F2 = (!1)|F1 . Then ' extends to a symplectic map
e' : (V1,!1) ! (V2,!2). Hint: show that symplectic maps are the same thing
as Lagrangians in (V1 ©V2,!1 °!2) which are transverse to V1 ©0 and 0©V2,
and the map we are looking for, correspond to Lagrangians transverse to V1,V2
containing I = {(x,'(x)) | x 2 F1}. Compute the dimension of the space of non
transverse ones.

(4) The action of Sp(n) is not transitive on the triples of pairwise transverse La-
grangian spaces. Using the notion of index of a quadratic form prove that this
has at least (in fact exactly) n +1 connected components. This is responsible
for the existence of the Maslov index.

(5) Prove that the above results are valid over any field of any characteristic, except
in characteristic 2 because quadratic forms and bilinear symmetric forms are
not equivalent.

2. Complex structure

Let h be a hermitian form on a complex vector space V in the sense:
1) h(z, z 0) = h(z 0, z);
2) h(∏z, z 0) =∏h(z, z 0) for ∏ 2C;
3) h(z,∏z 0) = ∏̄h(z, z 0) for ∏ 2C;
4) h(z, z) > 0 for all z 6= 0.
Then

h(z, z 0) = g (z, z 0)+ i!(z, z 0),

where g is a scalar product and ! is symplectic, since !(i z, z) > 0 for z 6= 0.
Example: On Cn , define

h((z1, · · · , zn), (z 0
1, · · · , z 0

n)) =
nX

j=1
z j z̄ 0

j 2C.

Then the symmetric part is the usual scalar product on R2n while ! is the standard
symplectic form.

Denote by J the multiplication by i =
p
°1.

PROPOSITION 2.12. Ω
g (J z, z 0) =°!(z, z 0)
!(z, J z 0) =°g (z, z 0)

REMARK 2.13. ! is nondegenerate because !(z, J z) =°g (z, z) < 0 for all z 6= 0.

Conclusion: Any hermitian space V has a canonical symplectic form.
We will now answer the following question: can a symplectic vector space be made

into a hermitian space? In how many ways?
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PROPOSITION 2.14. Let (V ,!) be a symplectic vector space. Then there is a complex
structure on V such that !(Jª,¥) is a scalar product. Moreover, the set J (!) of such J,
called compatible almost complex structures, is contractible.

PROOF. Let (·, ·) be any fixed scalar product on V . Then there exists A such that

!(x, y) = (Ax, y).

Since ! is skew-symmetric, A§ = °A where A§ is the adjoint of A with respect to (·, ·).
Since any other scalar product can be given by a positive definite symmetric matrix M ,
we look for J such that J 2 =°I and M such that M§ = M and setting (x, y)M = (M x, y)
we have !(J x, y) = (x, y)M . The last equality can be rewritten as

(AJ x, y) = (M x, y) for all x, y.

This is equivalent to finding a positive symmetric M such that M = AJ . It’s easy to
check that there is a unique solution given by M = (A A§)1/2 and J = A°1M solves AJ =
M , J 2 =°I and M§ = M .

In summary, for any fixed scalar product (·, ·), we can find a pair (J0, M0) such that
!(J0x, y) is the scalar product (M0·, ·). If we know (J0, M0) is such a pair and we start
from the scalar product (M0·, ·), then we get the pair (J0, i d).

Define J (!) to be the set of all J ’s such that !(J ·, ·) is a scalar product. Define S to
be the set of all scalar products on V . By previous discussion, there is continuous map

™ : S !J (!).

Moreover, if J is in J (!),™maps!(J ·, ·) to J . On the other hand, we have a continuous
embedding i from J (!) to S which maps J to !(J ·, ·). Clearly,™± i = idS .

Let now Mp 2 S be in the image. Since we know S is contractible, there is a con-
tinuous family

Ft : S !S

such that F0 = i d and F1(S ) = Mp . Consider

F̃t : J (!) !J (!)

given by
F̃t =™±Ft ± i .

By the definition of ™, we know F̃0 = i d and F̃1 = Jp . This shows that J (!) is con-
tractible. ⇤

EXERCICE 2.15. Let L be a Lagrangian subspace, show that JL is also a Lagrangian
and L\ JL = {0}.

We finally study the structure of the symplectic group,

PROPOSITION 2.16. The group Sp(n) of linear symplectic maps of (V ,!) the homo-
topy type of U (n). It is therefore connected, and has fundamental group isomorphic toZ
and .
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PROOF. Let hJ x, yi=æ(x, y) with J 2 =°Id and J§ =°J Let R 2 Sp(n), thenæ(Rx,R y) =
æ(x, y) i.e.

hJRx,R yi= hx, yi
Thus R 2 Sp(n) is equivalent to R§ JR = J .

Thus, if R is symplectic, so is R§, since (R§)JR J = J 2 = °Id we may conclude that
(R§)°1[(R§)JR J ]R§ =°Id, that is JR JR§ =°Id, so that R JR§ = J .

Now decompose R as R = PQ with P symmetric and Q orthogonal, by setting P =
(RR§)1/2 and Q = P°1R. Since R,R§ are symplectic so is P and hence Q. Now

Q°1 JQ = R°1P JP°1R = R°1(P JP°1)R =
Ê°R°1 JP°2R = R°1 J (RR§)°1R = R°1 JR§ = J

Thus Q is symplectic and complex, that is unitary. Then since P is also positive
definite, the map t °! P t is well defined (as exp(t log(P )) and log(P ) is well defined for
a positive symmetric matrix) for s 2R and the path PQ °! P sQ yields a retraction form
Sp(n) to U (n). ⇤

EXERCICE 2.17. Prove that Sp(n) acts transitively on the set of isotropic subspaces
(resp. coisotropic subspaces) of given dimension (use Witt’s theorem).

EXERCICE 2.18. Prove that the set J̃ (!) made of complex structures J such that
!(Jª,¥) = °!(ª, J¥) > 0 for all ª,¥ 2 V is also contractible. This is equivalent to the
requirement that J is an isometry for the scalar product !(Jª,¥). (of course it contains
J (!). Elements of J (!) are called compatible almost complex structures while those
in J̃ (!) are called tame almost complex structures.



CHAPTER 3

Symplectic differential geometry

1. Moser’s lemma and local triviality of symplectic differential geometry

DEFINITION 3.1. A two form ! on a manifold M is symplectic if and only if
1) 8x 2 M , !(x) is symplectic on Tx M ;
2) d!= 0 (! is closed).

Examples:
1) (R2n ,æ) is symplectic manifold.
2) If N is a manifold, then

T §N = {(q, p)|p linear form on Tq M }

is a symplectic manifold. Let q1, · · · , qn be local coordinates on N and let p1, · · · , pn be
the dual coordinates. Then the symplectic form is defined by

!=
nX

i=1
d pi ^d qi .

One can check that! does not depend on the choice of coordinates and is a symplectic
form. We can also define a one form, called the Liouville form

∏= pd q =
nX

i=1
pi d qi .

It is well defined and d∏=!.
3) Projective algebraic manifolds (See also Kähler manifolds)
CP n has a canonical symplectic structure æ and is also a complex manifold. The

restriction to the tangent space at any point of the complex structure J and the sym-
plectic form æ are compatible. The manifold CP n has a hermitian metric h, called the
Fubini-Study metric. For any z 2 CP n , h(z) is a hermitian inner product on TzCP n .
h = g + iæ, where g is a Riemannian metric and æ(Jª,ª) = g (ª,ª).

Claim: A complex submanifold M of CP n carries a natural symplectic structure.
Indeed, consider æ|M . It’s obviously skew-symmetric and closed. We must prove

that æ|M is non-degenerate. This is true because if ª 2 Tx M{0} and Jª 2 Tx M , then
!(x)(ª, Jª) 6= 0

DEFINITION 3.2. A submanifold in symplectic manifold (M ,!) is Lagrangian if and
only if !|Tx L = 0 for all x 2 M and dimL = 1

2 dim M . In other words TxL is a Lagrangian
subspace of (Tx M ,!(x)).

19
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We are going to prove that locally symplectic manifolds “have no geometry”. A cru-
cial lemma is

LEMMA 3.3 (Moser). Let N be a compact submanifold in M. Let !t be a family of
symplectic forms such that!t |TN M is constant. Then there is a diffeomorphism' defined
near N such that '§!1 =!0 and '|N = i d |N .

PROOF. We will construct a vector field X (t , x) = Xt (x) whose flow 't satisfies '0 =
i d and ('t )§!t =!0. Differentiate the last equality

(
d

d t
('t )§)!t + ('t )§(

d
d t

!t ) = 0.

Then

('t )§LXt!t + ('t )§(
d

d t
!t ) = 0.

Since 't is diffeomorphism, this is equivalent to

LXt!t +
d

d t
!t = 0.

Using Cartan’s formula
LX = d ± iX + iX ±d ,

we get

d(iXt!t )+ d
d t

!t = 0.

Since !t is nondegenerate, the map Tx M ! (Tx M)§ which maps X to !(X , ·) is
an isomorphism. Therefore, for any one form Ø, the equation iX! = Ø has a unique
solution XØ. It suffices to solve for Øt ,

dØt =° d
d t

!t .

with the requirement that Øt = 0 on TN M for all t , because we want '|N = Id|N , that is
Xt 0 on N . On the other hand, the assumption that !t =!0 on TN M implies ( d

d t!t ) ¥ 0
on TN M . Denote the right hand side of the above equation by Æ, then Æ is defined in a
neighborhood U of N . The solution of Øt is given by Poincaré’s Lemma on the tubular
neighborhood of N . Here by a tubular neighborhood we mean a neighborhood of N in
M diffeomorphic to the unit disc bundle D∫N M of ∫M N the normal bundle of N in M
(i.e. ∫M N = {(x,ª) 2 TN M | ª? T N }).

LEMMA 3.4. (Poincaré) If Æ is a p-form on U , closed and vanishing on N , then there
exists Ø such that Æ= dØ and Ø vanishes on TN M.

PROOF. 1

1The proof is easier if one is willing to admit that the set of exact forms is closed for the C1 topology,
i.e. ifÆ= dØ"+∞" and lim"!0∞" = 0 thenÆ is exact. This follows for example from the fact that exactness
of a closed form can be checked by verifying that its integral over a finite number of cycles vanishes.
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This means that for a tubular neighborhood H§(U , N ) = 0.
Indeed, let rt be the map on ∫N M defined by rt (x,ª) = (x, tª) and V the vector field

Vt (x,ª) = °ª
t , well defined for t 6= 0. This vector field satisfies d

d t rt (x,ª) = Vt (rt (x,ª)).
Since r0 sends ∫N M to its zero section, N , we have r §

0 Æ= 0 and r1 = Id.
Then

d
d t

(rt )§(Æ) = r §
t (LVtÆ) = d

°
r §

t (iVtÆ)
¢

Note that r §
t (iVtÆ) is well defined, continuous and bounded as t goes to zero, since

writing (locally) (u,¥) for a tangent vector to T(x,ª)∫N M

(r §
t (iVtÆ))(x,ª)((u2,¥2)....(up ,¥p )) =Æ(x, tª)((0,ª), (u2, t¥2)...(up , t¥p ))

remains C 1 bounded as t goes to zero. Let us denote by Øt the above form. We can
write for " positive

r §
1 (Æ)° r §

" (Æ) =
Z1

"

d
d t

[(rt )§(Æ)]d t = d
µZ1

"
(rt )§(iVtÆ)d t

∂

Since as t goes to zero, d(r §
t (iVtÆ)) remains bounded, thus lim"!0

R"
0 d(r §

t (iVtÆ)) = 0
and we have that

Æ= r §
1 (Æ)° r §

0 (Æ) = lim
"!0

[r §
1 (Æ)° r §

" (Æ)] =

lim
"!0

d
µZ1

"
(rt )§(iVtÆ)d t

∂
= d

µ
lim
"!0

Z1

0
(rt )§(iVtÆ)d t

∂
= dØ

where

Ø=
Z1

0
(rt )§(iVtÆ)d t =

Z1

0
Øt d t

but Øt vanishes on N , since

Øt (x,0)((u2,¥2)...(up ,¥p ) =Æ(x,0)((0,0), (u2, t¥2)...(up , t¥p ) = 0

This proves our lemma. ⇤
⇤

EXERCICE 3.5. Prove using the above lemma that if N is a submanifold of M , H§(M , N )
can either be defined as the set of closed forms vanishing on T N modulo the differen-
tial forms vanishing on T N or as the set of closed form vanishing in a neighborhood of
N modulo the differential of forms vanishing near N .

As an application, we have

PROPOSITION 3.6 (Darboux). Let (M ,!) be a symplectic manifold. Then for each
z 2 M, there is a local diffeomorphism ' from a neighborhood of z to a neighborhood of
o in R2n such that '§æ=!.
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PROOF. According to Lecture 1, there exists a linear map L : Tz M ! R2n such that
L§æ = !(z). Hence, using a local diffeomorphism '0 : U ! W such that d'0(z) = L,
where U and W are neighborhoods of z 2 M and o 2 R2n respectively, we are reduced
to considering the case where'§

0æ is a symplectic form defined in U and!(z) = ('§
0 )æ.

Define !t = (1° t )'§
0æ+ t! in U . It’s easy to check !t satisfies the assumptions of

Moser’s Lemma, therefore, there exists √ such that √§!1 =!0, i.e.

√§!='§
0æ.

Then '='0 ±√°1 is the required diffeomorphism. ⇤
EXERCICES 1. (1) Show the analogue of Moser’s Lemma for volume forms.

(2) Let !1, !2 be symplectic forms on a compact surface without boundary. Then
there exists a diffeomorphism' such that'§!1 =!2 if and only if

R
!1 =

R
!2.

(3) Let ! be a closed 2-form.

PROPOSITION 3.7. (Weinstein) Let L be a closed Lagrangian submanifold in (M ,!).
Then L has a neighborhood symplectomorphic to a neighborhood of OL Ω T §L. (Here,
OL = {(q,0)|q 2 L} is the zero section.)

PROOF. The idea of the proof is the same as that of Darboux Lemma.
First, for any x 2 L, find a subspace V (x) in Tx M such that
1) V (x) Ω Tx M is Lagrangian subspace;
2) V (x)\TxL = {0};
3) x !V (x) is smooth.
According to our discussion in linear symplectic space, we can find such V (x) at

least pointwise. To see 3), note that at each point x 2 L the set of all Lagrangian sub-
spaces in Tx M transverse to TxL may be identified with quadratic forms on (TxL)§. It’s
then possible to find a smooth section of such an “affine bundle”.

Abusing notations a little, we write L for the zero section in T §L. Denote by TL(T §L)
the restriction of the tangent bundle T §L to L. Denote by TL M the restriction of the
bundle T M to L. Both bundles are over L. For x 2 L, their fibers are

Tx(T §L) = TxL©Tx(T §
x L)

and
Tx M = TxL©V (x).

Construct a bundle map L0 : TL(T §L) ! TL M which restricts to identity on factor TxL
and sends Tx(T §

x L) to V (x). Moreover, we require

!(L0u,L0v) =æ(u, v),

where u 2 Tx(T §
x L) = T §

x L and v 2 TxL. This defines L0 uniquely. Again, we can find '0
from a neighborhood of L in T §L to a neighborhood of L in M such that d'0|TL(T §L) =
L0. By the construction of L0, one may check that

'§
0!=æ on TL(T §L).
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Define
!t = (1° t )'§

0!+ tæ, t 2 [0,1].

!t is a family of symplectic forms in a neighborhood of OL . Moreover, !t ¥ !0 on
TL(T §L). By Moser’s Lemma, there exists ™ defined near OL such that ™§!1 =!0, i.e.
™§æ='§

0!. Then '0 ±™°1 is the diffeomorphism we need. ⇤
EXERCICE 3.8. Let I1, I2 be two diffeomorphic isotropic submanifold in (M1,!1),

(M2,!2). Let E1 = (T I1)!1 /(T I1) and E2 = (T I2)!2 /(T I2). E1,E2 are symplectic vector
bundles over I1 and I2. Show that I1 and I2 have symplectomorphic neighborhoods if
and only if E1

ª= E2 as symplectic vector bundles.

EXERCICE 3.9. Same exercise in the coisotropic situation.

2. The groups H am and Di f f!

Since Klein’s Erlangen’s program, geometry has meant the study of symmetry groups.
The group playing the first role here is Di f f!(M). Let (M ,!) be a symplectic manifold.
Define

Di f f!(M) = {' 2 Di f f (M)|'§!=!}.

This is a very large group since it contains H am(M ,!), which we will now define.
Let H(t , x) be any smooth function and XH the unique vector field such that

!(XH (t , x),ª) = dx H(t , x)ª, 8ª 2 Tx M .

Here dx means exterior derivative with respect to x only.
Claim: The flow of XH is in Di f f!(M).
To see this,

d
d t

('t )§! = ('t )§(LXH!)

= ('t )§(d ± iXH!+ iXH ±d!)

= ('t )§(d(d H)) = 0.

DEFINITION 3.10. The set of all diffeomorphism ' that can be obtained as the flow
of some H is a subgroup Di f f (M ,!)) called H am(M ,!).

To prove that H am(M ,!) is a subgroup, we proceed as follows: first notice that the
Hamiltonian isotopy can be reparametrized, and still yields a Hamiltonian isotopy's(t )
satisfying

(
d

d t
's(t ))t=t0 = s0(t )(

d
d s

's)s=s(t0) = s0(t )XH (s(t0),'s(t0 )

which is the Hamiltonian flow of

s0(t )H(s(t ), z)

Therefore we may use a function s(t ) on [0,1] such that s(0) = 0, s(1/2) = 1, s0(t ) = 0 for
t close to 1/2 and we find a Hamiltonian flow ending at '1 in time 1/2 and such that
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H vanishes near t = 1/2. Similarly if √t is the flow associated to K (t , z) we may modify
it in a similar way using r (t ) so that K ¥ 0 for t in a neighborhood of [0,1/2]. We can
then consider the flow associated to H(t , z)+K (t , z) = L(t , z) it will be 's(t ) ±√r (t ) and
for t = 1 we get '1 ±√1.

That '°1
1 is also Hamiltonian follows from the fact that °H(t ,'t (z)) has flow '°1

t .

EXERCICE 3.11. Show that ('t )°1√t is the Hamiltonian flow of

L(t , z) = K (t ,'t (z))°H(t ,'t (z))

This immediately proves that H am(M ,!) is a group.

REMARK 3.12. Denote by Di f f!,0 the component of Di f f!(M) in which the iden-
tity lies. It’s obvious that H am(M ,!) Ω (Di f f!,0(M).

REMARK 3.13. If H(t , x) = H(x), then H ±'t = H . This is what physicists call con-
servation of energy. Indeed H is the energy of the system, and for time-independent
conservative systems, energy is preserved. This is not the case in time-dependent sit-
uations.

REMARK 3.14. If we choose local coordinates q1, ..., qn and their dual p1, ..., pn in
the cotangent space, pi , qi , the flow is given by the ODE

(
q̇i = @H

@pi
(t , q, p)

ṗi =° @H
@qi

(t , q, p)

Question: How big is the quotient Di f f!0 /H am(M ,!)?
Given ' 2 Di f f!0 , there is an obvious obstruction for ' to belong to H am(M ,!).

Assume != d∏. Then '§∏°∏ is closed for all ' 2 Di f f!, since

d('§∏°∏) ='§!°!= 0.

If 't is the flow of XH ,

d
d t

(('t )§∏) = ('t )§(LHX∏)

= ('t )§(d(iXH∏)+ iXH d∏)

= ('t )§d(iXH∏+H)

= d(('t )§(iXH∏+H)).

This implies that '§∏°∏ is exact.
In summary, we can define map

Flux : (Di f f!)0(M) ! H 1(M ,R)
' 7! ['§∏°∏]

We know
H am!(M) = ker(F lux).

Examples:
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(1) On T §T 1 the translation' : (x, p) °! (x, p+p0) is symplectic, but Flux(') = p0.
(2) Similarly if M = T 2 and æ = d x ^ d y , the map (x, y) °! (x, y + y0) is not in

H am(T 2,æ) for y0 6¥ 0 mod 1.
Indeed, since the projection º : T §T 1 °! T 2 is a symplectic covering, any

Hamiltonian isotopy on T 2 ending in ' would lift to a Hamiltonian isotopy
on T §T 1 (if H(t , z) is the Hamiltonian on T 2, H(t ,º(z)) is the Hamiltonian
on T §T 1) ending to some lift of '. But the lifts of ' are given by (x, y) °!
(x +m, y + y0 +n) for (m,n) 2Z2, with Flux given by y0 +n 6= 0.

EXERCICES 2. (1) Prove the Darboux-Weinstein-Givental theorem (also called
non-linear Witt theorem. See [A-G] page 26): Let S1,S2 be two submanifolds
in (M1,!1), (M2,!2). Assume there is a map ' : S1 °! S2 which lifts to bundle
map

© : TS1 M1 °! TS2 M2

coinciding with d' on the subbundle T S1, and preserving the symplectic
structures, i.e. ©§(!2) =!1.

Then there is a symplectic diffeomorphism between a neighborhood U1 of
S1 and a neighborhood U2 of S2.

(2) Use the Darboux-Weinstein-Givental theorem to prove that all closed curves
have symplectomorphic neighborhoods. Hint: Show that all symplectic vector
bundle on the circle are trivial.

(3) (a) Prove that the Flux homomorphism can be defined on (M ,!) as follows.
Let't be a symplectic isotopy. Then d

d t't (z) = X (t ,'t (z)) and!(X (t , z)) =
Æt is a closed form. Then

ÇFlux(') =
Z1

0
Æt d t 2 H 1(M ,R)

depends only on the homotopy class of the path 't . If ° is the image by
Flux of the set of closed loops, we get a well defined map

Flux : Di f f (M ,!)0 °! H 1(M ,R)/°

(b) Prove that when ! is exact, ° vanishes and the new definition coincides
with the old one.





CHAPTER 4

More Symplectic differential Geometry:
Reduction and Generating functions

Philosophical Principle: Everything important is a Lagrangian submanifold.
Examples:

(1) If (Mi ,!i ), i = 1,2 are symplectic manifolds and ' a symplectomorphism be-
tween them, that is a map from M1 to M2 such that '§!2 = !1. Consider the
graph of ',

°(') = {(x,'(x))} Ω M1 £M2.

This is a Lagrangian submanifold of M1 £M2 if we define M2 as the manifold
M2 with the symplectic form °!2 and the symplectic form on M1£M2 is given
by

(!1 ™!2)((ª1,ª2), (¥1,¥2)) =!1(ª1,¥1)°!2(ª2,¥2).
In fact, it’s easy to see °(') is a Lagrangian submanifold if and only if '§!2 =
!1. Note that if M1 = M2, then °(')\4M = Fix(').

(2) Let (M , J ,!) be a smooth projective manifold, i.e. a smooth manifold given by

M = {P1(z0, · · · , zN ) = ·· · = Pi (z0, · · · , zN ) = 0}

where P j are homogeneous polynomials. We shall assume the map from Cn \
{0} to Cr

(z0, ..., zn) 7! (P1(z0, ..., zn), ...,Pr (z0, ..., zn))
has zero as a regular value, so that M is a smooth manifold.

If P j ’s have real coefficients, then real algebraic geometry is concerned
with

MR = {[x0, · · · , xN ] 2RP N |P j (x0, · · · , xN ) = 0}

= M \RP N .

The problem is to “determine the relation” between M and MR". It is easy
to see that MR is a Lagrangian of (M ,!) (of course, possibly empty).

1. Symplectic Reduction

Let (M ,!) be a symplectic manifold and K a submanifold. K is said to be coisotropic
if 8x 2 K , we have TxK æ (TxK )!. As x varies in K , (TxK )! gives a distribution in TxK .

LEMMA 4.1. This distribution is integrable.

27
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PROOF. According to Frobenius theorem, it suffices to check that for all vector field
X ,Y 2 (TxK )!, ¥ in TxK ,

!([X ,Y ],¥) = 0

where X and Y are vector fields in (TxK )!.
d!(X ,Y ,¥) vanishes, but on the other hand is a sum of terms of the form:
X ·!(Y ,¥) but since!(Y ,¥) is identically zero these terms vanishes. The same holds

if we exchange X and Y .
¥ ·!(X ,Y ) vanishes for the same reason.
!(X , [Y ,¥]) and !(Y , [X ,¥]) vanish since [X ,¥], [Y ,¥] are tangent to K .
!([X ,Y ],¥) is the only remaining term. But since the sum of all terms must vanish,

this must also vanish, hence [X ,Y ] 2 (TxK )! ⇤
This integrable distribution gives a foliation of K , denoted by CK . We can check

that ! induces a symplectic form (we only need to check it is nondegenerate) on the
quotient space (TxK )/(TxK )!. One might expect K /CK to be a a “symplectic some-
thing”.

Unfortunately, due to global topological difficulties, there is no nice manifold struc-
ture on the quotient. However, in certain special cases, as will be illustrated by exam-
ples in the end of this section, K /CK is a manifold, and therefore a symplectic mani-
fold.

Let us now see the effect of the above operation on symplectic manifolds.

LEMMA 4.2. (Automatic Transversality) If L is a Lagrangian in M and L intersects
K transversally, i.e. TxL +TxK = Tx M for x 2 K \L, then L intersects the leaves of CK
transversally, TxL\TxCK = {0}, for x 2 K \L.

PROOF. Recall from symplectic linear algebra that if Fi are subspaces of a symplec-
tic vector space, then

(F1 +F2)! = F!
1 \F!

2 .

We know (TxL)! = TxL and (Tx M)! = {0}, then the lemma follows from TxL +TxK =
Tx M . ⇤

Now, let’s pretend K /CK is a manifold and denote the projection by º : K ! K /CK .
1) K and L intersect transversally, so in particular L\K is a manifold.
2) The projection º : (L\K ) ! K /CK is an immersion.

kerdº(x) = TxCK = (TxK )!.

kerdº(x)|Tx (L\K ) Ω kerdº(x)\TxL

Ω (TxK )!\T xL = {0}.

Therefore dº(x)|L\K is injective and º|L\K is immersion.
To summarize our findings, given a symplectic manifold (M ,!) and a coisotropic

submanifold K , let L be a Lagrangian of M intersecting K transversally. Define LK to



1. SYMPLECTIC REDUCTION 29

be the image of the above immersion. Then it is a Lagrangian in K /CK . This operation
is called symplectic reduction.

The only thing left to check is that LK is Lagrangian. Let !̃ be the induced sym-
plectic form on K /CK and ṽ is a tangent vector of LK . Assume the preimage of ṽ is v ,
a tangent vector of L. Since L is Lagrangian and !̃ is induced from !, we know LK is
isotropic. It’s Lagrangian by a dimension count. The same argument shows that the re-
duction of an isotropic submanifold (resp. coisotropic submanifold) is isotropic (resp.
coisotropic).

Example 1: Let N be a symplectic manifold, and V be any smooth submanifold.
Define

K = T §
V N = {(x, p)|x 2V , p 2 T §

x N }.

This is a coisotropic submanifold, and its coisotropic foliation CK is given by specifying
the leaf through (x, p) 2 K to be

CK (x, p) = {(x, p̃) 2 K | p̃ °p vanishes on TxV }.

It is natural to identify K /CK with T §V .
Symplectic reduction in this case, sends Lagrangian in T §N to Lagrangian in T §V .
Example 2: Let N1, N2 are smooth manifolds and N = N1£N2. Suppose we choose

local coordinates near a point in T §N is written as

(x1, p1, x2, p2).

where (x1, p1) 2 T §N1, (x2, p2) 2 T §N2. Define K = {(x1, p1, x2, p2)|p2 = 0}. The tangent
space of K at a point z = (x1, p1, x2, p2) is given by

(v1, w1, v2,0),

(TzK )! = {(0,0,0, w2)}.

Then we can identify K /CK with T §N1.
Symplectic reduction sends a Lagrangian in T §N to a Lagrangian in T §N1.

1.1. Lagrangian correspondences. Let § be a Lagrangian submanifold in T §X £
T §Y . Then it induces a correspondence from T §X to T §Y as follows: consider a set
C Ω T §X , and C £§Ω T §X £T §X £T §Y . Now, denote by ¢T §X the diagonal in T §X £
T §X . The submanifold K =¢T §X £T §Y is coisotropic, and we define §±C as C £§\
K /K Ω K /K = T §Y . When C is a submanifold, then §±C is a submanifold provided
C £T §Y is transverse to§.

If C is isotropic or coisotropic, it is easy to check that the same will hold for §±C .
In particular if L is a Lagrangian submanifold, the correspondence maps L (T §X ) to
L (T §Y ) (well, not everywhere defined) can alternatively be defined as follows : take
the symplectic reduction of§ by L£T §Y . This is well defined at least when L is generic.
We denote it by§±L. In particular if§1 is a correspondance from T §X to T §Y and§2
a correspondence from T §Y to T §Z then

§2 ±§1 = {(x,ª, z,≥) | 9(y,¥), (x,ª, y,¥) 2§1, (y,¥, z,≥) 2§2}
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Note that§a (sometimes denoted as§°1) is defined as§a = {(x,ª, y,¥) | (y,¥, x,ª) 2
§}. This is a Lagrangian correspondence from T §Y to T §X . The composition §±§a Ω
T §X £T §X is, in general, not equal to the identity (i.e. ¢T §X , the diagonal in T §X ),
even though this is the case if § is the graph of a symplectomorphism. A fundamental
example is the correspondance associated to a smooth map f : X °! Y . Then

§ f = {(x,ª, y,¥) 2 T §X £T §Y | f (x) = y,¥±d f (x) = ¥}

Then if g : Y °! Z , we have§g± f =§g ±§ f .

EXERCICE 4.3. Compute§±§a for§=Vx £Vy , where Vx is the cotangent fiber over
x.

2. Generating functions

Our goal is to describe Lagrangian submanifolds in T §N . Let ∏= pd x be the Liou-
ville form of T §N . Given any 1-form Æ on N , we can define a smooth manifold

LÆ = {(x,Æ(x))|x 2 N ,Æ(x) 2 T §
x N } Ω T §N .

LEMMA 4.4. LÆ is Lagrangian if and only if Æ is closed.

PROOF. Let i : N ! T N be the embedding map i (x) = (x,Æ(x)). Notice that

∏|LÆ =Æ

i.e.
i§(∏) =Æ.

Lagrangian condition is (d∏)|LÆ = 0, i.e. dÆ= 0. ⇤
DEFINITION 4.5. If ∏|L is exact, we say L is exact Lagrangian.

In particular, LÆ is exact if and only ifÆ= d f for some function f on N . In this case,

LÆ\ON = {x|Æ(x) = d f (x) = 0} =Cr i t ( f ),

where ON is the zero section of T N .

REMARK 4.6. 1) If L is C 1 close to ON , then L = LÆ for some Æ. To see this, LÆ is
’graph’ of Æ in T N and a C 1 perturbation of a graph is a graph.

2) If L is exact, C 1 close to ON , then L = Ld f . Therefore, #(L \ON ) ∏ 2, if we as-
sume N is compact. ( f has at least two critical points, corresponding to maximum and
minimum, and we may find more with more sophisticated tools.)

Arnold Conjecture: If ' 2 H am!(T §N ) and L ='(ON ), then #(L \ON ) ∏ catLS(N ),
where catLS(N ) is the minimal number of critical points for a function on N .

DEFINITION 4.7. A generating function for L is a smooth function S : N £Rk ! R

such that
1) The map

(x,ª) 7! @S
@ª (x,ª)
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has zero as a regular value. As a result ßS = {(x,ª)|@S
@ª (x,ª) = 0} is a submanifold. (Note

that @S/@ª is a vector of dimension k, so ßS is a manifold with the same dimension as
N , but may have a different topology.)

2)
iS : ßS ! T §N

(x,ª) 7! (x, @S
@x (x,ª))

has image L = LS .

LEMMA 4.8. If for some given S satisfying 1) of the definition and LS is given by 2),
then LS is an immersed Lagrangian in T §N .

PROOF. Since S is a function from N £Rk to R, the graph of dS in T §(N £Rk ) is a
Lagrangian in T §(N £Rk ). We will use the symplectic reduction as in the Example 2 in
the last section. Define K as a submanifold in T §(N £Rk ),

K = T §N £Rk £ {0}.

K is coisotropic as shown in Example 2. Locally, the graph of dS is given by

g r (dS) = {(x,ª,
@S
@x

(x,ª),
@S
@ª

(x,ª))}.

Then

ßS = g r (dS)\K .

The regular value condition in 1) ensures that g r (dS) intersects K transversally. By
symplectic reduction, we know iS is an immersion and LS is a Lagrangian in T §N be-
cause g r (dS) is Lagrangian in T §(N £Rk ). ⇤

REMARK 4.9. If LS is embedded, we have

LS \ON 'Cr i t (S).

Question: Which L have a generating function?
Answer: (Giroux) It is given by conditions on the tangent bundle T L.

DEFINITION 4.10. Let S be a generating function on N £Rk . We say that S is qua-
dratic at infinity if there exists a nondegenerate quadratic form Q on Rk such that

S(x,ª) =Q(ª) for |ª| >> 0.

For simplicity, we will use GFQI to mean generating function quadratic at infinity.

PROPOSITION 4.11. Let S be a generating function of LS such that
(1) kr(S °Q)kC 0 ∑C ,
(2) kS °QkC 0(B(0,r )) ∑Cr ,
then there exists S̃ GFQI for LS.
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PROOF. (sketch) Let Ω : R+ ! R+ be a nonincreasing function such that Ω ¥ 1 on
[0, A], Ω ¥ 0 on [B ,+1) and °"∑ Ω0 ∑ 0. Define

S1(x,ª) = Ω(|ª|)S(x,ª)+ (1°Ω(|ª|))Q(ª)

We are going to prove that

@

@ª
S1(x,ª) = 0 () @

@ª
S(x,ª) = 0

Indeed,

@

@ª
S1(x,ª) = @

@ª

°
Ω(|ª|) (S(x,ª)°Q(ª))+Q(ª)

¢

= Ω0(|ª|) ª|ª| (S(x,ª)°Q(ª))+Ω(|ª|) @
@ª

(S °Q)(x,ª)+ AQª= 0

For this one must have, if |Aª|∏ k|ª|

c|ª|∑ "kS °QkC 0 +kr(S °Q)kC 0 ∑ "C |ª|+C

therefore for " small enough, this implies

|ª|∑ C
c °"C

and this remains bounded for " small enough. If we choose A large enough so that it
is larger than C

c°"C , then S1 = S0 and therefore ßS1 and ßS coincide, and also iS1 and
iS0 . ⇤

THEOREM 4.12. (Sikorav, [Sik1]) N is compact. Let L ='(ON ) and ' 2 H am(T §N ).
Then L has a GFQI.

PROOF. (Brunella, [Bru]) Consider a “special” case N = RN and ' 2 H am0(RN ). By
superscript 0, we mean compactly supported.

There is a ‘ ‘correspondence” between function h : N£N !R and maps'h : T §N !
T §N given by

'h(x1, p1) = (x2, p2) ()
(

p1 = @
@x1

h(x1, x2)
p2 =° @

@x2
h(x1, x2)

The graph of'h is a submanifold in T §Rn£T §Rn with symplectic form given by!=
d p1^d x1°d p2^d x2. It’s a Lagrangian if and only if'h is a symplectic diffeomorphism.

The graph of dh is a submanifold in T §(Rn £Rn) with the natural symplectic struc-
ture and it’s Lagrangian.

Note that the first is a graph of a map T §N to T §N while the second is the graph of
a map N£N toRl £Rl (in particular the first is transverse to {0}(T §N ), while the second
is transverse to {0}£Rl ).
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There is a symplectic isomorphism between T §Rn £T §Rn and T §(Rn £Rn), given
by

(x1, p1, x2, p2) 7! (x1, x2, p1,°p2).
and this maps the graph of dh to the graph of 'h .

Set h0(x1, x2) = 1
2 |x1 °x2|2, then

'h0 (x1, p1) = (x1 °p1, p1).

If h is C 2 close to h0, then g r (dh) is C 1 close to g r (dh0), under isomorphism,
°('h0 ), since C 1 perturbation of a graph is a graph, we know (up to isomorphism)
g r (dh) = °('h). Since g r (dh) is always Lagrangian, 'h is symplectic isomorphism.

REMARK 4.13. We can do the same with °h0.

'°h0 = ('h0 )°1.

REMARK 4.14. We can do the inverse. Any symplectic map ' C 1 close to 'h0 is of
the form 'h .

PROPOSITION 4.15 (Chekanov’s composition formula). Let L be a Lagrangian in
T §Rn. L coincides with ON outside a compact set and has a GFQI S(x,ª). If h = h0
near infinity, then 'h(L) has GFQI

S̃(x,ª, y) = h(x, y)+S(y,ª).

REMARK 4.16. S̃ is only approximately quadratic at infinity. We use the last propo-
sition to make it real GFQI.

For the proof of the claim, check that LS̃ is 'h(L).

@S̃
@ª

(x,ª, y) = 0 () @S
@ª

(y,ª) = 0.

@S̃
@y

(x,ª, y) = 0 () @h
@y

(x, y)+ @S
@y

(y,ª) = 0.

A point in LS̃ is

(x,
@S̃
@x

(x,ª, y)) = (x,
@h
@x

(x, y))

= 'h(y,°@h
@y

(x, y))

= 'h(y,
@S
@y

(y,ª)).

(y, @S
@y (y,ª)) is a point in LS .

If k is close to °h0, 'k ±'h(L) has GFQI. If k =°h0, then ('°1
h0

±'h)(L) has GFQI.

Any C 1 small symplectic map √ can be given as

'h ='h0 ±√.
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So the conclusion is for any √ C 1 close to the identity, if L has GFQI, then √(L) has
GFQI.

Now take 't 2 H am(T §N ).

'1 ='1
N°1

N
±'

N°1
N

N°2
N

· · ·'
1
N
0 .

Each factor is C 1 small. Then If L has GFQI, then '1(L) has GFQI.
⇤

3. The Maslov class

The Maslov or Arnold-Maslov class is a topological invariant of a Lagrangian sub-
manifold, measuring how much its tangent space “turns” with respect to a given La-
grangian distribution.

Let E =V ©V §, with the standard symplectic form æ(x, p)(x 0, p 0)) = hp 0, xi°hp, x 0i.
We shall identify V with V © 0 and V § with 0©V §. Then any linear space L close to
V ©0 is the graph of a linear map AL : V °!V §. Then L is Lagrangian if and only if AL
is self-adjoint. Thus if we have a smooth path [°1,1] °!§(E) of Lagrangians close to
V , such that L(t )\V ©0 6= 0 if and only if t = 0, we get a one-parameter family of self-
adjoint A(t ) 2 S(V ), such that A(t ) is invertible if and only if t 6= 0. Then the index1 of the
quadratic form associated to A(t ) is constant except when t goes through zero. We then
define ßV = {L 2§(E) | L\V 6= 0}, and say that the path L(t ) crosses ßV positively if the
index of A(t ) increases as t goes from °1 to +1. Unfortunately a general path cannot,
even near a point where it is crossing ßV be assumed to be a graph of A. However, we
may use generating quadratic forms, in the same spirit as generating functions.

DEFINITION 4.17. Let Q : V ©W be a quadratic form with associated self-adjoint
map AQ : V ©W °! (V ©W )§. We see that Q is a generating form for L Ω E if

i§W ± AQ : V ©W °!W §

is onto, and L is the reduction of the graph of AQ in (V ©W )© (V ©W )§ by V ©0© (V ©
W )§, that is

L = LQ = {(x, i§V AQ (x)) | i§W ± AQ (x) = 0}

Note that the assumption that i§W ± AQ is onto is equivalent to the transverailty of
g r (AQ ) = {(x, AQ (x)) | x 2 V ©W } and CV = V © 0© (V ©W )§. Note also that setting
x = v + ª with v 2 V ,ª 2 W , the function S(v ;ª) = Q(x) is a GFQI for LQ . Now we can
just imitate the discussion on te previous section to construct a generating function
for T0(LQ ) where T0(v, p) = (v +p, p). Indeed, the graph of T is in E ©E which can be
identified to (V ©W )© (V ©W )§ and is generated by©T0 (v, w) = 1

2 |v °w |2. Note that T
has a generating quadratic form (with no extra fiber variable) is just equaivalent to the
transversality of the graph of T is transverse to (v ©W )§. So this is an open property,
and will hold for any T close enough to T0.

1that is the number of negative eigenvalues
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Using again Chekanov’s formula, we get

PROPOSITION 4.18. Let LQ have generating quadratic form Q, and the graph of T
have generating quadratic form (with no fiber variable) ©T (v, w). Then T (L) is gener-
ated by the quadratic generating form

Q 0(w ; v,ª) =Q(v,ª)+©(v, w)

Note that the same applies for T °1
0 , generated by ©T °1

0
(v, w) = °1

2 |v ° w |2. And

applying this to the composition T ±T °1
0 , this will apply to any linear symplectic map

close to identity.

COROLLARY 4.19. Let L = LQ have generating quadratic form Q, and T be close to the
identity. The T (L) has a generating quadratic form. Moreover there is a continuous map
from a neighbourhood U of the identity in Sp(E) to the set of generating quadraitc forms
on V ©W (for W large enough), such that T 7!QT is continuous and QT is a generating
quadratic form for T (L). Moreover if Q is defined on V ©Rr , then QT is defined over
V ©Rr+4n and QId(z, v, w) =Q © |v |2 ™ |w |2, where v, w 2R2n.

DEFINITION 4.20. We denote by G the space of all generating quadratic forms. It
identified with the union ofGr , the set of generating quadratic forms defined on V ©Rr .
We embed Gr into Gr+2 by identifying Q(w, w1, ..., wr ) to Q(v, w1, ..., wr )+w 2

r+1°w 2
r+2.

It is endowed with the topology of the limit G= limr Gr . The map Q °! LQ defines
a map from G°!§(E).

THEOREM 4.21 (cf [Theret]). The map Q 7! LQ is a Serre fibration.

PROOF. Let K be any compact topological space, and consider a map F : I n £
[0,1] °! §(E), denoted by (k, t ) 7! L(k,t ). We assume there is a map f : I n £ {0} °!G
lifting F , that is L f (k) = LF (k,0). Now we use the fact that the projection Sp(E) °!§(E)
given by T 7! T (V ) is a Serre fibration, so F lifts to G : I n £ [0,1] °! Sp(E) such that
LF (k,t ) = TG(k,t )L0. Then let us write for simplicity TG(k,t ) = Tk,t . We have for t2 ° t1
small enough, that Tk,t2 ±T °1

k,t1
is close to the identity. So if F̃ is defined over K £ [0, t1],

with values in Gr , then according to Corollary 4.19, we may find a map F̃ defined over
K £ [0, t2] and values in Gr+2n . By compactness of the interval, we can define F̃ over
K £ [0,1]. ⇤

In the sequel we shall somtimes use a decomposition of E as a sum of V and W
where W is a Lagrangian subspace transverse to V . Now let L : [0,1] °! §(E) be a
continous path, and Qt a generating function of L(t ) depending continuously on t .
Then

DEFINITION 4.22. Let L : [0,1] °! §(E) be a continuous path, and t °! Qt gen-
erating quadratic form. Then we set i (L;V ,V §) = ind(Q1)° ind(Q0). This is called the
Conley-Zehnder index of the path (L(t ))t2[0,1].

The Conley-Zehnder index has the following properties
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PROPOSITION 4.23. We have

(1) If t 7! dim(L(t )\V ) is constant on [0,1], then i (L,V ,W ) = 0.
(2) the value of i (L;V ,W ) does not depend on W , we denote it by i (L,V )
(3) If L1?L2 is the concatenation of the paths L1,L2 such that L1(1) = L2(0), then

i (L1?L2,V ) = i (L1,V )+ i (L2,V )
(4) If L°1(t ) = L(1° t ) is the opposite path, then i (L°1,V ) =°i (L,V )
(5) If T is a symplectomorphism such that T V = V ,T V § = V § then i (T L,V ) =

i (L,V )
(6) If E 0 is another symplectic vector space, V 0 a Lagrangian subspace of E 0, and

L0(t ) a path in§(E 0) then i (L£L0,V £V 0) = i (L,V )+ i (L0,V 0).

PROOF. ⇤
Note that if L1,L2 are Lagrangian subspaces transverse to V , there is a unique

PROPOSITION 4.24. Let L1,L2 be two paths with same endpoints. Then i (L1,V ) =
i (L2,V ) if and only if L1 and L2 are homotopic with fixed endpoints.

DEFINITION 4.25. Let R : [0,1] °! Sp(n) be path in the symplectic group such that

R(0) = id. We set i (R) = i (g r (R(t )),¢) where g r (R) = {(x,Rx) | x 2 R2n} in R2n ©R2n
,

where ¢= g r (id) = {(x, x) | x 2R2n}. this is called the Conley-Zehnder index of R.

PROPOSITION 4.26. We have i (R1?R2) = i (R1 ·R2). Moroever

|i (R1 ·R2)° i (R1)° i (R2)|∑ i (R1(1),R2(1))

(1)

4. Contact and homogeneous symplectic geometry

4.1. Contact geometry, symplectization and contactization. Let (N ,ª) be a pair
constituted of a manifold N , and a hyperplane field ª on N . This means that locally,
there is a non-vanishing 1-form Æ such that ª= Ker(Æ).

DEFINITION 4.27. The pair (N ,ª) is a contact manifold if integral submanifolds of
ª (i.e. submanifolds everywhere tangent to ª) have the smallest possible dimension,
i.e. dim(N )°1

2 . An integral submanifold of dimension dim(N )°1
2 in a contact manifold is

called a Legendrian submanifold.

It is easy to check that if locally ª= Ker(Æ), the contact type condition is equivalent
to requiring that Æ^ (dÆ)n°1 is nowhere vanishing. Note also that the global existence
if Æ is equivalent to the co-orientability of ª. Sometimes we assume the existence of Æ.
This is always possible, at the cost of going to a double cover.

Examples:

(1) the standard example is R2n+1, with coordinates q1, ..., qn , p1, ..., pn , z and ª =
ker(Æ) with Æ= d z °p1d q1 ° ...°pnd qn .
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(2) A slightly more general case is J 1(N ) for any manifold N . This is the set of
(q, p, z) where z 2 N , p 2 T §

q N and z 2 R, the contact form being d z ° pd q .
Note that for any smooth function f on N , the set j 1 f = {(q,d f (q), f (q)0 | q 2
N } is Legendrian. Moreover any Legendrian graph is of this form.

(3) The manifold ST §N = {(q, p) 2 T §N | |p| = 1}, where | • | is induced by any
riemannian metric on N , endowed with the restriction of the Liouville form.
The same holds for PT §N = ST §N / ' where (q, p1) ' (q, p2) if and only if p1 =
±p2.

EXERCICE 4.28. Prove that PT §Rn is contactomorphic to J 1Sn°1. There is a natural
contactomorphism called Euler coordinates: a point (q, p) 2 PT §(Rn) corresponds in a
unique way to a to a point in Rn and a linear hyperplane (i.e. the pair (q,ker(p))), that
may be replaced by the parallel linear hyperplane through this point. In other words
we identify PT §Rn to the set of pairs constituted of an affine hyperplanes and a point
on the hyperplane. The hyperplane may be associated to its normal vector, q , in Sn°1,
the distance from the origin to the hyperplane, a real number z, and a vector in the
hyperplane, connecting the orthogonal projection of the origin on the hyperplane and
the point, p. Now (q, p, z) are in J 1(Sn°1) because p is orthogonal to q , provided we
use the canonical metric in Rn to identify vectors and covectors.

There are two constructions relating symplectic and contact manifolds.

DEFINITION 4.29 (Symplectization of a contact manifold). Let (N ,ª) be a contact
manifold, with contact form Æ. Then (N £R§

+,d(tÆ)) is a symplectic manifold called
the symplectization of (N ,ª).

PROPOSITION 4.30 (Uniqueness of the Symplectization). If Ker(Æ) = Ker(Ø) = ª we
have a symplectomorphism between (N £R§

+,d(tÆ)) and (N £R§
+,d(tØ)). Indeed, we

have Ø = f Æ where f is a non-vanishing function on N . Then the map F : (z, t ) 7!
(z, f (z) · t ) satisfies F§(tÆ) = t f (z)Æ = tØ, so realizes a symplectomorphism F : (N £
R§
+,d(tØ)) ! (N £R§

+,d(tÆ)).

PROPOSITION 4.31. Let (M ,!) be a symplectic manifold. Assume!= d∏. Then (M£
R,d z °∏) is a contact manifold. If we only know that ! is an integral class, and P is the
circle bundle over M with first Chern class !, then the canonical U (1)-connection, µ on
P with curvature ! makes (P,µ) into a contact manifold2.

EXERCICE 4.32. State and prove the analogue of Darboux and Weinstein’s theorem
in the contact setting.

PROPOSITION 4.33 (Symplectization of a Legendrian submanifold). Let L be a Leg-
endrian submanifold in (N ,ª). Then L £R§

+ is a Lagrangian in the symplectization of
(N ,ª). Let L be a Lagrangian in (M ,!) with ! exact. Assume L is exact, that is ∏L is an

2The 1-form µ is the unique S1 invariant form such that dµ = º§(!). In both cases, we call the
manifold the contactization or the prequantization of (M ,!).
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exact form (it is automatically closed, since ! vanishes on L). Then L has a lift to a Leg-
endrian § in (M £R,d z °∏), unique up to a translation in z. Similarly if ! is integral,
and the holonomy of µ along L is integral, we have a Legendrian lift § of L, unique up
to a rotation in U (1).

The proof is left as an exercise.

4.2. Homogeneous symplectic geometry. We now show that contact structures
are equivalent to homogeneous symplectic structures. Indeed,

DEFINITION 4.34. A homogeneous symplectic manifold is a symplectic manifold
(M ,!) endowed with a smooth proper and free action of R§

+, such that denoting by @
@∏

the vector field associated to the action, we have L∏ @
@∏
!=!.

Clearly the symplectization of a contact manifold is a homogeneous symplectic
manifold. We now prove the converse.

Example: Let M be a smooth manifold. We denote by T̊ §M the manifold T §M \0M
endowed with the obvious action ∏ · (q, p) = (q,∏, p). This is the symplectization of
ST §M .

PROPOSITION 4.35 (Homogeneous symplectic geometry is contact geometry). Let
(M ,!) be a homogeneous symplectic manifold. Then (M ,!) is symplectomorphic (by a
homogeneous map) to the symplectization of (M/R§

+, iX!)

PROOF. Let X = 1
∏

@
@∏ , and consider the form Æ(ª) = !(X ,ª) which is well defined

on the quotient C = M/R§
+. this is a contact form on C , since iX!^ (d(iX!)n°1 = iX!^

(LX!)n = iX!^!n°1 = 1
n iX (!n), and since tangent vectors to C are identified to tangent

vectors to M transverse to C , this does not vanish. Let t be a coordinate on M such that
d t (X ) = 1, and e!= d(tº§(Æ)), then (M ,!) is equal to (M ,d(tÆ)). Indeed, let us consider
two vectors, first of all in the case where one is X and the other is in d t (Y ) = 0. Then
e!(X ,Y ) = (d t ^Æ+ tdÆ)(X ,Y ) = d t (X )Æ(Y ) = (iX!)(Y ) = !(X ,Y ). Now assume Y , Z
are bot in ker(d t ). Then e!(Y , Z ) = d t ^ tÆ(Y , Z )+ tdÆ(Y , Z ) but dÆ= diX!=! so that
e!(Y , Z ) =!(Y , Z ). ⇤

EXERCICE 4.36. Prove that T̊ §(M £R) is symplectomorphic to T §M £R£R§
+, the

symplectization of J 1(M). Hint: prove that the contact manifold J 1(M) is contacto-
morphic to an open set of ST §(M £R).

PROPOSITION 4.37 (Symplectization of a contact map). Let © : (N ,ª) ! (P,¥) be a
contact transformation, that is a diffeomorphism such that d© sends ª to ¥. Then there
exists a homogeneous lift of©

e© : ( eN ,!ª) ! ( eP ,!¥).

Conversely any homogeneous symplectomorphism from ( eN ,!ª) ! ( eP ,!¥) is obtained in
this way.
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PROOF. Assume that ©§(Ø) = Æ where Ker(Æ) = ª,Ker(Ø) = ¥. Then this induces a
symplectic map e© between (N £R§

+,d(tÆ)) and (P £R§
+,d(tØ)) and by uniqueness of

the symplectization (or rather the fact that it does not depend on the choice of the
contact form) we are done. Conversely if ™§!¥ = !ª that is ™§d(tØ) = d tÆ, in other
words, d

°
™§(tØ)° tÆ

¢
= 0. If the map is exact, this means,™§Ø=Æ+d f

⇤
EXERCICES 1. (1) Prove that the above lift is functorial, that is the lift of ©±™

is e©± e™
(2) Let ' : T §M ! T §M be an exact symplectic map, that is a map such that

'§(∏)°∏ is exact. Prove that there is a lift of' to a contact map e' : J 1M ! J 1M .
Prove that if (N ,Æ) is a contact manifold and √ a diffeomorphism of N such
that√§(Æ) =Æ (note that this is stronger than requiring that√ is a contact dif-
feomorphism, that is √§(Æ) = f ·Æ for some nonzero function f ) then √ lifts
in turn to a homogeneous symplectic map (N £R§

+,d(tÆ)) to itself.
(3) Prove that the symplectization of J 1(M) is T §(M)£R£R§

+ and explicit the sym-
plectomorphism obtained from the above e' by symplectization. Thus to any
symplectomorphism' : T §M ! T §M we may associate a homogeneous sym-
plectomorphism

© : T §(M)£R£R§
+ ! T §(M)£R£R§

+

Prove that the lift is functorial. That is the lift of '±√ is©±™.

As a result of Proposition 4.35 we have

COROLLARY 4.38. An exact Lagrangian submanifold L in (M ,!= d∏) has a unique
lift bL to the (homogeneous) symplectization of its contactization, (cM ,≠) = (M £R+

§ £
R,d t ^dø°d t ^∏).

PROOF. Indeed, let f (z) be a primitive of ∏ on L. Set bL = {(z, t ,ø) | z 2 L,ø = f (z)}.
Then, d(tdø° t∏) restricted to bL equals zero. ⇤

PROPOSITION 4.39. Let L be an exact Lagrangian. Then L is a conical (or homoge-
neous) Lagrangian in T §X if and only if ∏L = 0.

PROOF. Let X be the homogeneous vector field, that is the vector fleld such that
iX!= ∏. Then since for every vector Y 2 T L we have ∏(Y ) =!(X ,Y ) = 0 since both X
and Y are tangent to L, we have ∏L = 0. ⇤

Locally, L is given by a homogeneous generating function, that is a generating func-
tion S(q,ª) such that S(q,∏ ·ª) =∏ ·S(q,ª).

PROPOSITION 4.40 (See [Duis], page 83.). Let L be a germ of homogeneous La-
grangian. Then L is locally defined by a homogeneous generating function.

PROOF. Indeed, let S(x,ª) be a generating function for L. Then S∏(x,ª) = S(x,∏ ·ª)
is also a generating function for L, since ⇤
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EXERCICE 4.41. Let S(q,ª) be a (local) generating function for L. What is the gener-
ating function for bL ?

EXERCICE 4.42. Let S be a smooth hypersurface in M , and º : T §M ! M be the
projection.

(1) Prove that if ∫§S = {(x, p) | x 2 S, p|Tx S = 0} is the conormal to S, then S =
º(∫§S).

(2) Prove that for any homogeneous Lagrangian, L, in T §M , º|L is a map of rank
at most n °1 (find a trivial kernel).

(3) Prove that if L0 is homogeneous Lagrangian and C 1 close to L (i.e. L0\DT §M is
C 1 close to L\DT §M), then L0 is the conormal of some hypersurface S0. Hint:
prove that º(L0) is a (non-empty) smooth hypersurface.

PROPOSITION 4.43. Let ß be a germ of hypersurface near z in a homogeneous sym-
plectic manifold. Then after a homogenous symplectic diffeomorphism we may assume
ß is either in {q1 = 0} or {p1 = 0}.

PROOF. Let us consider a transverse germ, V , to X .Then V is transverse to ß, and
denote ß0 = V \ß. By a linear change of variable, we may assume the tangent space
Tzß ⇤



CHAPTER 5

Generating functions for Hamiltonians on cotangent bundles of
compact manifolds.

In the previous lecture, we proved that if L0 = ORn outside a compact set and has
GFQI, and ' is compactly supported Hamiltonian map of T §Rn , then '(L) has a GFQI.

Let us return to the general case: let N be a compact manifold. For l large enough,
there exists an embedding i : N ,!Rl . It gives rise to an embedding ĩ of T §N into T §Rl ,
obtained by choosing a metric on Rl . This can be defined as

T §N ,! T §Rl

(x, p) 7! (x̃(x, p), p̃(x, p))

where (̃x)(x, p) = i (x) and p̃(x, p) = p ±º(x). º(x) is the orthogonal projection TRl !
Tx N .

It’s easy to check that ĩ§p̃d x̃ = pd x, i.e. ĩ is a symplectic map(embedding). More-
over, if we denote by N £ (Rl )§ the restriction of T §Rl to N , then it’s coisotropic as in
Example 1 of symplectic reduction. To any Lagrangian in T §Rl (transversal to N£(Rl )§),
we may associate the reduction, that is a Lagrangian of T §N .

Let L̃ Ω T §Rl be a Lagrangian. Assume L̃ coincides with ORl outside a compact set
and L̃ is transverse to N £ (Rl )§. Denote its symplectic reduction by L̃N = L̃N£(Rl )§ =
L̃\ (N £ (Rl )§)/ ª.

Claim: For ' 2 H am(T §N ), if L̃ has GFQI, then '(L̃N ) has GFQI.

REMARK 5.1. If L̃ has S̃ :Rl £Rk !R as GFQI, then L̃N has S̃|N£Rk as GFQI.

For the proof of the claim, we will construct '̃ with compact support such that

('̃(L̃))N ='(L̃N ).

Then, the claim follows from the last remark and first part of the proof. Assume ' is
the time one map of 't associated to H(t , x, p), where (x, p) is coordinates for T §N .
Locally, we can write (x,u, p, v) for points in Rl so that N = {u = 0}. We define

H̃(t , x,u, p, v) =¬(u)H(t , x, p),

where ¬ is some bump function which is 1 on N and 0 outside a neighborhood of N .
By the construction, XH̃ = XH on N £ (Rl )§. '̃= '̃1, the time one flow of H̃ , is the map
we need.

The theorem follows by noticing that if we take L̃ = ORl , which is the same as zero
section outside compact set and has GFQI, then L̃N =ON . ⇤

41
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Exercice: Show that if L has a GFQI, then '(L) has GFQI for ' 2 H am(T §N ).
Hint. If S : N £Rk !R is a GFQI for L, then L is the reduction of g r (dS).

REMARK 5.2. 1) ON is generated by

S : N £R ! R

(x,ª) 7! ª2

2) There is no general upper bound on k (the minimal number of parameter of a
generating functions needed to produce all Lagrangian.)

Reason: Consider a curve in T §S1

1. Applications

We first need to show that GFQI has critical points. Let us consider a smooth func-
tion f on noncompact manifold M satisfying (PS) condition.

(PS): If a sequence (xn) satisfying d f (xn) ! 0 and f (xn) ! c, then (xn) has a con-
verging subsequence.

REMARK 5.3. Clearly, the limit of the subsequence is a critical point at level c.

REMARK 5.4. A GFQI satisfies (PS). It suffices to check this for a nondegenerate qua-
dratic form Q. Let Q(x) = 1

2 (AQ x, x), then dQ(x) = AQ (x). Since Q is nondegenerate,
we know AQ is invertible and

dQ(xn) ! 0 =) AQ xn ! 0 =) xn ! 0.

PROPOSITION 5.5. If f satisfies (PS) and H§( f b , f a) 6= 0, then f has a critical point
in f °1([a,b]), where f ∏ = {x 2 M | f (x) ∑∏}.

PROPOSITION 5.6. For b >> 0 and a << 0 we have

H§(Sb ,Sa) ª= H§°i (N ).

PROOF. One can replace S by Q since S =Q at infinity. Define

Q∏ = {ª|Q(ª) ∑∏}.

H§(Sb ,Sa) = H§(N £Qb , N £Qa)

= H§(N )£H§(Qb ,Qa).

Since Q is a quadratic form, it’s easy to see H§(Qb ,Qa) is the same as H§(D°,@D°)
where D° is the disk in the negative eigenspace of Q (hence has dimension i ndex(Q),
the number of negative eigenvalues). ⇤

Conjecture:(Arnold) Let L Ω T §N be an exact Lagrangian. Is there ' 2 H am(T §N )
such that L ='(ON )?
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REMARK 5.7. LS is always exact since ∏|LS = dS|ßS .

LS = {(x,
@S
@x

(x,ª))|@S
@ª

(x,ª) = 0}.

∏|LS = pd x = @S
@x

(x,ª)d x = dS,

since for points on LS , @S
@ª = 0.

A recent result by Fukaya, Seidel and Smith ([F-S-S]) grants that under quite general
assumptions, the degree of the projection deg(º : L ! N ) =±1 and H§(L) = H§(N ).

EXERCICE 5.8. Prove that if L has GFQI S, then deg(º : L ! N ) =±1.
Indication: Choose a generic point x0 2 N . The degree is the multiplicity with sign

of the intersection of L and the fiber over x0. That is counting the number of ª with
@S
@ª (x0,ª) = 0, i.e. the number of critical points of function ª 7! S(x0,ª) with sign

(°1)
i ndex( d2S

dª2 (x0,ª))
.

Therefore

deg(º : L ! N ) =
X

ª j

(°1)
i ndex( d2S

dª2 (x0,x j ))

where the summation is over all ª j with @S
@ª (x0,ª j ) = 0. The summation is finite since

S has quadratic infinity and the sum is the euler number of the pair (Sb ,Sa) for large b
and small a. Finally, check that for all quadratic form Q, the euler number of (Qb ,Qa)
is ±1.

By the previous claim, for large b and small a

H§(Sb ,Sa) ª= H§°i (N ).

Since N is compact, we know H§(N ) 6= 0. This implies that S has at least one critical
point and (LS \ON ) 6=;.

THEOREM 5.9 (Hofer ([Hofer]). Let N be a compact manifold and L = '(ON ) for
some ' 2 H am(T §N ), then

#(L\ON ) ∏ cl (N ).

If all intersection points are transverse, then

#(L\ON ) ∏
X

b j (N ).

Here

cl (N ) = max{k|9Æ1, · · · ,Æk°1 2 H§(N ) \ H 0(N ) such that Æ1 [ · · ·[Æk°1 6= 0}

and
b j (N ) = dim H j (N ).
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COROLLARY 5.10.
#(L\ON ) ∏ 1.

We shall postpone the proof of the theorem. However we may prove the corollary:
since by the Theorem of Sikorav, L has GFQI, and by proposition 1.4 and 1.3 it must
have a critical point. Some calculus of critical levels as in the next lectures will allow us
to recover the full strength of Hofer’s theorem.

THEOREM 5.11. (Conley-Zehnder[Co-Z]) Let ' 2 H am(T 2n), then

#F i x(') ∏ 2n +1.

If all fixed points are nondegenerate, then

#F i x(') ∏ 22n .

REMARK 5.12. 2n + 1 is the cup product length of T 2n and 22n is the sum of Betti
numbers of T 2n .

PROOF. Let (xi , yi ) be coordinates of T 2n . We will write (x, y) for simplicity. The
symplectic form is given by!= d y^d x. Consider T 2n£T 2n with coordinates (x, y, X ,Y ),
whose symplectic form is given by

!= d y ^d x °dY ^d X .

With this!, the graph of',°(') is a Lagrangian. Consider another symplectic manifold
T §T 2n , denote the coordinates by (a,b, A,B). Note that x, y, X ,Y , a,b take value in T n =
Rn/Zn and A,B takes value in Rn .

It has the natural symplectic form as a cotangent bundle

!= d A^d a +dB ^db.

Define a map F : T §T 2n ! T 2n £T 2n

F (a,b, A,B) = (
2a °B

2
,

2b + A
2

,
2a +B

2
,

2b ° A
2

) mod Zn .

It’s straightforward to check that F is a symplectic covering.
Let 4T 2n be the diagonal in T 2n £T 2n . It lifts to OT 2n Ω T §T 2n and the projection º

induces a bijection between OT 2n and 4T 2n . Of course OT 2n is only one component in
the preimage of 4T 2n corresponding to A = B = 0 (other components are given by A =
A0,B = B0 where A0,B0 2Zn . Now assume ' is the time one map of 't 2 H am(T 2n).

°('t ) = (i d £'t )(4T 2n ).

This Hamiltonian isotopy lifts to a Hamiltonian isotopy©t of T §T 2n such that

º±©t =¡t ±º.

Then the restriction of the projection to©t (OT 2n ) remains injective, since

º(©t (u)) =º(©t (v))
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implies
¡t (º(u)) =¡t (º(v))

but since º is injective on OT 2n and ¡t is injective, this implies u = v .
Therefore to distinct points in©t (OT 2n )\OT 2n correspond distinct points in °(')\

4T 2n = F i x(').
According to Hofer’s theorem, the first set has at least 2n + 1 points, so the same

holds for the latter. ⇤
REMARK 5.13. The theorem doesn’t include all fixed point '. Indeed, we could

have done the same with any other component of º°1(4T 2n ) (remember, they are
parametrized by pairs of vectors (A0,B0) 2Zn £Zn), and possibly obtained other fixed
points. What is so special about those we obtained ? It is not hard to check that they
correspond to periodic contractible trajectories on the torus. Indeed, a closed curve
on the torus is contractible if and only if it lifts to a closed curve on R2n . Now, our curve
is ©t (a,b,0,0) and projects on (i d £'t )(x, y, x, y) = (x, y,¡t (x, y)). Since ©1(a,b,0,0) 2
OT 2n , we may denote ©1(a,b,0,0) = (a0,b0,0,0), and since ¡1(x, y)) = (x, y), we have
a0 = x = a,b0 = y = b. Thus©t (a,b,0,0) is a closed loop projecting on (i d£'t )(x, y, x, y),
this last loop is therefore contractible, hence the loop 't (x, y) is also contractible.

Historical comment: Conley-Zehnder proof of the Arnold conjecture for the torus
came before Hofer’s theorem. It was the first result in higher dimensional symplectic
topology, followed shortly after by Gromov’s non-squeezing.

THEOREM 5.14. (Poincaré and Birkhoff) Let ' be an area preserving map of the an-
nulus, shifting each circle (boundary) in opposite direction, then #F i x(') ∏ 2.

PROOF. Assume ' is the time one map of a Hamiltonian flow 't associated to
H = H(t ,r,µ), where (r,µ) is the polar coordinates of the annulus(1 ∑ r ∑ 2). Assume
without loss of generality

@H
@r

> 0 for r = 2

and
@H
@r

< 0 for r = 1.

One can extend H to [ 1
2 , 5

2 ]£S1 such that @H
@r (r,µ) < 0 for r < 1, @H

@r (r,µ) > 0 for r > 2 and

H(t ,r,µ) =°r on [
1
2

,
2
3

]

and

H(t ,r,µ) = r on [
7
3

,
5
2

].

Take two copies of this enlarged annulus and glue them together to make a torus. Then
#F i x(') ∏ 3. At least one copy has two fixed points. ⇤
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2. The calculus of critical values and first proof of the Arnold Conjecture

Let N be a compact manifold and ' 2 H am(T §N ), then L ='(ON ) is a Lagrangian.
We have proved the following

THEOREM 5.15. L has a GFQI.

There are several consequences
• Hofer’s theorem: #('(ON )\ON ) ∏ 2; (In fact Hofer’s theorem says more.)
• Conley-Zehnder theorem: #F i x(') ∏ 2n +1 for ' 2 H am(T 2n);
• Poincaré-Birkhoff Theorem.

Today, we are going to talk about 1) Uniqueness of GFQI of L and 2) Calculus of
critical levels.

REMARK 5.16. Theorem 5.15 extends to continuous family, i.e. if'∏ is a continuous
family of Hamiltonian diffeomorphisms and L∏ ='∏(ON ), then there exists a continu-
ous family of GFQI S∏.

REMARK 5.17. The Theorem 1.1 (you mean 5.15? Yes (Claude) holds also for Legen-
drian isotopies(Chekanov). Let J 1(N ,R) ¥ T §N £R and define

Æ= d z °pd q.

DEFINITION 5.18. § is called a Legendrian if and only if Æ|§ = 0.

Example: Given a smooth function f 2C1(N ,R), the submanifold defined by

z = f (x), p = d f , q = x

is a Legendrian. One similarly associates to a generating function, S : N £Rk °! R a
legendrian submanifold (under the same transversality assumptions as for the Legen-
drian case)

§S = {(x,
@S
@x

(x,ª),S(x,ª)) | @S
@ª

= 0}

Denote the projection from T §N £R to T §N by º. Then any Legendrian submanifold
projects down to an (exact) Lagrangian. Moreover, any exact Lagrangian can be lifted
to a Legendrian. Note however that there are legendrian isotopies that do not project
to Lagrangian ones. So Chekanov’s theorem is in fact stronger than Sikorav’s theorem,
even though the proof is the same.

2.1. Uniqueness of GFQI. Let' 2 H am(T §N ) and L ='(ON ). Denote a GFQI for L
by S. We will show that we can obtain different GFQI by the following three operations.

Operation 1:(Conjugation) If smooth map ª : N £Rk ! Rk satisfies that for each
x 2 N , ª(x, ·) :Rk !Rk is a diffeomorphism, then we claim:

S̃(x,¥) = S(x,ª(x,¥))

is again GFQI for L.
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Recall from the definition of generating function

LS̃ = {(x,
@S̃
@x

(x,¥))|@S̃
@¥

(x,¥) = 0}

and

LS = {(x,
@S
@x

(x,ª))|@S
@ª

(x,ª) = 0}.

Since @ª
@¥ is invertible, the chain rule says @S̃

@¥ (x,¥) and @S
@ª (x,ª(x,¥)) simultaneously. On

such points,
@S̃
@x

(x,¥) = @S
@x

(x,ª(x,¥))+ @S
@ª

· @ª
@x

= @S
@x

(x,ª(x,¥)).

Operation 2: (Stabilization) If q is a nondegenerate quadratic form, then

S̃(x,ª,¥) = S(x,ª)+q(¥)

is a GFQI for L.
The reason is

@S̃
@x

(x,ª,¥) = @S
@x

(x,ª)

and
@S̃
@ª =

@S̃
@¥ = 0 ()

Ω
Aq¥= 0 =) ¥= 0
@S
@ª (x,ª) = 0

where Aq is given by (Aq¥,¥) = q(¥) for all ¥ and is invertible since q is nondegenerate.
Operation 3: (Shift) By adding constant,

S̃(x,ª) = S(x,ª)+ c.

The GFQI is unique up to the above operations in the sense that

THEOREM 5.19 (Uniqueness theorem for GFQI). If S1, S2 are GFQI for L = '(ON ),
then there exists S̃1, S̃2 obtained from S1 and S2 by a sequence of operations 1,2,3 such
that S̃1 = S̃2.

PROOF. For the proof, see [Theret]. ⇤
The main consequence of this theorem is that given L ='(ON ), for different choices

of GFQI, we know the relation between H§(Sb ,Sa). It suffices to trace how H§(Sb ,Sa)
changes by operation 1,2,3.

It’s easy to see that H§(Sb ,Sa) is left invariant by operation 1, because the pair
(Sb ,Sa) is diffeomorphic to (S̃b , S̃a).

For operation 3,
H§(S̃b , S̃a) = H§(Sb°c ,Sa°c ).

For operation 2, we claim without proof for b > a

H§(S̃b , S̃a) = H§°i (Sb ,Sa)

where i is the index of q .
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REMARK 5.20. The theorem holds for L ='(ON ) only, no result is known for general
L). Moreover, the theorem holds for families.

2.2. Calculus of critical levels. In this section, we assume M is a manifold and
f 2 C1(M ,R) is a smooth function satisfying (PS) condition. Given a < b < c, there is
natural embedding map

( f b , f a) ,! ( f c , f a).

It induces
H§( f c , f a) ! H§( f b , f a).

DEFINITION 5.21. Let Æ 2 H§( f c , f a). Define

c(Æ, f ) = inf{b| image of Æ in H§( f b , f a) is not zero}.

Since the embedding also induces

H§( f b , f a) ,! H§( f c , f a),

the same can be done for ! 2 H§( f c , f a) \ {0}.

DEFINITION 5.22. For ! 2 H§( f c , f a) \ {0}, define

c(!, f ) = inf{b|! is in the image of H§( f b , f a)}.

PROPOSITION 5.23. c(Æ, f ) and c(!, f ) are critical values of f .

PROOF. Prove the first one only. Proof for the other is similar. Let ∞ = c(Æ, f ), as-
sume ∞ is not a critical value. Since f satisfies (PS) condition, we have

H§( f ∞+", f ∞°") = 0.

Study the long exact sequence for the triple ( f ∞+", f ∞°", f a),

H§( f ∞+", f ∞°") ! H§( f ∞°", f a) ! H ( f ∞+", f a) ! H§+1( f ∞+", f ∞°")

Since the first and the last space are {0}, we know

H§( f ∞°", f a) ª= H§( f ∞+", f a).

By the definition of ∞, the image of Æ in H§( f ∞°", f a) is zero, but the image of Æ in
H§( f ∞+", f a) is not zero. This is a contradiction. ⇤

Recall Alexander duality:

AD : H§( f c , f a) ! Hn°§(X ° f a , X ° f c ) = Hn°§((° f )°a , (° f )°c ).

PROPOSITION 5.24. Assume that M is a compact, connected and oriented manifold,
then for Æ 2 H§( f c , f a) \ {0},

1) c(Æ, f ) =°c(AD(Æ),° f );
2) c(1, f ) = °c(µ,° f ) where 1 2 H 0(M) and µ 2 H n(M) are generators. (In fact, any

nonzero element will do since they are all proportional. Here we assumed a = °1 and
c =+1.)
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PROOF. 1) Diagram chasing on the following diagram, using the fact that X \ f a =
(° f )°a .

H§( f c , f a)

✏✏

AD // H n°§(X \ f a , X \ f c )

✏✏

H§( f b , f a)

✏✏

AD // H n°§(X \ f a , X \ f b)

✏✏

H§( f b , f c ) AD // H n°§(X \ f c , X \ f b)
2) It suffices to show

c(1, f ) = min( f ) and c(µ, f ) = max( f ).

⇤
THEOREM 5.25. (Lusternik-Schnirelmann) AssumeÆ 2 H§( f c , f a)\{0} andØ 2 H§(M)\

H 0(M), then

(5.1) {star} c(Æ\Ø, f ) ∏ c(Æ, f )

If equality holds in equation 9.47 with common value ∞, then for any neighborhood U
of K∞ = {x| f (x) = ∞,d f (x) = 0}, we have Ø 6= 0 in H§(U ).

REMARK 5.26. If Ø › H 0(M) and equality in (9.47) holds, then H p (U ) 6= 0 for all U
and some p 6= 0. This implies K∞ is infinite. Otherwise, take U to be disjoint union of
balls then H p (U ) = 0 for all p 6= 0, which is a contradiction. One can even show that K∞

is uncountable by the same argument.

COROLLARY 5.27. Let f 2C1(M ,R) with compact M, then

#Cr i t ( f ) ∏ cl (M).

PROOF. Inequality 9.47 is obvious because Æ= 0 in H§( f b , f a) implies Æ\Ø= 0 in
H§( f b , f a).

If equality in (9.47) holds, for any given U , take " sufficiently small so that
1) There exists a saturated neighborhood V ΩU of K∞ for the negative gradient flow

of f between ∞+" and ∞°", in the sense that any flow line coming into V will either go
to K∞ for all later time or go into f ∞°".(Never come out of V between ∞+" and ∞°").
Moreover by (PS) we may assume V contains all critical points in f ∞+" \ f ∞°".

2) (PS) condition ensures a lower bound for
ØØr f

ØØ for all x 2 f ∞+" \ (V [ f ∞°").
Let X =°r f and consider its flow 't .

d
d t

f ('t (x)) =°
ØØr f

ØØ2 ('t (x)).

Therefore, we have
• If x 2 f ∞°", then 't (x) 2 f ∞°".
• (V is saturated) x 2V implies 't (x) 2V [ f ∞°".
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• For x ›V and x 2 f ∞+". By 1),'t (x) ›V and as long as f ('t (x)) ∏ ∞°", we have
(due to 2)) ØØr f

ØØ ('t (x)) ∏ ±0.
This implies that there exists T > 0 such that for x 2 f ∞+" \V ,

f ('T (x)) < ∞°".

In conclusion, we get an isotopy 'T : f ∞+"! f ∞°"[V Ω f ∞°"[U .
Assume Ø = 0 in H§(U ). By definition Æ = 0 in H§( f ∞°", f a), then Æ[Ø = 0 in

H§( f ∞°"[U , f a). But 'T is an isotopy, we know

Æ[Ø= 0 in H§( f ∞+", f a).

This is a contradiction to c(Æ[Ø, f ) = ∞. ⇤
2.3. The case of GFQI. If S is a GFQI for L, we know

H§(S1,S°1) ª= H§°i (N )

where i is the index of the nondegenerate quadratic form associated with S.
Due to this isomorphism, to eachÆ 2 H§(N ), we associate Æ̃ 2 H§(S1,S°1). Define

c(Æ,S) = c(Æ̃,S).

We claim the next result but omit the proof.

PROPOSITION 5.28. For Æ1,Æ2 2 H§(N ),

c(Æ1 [Æ2,S1 ©S2) ∏ c(Æ1,S1)+ c(Æ2,S2),

where
(S1 ©S2)(x,ª1,ª2) = S1(x,ª1)+S2(x,ª2).

REMARK 5.29. The isomorphism mentioned above is precisely

H§(N )≠H§(D°,@D°) = H§(S1,S°1)
Æ≠T 7! T̃ [p§Æ

where p : N £Rk ! N is the projection.

H§((S1 ©S2)1, (S1 ©S2)°1) ª= H§(N ) ≠ H§(D°
1 ,@D°

1 ) ≠ H§(D°
2 ,@D°

2 )
T̃ [p§Æ Æ T1 T2

T̃ [p§Æ = T̃1 [ T̃2 [p§(Æ1 [Æ2)

= (T̃1 [p§Æ1)[ (T̃2 [p§Æ2)



Part 2

Sheaf theory and derived categories





CHAPTER 6

Categories and Sheaves

1. The language of categories

DEFINITION 6.1. A category C is a pair (Ob(C ),MorC ) where

• Ob(C ) is a class of Objects 1

• Mor is a map from C £C to a class, together with a composition map

Mor(A,B)£Mor(B ,C ) °! Mor(A,C )

( f , g ) 7! g ± f

The composition is :
(1) associative
(2) has an identity element, idA 2 Mor(A, A) such that idB ± f = f ± idA = f for

all f 2 Mor(A,B).

The category is said to be small if Ob(C ) and MorC are actually sets. It is locally small
if MorC (A,B) is a set for any A,B in Ob(C ).

DEFINITION 6.2. A functor between the categories C and D is a “pair of maps”, one
from Ob(C ) to Ob(D) the second one sending MorC (A,B) to MorD(F (A),F (B)) such
that F (idA) = idF (A) and F ( f ± g ) = F ( f )±F (g ).

Examples:

(1) The category Sets of sets, where objects are sets and morphisms are maps.
The subcategory Top where objects are topological spaces and morphisms are
continuous maps.

(2) The category Group of groups, where objects are groups and morphisms are
group morphisms. It has a subcategory, Ab with objects the abelian groups
and morphisms the group morphisms. This is a full subcategory, which means
that MorGroup(A,B) = MorAb(A,B) for any pair A,B of abelian groups; the set
of morphisms between two abelian groups does not depend on whether you
consider them as abelian groups or just groups. An example of a subcategory
which is not a full subcategory is given by the subcategory Top of Sets, since
not all maps are continuous.

1The class of Objects can be and often is a “set of sets”. There is clean set-theoretic approach to this,
using “Grothendieck Universe”, but we will not worry about these questions here (nor elsewhere...).

53
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(3) The category R-mod of R-modules, where objects are left R-modules and
morphisms are R-modules morphisms.

(4) The category k-vect of k-vector spaces, where objects are k-vector spaces and
morphisms are k-linear maps.

(5) The category Man of smooth manifolds, where objects are smooth manifolds
and morphisms are smooth maps.

(6) Given a manifold M , the category K-Vect(M) of smooth K -vector bundles over
M and morphisms are smooth linear fiber maps. The category K-Vect of K -
vector bundles over any manifold.

(7) If P is a partially ordered set (a poset), Ord(P) is a category with objects
the element of P , and morphisms Mor(x, y) = ; unless x ∑ y in which case
Mor(x, y) = {§}.

(8) The category Pos of partially ordered sets (i.e. posets), where morphisms are
monotone maps, i.e. maps f : X ! Y such that x1 ∑ x2 =) f (x1) ∑ f (x2).

(9) if X is a topological space, Open(X) is the category where objects are open sets,
and morphisms are such that Mor(U ,V ) = {§} if U ΩV , and Mor(U ,V ) =;oth-
erwise. (since the set of open sets in X is a set partially ordered by inclusion,
this is a special case of Ord(P)).

(10) If G is a group, the category Group (G) has objets the one element set {§} and
MorC (§,§) =G , where composition corresponds to multiplication.

(11) For any category C, we can define the category Rep (C) of functors from C to
Vect, Fun(C,Vect). Objects are functors from C to Vect. For example if G is a
group, the category Rep( Group (G)) has objects R(G) the set of group repre-
sentations of G and morphisms the set of morphisms between group repre-
sentations.

(12) The category FreeQuiver with two objects, X0 called vertex, X1 called edge,
and beside the identity morphism, two morphisms h, t : X0 °! X1 called
"head" and "tail".

(13) The simplex category Simplex also denoted ¢ whose objects are sets [n] =
{0,1, ...,n} for i ∏ °1 ([°1] = ;) and morphisms are the monotone maps. The
following maps ±n

i : [n °1] ! [n] obtained by letting i out, and æn
i : [n +1] !

[n] such that æi (i ) = æi (i + 1) = i and otherwise injective generate the set of
morphisms. They satisfy the relations
(a) ±n+1

i ±n
j = ±n+1

j°1±
n
i for i < j

(b) æn
i æ

n+1
j n =æn

j æ
n+1
i°1 for i > j

(c) ±n
i æ

n
j =æn

j°1±
n
i if i < j

(d) ±n
i æ

n
j = id for i = j or i = j +1

(e) ±n
i æ

n
j =æ j±i°1 for i > j +1

These relations generate all the relations between the ±n
i ,æn

j . One should
think of i as the i -th vertex of a simplex, and then ±n

i ,æn
i are i -th face map and
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degeneracy map. Note that all the morphisms are generated by composition
of the ±n

i ,æn
i . The category Simplex is a full subcategory of Pos.

(14) There is functor Simplex to Top sends [n] to the n-simplex {(x0, ..., xn) | 0 ∑
x0 ∑ x1 ∑ ... ∑ xn ∑ 1}. It sends ±n

i to the map that sends the n ° 1-simplex
to the i -th face of the n-simplex. This is called the geometric realization of
Simplex.

(15) The category Cell of cell complexes. A cell complex is a topological space X ,
endowed with a partition Xæ, æ 2 PX , such that
(a) Each point has a neighborhood containing finitely many Xæ

(b) each Xæ is homeomorphic to B K for some k,
(c) X̄æ\Xø 6=; implies Xæ Ω X̄ø and we say Xæ is a face of Xø.
(d) moreover (X̄æ, Xæ) is homeomorphic to (B̄ k ,B k ).

We say (X ,PX ) is an open cell complex, if it only satisfies the first three ax-
ioms, and X [ {1}, its Alexandrov compactification satisfies the fourth. This
gives PX a structure of Poset, and we associate to (X ,PX ) the category Ord(PX ).

(16) Given a category C , the opposite category is the category denoted C op hav-
ing the same objects as C , but such that MorC op (A,B) = MorC (B , A) with the
obvious composition map: if we denote by f § 2 MorC op (A,B) the image of
f 2 MorC (B , A), we have f § ± g§ = (g ± f )§. In some cases there is a simple
identification of C op with a natural category (example: the opposite category
of k-vect is the category with objects the space of linear forms on a vector
space).

(17) Given a category C , we can consider the quotient category by isomorphism.
The standard construction, at least if the category is not too large, is to choose
for each isomorphism class of objects a given object (using the axiom of choice),
and consider the subcategory C 0 of C generated by these objects.

Examples: A functor from Group(G) to Group(H) is a morphism from G to H .
There are lots of forgetful functors, like Group to Sets. There is also a functor from
Top to Pos sending X to the set of its open subsets ordered by inclusion.

DEFINITION 6.3. A functor is fully faithful if for any pair X ,Y the map FX ,Y : Mor (X ,Y ) !
Mor(F (X ),F (Y )) is bijective. We say that F is an equivalence of categories if it is fully
faithful, and moreover for any X 0 2D there is X such that F (X ) is isomorphic to X 0.

Note that for an equivalence of categories, we only require that F is a bijection be-
tween equivalence classes of isomorphic objects.

Examples:

(1) Let us consider the category StVect with objectsN and Mor(m,n) = L(Km ,Kn).
There is an obvious functor from StVect to K-Vect associating to n the vector
space Rn . The functor is fully faithful since the morphisms in StVect coincide
with those in K-Vect. It is not an equivalence of categories, since there are
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vector spaces non-isomorphic to Kn . However if we replace K-Vect by K-Vect-
finite the category of finite dimensional vector spaces, the functor is now an
equivalence.

(2) Given a category, C we may, using the axiom of choice, associate to each ob-
ject A in C , a representative [A] of its equivalence class and an isomorphism
i A : A °! [A]. We denote the class of such representatives by C 0, as defined
in example (17), page 55. For each pair A,B in C 0, we defined MorC 0(A,B) =
MorC (A,B). Then there is a functor C : C °! C 0 sending each object to its
representative, and sending f 2 MorC (A,B) to iB f ± i°1

A 2 MorC 0([A], [B ]). This
yields an equivalence of categories S : C °!C 0.

There is also a notion of transformation of functors.

DEFINITION 6.4. If F : A ! B,G : A ! B are functors, a transformation of functors
is a family of maps parametrized by X , TX 2 Mor(F (X ),G(X )) making the following
diagram commutative for every f in Mor(X ,Y )

F (X )

TX
✏✏

F ( f )
// F (Y )

TY
✏✏

G(X )
G( f )

// G(Y )

Notice that some categories are categories of categories, the morphisms being the
functors. This is the case for Group with objects the set of categories of the type
Group(G), or of Pos whose objects are the Ord(P). We may also, given two categories, A,
B define the category with objects the functors from A to B, and morphisms the trans-
formations of these functors. We shall see for example that presheaves over X (see the
next section) are nothing but functors defined on the category Open(X). And so on,
and so forth....

Example:
(1) For any category C a new category Quiv(C) of functors from Quiver to C.

1.1. Special objects and morphisms.

DEFINITION 6.5. An initial object in a category is an element I such that for any
object A, Mor(I , A) has exactly one element. A terminal object T is an object such that
Mor(A,T ) is a singleton for each A. Equivalently T is a terminal object if and only if it
is an initial object in the opposite category.

Examples: ; in Sets, {e} in Group, {0} in R-mod or K-Vect, the smallest object in P
if it exists, [°1] in Simplex. Finally as in maps, we have the notion of monomorphism
and epimorphisms

DEFINITION 6.6. An element f 2 Mor(B ,C ) is a monomorphism if for any g1, g2 2
Mor(A,B) the equality f ± g1 = f ± g2 implies g1 = g2. An element f 2 Mor(A,B) is an
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epimorphism if for any g1, g2 2 Mor(B ,C ) the property g1± f = g2± f implies g1 = g2. An
isomorphism is a morphism f 2 Mor(A,B) such that there exists g such that f ±g = IdB
and g ± f = idA. It is easy to check that g is then unique, and is denoted by f °1.

EXERCICES 1. (1) Which of the categories defined on page 53 have an initial
object ? A terminal object ?

(2) Prove that an initial object is unique, up to a unique isomorphism.
(3) Is being an isomorphism equivalent to being both a monomorphism and an

epimorphism ? Such a category is said to be “balanced”). . Prove that if
Mor(A,B) is finite for all A,B then the category is balanced.

(4) Prove that in the category Sets monomorphisms and epimorphisms are just
injective and surjective maps. Is Sets balanced ?

(5) In the category Groups, prove that epimorphisms are surjective morphisms,
Prove that the category Groups is balanced.

Hint to prove that an epimorphism is onto: prove that for any proper sub-
group H of G (not necessarily normal), there is a group K and two different
morphisms g1, g2 in Mor(G ,K ) such that g1 = g2 on H . For this use the action
of G on the classes of H/G to reduce the problem to Sq°1 ΩSq and prove that
there are two different morphisms Sq !Sq+1 equal to the inclusion on Sq°1.

(6) Prove that the injectionZ!Q is an epimorphism in the category Rng of com-
mutative rings with unit. Hint: use the fact that a morphism g : Q! R must
be injective2.

(7) Prove that in the category Top an epimorphism is surjective. Is the category
balanced ? Give an example of a balanced subcategory. Find also a subcat-
egory of Top such that any continuous map with dense image is an epimor-
phism.

(8) Which of the categories in the list starting on page 53 are balanced ?
(9) Prove that the composition of two monomorphisms (resp. epimorphism) is a

monomorphism (resp. epimorphism)

2. Additive and Abelian categories

DEFINITION 6.7. An additive category is a category such that

(1) It has a 0 object which is both initial and terminal. The zero map in Mor(A,B)
is defined as the unique composition A ! 0 ! B .

(2) Mor(A,B) is an abelian group, 0 is the zero map, composition is bilinear.
(3) It has finite biproducts (see below for the definition).

2There are in fact two possible definitions for a ring morphism: either it is just a map such that
f (x+y) = f (x)+ f (y), f (x y) = f (x) f (y) or we add the hypothesis f (1) = 1. In the latter case Mor(Q,R) =;
unless R has zero characteristic.
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A category has finite products if for any A1, A2 there exists an object denoted A1£A2
and maps pk : A1 £ A2 °! Ak such that

Mor(Y , A1)£Mor(Y , A2) ' Mor(Y , A)

the bijection being given by the map f ! (p1 ± f , p2 ± f ) and which are universal in the
following sense3. For any maps f1 : Y ! A1 and f2 : Y ! A2 there is a unique map
f : Y ! A1 £ A2 making the following diagram commutative

Y

f1

⇥⇥

f

✏✏

f2

⌧⌧
A1 A1 £ A2p1
oo

p2 // A2

It has finite coproducts if given any A1, A2 there exists an object denoted A1 + A2
and maps ik : Ak °! A1 + A2 such that

Mor(A1,Y )£Mor(A2,Y ) = Mor (A1 + A2,Y )

and this is given by g ! (g ±i1, g ±i2). In other words for any g1 : A1 ! Y and g2 : A2 ! Y
there exists a unique map g : A1 + A2 ! Y making the following diagram commutative

A1

g1

⌧⌧

i1 // A1 + A2

f

✏✏

A2i2

oo

g2

⇥⇥
Y

the category has finite biproducts if it has both products and coproducts, these are
equal and moreover

(1) p j ± ik is idA j if j = k and 0 for j 6= k,
(2) i1 ±p1 + i2 ±p2 = idA1©A2 .

We then denote the biproduct of A1 and A2 by A1 © A2. According to exercise 4 on the
facing page, if biproducts exist, they are unique up to a unique isomorphism. Note
also that the definition of product and coproducts makes sense in any category, while
the definition of biproducts requires a law group on Mor(A,B) and the existence of a 0
map.

3The maps (p1, p2) correspond to IdA under the identification of Mor(A, A) and Mor(A, A1) £
Mor(A, A2). The maps i1, i2 mentioned later are obtained similarly.
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EXERCICES 2. (1) What are products and coproducts in the category Sets, Groups
Top, K -Vect(M) ?

(2) Which of the categories defined on 53 are additive ?

DEFINITION 6.8. A kernel for a morphism f 2 Mor(A,B) is a pair (K ,k)

where K
k! A

f°! B such that f ±k = 0 and if g 2 Mor(P, A) and f ± g = 0 there
is a unique map h 2 Mor(P,K ) such that g = k ±h. In other words whenever
g ± f = 0 whe have existence of the dotted map below

K
k // A

f
// B

P
h

__

g

OO

A cokernel is a pair (C ,c) such that c ± f = 0 and if g 2 Mor(B ,Q) is such
that g ± f = 0 there is a unique d 2 Mor(C ,Q) such that d ± c = g . In other
words whenever f ± g = 0 whe have existence of the dotted map below

A
f
// B

g

��

c // C

d
✏✏

Q

A Coimage is the kernel of the cokernel. An Image is the cokernel of the kernel.

EXERCICES 3. (1) Identify Kernel and Cokernel in the category of R-modules.
(2) In the category Groups, prove that the cokernel of f is G/N (Im( f )), where

N (H) is the normalizer4 of H in G , but epimorphisms are surjective mor-
phisms. In particular, to have cokernel 0 is not equivalent to being an epi-
morphism. Prove that the category Groups is balanced.

(3) Prove that a kernel is a monomorphism, that is if (K ,k) is the kernel of A
f! B ,

then k : K ! A is a monomorphism. Prove that a cokernel is an epimorphism
(use the uniqueness of the maps).

(4) It is a general fact that solutions to universal problems, if they exists, are
unique up to unique isomorphism. Prove this for products, coproducts, Ker-
nels and Cokernels.

(5) Assuming an additive category has both kernels and cokernels, prove that
there is a unique map from Coim( f ) to Im( f ). Use the following diagram, jus-
tifying the existence of the dotted arrows

4i.e. the largest subgroup such that H is a normal subgroup of N (H).
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(6.1) Ker(f)
i // A

f
//

u
✏✏

B
p

// Coker( f )

Coim( f ) = Coker(i )

√

55

Ker(p) = Im(f)

v

OO

Then p ±√= 0: since u is an epimorphism according to Exercise 4 (3), and
p ±√±u = p ± f = 0, and this implies p ±√= 0 hence √ factors through Ker(p).
We now have the following diagram with the unique map æ

(6.2) Ker(f)
i // A

f
//

u
✏✏

B
p

// Coker( f )

Coim( f ) = Coker(i )

√

55

æ // Ker(p) = Im(f)

v

OO

DEFINITION 6.9 (Abelian category). An abelian category is an additive category
such that

(1) It has both kernels and cokernels
(2) The natural map from the coimage to the image of a morphism (see the map

æ in Exercise 3, (5)) is an isomorphism.

The second statement can be replaced by the more intuitive one: every morphism
f : A ! B has a factorization

(2’){2’ab} K
i // A

f

$$u // Im( f )
v // B // Coker( f )

where u and v are the natural maps (see Exercise 3, (5)).

EXERCICES 4. (1) Prove that the factorization of morphisms (2’) is equivalent
to property (2).

(2) Prove that in (2’), u is an epimorphism and v a monomorphism.
(3) Prove that in an abelian category, the kernel of f is zero if and only if f is a

monomorphism. Prove that Coker( f ) = 0 if and only if v is an isomorphism
from Im( f ) to B and this in turn means f is an epimorphism. If a map (in
a non-abelian category) is both mono and epi, is it an isomorphism ( f is an
isomorphism if and only if there exists g such that f ± g = id,= g ± f = id) ?
Consider the case of a group morphism for example.

(4) Which one of the categories from the list of examples starting on page 53 are
abelian ?

(5) The opposite of an abelian category is an abelian category
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PROPOSITION 6.10. Let C be an abelian category. Then a morphism which is both a
monomorphism and an epimorphism is an isomorphism. Therefore an abelian category
is balanced.

PROOF. Notice first that 0 ! A has cokernel equal to (A, Id). Similarly the kernel of
B ! 0 is (B , Id). Assuming f is both an epimorphism and a monomorphism, we get the
commutative diagram

(6.3) 0
i // A

f
//

Id
✏✏

B
p

// 0

Coim( f ) = Coker(i ) = A
æ // Ker(p) = Im(f) = B

Id

OO

and the result follows from the fact that æ is an isomorphism. ⇤
DEFINITION 6.11. In an abelian category, the notion of exact sequence is defined

as follows. A sequence of maps A
f! B

g!C is exact if and only if g ± f = 0 and the map
from Im( f ) to Ker(g) is an isomorphism. The exact sequence is said to be split if there
is a map h : C ! B such that g ±h = IdC .

Whenever g ± f = 0 we get a map w from Im( f ) to Ker(g). It is obtained from the
following diagram

Im( f ) = Ker(p)
v

((

w // Ker(g)
i

xx
A

u

OO

f
// B

p
✏✏

g
// C

Coker( f )

(6.4) {6-4}

Here u, v come from the canonical factorization of f . We claim that g ± v = 0 since
g ± v ±u = g ± f = 0 and u is an epimorphism according to Exercise 4, (2). As a result v
factors through a map w : Im( f ) ! Ker(g).

Note that 0 ! A
f! B is exact if and only if f is a monomorphism, and A

f! B ! 0 is
exact if and only if f is an epimorphism.

EXERCICE 6.12. (1) Prove that w is a monomorphism. Hint: use that v = i ±w
and that v is a monomorphism (see Exercice 4, (2))

(2) Prove that if an exact sequence 0 ! A
f! B

g! C ! 0 is split, that is there is
a map h : C ! B such that g ±h = IdC , then B ' A ©C . Prove that the same
conclusion holds if there exists k such that k ± f = IdA.

Hint: prove that there exists a map k : B ! A such that IdB = f ±k +h ± g .
Indeed, g ±h ± g = g and since g is an epimorphism, and g ± (IdB °h ± g ) = 0,
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we get that since f : A ! B is the kernel of g , that (IdB °h ± g ) = f ±k for some
map k : B ! A.

Now f ©h : A©C ! B is an isomorphism, with inverse k © g : B ! A©C .

Note that Property (2’) can be replaced by either of the following conditions:

(2”) any monomorphism is a kernel, and any epimorphism is a cokernel. In other

words, monomorphism 0 ! A
f! B can be completed to an exact sequence

0 ! A
f! B

g! C , and any B
g! C ! 0 can be completed to an exact sequence

A
f! B

g!C ! 0
(2”’) If A

f! B
g!C is an exact sequence, then we have a factorization

A
f! B

g1! Coker(g )
g2!C

where the last map is monomorphism.

Moreover

PROPOSITION 6.13. If

0 ! A
f! B

g!C ! 0

is an exact sequence, then (A, f ) = Ker(g) and (C , g ) = Coker( f ).

PROOF. Consider 0 ! A
f! B . We claim the map A

u! Im( f ) is an isomorphism. It
is a monomorphism, because the factorization (2’) of f is written 0 ! A

u! Im( f )
v! B .

Moreover it is an epimorphism according to Exercise 4, (3).
Since the map w from (*) is an isomorphism (due to the exactness of the sequence),

we have the commutative diagram

Im( f ) = Ker(p)
v

&&

w
' // Ker(g)

i

||
0 // A

u'
OO

f
// B

g
// C

and thus the isomorphism (w ±u) identifies (A, f ) is isomorphic to (Ker(g), i). We leave
the proof of the dual statement to the reader. ⇤

A sequence as above is called a short exact sequence.

DEFINITION 6.14. Let F be a functor between additive categories. We say that F
is additive if the associated map from Hom(A,B) to Hom(F (A),F (B)) is a morphism
of abelian groups. Let F be an additive functor between abelian categories. We say
that the functor F is exact if it transforms an exact sequence in an exact sequence. It

is left-exact if it transforms an exact sequence 0 ! A
f! B

g! C to an exact sequence

0 ! F (A)
F ( f )! B

F (g )! F (C ). It is right-exact, if it transforms an exact sequence A
f! B

g!
C ! 0 to an exact sequence A

F ( f )! B
F (g )! C ! 0.
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Example: In an abelian category, C

(1) The functor X ! Mor(X , A) (from C to Ab) is left-exact. Indeed, consider

an exact sequence 0 ! A
f! B

g! C , and the corresponding sequence 0 !
Mor(X , A)

f§! Mor(X ,B)
g§! Mor(X ,C ) is exact, since the fact that f is a monomor-

phism is equivalent to the fact that f§ is injective, while the fact that Im( f§) =
Ker(g§) follows from the fact that A

f! B is the kernel of g (according to Prop.
6.13), so that for any X and u 2 Mor(X ,B) such that g ±u = 0, there exists a
unique v making the following diagram commutative:

A
f
// B

g
// C

X
v

__

u

OO

(2) The contravariant functor M ! Mor(M , X ) is right-exact. This means that it

transforms A
f! B

g!C ! 0 to 0 ! Mor(C , X )
g§
! Mor(B , X )

f §
! Mor(A, X ).

(3) In the category R-mod, the functor M ! M ≠R N is right-exact. It is not left

exact, since in the category of Z-modules, the exact sequence 0 !Z
2!Z ten-

sored by Z/2Z becomes 0 ! Z/2Z
0! Z/2Z. The failure of exactness is due to

torsion and gives rise to the Tor functor.
(4) If a functor has a right-adjoint it is right-exact, if it has a left-adjoint, it is left-

exact (see Lemma 7.24, for the meaning and proof).

EXERCICE 6.15. (1) Let C be a small category and A an abelian category. Prove
that the category C A of functors from C to A is an abelian category.

(2) Prove that for a functor to be exact, it is enough to transform short exact se-
quences to short exact sequences. Hint: if

A1
f1! A2 ! ....

fn! An

is exact if and only if f j+1 ± f j = 0 and all the sequences 0 ! Ker(fj) ! Aj !
Ker(fj+1) ! 0 are (short) exact sequences. This can be summarized in the fol-
lowing diagram where C j = Ker(fj)
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0

  

0 0

  

0

C2

>>

  

C4

>>

  
A1 //

>>

A2 //

  

A3

>>

// A4 //

  

A5

C1

>>

C3

>>

  

C5

  

>>

0

??

0

>>

0 0

>>

0

.

Conversely prove that if in the above commutative diagram if all the diag-
onal short sequences are exact, then the horizontal sequence is exact

3. The category of Chain complexes

To any abelian category C we may associate the category Chain(C ) of chain com-
plexes. Its objects are sequences

...
dm°1! Im

dm! Im+1
dm+1! Im+2

dm+2! Im+3....

where the boundary maps dm satisfy the condition dm ± dm°1 = 0. Its morphisms,
called chain maps, are commutative diagrams

...
dm°1 // Im

dm //

um
✏✏

Im+1
dm+1 //

um+1
✏✏

Im+2
dm+2 //

um+2
✏✏

Im+3
dm+3 //

um+3
✏✏

...

... // Jm
@m // Jm+1

@m+1 // Jm+2
@m+2 // Im+3

@m+3 // ...

.

It has several natural subcategories, in particular the subcategory of bounded com-
plexes Chainb(C ), complexes bounded from below Chain+(C ), complexes bounded
from above Chain°(C ). The cohomology H m(A•) of the chain complex A• is given by
ker(dm)/Im(dm°1). We may consider H m(A•) as a chain complex with boundary maps
equal to zero.

EXERCICES 5. (1) Show that the definition of H (A•) indeed makes sense in an
abstract category: one must prove that there is a natural mapping Im(dm°1) !
Ker(dm) (see the map w from diagram (6.4) page 61) and H m(C •) is defined
as the cokernel of this map.

(2) Determine the kernel and cokernel in the category Chain(C ).
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PROPOSITION 6.16. Let C be an abelian category. Then Chainb(C ), Chain+(C ),
Chain°(C ) are abelian categories.

The map from Chain (C ) to Chain (C ) induced by taking homology is a functor. In
particular any morphism u = (um)m2N from the complex A• to the complex B• induces
a map u§ : H (A•) ! H (B•). If moreover u, v are chain homotopic, that is there exists
a map s = (sm)m2N such that sm : Im ! Jm°1 and u ° v = @m°1 ± sm + sm+1 ±dm then
H (u) =H (v).

PROOF. The proof is left to the reader or referred for example to [Weib]. ⇤

The abelian category C is a subcategory of Chain(C ) by identifying A to 0 ! A ! 0
and it is then a full subcategory.

DEFINITION 6.17. A chain map u : A• ! B• is a chain homotopy equivalence if and
only if there exists a chain map v : B• ! A• such that u±v and v±u are chain homotopic
to the Identity.

DEFINITION 6.18. A map u : A• ! B• is a quasi-isomorphism if the induced map
H (u) is an isomorphism from H (A•) to H (B•). Two chain complexes A•,B• are quasi-
isomorphic if and only if there exists a chain complex, C •, and chain maps u• : C • ! A•

and v• : C • ! B• such that u•, v• are quasi-isomorphisms (i.e. induce an isomorphism
in cohomology).

A fundamental result in homological algebra is the existence of long exact sequences
associated to a short exact sequence.

PROPOSITION 6.19. Given a short exact sequence of chain complexes,

0 ! A• f! B• g!C • ! 0

there exists a map ±m : H m(C •)
±!H m+1(A•) such that we have a long exact sequence

.. !H m(A•)
f §
!H m(B•)

g§
!H m(C •)

±!H m+1(A•) ! ...

PROOF. See any book on Algebraic topology or [Weib] page 10. ⇤
REMARK 6.20. If the exact sequence is split (i.e. there exists h : C • ! B• such that

g ±h = IdC ), then we can construct a sequence of chain maps,

... ! A• f! B• g!C • ±! A•[1]
f [1]! B• g [1]! ...

where we set (A•[k])n = An+k and @A•[k] = (°1)k@, and such that the long exact se-
quence is obtained by taking the cohomology of the above sequence.

This does not hold in general, but these distinguished triangles play an important
role in triangulated categories (of which the Derived category is the main example),
where exact sequences do not make much sense.
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Finally, the Freyd-Mitchell theorem tells us that if C is a small abelian category5,
then there exists a ring R and a fully faithful and exact6 functor F : C ! R°mod for
some R. The functor F identifies A with a subcategory of R-Mod : F yields an equiv-
alence between C and a subcategory of R-Mod in such a way that kernels and cok-
ernels computed in C correspond to the ordinary kernels and cokernels computed in
R-Mod. We can thus, whenever this simplifies the proofs, assume that an abelian cat-
egory is a subcategory of the category of R-modules. As a result, all diagram theorems
in an abelian categories, can be proved by assuming the objects are R-modules, and
the maps are R-modules morphisms, and in particular maps between sets7.

We refer to [Weib] for the sketch of a proof, but let us mention a crucial ingredient
in the proof of Freyd-Mitchell theorem, Yoneda’s lemma.

LEMMA 6.21 (Yoneda’s lemma). Given two objects A, A0 in C , and assume for all
C there is a bijection iC : Mor(A,C ) ! Mor(A0,C ), commuting with all the maps f § :
Mor(C , A) ! Mor(B , A) induced by f : B !C . Then A and A0 are isomorphic.

The functor h A : C ! Mor(C , A) is a functor from C to sets. The natural transforma-
tions from h A to a functor F from C to Sets are in 1-1 correspondence with elements
of F (A), and natural transformations from h A to hB are in 1-1 correspondence with
Mor (B , A). Thus if denote by SetC op

the category of functors from C op to Sets, we get
a fully faithful functor (also called en embedding) from C to SetC op

, given by C °! hC .
This is called Yoneda’s embedding. When C has some extra properties, we may re-
place Sets by a more appropriate category. For example if C is abelian we may replace
Sets by Ab, the category of Abelian groups. Then the category AbC op

, also denoted
by Mor(C ,Ab), of additive functors between C op and Ab is an abelian category. It is
called, for reasons we let the reader guess, the category of Modules over C .

As a consequence of the Freyd-Mitchell theorem, we see that all results of homolog-
ical algebra obtained by diagram chasing are valid in any abelian category. For example
we have :

LEMMA 6.22 (Snake Lemma). In an abelian category, consider a commutative dia-
gram:

A
f
//

a
✏✏

B
g
//

b
✏✏

C //

c
✏✏

0

0 // A0 f 0
// B 0 g 0

// C 0

5Remember that this means that objects and morphism are in fact sets.
6A functor F is fully faithful if FX ,Y : Mor(X ,Y ) ! Mor(F (X ),F (Y )) is bijective.
7see http://unapologetic.wordpress.com/2007/09/28/diagram-chases-done-right/ and the appen-

dix to this chapter for an alternative approach to this specific problem.
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where the rows are exact sequences and 0 is the zero object. Then there is an exact se-
quence relating the kernels and cokernels of a, b, and c:

Ker(a) // Ker(b) // Ker(c)
d // Coker(a) // Coker(b) // Coker(c)

Furthermore, if the morphism f is a monomorphism, then so is the morphism Ker(a) °!
Ker(b), and if g 0 is an epimorphism, then so is Coker(b) °! Coker(c).

PROOF. First we may work in the abelian category generated by the objects and
maps of the diagram. This will be a small abelian category. According to the Freyd-
Mitchell theorem, we may assume the objects are R-modules and the morphisms are
R-modules morphisms. Note that apart from the map d , whose existence we need to
prove, the other maps are induced by f , g , f 0, g 0. Note also that the existence of d in
the general abelian category follows from the R-module case and the Freyd-Mitchell
theorem, since the functor provided by the theorem is fully-faithful. Let us construct
d . Let z 2 Ker(c), then z = g (y) because g is onto, and g 0b(y) = 0, hence b(y) = f 0(x 0)
and we set x 0 = d(z). We must prove that x 0 is well defined in Coker( f 0) = A0/a(A).
For this it is enough to see that if z = 0, y 2 Ker(g) = Im(f) that is y = f (x), and so if
b f (x) = b(y) = f 0(x 0), we have f 0(x 0) = f 0(a(x)) and since f 0 is monomorphism, we get
x 0 = a(x).

Let us now prove the maps are exact at Ker(b). Let v 2 Ker(b) (i.e. b(v) = 0) such
that g (v) = 0. Then by exactness of the top sequence, v = f (u) with u 2 A. We have
f 0a(u) = b( f (u)) = b(v) = 0, and since f 0 is injective, a(u) = 0 that is u 2 Ker(a). ⇤

EXERCICE 6.23 (The five lemma). Consider the diagram

A
f
//

a
✏✏

B
g
//

b
✏✏

C
h //

c
✏✏

D
k //

d
✏✏

E

e
✏✏

A0 f 0
// B 0 g 0

// C 0 h0
// D 0 k 0

// E 0

where the lines are exact. Then if a,b,d ,e are isomorphisms, then so is c.

4. Presheaves and sheaves

Let X be a topological space, C a category.

DEFINITION 6.24. A C -presheaf on X is a functor from the category Open(X)op to
the category C .

DEFINITION 6.25. A presheaf F of R-modules on X is defined by associating to
each open set U in X an R-module, F (U ), such that If V ΩU there is a unique module
morphism rV ,U : F (U ) °! F (V ) such that rW,V ± rV ,U = rW,U and rU ,U = id. Equiva-
lently, a presheaf is a functor from the category Open(X)op to the category R-mod.

Notation: if s 2F (U ) we often denote by s|V the element rV ,U (s) 2F (V ). From now
on we shall, unless otherwise mentioned, mostly deal with presheaves in the category
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R-mod. Our results extend to sheaves in any abelian category. The reader can either
check this for himself (most proofs translate verbatim to a general abelian category),
or use the Freyd-Mitchell theorem (see page 66).

DEFINITION 6.26. A presheaf F on X is a sheaf if whenever (U j ) j2I are open sets in
X covering U (i.e.

S
j2I U j =U ), the map

F (U ) °! {(s j ) j2I 2
Y

j2I
F (U j ), rU j ,U j\Uk (s j ) = rUk ,U j\Uk (sk )}

is bijective.

This means that elements of F (U ) are defined by local properties, and that we
may check whether they are equal to zero by local considerations. We denote by R-
Presheaf(X) and R-Sheaf(X) the category of R-modules presheaves or sheaves.

EXERCICE 6.27. Does the above definition imply that for a sheaf, F (;) is the ter-
minal object in the category ? Use the fact that in category with products, the empty
product is the terminal object. What happens in the category8 Rings ? Can one replace
the original category by a smaller one such that this condition holds. To simplify mat-
ters, one usually adds this condition to the definition of a sheaf, and we stick to this
tradition.

Examples:
(1) The skyscraper R-sheaf over x, denoted Rx is given by Rx(U ) = 0 if x ›U and

Rx(U ) = R for x 2U , the map Rx(V ) ! Rx(U ) being the obvious map (identity
if both are equal to R, and the 0-map otherwise).

(2) Let f : E ! X be a continuous map, and F (U ) be the sheaf of continuous
sections of f defined over U , that is the set of maps s : U ! E such that f ± s =
idU .

(3) Let E ! X be a map between manifolds, and ¶ be a subbundle of TzE . Con-
sider F (U ) to be the set of sections s : X ! E such that d s(x) Ω¶(s(x)).

(4) If f : Y ! X is a map, then we define a sheaf as F f (U ) = f °1(U ). This is a sheaf
of Open(Y) on X but can also be considered as a sheaf of sets, or a sheaf of
topological spaces.

(5) Set F (U ) to be the set of constant functions on U . This is a presheaf. It is
not a sheaf, because local considerations can only tell whether a function is
locally constant. On the other hand the sheaf of locally constant functions is
indeed a sheaf. It is called the constant sheaf, and denoted RX . It can also be
defined by setting F (U ) to be the set of locally constant functions from U to
the discrete set R.

(6) Let F be a sheaf. We say that F is locally constant if and only if F every
point is contained in an open set U such that the sheaf FU defined on U by

8most authors don’t accept the single element ring where 0 = 1 as a ring, which causes difficulties
here.
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FU (V ) = F (V ) for V ΩU is a constant sheaf. There are non-constant locally
constant sheaves, for example the set of locally constant sections of the Z/2
Möbius band, defined by M = [0,1]£ {±1}/{(0,1) = (1,°1)}.

(7) If A is a closed subset of X , then kA, the constant sheaf over A is the sheaf
such that kA(U ) is the set of locally constant functions from A\U to k.

(8) If U is an open set in X , then kU , the constant sheaf over U is defined by
kU (V ) is the subset of k(U \V ) made of sections of the constant sheaf kX with
support a closed subset of V . This means that k(U \V ) = kº0(U\V ), where
º0(U \V ) is the number of connected component of U \V such that U \V Ω
U . See exercise 6.32 for this apparently strange definition.

(9) The sheaf C 0(U ) of continuous functions on U is a sheaf. The same holds for
C p (U ) on a C p manifold, or ≠p (U ) the space of smooth p-forms on a smooth
manifold, or D(U ) the space of distributions on U , or T p (U ) the set of p-
currents on U .

(10) If X is a complex manifold, the sheaf of holomorphic functions OX is a sheaf.
Similarly if E is a holomorphic vector bundle over X , then OX (E) the set of
holomorphic sections of the bundle E .

(11) The functor Top ! Chains associating to a topological space M its singular
cochain complex (C§(M ,R),@) yields a presheaf of R-modules by associating
to U , the R-module of singular cochains on U , C§(U ,R). Its associated sheaf
is denoted by C§(U ,R). It can be defined directly as the set of cochains in-
variant by barycentric subdivision. If s sends a simplex to the sum of its parts
obtained by barycentric subdivision, s : C§(U ,R) °! C§(U ,R) and s§ its ad-
joint s§ : C§(U ,R) °!C§(U ,R). Then C§(U ,R) is defined as the set of cochains
invariant by s§ (i.e. s§Æ=Æ). Since ti is a sheaf, we have the exact sequence

0 ! C§(U [V ) ! C§(U )©C§(V ) ! C§(U \V ) ! 0

On the other hand using the functor Top °! R°mod given by U ! H§(U ),
we get a presheaf of R-modules by H (U ) = H§(U ). This is not a sheaf, because
Mayer-Vietoris is a long exact sequence

... ! H§°1(U [V ) ! H§(U [V ) ! H§(U )©H§(V ) ! H§(U \V ) ! H§+1(U [V ) ! ...

not a short exact sequence, so two elements in H§(U ) and H§(V ) with same
image in H§(U \V ) do come from an element in H§(U [V ), but this element
is not unique: the indeterminacy is given by the image of the coboundary map
± : H§°1(U \V ) ! H§(U [V ). The stalk of this presheaf is limU3x H§(U ), the
local cohomology of X at x. If X is a manifold, the Poincaré lemma tells us
that this is R in degree zero and 0 otherwise.

(12) Let Simplex be the category of the simplex. A presheaf over this category is
called a simplicial set. This is a functor Simplexop to C , or the determination
of objects C n and maps ±n

j ,æn
j satisfying the simplicial identities
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(a) ±n+1
i ±n

j = ±n+1
j°1±

n
i for i < j

(b) æn
i æ

n+1
j n =æn

j æ
n+1
i°1 for i > j

(c) ±n
i æ

n
j =æn

j°1±
n
i if i < j

(d) ±n
i æ

n
j = id for i = j or i = j +1

(e) ±n
i æ

n
j =æ j±i°1 for i > j +1

This definition anticipates the fact that the notion of sheaves does not ac-
tually need a topological space, but a Site (see the Appendix).

(13) Similarly a cellular sheaf on the cell complex (X ,PX ) is a functor from Ord(PX )
to C . Note that the natural functor Cell(X) to Open(X)op sends a sheaf over X
to a cellular sheaf.

EXERCICE 6.28. Prove that a locally constant sheaf is the same as local coefficients.
In particular prove that on a simply connected manifold, all locally constant sheaf are
of the form kX ≠V for some vector space V .

Because a sheaf is defined by local considerations, it makes sense to define the germ of
F at x. The following definition makes sense if the category has direct limits.

DEFINITION 6.29. Given a family (AÆ)Æ2J of objects indexed by a totally ordered set,
J , and morphisms fÆ,Ø : AÆ ! AØ defined for Æ ∑ Ø, the direct limit of the sequence is
an object A toghether with maps fÆ : AÆ! A satisfying the universal property: for each
family of maps gÆ : AÆ ! B such that fÆ,Ø ± gØ = gÆ, we have a map ' : B ! A making
the following diagram commutative :

A
'

// B

AÆ

fÆ

OO

fÆ,Ø

//

fØ

>>

AØ

gÆ

``

gØ

OO

Note that if we restrict ourselves to metric spaces, for example manifolds, we only need
this concept for J =N.

Note that direct limits do not necessarily exist. However they do exist in the cate-
gory of abelian groups, or on the category of sheaves of R-modules.

DEFINITION 6.30. Let F be a presheaf on X and assume that direct limits exists in
the category where the sheaf takes its values9. The stalk (or germ) of F at x, denoted
Fx is defined as the direct limit

lim
°!

U3x

F (U )

9Such a category is said to be cocomplete
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An element in Fx is just an element s 2 FU for some U 3 x , but two such objects
are identified if they coincide in a neighborhood of x: they are “germs of sections”. For
example if CX is the constant sheaf, (CX )x =C.

REMARK 6.31. (1) Be careful, the data of an element sx in Fx for each x, does
not in general, define an element in F (X ). On the other hand if it does, the
element is then unique.

(2) For any closed F , we denote by F (F ) = limUæF F (U ). Be careful, for V open, it
is not true that F (V ) = limU)V F (U ), since there can be sections on V that do
not extend to a neighborhood (e.g. continuous functions on V going to infinity
near @V do not extend). For example, on a Hausdorff space, a skyscraper sheaf
at x0 is the unique sheaf such that Fx0 = k and Fx = 0 for x 6= x0.

(3) Using the stalk, we see that any sheaf can be identified with the sheaf of
continuous sections of the map E = S

x2X Fx ! X sending Fx to x. The
main point is to endow

S
x2X Fx with a suitable topology, and this topology

is rather strange, for example the fibers are always totally disconnected. In-
deed, the topology is given as follows: open sets in

S
x2X Fx are generated by

Us = {s(x) | x 2U , s 2 F (U )}. Note that the topology of E is rather wild, and if
F is the set of sections of a continuous map f : E ! B , then the set E does not
in general coincide with E .

(4) For a section s 2 F (X ) define the support supp(s) of s as the set of x such
that s(x) 2 Fx is nonzero. Note that this set is closed, or equivalently the set
of x such that s(x) = 0 is open, contrary to what one would expect, before a
moment’s reflection shows that the stalk is a set of germs, and if a germ of a
function is zero, the germ at nearby points are also zero.

EXERCICE 6.32. Prove that for A, closed, (kA)x = k for x 2 A and 0 otherwise and
that for U open, (kU )x is k for x 2U and 0 otherwise. Prove that if U is an open set, and
we set FU (V ) to be the set of locally constant functions on U \V , then (FU )x = k for
x 2U and 0 otherwise. Thus we have supp(kA) = A, supp(kU ) =U , supp(FU ) =U .

First we set

DEFINITION 6.33. Let F ,G be presheaves. A morphism f from F to G is a family
of maps fU : F (U ) !G (U ) such that rV ,U ± fU = fV ± rV ,U . Such a morphism induces a
map fx : Fx !Gx .

4.1. Sheafification. The notion of stalk will allow us to associate to each presheaf
a sheaf. Let F be a presheaf.

DEFINITION 6.34. The sheaf fF is defined as follows. Define fF (U )to be the subset ofQ
x2U Fx made of families (sx)x2U such that for each x 2U , there is W 3 x and t 2F (W )

such that for all y in W sy = ty in Fy .
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Clearly we made the property of belonging to fF local, so this is a sheaf (Check !).
Contrary to what one may think, even if we are only interested in sheaves, we cannot
avoid presheaves or sheafification.

PROPOSITION 6.35. Let F be a presheaf, fF the associated sheaf. Then fF is char-
acterized by the following universal property: there is a natural morphism i : F ! fF
inducing an isomorphism ix : Fx ! fFx, and such that for any f : F ! G morphisms
of presheaves such that G is a sheaf, there is a unique ef : fF ! G making the following
diagram commutative

F
i //

f

  

fF
ef
✏✏

G

PROPOSITION 6.36. Let f : F !G be a morphism of sheaves. Then

(1) If for all x we have fx = 0, then f = 0
(2) If for all x we have fx is injective, then fU is injective
(3) If for all x, the map fx is an isomorphism, then so is fU

PROOF. Let s 2F (U ). Then fx = 0 implies that for all x 2U there is a neighborhood
Ux such that fU (s)x = 0. This implies that fU (s) = 0, hence f = 0 Let us now assume
that fU (s) = 0, and let us prove s = 0. Indeed, since fx sx = 0 we have sx = 0 for all
x 2U . But this implies s = 0 in F (U ) by the locality property of sheaves. Finally, if fx is
bijective, it is injective and so is fU . We have to prove that if moreover fx is surjective,
so is fU . Indeed, let t 2 G (U ). By assumption, for each x, there exists sx defined on
a neighborhood Vx of x, such that fVx (sx) = tx on Wx Ω Vx containing x. We may of
course replace Vx by Wx . By injectivity, such a sx is unique. If sx is defined over Wx ,
and sy over Wy then on Wx \Wy we have fVx (sx) = fWx (sy ) = tWx\Wy , hence sx = sy on
Wx \Wy . As a result, according to the definition of a sheaf, there exists s equal to sx on
each Wx and f (s) = t . As a result the map fU has a unique inverse, gU for each open et
U and we may check that gU is a sheaf morphism, and g ± f = IdF , f ± g = IdG . ⇤

Of course we do not have a surjectivity analogue of the above, because it does not
hold in general.

In terms of categories, R-Presheaf(X) being the category of presheaves, and R-
Sheaf(X) the category of sheaves of R-modules, these are abelian categories. The 0
object is the sheaf associating the R-module 0 to any open set. This is equivalent to
Fx = 0 for all x. The biproduct of F1,F2 is the sheaf associating to U the R-module
F1(U )©F2(U ). Clearly Mor(F ,G ) is abelian and makes R-Sheaf(X) into an additive
category. We also have that Ker(f)(U) = Ker(fU). Indeed, this defines a sheaf on X , since
if s j satisfies fU j (s j ) = 0 and sU j = sUk on U j \Uk , then fU (s) = 0. On the other hand
Im( f )(U ) is not defined as Im( fU ), since this is not a sheaf. Indeed, tU j = fU j (s j ) and
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t j = tk on U j \Uk does not imply that t j = tk on U j \Uk , so here is no way to guar-
antee that there exists s such that t = f (s). However Im( fU ) defines a presheaf. Then
the Image in the category of Sheaves, denoted by Im( f ) is the sheafification of Im( fU ).
The same holds for Coker( f ). Indeed, the universal property of sheafification means

that if f : F ! G is a morphism, and F
f! G

p! H is the cokernel in the category of
presheaves, so that for any sheaf L such that

F
f
// G

g
// L

satisfies g ± f = 0, we have a pair (C , q) such that there exits a unique h making this
diagram commutative

F
f
// G

g
//

q

  

L

H
iH //

h

OO

fH

But if L is a sheaf, the map H
h! L lifts to a map fH h̃! L . Now set q̃ = iH ± q ,

it is easy to check that ( fH , q̃) has the universal property we are looking for, hence this
is the cokernel of f in the category R-Sheaf (X). Because (iH )x is an isomorphism, we
see that Coker( f )x = Coker( fx).

To conclude, we have an inclusion functor from R-Presheaf(X) to R-Sheaf(X), and
the sheafification functor: Sh : R-Presheaf(X) ! R-Sheaf(X).

B CAUTION: It follows from the above that the Image in the category of pre-
sehaves does not coincide with the Image in the category of sheaves. Since we
mostly work with sheaves, Im( f ) will designate the Image in the category of
sheaves, unless otherwise mentioned.

Now the definition of an exact sequence in the abelian category of sheaves trans-
lates as follows.

DEFINITION 6.37. A sequence of sheaves over X , F
f!G

g!H is exact, if and only

if for all x 2 X , Fx
fx!Gx

gx!Hx is exact.

Example:

(1) Let U = X \ A where A is a closed subset of X . Then we have an exact sequence

0 ! kX \A ! kX ! kA ! 0

obtained from the obvious maps.
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(2) Given a sheaf F and a closed subset A of X , we have as above an exact se-
quence False ? At least

wrong notations0 !FX \A !F !FA ! 0

were FA(U ) =F (U \ A) while FX \A(U ) is the set of sections of F (U \ (X \ A))
with closed support contained in X \ A.

Now consider the functor °U from R°Sheaf(X) °! R°mod given by °U (F ) = F (U ).

We have that a short exact sequence, i.e. a sequence 0 ! A
f! B

g! C ! 0 such that

for each x the sequence 0 !Ax
fx!Bx

gx!Cx ! 0 is exact, then

0 !A (U )
fU!B(U )

gU!C (U )

is exact, and fU is injective by proposition 6.35, but the map gU is not necessarily sur-
jective. However °U is left-exact. Indeed, we wish to prove that Im( fU ) = Ker(gU). Be-
cause gx ± fx = 0 we have gU ± fU = 0, so that Im( fU ) Ω Ker(gU). Let us prove the reverse
inclusion. Let t 2 Ker(gU). Then for each x 2U , there exists sx such that on some neigh-
borhood Ux we have tx = fx(sx), and by injectivity of fx , sx is unique. This implies that
on Ux \Uy , sx = sy . But this implies that the sx are restrictions of an element in A (U ).

We just proved

PROPOSITION 6.38. For any open set, U , the functor °U : Sheaf(X) ! R °mod is left
exact.

EXERCICE 6.39. Let (U j ) j2I be a basis of neighbourhoods of X . In other words any
open set of X is the union of a subfamily of U j . Let us assume that for any i , j 2 I there
is k 2 I such that Ui \U j =Uk . For example this is the case for the family of open sets of
the type U £V in X £Y . Then a sheaf is determined by the F (U j ). More precisely if we
have a F (U j ) and the maps F (U j ) °!F (Uk ) for Uk ΩU j , and we have that whenever
U j [Uk =Ul ,

F (Ul ) = {(s j , sk ) 2F (U j )£F (Uk ) | s j = sk on U j \Uk }

this defines a unique sheaf on X , by setting F (U ) = limUiΩU F (Ui ). Moreover if two
sheaves F ,G on X coincide on the U j , i.e. for all j 2 I there are isomorphisms ' :
F (U j ) °!G (U j ) compatible with the restrictions, then F =G .

DEFINITION 6.40. Let s 2 °(U ,F ). Then supp(s) is the complement of the largest
open set V Ω U such that s|V = 0. or else, because we are dealing with sheaves,S

V ΩU ,s|V =0 V . By definition this is a closed set.

Note that if s 2 °(V ,F ) is such that supp(s) ΩU Ω Ū Ω V then s extends by 0 to an
element in °(X ,F ), by setting s̃|V = s, s̃|X \V = 0.
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5. Appendix: Freyd-Mitchell without Freyd-Mitchell

If the only application of the Freyd-Mitchell theorem was to allow us to prove theo-
rems on abelian categories as if the objects were modules and the maps module mor-
phisms, there would be the following simpler approach. Let us first prove that pull-
back exist in any abelian category.

Consider the diagram:

(6.5) X

f
✏✏

Y
g
// Z

DEFINITION 6.41. The above diagram has a pull-back (P, i , j ) where i 2 Mor(P, X ), j 2
Mor(P,Y ) if for any Q and maps u 2 Mor(Q, X ), v 2 Mor(Q,Y ) such that f ±u = g±v there
is a unique map Ω 2 Mor(Q,P ) such that i ±Ω = u, j ±Ω = v .

(6.6) Q
Ω

��

u

  
v

��

P
i //

j
✏✏

X

f
✏✏

Y
g
// Z

We can construct a pull-back in any abelian category by taking for (P, i , j ) the kernel
of the map f °g : X ©Y ! Z . Then ( f °g )±(u, v) = 0 and the existence and uniqueness
of Ω follows form existence and uniqueness of the dotted map in the definition of the
kernel.

Let us define the relation x 2m A to mean x 2 Mor(B , A) for some B , and identify x
and y if and only if there are epimorphisms u, v such that x±u = y±v . This is obviously a
reflexive and symmetric relation. We need to prove it is transitive through the following
diagram

(6.7) • u0
//

v 0

✏✏

• t //

u
✏✏

•
x
✏✏

• v //

w
✏✏

•
y
//

y
✏✏

A

• z // A

The existence of u0, v 0 follows from pull-back from the other diagrams. Moreover
u0, v 0 are epimorphisms, so x ¥ z since x ± (t ±u0) = z ± (w ± v 0). Let us denote by A the
set of x 2m A modulo the equivalence relation. A is an abelian group:
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(1) 0 is represented by the zero map, and any zero map in Mor(B , A) is equivalent
to it.

(2) if x 2m A, then °x 2m A.
(3) If f 2 Mor(A, A0) and x 2m A then f ±x 2m A0. We denote this by f (x).

Now

(1) if f is a monomorphism, if and only if f ± x = 0 implies x = 0. This is also
equivalent to f (x) = f (x 0) implies x = x 0.

(2) the sequence A
f! B

g!C is exact if and only if g ± f = 0 and for any y such that
g (y) = 0 we have y = f (x)

Indeed, f (x) = 0 means there is an epimorphism u such that f ± x ±u = 0. Since f
is a monomorphism this implies x ±u = 0 that is x ¥ 0. The second statement follows
from the fact that f (x) = f (x 0) is equivalent to f (x °x 0) = 0.

We thus constructed a functor from C to Sets. Its image is an abelian subcategory
of the category of sets, and Freyd-Mitchell tells us that this is a category of R-modules,
for some R, but the first embedding is enough for “diagram chasing with elements”.

6. Appendix: Presheaves and sheaves on sites. Simplicial sets

Presheaves are functors from Open(X)op to a category C. It is tempting to extend
this notion to more general categories than Open(X)op . The categories for which
this has nice properties are called sites, which are small categories endowed with a
Grothendieck topology . This is the replacement for the notion of open cover of a topo-
logical space. Let S be a small category with pull-backs. We consider for an object X in
S, families { fi : Ui °! X | i 2 I }

A Grothendieck topology on S is a set G(X ) of such families for each object X , called
coverings of X , having the following properties

(1) If f : Y °! X is an isomorphism then { f : Y °! X } 2G(X )
(2) If { fi : Ui °! X | i 2 I } 2G(X ) and g : Y °! X is morphism, then the family of

pull-backs {hi : Ui £X Y °! Y | i 2 I } is in G(Y )
(3) If { fi : Ui °! X | i 2 I } 2 G(X ) and for each i we have {gi : Vi , j °!Ui | j 2 I } 2

G(Ui ) then { fi ± gi , j : Vi , j °! X | i 2 I } 2G(X )

DEFINITION 6.42. A Site is a pair (S,G) of a small category with pull-backs and a
Grothedieck topology.

Note that what we defined is actually called in the litterature a basis for a Grothendieck
topology, but defining a basis defines a topology.

DEFINITION 6.43. A presheaf on a site is a functor P from Sop to C. A matching
family associated to xi 2 P (Ui ) where { fi : Ui °! X } is in G(X ) is a family such that
xi ±º1

i , j = x j ±º2
i , j where º1

i , j (resp º2
i , j ) is the first (resp. second) projection of Ui £X U j

and an amalgamation of the (xi )i2I is an element x 2 P (X ) such that x ± fi = xi . Finally
P is a sheaf if and only if every matching family has a unique amalgamation.
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Example:

(1) If X is a topological space, the category Open(X) such that G(X ) is the set of
open covers of X is a site. Then the definition of presheaf or sheaves coincides
with the usual one on the topological space X .

(2) Let ¢ be the simplex category. Its objets are the sets [n] = {1,2, ....,n} and the
morphisms are the monotone maps, generated by ±n

i ,æn
i . A presheaf on ¢

with values in Sets is called a simplicial set . That is ß is a simplicial set if for
each n we have a set ß(n) = {æn

j | j 2 Jn} and to each map ±n
i : [n °1] ! [n] we

associate a map @n
i : ß(n) °! ß(n ° 1), and to æn

i : [n + 1] ! [n] we associate
a map sn

i : ß(n) °! ß(n +1). The geometrix realization of ß is the topological
space

X (ß) =
a

n
ß(n)£¢n/ '

where (u,±n
i (t )) = (@n

i (u), t ) and (u,æn
i (t )) = (sn

i (u), t ). We endow Xq (ß) =`
1∑n∑q ß(n) £¢n/ ' with the quotient topology, and X (ß) with the union

topology. The map GR : ß°! X (ß) is a functor from SSet to Top. The functor
GR has a right adjoint, calld the Singular complex, ST (X )n = C 0(¢n , X ), with
obvious morphisms.

7. Appendix: Fibrant replacement

Let N be a manifold, and assume it is triangulated, so it is the geometric realization
of a simplicial set. Assume for each simplex æ we consider its barycenter xæ and that
we have a complex (°æ,±æ) that we "see" over xæ. Also for each path ∞æ,ø from xæ
to xø, we have a chain map 'æ,ø from (°æ,dæ) and (°ø,dø). However we don’t have
'ø,Ω'æ,ø°'ø0,Ω'æ,ø = hæ,Ω where ø,ø0 are the two facets of æ containing Ω.

From now on we denote ± for ±æ. We want to construct a sheaf over N such that its
cohomology over each point is H§(°æ,d), or rather each fiber is chain homotopy equiv-
alent to (°æ,dæ). For this we proceed as follows using the so-called cobar construction
of Adams. remember that the chain complex of X (æ) Cd (X (æ)) can be described as the
set of linear combinations of æ j

d 2ß(d), with boundary defined by @d =Pd
i=0(°1)i±d

i . It
can be discretized as follows.

For dim(æ j ) = 1, and assuming the æ j are adjacent edges, take the union of the
edges defined by the xæ0 , xæ1 , ....., xæq . This yields an element in C0(≠æ0,æq ). Now if for
example æ0,æ2 are edges, and æ1 is a facet, having the two edges in its boundary (as
consecutive edges having common vertex æ0,1), we consider the family of paths start-
ing from [æ0,æ0,2]][[æ0,2,æ2] and deform it to the path [æ0,æ1][[æ1,æ2] in the obvious
way as on Figure 1. This show how to associate an element in C1(≠æ0,ßq ) whenever we
have a sequence xæ0 , xæ1 , ....., xæq such that d =P

j (dim(æ j )°1) equals 1. If for example
æ1,æ2 are contiguous facets, we get a
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Let C§(≠æ,ø) be the chain complex associate to the space of paths from xæ to xø. Let

C § =
M

ø
C§(≠q,xø)≠°§ø

and D be the differential defined by

D(Æ≠x) =
X

Ø2C§((≠æ,ø)
(Æ?Ø)≠hÆ(x)

Here ? represents the concatenation of paths.

FIGURE 1. The cobar construction

Claim: D2 = 0



CHAPTER 7

More on categories and sheaves.

1. Injective objects and resolutions

Let I be an object in a category.

DEFINITION 7.1. The object I is said to be injective, if for any maps h, f such that f
is a monomorphism, there exists g making the following diagram commutative

0 // A
f
//

h

��

B

g
✏✏
I

This is equivalent to saying that A ! Mor(A, I ) sends monomorphisms to epimor-
phisms. Note that g is by no means unique ! An injective sheaf is an injective object in
R-Sheaf (X).

PROPOSITION 7.2. If I is injective in an abelian category C , the functor A ! Mor(A, I )
from C to Ab is exact.

PROOF. According to Example 1 on page 63, Mor is left exact. So sends an exact
sequence

0 // A
f
// B

g
// C // 0

to

0 // Mor(C , I )
g§
// Mor(B , I )

f §
// Mor(A, I )

but we just translated the injectivity property into the statement that the functor A !
Mor(A, I ) sends monomorphisms to epimorphisms, so f § : Mor(B , I ) °! Mor(A, I ) is
an epimorphism, so the sequence

0 // Mor(C , I )
g§
// Mor(B , I )

f §
// Mor(A, I ) // 0

is exact. ⇤
DEFINITION 7.3. A category has enough injectives, if any object A has a monomor-

phism into an injective object.

EXERCICE 7.4. Prove that in the category Ab of abelian groups, the groupQ/Z is in-
jective. Prove that Ab has enough injectives (prove that a sum of injectives is injective).

79
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In a category with enough injectives, we have the notion of injective resolution.

PROPOSITION 7.5 ([Iv], p.15). Assume C has enough injectives, and let B be an object
in C . Then there is an exact sequence

0 ! B
iB! J0

d0! J1
d1! J2 ! ....

where the Jk are injectives.This is called an injective resolution of B. Moreover given an
object A in C and a map f : A ! B and a resolution of A (not necessarily injective), that
is an exact sequence

0 ! A
i A! L0

d0! L1
d1! L2....

and an injective resolution of B as above, then there is a morphism (i.e. a family of maps
uk : Lk ! Jk ) such that the following diagram is commutative

0 // A
i A //

f
✏✏

L0
d0 //

u0
✏✏

L1
d1 //

u1
✏✏

L2
d2 //

u2
✏✏

...

0 // B
iB // J0

@0 // J1
@1 // I2

@2 // ...

.

Moreover any two such maps are homotopic (i.e. uk ° vk = @k°1sk + sk+1±k , where
sk : Ik ! Jk°1).

PROOF. The existence of a resolution is proved as follows: existence of J0 is by defi-

nition of having enough injectives. Then let M1 = Coker(iB ) so that 0 ! B
d0! J0

f0! M1 !
0 is exact. A map 0 ! M1 ! J1 induces a map 0 ! B

iB! J0
d0! J1, exact at J0. Continuing

this procedure we get the injective resolution of B . Now let f : A ! B and consider the
commutative diagram

0

✏✏

// A

f
✏✏

i A // L0

0 // B
iB // J0

Since J0 is injective, i A is a monomorphism, then iB ± f lifts to a map u0 : L0 ! J0.
Let us now assume inductively that the map uk is defined, and let us define uk+1. We
decompose using property (2) of Definition 6.9:

Lk°1

uk°1
✏✏

dk°1 // Lk
dk //

uk
✏✏

Lk+1

Jk°1
@k°1 // Jk

@k // Jk+1
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as

Lk°1

uk°1

✏✏

dk°1 // Lk
dk //

uk

✏✏

Coker(dk°1)

vk+1
✏✏

ik // Lk+1

Jk°1
@k°1 // Jk

@k // Coker(@k°1)
jk // Jk+1

Since (@k±uk )±dk°1 = 0, there exists by definition of the cokernel a map vk+1 : Coker(dk°1) !
Coker(@k°1), making the above diagram commutative. Then since ik is monomor-
phism (due to exactness at Lk ) and Jk+1 is injective, the map jk ± vk+1 factors through
ik so that there exists uk+1 : Lk+1 ! Jk+1 making the above diagram commutative. The
construction of the homotopy is left to the reader. ⇤

PROPOSITION 7.6. The category R°Sheaf(X) has enough injectives.

PROOF. The proposition is proved as follows.
Step 1: One proves that for each x there is an injective D(x) such that Fx injects

into D(x). In other words we need to show that R-mod has enough injectives. We omit
this step since it is trivial for C-sheaves (any vector space is injective).

Step 2: Construction of D. The category R-mod has enough injectives, so choose
for each x a map !̃x : Fx !D(x) where D(x) is injective, and consider the sheaf D(U ) =Q

x2U D(x). Thus a section is the choice for each x of an element D(x) (without any
“continuity condition”). One should be careful. The sheaf D does not have D(x) as
its stalk: the stalk of D is the set of germs of functions (without continuity condition)
x 7!D(x) for x in a neighborhood of x0. Obviously, Dx0 surjects on D(x0). However, for
each F we have Mor(F ,D) =Q

x2X Hom(Fx ,D(x)): indeed, an element ( fx)x2X in the
right hand side will define a morphism f by s ! fx(sx), and vice-versa, an element f
in the left hand side, defines a family ( fx)x2X by taking the value fx(sx) = f (s)x . So j̃x
defines an element j in Mor(F ,D). Clearly D is injective since for each x, there exists
a lifting gx

0 // Fx
f
//

h

""

Gx

gx
✏✏

D(x)

.

and the family (gx) defines a morphism g : G !D (one may need the axiom of choice
to choose gx for each x).

Step 3: Let F an object in R-Sheaf(X) and D be the above associated sheaf. Then
the obvious map i : F ! D induces an injection ix : Fx ! D(x) hence is a monomor-
phism.

⇤

When R is a field, there is a unique injective sheaf with D(x) = Rq . It is called the
canonical injective Rq -sheaf. Let us now define
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DEFINITION 7.7. Let F be a sheaf, and consider an injective resolution of F

0 !F
d0!J0

d1!J1
d2!J2....

Then the cohomology H §(X ,F ) (also later denoted R§°(X ,F )) is the (co)homology
of the sequence

0!J0(X )
d0,X! J2(X )

d1,X! J2(X )....
In other words H m(X ,F ) = Ker(dm,X)/Im(dm°1,X). According to Proposition 7.5 this
definiton is independent from the choice of the resolution, since any two of them are
homotopic.

Check that H 0(X ,F ) = F (X ). Note that the second sequence is not an exact se-
quence of R-modules, because exactness of a sequence of sheaves means exactness
of the sequence of R-modules obtained by taking the stalk at x (for each x). In other
words, the functor from Sheaf(X) to R-mod defined by °x : F ! Fx is exact, but the
functor °U : F !F (U ) is not.

This is a general construction that can be applied to any left-exact functor defined
on an abelian category with enough injectives: take an injective resolution of an ob-
ject, apply the functor to the resolution after having removed the object, and compute
the cohomology. According to Proposition 7.5, this does not depend on the choice
of the resolution, since two resolutions are chain homotopy equivalent, and F sends
chain homotopic maps to chain homotopic maps, hence preserves chain homotopy
equivalences . This is the idea of derived functors, that we are going to explain in full
generality (i.e. applied to chain complexes). It is here applied to the functor °X . It is
a way of measuring how this left exact functor fails to be exact: if the functor is exact,
then H 0(X ,F ) =F (X ) and H m(X ,F ) = 0 for m ∏ 1.

For the moment we set

DEFINITION 7.8 (The derived functors R j F ). Let C be a category with enough in-
jectives, and F be a left-exact functor. Then R j F (A) is obtained as follows: take an
injective resolution of A,

0 ! A
i A! I0

d0! I1
d1! I2 ! ....

then R j F (A) is the j -th cohomology of the complex

0 ! F (I0)
F (d0)! F (I1)

F (d1)! F (I2) ! ....

We say that A is F -acyclic, if R j F (A) = 0 for j ∏ 1.

Note that the left-exactness of F implies that we always have R0F (A) = A. Since
according to Proposition 7.5, the R j F (A) do not depend on the choice of the resolution,
an injective object is acyclic: take 0 ! I ! I ! 0 as an injective resolution, and notice
that the cohomology of 0 ! I ! 0 vanishes in degree greater than 0.

However, as we saw in the case of sheaves, injective objects do not appear naturally.
So to be able to do computations, we would like to be able to use resolutions with a
wider class of objects
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DEFINITION 7.9. A flabby sheaf is a sheaf such that the map F (U ) !F (V ) is onto
for any V ΩU .

Notice that by composing the restriction maps, F is flabby if and only if F (X ) !
F (V ) is onto for any V Ω X . This clearly implies that the restriction of a flabby sheaf is
flabby.

PROPOSITION 7.10. An injective sheaf is flabby. A flabby sheaf is °X -acyclic.

PROOF. First note that the sheaf we constructed to prove that Sheaf(X) has enough
injectives is clearly flabby. Therefore any injective sheaf I injects into a flabby sheaf,
D. Moreover there is a map p : D !I such that p ± i = id, since the following diagram
yields the arrow p

0 // I
i //

id   

D

p
✏✏

I

As a result, we have diagrams

D(U )
pU //

sV ,U
✏✏

I (U )

rV ,U
✏✏

D(V )
pV // I (V )

Since pU ± iU = id, we have that pU is onto, hence rV ,U is onto.
We now want to prove the following: let 0 ! E

u!F
v!G ! 0 be an exact sequence,

where E ,F are flabby. Then G is flabby.
Let us first consider an exact sequence 0 ! E

u! F
v! G ! 0 with E flabby. We

want to prove that the map v(X ) : F (X ) ! G (X ) is onto. Indeed, let s 2 °(X ,G ), and
a maximal set for inclusion, U , such that there exists a section t 2 °(U ,F ) such that
v(t ) = s on U . We claim U = X otherwise there exists x 2 X \U , a section tx defined in
a neighborhood V of x such that v(tx) = s on V . Then t ° tx is defined in °(U \V ,F ),
but since v(t ° tx) = 0, we have, by left-exactness of °(U \V ,°), t ° tx = u(z) for z 2
°(U \V ,E ). Since E is flabby, we may extend z to X , and then t = tx +u(z) on U \V .
We may the find a section t̃ 2 °(U [V ,F ) such that t̃ = t on U and t̃ = tx +u(z) on V .
Clearly v(t̃ )U = s|U and v(t̃ )V = v(tx)+vu(z) = v(tx) = s|V , hence v(t̃ ) = s on U[V . This
contradicts the maximality of U .

As a result, we have the following diagram

0 // E (X )
u(X ) //

ΩX ,U
✏✏

F (X )

æX ,U
✏✏

v(X ) // G (X )

øX ,U
✏✏

// 0

0 // E (U )
u(U ) // F (U )

v(U ) // G (U ) // 0



84 7. MORE ON CATEGORIES AND SHEAVES.

and ΩU ,X ,æU ,X are onto. This immediately implies that øX ,U is onto. Finally, let us
prove that a flabby sheaf F is acyclic. We consider the exact map 0 !F !I where I

is injective. Using the existence of the cokernel, this yields an exact sequence 0 !F !
I !K ! 0. By the above remark, K is flabby. Consider then the long exact sequence
associated to the short exact sequence of sheaves:

0 ! H 0(X ,F ) ! H 0(X ,I ) ! H 0(X ,K ) ! H 1(X ,F ) ! H 1(X ,I ) ! H 1(X ,K ) ! ...

We prove by induction on n that for any n ∏ 1 and any flabby sheaf, H n(X ,F ) = 0. In-
deed, we just proved that H 0(X ,I ) ! H 0(X ,K ) is onto, and we know that H 1(X ,I ) =
0. this implies H 1(X ,F ) = 0. Assume now, that for any flabby sheaf and j ∑ n, H j

vanishes. Then the long exact sequence yields

.. ! H n(X ,K ) ! H n+1(X ,F ) ! H n+1(X ,I ) ! ...

Since I is injective, H n+1(X ,I ) = 0 and since K is flabby H n(X ,K ) = 0 hence H n+1(X ,F )
vanishes. ⇤

Examples: Flabby sheaves are much more natural than injective ones, and we
shall see they are just as useful. The sheaf of distributions, that is DX (U ), the dual of
C1

0 (U ), the sheaf of differential forms with distribution coefficients, the set of singular
cochains defined on X (see Exercise 1)... are all flabby.

A related notion is the notion of soft sheaves. A soft sheaf is a sheaf such that the
map F (X ) ! F (K ) is surjective for any closed set K . Of course, we define F (K ) =
limKΩU F (U ). In other words, an element defined in a neighborhood of K has an ex-
tension (maybe after reducing the neighborhood) to all of X . The sheaves of smooth
functions, smooth forms, continuous functions... are all soft. A fine sheaf is a sheaf
admitting partitions of unity.

DEFINITION 7.11. A fine sheaf is a sheaf such that for any open cover (UÆ)Æ2A of X ,
the section I d in Hom(F ,F ) can be written as

P
ÆΩÆ where supp(ΩÆ) ΩUÆ.

The sheaf C1(U ) of smooth functions is fine, since there are partitions of unity, but
not flabby since smooth functions on open sets do note necessarily extend to X . There
are flabby sheaves that are not fine.

PROPOSITION 7.12. Every fine sheaf is soft

PROOF. Indeed if K is closed and s is a section defined in a neighbourhood V of K ,
then X =V [ (X \ K ) and there ΩV ,ΩX \K , and ΩV (s)

⇤
We refer to subsection 3.1 for applications of these notions.

EXERCICES 1. (1) Prove that for a locally contractible space, the sheaf of sin-
gular cochains is flabby. Prove that the singular cohomology of a locally con-
tractible space X is isomorphic to the sheaf cohomology H§(X ,kX ).

(2) Prove that soft sheaves are acyclic.
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Application: The Mayer-Vietoris sequence

PROPOSITION 7.13. Let U ,V be open sets in X , and F a sheaf on X . Then there is a
long exact sequence

... °! H p (U [V ,F ) °! H p (U ,F )©H p (V ,F ) °! H p (U \V ) °! H p+1(U [V ,F ) °! ...

PROOF. Let I • be a complex of injective sheaves quasi-isomorphic to F •. By the
definition of a sheaf, we have a short exact sequence

0 °!I •
|U[V °!I •

|U ©I •
|V °!I •

|U\V °! 0

where the first arrow is s 7! (s|U , s|V ) and the second one is (s, t ) 7! (s ° t )U\V and the
above is the corresponding long exact sequence (see Proposition 6.19, page 65) associ-
ated to this short exact sequence. ⇤

2. Operations on sheaves. Sheaves in mathematics.

2.1. General constructions. First of all, if F is sheaf over X , and U an open subset
of X , we denote by F|U the sheaf on U defined by F|U (V ) = F (V ) for all V Ω U . For
clarity, we define °(U ,•) as the functor F ! °(U ,F ) =F (U ).

DEFINITION 7.14. Let F ,G be sheaves over X . We define H om(F ,G ) as the sheaf
associated to the presheaf U 7! Mor(F|U ,G|U ). We define F≠G to be the sheafification
of the presheaf U 7!F (U )≠G (U ). The same constructions hold for sheaves of modules
over a sheaf of rings R, and we then write H omR(F ,G ) and F ≠R G .

REMARK 7.15. (1) Note that sometimes Mor(F ,G ) is denoted by Hom(F ,G ).
This is not a sheaf, while H om(F ,G ) is a sheaf. There is however a connec-
tion between the two definitions: Mor(F ,G ) = °(X ,H om(F ,G )).

(2) Note that Mor(F|U ,G|U ) 6= Hom(F (U ),G (U )) in general, since an element f
in the left hand side defines compatible fV 2 H om(F (V ),G (V )) for all open
sets V in U , while the right-hand side does not.

(3) Note that tensor products commute with direct limits, so (F ≠G )x =Fx ≠Gx .
On the other hand Mor does not commute with direct limits, so H om(F ,G )x
is generally different from H om(Fx ,Gx).

Let f : X ! Y be a continuous map. We define a number of functors associated to
f as follows.

DEFINITION 7.16. Let f : X ! Y be a continuous map, F 2 Sheaf(X),G 2 Sheaf(Y)
The sheaf f§F is defined by

f§(F )(U ) =F ( f °1(U ))

The sheaf f °1(G )(U ) is the sheaf associated to the presheaf P f °1(F ) : U 7! limV æ f (U ) G (V ).
We also define F ⇥G as follows. If pX , pY are the projections of X £ Y on the re-
spective factors, we have F ⇥G = p°1

X F ≠ p°1
Y (G ). When X = Y and d is the diago-

nal map, we define d°1(F ⇥G) = F ≠G . This is the sheaf associated to the presheaf
U !F (U )≠G (U ).
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REMARK 7.17. ([Iv] page 149, th. 2.2 and page 104, (5.8)) Note that if i : U ! X is
the inclusion of an open set, we have i°1(F )(V ) = F (V ) for an open set V , such that
V ΩU .

Note also that if j : X ! Y is an inclusion of a paracompact space, and Z a compact
subset of X , we have

( j°1G )(Z ) = lim
j (Z )ΩV

G (V )

Indeed, a section s of ( j°1G )(Z ) yields for each x a germæx 2G (Vx) where Vx is open in
Y and sx = sy on Vx \Vy \Z , that is sx = sy on a neighborhood Wx y of Vx \Vy \Z (Wx y
is a priori smaller than Vx \Vy ). Now for each x we have Vx , and since

S
x2Z Vx covers

Z , we may consider a finite subcover. We are thus reduced to the following problem:
we have sections s1, s2 defined on U1,U2 containing V1,V2 in Z . Let W Ω Y be an open
set containing U1 \U2 \ Z . Then there are sets U 0

1 Ω U1,U 0
2 Ω U2 such that U1 \ Z Ω

U 0
1,U2 \Z ΩU 0

2 and U 0
1 \U 0

2 ΩW . Indeed, take U 00
1 ,U 00

2 to be disjoint neighborhoods of
(Z \W )\U1 and (Z \W )\U2 contained in U1,U2, which is always possible since

(Z \W )\U1 \ (Z \W )\U2 = (Z \U1 \U2) \W =;

and we are in a locally compact space, since Z \W is compact. Then U 0
1 =U 00

1 [W,U 0
2 =

U 00
2 [W satisfies our assumptions.

In particular

LEMMA 7.18. We have ( f °1F )x =F f (x).

PROOF. indeed the stalk of the sheaf associated to a presheaf is the same as the
stalk of the presheaf. Now we must compute limx2U limV æ f (U ) F (V ), but continuity of
f implies that this is the same as lim f (x)2V F (V ). ⇤

Examples:

(1) Let i : {x} °! X be the inclusion of the point x. Then i°1(F ) is a sheaf over a
singleton, and defined by i°1(F )(x) =Fx .

(2) Let F ,G be complexes. Then we have R°(U£V ,F⇥G ) = R°(U ,F )⇥R°(V ,G )
where if (I p ,d p ) is an injective resolution for F and (J q ,±q ) an injective res-
olution of G , we define R°(U ,F )⇥R°(V ,G ) is the quasi-isomorphism type of
K n(U £V ) =P

p+q=n I p (U )≠J q (V ),@= d ≠1+1≠±.
(3) Let f be a diffeomorphism from X to Y . Then for any sheaves F on X and G

on Y we have f °1 ± f§(F •) =F • and f§ ± f °1(G •) =G •.

Now let U Ω X . We claim ( j°1G )(U ) = lim j (U )ΩV G (V ), so that in this case the
presheaf P j°1F is actually a sheaf. Indeed, let Kn be a sequence such that

S
n Kn =U .

Then a section s 2 ( j°1G )(U ) restricts to a section on Kn , and this section according to
the above argument extends to a section tn defined on an open set Vn in Y containing
Kn . Now possibly reducing Vn , we may assume tn = tm on Vn \Vm for all m < n. But
then this defines a section of F on

S
n Vn , that is a neighborhood of U .



2. OPERATIONS ON SHEAVES. SHEAVES IN MATHEMATICS. 87

2.2. Sheaves associated to open or closed subsets.

DEFINITION 7.19. Let F be a sheaf on X . Then for A a closed set, j : A ! X the
inclusion, the sheaf F|A is the sheaf on A, given by j°1(F ). FA is the sheaf on X given
by FA = j§ j°1(F ). Thus FA(U ) = limV æU\A F (V ). For U open we set FU = ker(F !
FX°U ). For Z locally closed, we write Z =U \ A with U open, A closed and set FZ =
(FU )A. This is the unique sheaf such that (FZ )|Z =F|Z and (FZ )|X \Z = 0

PROPOSITION 7.20. For A a closed set we have (FA)x = Fx for x 2 A and (FA)x = 0
for x 2 X \ A.

2.3. Functors on sheaves.

PROPOSITION 7.21. The functors f§, f °1 are respectively left-exact and exact. More-
over , let f , g be continuous maps, then ( f ± g )§ = f§ ± g§ and ( f ± g )°1 = g°1 ± f °1.

PROOF. For the first statement, let us prove that f °1 is exact. We use the fact that
f °1(G )x =G f (x). Thus an exact sequence 0 !F

u!G
v!H ! 0 is transformed into the

sequence 0 ! f °1(F )
u± f! f °1(G )

v± f! f °1(H ) ! 0 which has germs

0 ! ( f °1(F ))x
u( f (x))! ( f °1(G ))x

v( f (x))! ( f °1(H ))x ! 0

equal to

0 !F f (x))
u( f (x))! G f (x)

v( f (x))! H f (x) ! 0
which is exact. Now we prove that f§ is left-exact. Indeed, consider an exact sequence
0 ! E

u!F
v!G . By left-exactness of °U , the sequence

0 ! E (U )
u(U )! F (U )

v(U )! G(U )

is exact, hence for any V Ω Y , the sequence

0 ! E ( f °1(V ))
v( f °1(V ))! F ( f °1(V ))

v( f °1(V ))! G( f °1(V ))

is exact, which by taking limits on V 3 x implies the exactness of

0 ! ( f§E )x
( f§u)x! ( f§F )x

( f§v)x! ( f§G )x .

⇤
PROPOSITION 7.22. We have Mor(G , f§F ) = Mor( f °1(G ),F ). We say that f§ is

right-adjoint to f °1 or that f °1 is left adjoint to f§.

PROOF. We claim that an element in either space, is defined by the following data,
called a f -homomorphism: consider for each x a morphism kx : G f (x) ! Fx such
that for any section s of G (U ), kx ± s( f (x)) is a (continuous) section of F (U ) . No-
tice that there are in general many x such that f (x) = y is given, and also that a f -
homomorphism is the way one defines morphisms in the category Sheaves of sheaves
over all manifold (so that we must be able to define a morphism between a sheaf over
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X and a sheaf over Y ). Now, we claim that an element in Mor( f °1(G ),F ) defines kx ,
since ( f °1(G ))x =G f (x), so a map sending elements of f °1(G )(U ) to elements of F (U )
localizes to a map kx having the above property. Conversely, given a map kx as above,
let s 2 f °1(G )(U ). By definition, for each point x 2U there exists a section t f (x) defined
near f (x) such that s = t f (x) near x. Now define s0x = kx t f (x). We have that s0x 2 Fx ,
and by varying x in U , this defines a section of F (U ). So kx defines a morphism from
f °1(G ) to F .

Now an element in Mor(G , f§F ) sends for each U , G (U ) to F ( f °1(U )), hence an
element in G f (y) to an element in some F ( f °1(Vf (y))), where Vf (y) is a neighborhood
of f (y), which induces by restriction an element in Fy , hence defines kx . Vice-versa, let
s 2G (V ) then for y 2V and x 2 f °1(y), we define s0x = kx sy . The section s0x is defined on
Vx a neighborhood of x, and by assumption kx s f (x) is continuous, so s0 is continuous.

We thus identified the set of f -homomorphism both with Mor(G , f§F ) and with
Mor( f °1(G ),F ), which are thus isomorphic.

EXERCICE 7.23. Prove that f§H om( f °1(G ),F ) =H om(G , f§F ).

⇤
The notion of adjointness is important in view of the following.

PROPOSITION 7.24. Any right-adjoint functor is left exact. Any left-adjoint functor is
right-exact.

PROOF. Let F be right-adjoint to G , that is Mor(A,F (B)) = Mor(G(A),B). We wish to

prove that F is left-exact. The exactness of the sequence 0 ! A
f! B

g!C is equivalent
to showing that for all X ,

(7.1){6.1} 0 ! Mor(X , A)
f §
! Mor(X ,B)

g§
! Mor(X , A)

Indeed, exactness of the sequence is equivalent to the fact that A
f! B is the kernel of g ,

or else that for any X , and u : X ! A such that g ±u = 0, there exists a unique v : X ! B
such that the following diagram commutes

A
f
// B

g
// C

X
v

__

u

OO

The existence of v implies exactness of (7.1) at Mor(X ,B) , while uniqueness yields
exactness at Mor(X , A).

As a result, left-exactness of F is equivalent to the fact that for each X , and each

exact sequence 0 ! A
f! B

g!C ! 0, the induced sequence

0 ! Mor(X ,F (A))
F ( f )§! Mor(X ,F (B))

F (g )§! Mor(X ,F (A))
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is exact. But this sequence coincides with

0 ! Mor(G(X ), A)
f §
! Mor(G(X ),B)

g§
! Mor(G(X ),C )

its exactness follows from the left-exactness of M ! Mor(X , M).
⇤

Note that in the literature, f °1 is sometimes denoted f §. Note also that if f is
the constant map, then f§F = °(X ,F ), so that R j f§ = R j°(X ,•) is the functor F 7!
H j (X ,F ).

EXERCICE 7.25. Show that Sheafification is the right adjoint functor to the inclusion
of sheaves into presheaves. Conclude that Sheafification is a left-exact functor. Prove
it also right exact.

COROLLARY 7.26. The functor f§ maps injective sheaves to injective sheaves. The
same holds for °X .

PROOF. Indeed, we have to check that F ! H om(F , f§(I )) is an exact functor.
But this is the same as checking that F !H om( f °1F ,I ) is exact. Now F ! f °1(F ) is
exact, and since I is injective, G ! H om(G ,I ) is exact. Thus F ! H om(F , f§(I ))
is the composition of two exact functors, hence is exact. The second statement is a
special case of the first by taking f to be the constant map.

⇤

There is at least another simple functor: f ! given by

DEFINITION 7.27. f !(F )(U ) = {s 2F ( f °1(U )) | f : supp(s) !U is a proper map }.

If f is proper, then f ! and f§ coincide. Even though f ! has a right-adjoint f !, we
shall not construct this as it requires a slightly complicated construction, extending
Poincaré duality, the so-called Poincaré-Verdier duality (see [Iv] chapter V).

Example:

(1) Let A be a closed subset of X , and kA be the constant sheaf on A, and i : A ! X
be the inclusion of A in X . Then i ! = i§ and i§(kA) = kA and i°1(kA) = kX . Thus
if i : A ! X is the inclusion of the closed set A in X , and F a sheaf on X , then
FA = i§i°1(F ). This does not hold for A open, as we shall see in a moment.

(2) Let U be an open set in X and j the inclusion. Then FU = j! j°1(F ). This
formula in fact holds for U locally closed (i.e. the intersection of a closed set
and an open set).

(3) We have, with the above notations,

j°1 ± j§ = j°1 ± j! = i ! ± i§ = i°1 ± i§ = id

Note that the above operations extend to complexes of sheaves:
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DEFINITION 7.28. Let A•,B• be two bounded complexes. Then we define (A• ≠
B•)m =P

j A j ≠B m° j with boundary map dm(u j ≠vm° j ) = @ j u j ≠vm° j +u j ≠@m° j vm° j .
and H om(A•,B•)m = P

j Hom(A j ≠B m+ j ), with boundary map dm f = P
p @m+p f p +

(°1)m+1 f p+1@p .

Finally we define the functor °Z : Sheaf(X) ! Sheaf(X) by

DEFINITION 7.29. Let Z be a closed set. Let F 2 Sheaf(X). Then the sheaf °Z F is
defined by °Z F (U ) = ker(F (U ) ! F (U \ Z )). If Z is only locally closed, of the form
V \ A with V open and A closed, we set °Z (U ) = °A(U \V ).

EXERCICE 7.30. (1) Check that in the definition of °Z for Z locally closed, the
definition is indeed independent on the way we write Z as A\V .

(2) Here Z is a closed subset of X . Check the following statements:
(a) Show that the support of °Z is contained in Z .
(b) Show that °Z is a left exact functor from Sheaf(X) to Sheaf(X).
(c) Show that °Z maps injectives to injectives.
(d) Show that FZ = kZ ≠F and °Z (F ) =H om(kZ ,F ).

PROPOSITION 7.31. The functor °Z is left-exact. It sends flabby sheaves to flabby
sheaves (and in particular injective sheaves to acyclic sheaves).

PROOF. One checks that °Z is left-exact from the left-exactness of the functor F !
F|X \Z . Applying the Snake lemma (Lemma 6.22) to the following diagram

0 // F
f

//

a
✏✏

G
g

//

b
✏✏

H //

c
✏✏

0

0 // FX \Z
f 0
// GX \Z

g 0
// HX \Z

yields exactness of the sequence 0 ! Ker(a) ! Ker(b) ! Ker(c) that is exactness of 0 !
°Z (F ) ! °Z (G ) ! °Z (H ).

We must now prove that if F is flabby, °Z (X ,F ) ! °Z (U ,F ) is onto. Let s 2
°Z (U ,F ), that is an element in F (U ) vanishing on U \ Z . We may thus first extend
s by 0 on X \Z to the open set (X \Z )[U . By flabbiness of F we then extend s to X . ⇤

We could denote °Z (U ,F ) by °(U ,U \ Z ,F ) or in general for two open sets V Ω
U , °(U ,V ,F ) = °X \V (U ,F ). We denote the j -th derived functor of F 7! °Z (U ,F ) by
H j

Z (U ,F ), or also by H j (U ,U \ Z ,F ).

2.4. Sheaves and D-modules. Note that the rings we shall consider in this sub-
section are non-commutative, a situation we had not explicitly considered above. A
D-module is a module over the ring DX of algebraic differentials operators over an al-
gebraic manifold X . Let OX be the sheaf of rings of holomorphic functions, £X the
sheaf of rings of first order linear differential operators (i.e. derivations) on OX (i.e.
holomorphic vector fields), and DX the sheaf of noncommutative rings generated by
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OX and £X , that is the sheaf of holomorphic differential operators on X . A D-module
is a module over the ring DX . More generally, given a sheaf of rings R, we can consider
R-modules, that is for each open U , F (U ) is an R(U )-module and the restriction mor-
phism is compatible with the R-module structure. What we did for R-modules also
holds for R-modules.

Let us show how D-modules appear naturally. Let P be a general differential opera-
tor, that is, locally, Pu = (

Pm
j=1 P1, j u j , ...,

Pm
j=1 Pq, j u j ) and we want to solve

Pm
j=1 Pi , j ui =

v j , and let us start with v = 0. The operator P yields a linear map Dp
X ! Dq

X and we may
consider the map

©(u) :Dp
X °! OX

(Q j )1∑ j∑p °!
pX

j=1
Q j u j

so that if (u1, ...,up ) is a solution of our equation, then ©(u) vanishes on DX ·P1 +
...+DX Pq where

P j =

0

B@
P1, j

...
Pq, j

1

CA

Conversely, a map © : Dp
X °! OX vanishing on DX ·P1 + ...+DX Pq yields a solution of

our equation, setting u j =©(0, ..,1,0...0).
Then, let M be the D-module DX /(DX · P ), the set of solutions of the equation

corresponds to Mor(M ,OX ). The Riemann-Hilbert correspondence RH sends M to
M ≠DX ≠X and is a functor from D-modules to Sheaf(X). We have SS(RH(M )) =
Char(M ) where Char is the characteristic variety. One could take this as the definition
of the Characteristic variety ([Hotta]).

3. Injective and acyclic resolutions

One of the goals of this section, is to show why the injective complexes can be used
to define the derived category. One of the main reasons, is that on those complexes,
quasi-isomorphism coincides with chain homotopy equivalence. We also explain why
acyclic resolutions are enough to compute the derived functors, and finally work out
the examples of the deRham and Čech complexes, proving that they both compute the
cohomology of X with coefficients in the constant sheaf.

We start with the following

PROPOSITION 7.32. Let f : A• ! I • be a quasi-isomorphism where the I p are injec-
tive. Then there exists g : I • ! A• such that g ± f is homotopic to id.

We first construct the mapping cone of a map.
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DEFINITION 7.33 (Mapping cone construction). Let f • : A• ! B• be morphism of
chain complexes, and C ( f )• = A•[1]©B• with boundary map

d =
µ
°@A 0
° f @B

∂

Then there is a short exact sequence of chain complexes

0 // B•
u=

µ
0
1

∂

// C ( f )•
v=

µ
1
0

∂

// A•[1] // 0

The above exact sequence (or distinguished triangle) yields a long exact sequence
in homology:

// H n(A•,@A)
H n ( f )

// H n(B•,@B )
H n (u)// H n(C ( f )•,d)

±n
f // H n+1(A•,@A) // ...

where the connecting map can be identified with H•( f ) and ±§f = H§( f ) coincides with
the connecting map defined in the long exact sequence of Proposition 6.19. Note that
H n(A•[1],@A) = H n+1(A•,@A). Now we see that H n( f ) is an isomorphism if and only if
H n(C ( f )•,d) = 0 for all n. Thus under the assumptions of the proposition (with B• =
I •), we have an acyclic complex (C ( f )•,d), and a map v : C ( f )• ! A•[1].

We claim that it is sufficient to prove that this map is homotopic to zero. Indeed, let
s be such a homotopy. It induces a map s• : C ( f )• ! A• such that °@A s(a,b)+sd(a,b) =
a or else

°@A s(a,b)+ s(°@A(a),° f (a)+@B (b)) = a

so setting g (b) = s(0,b) and t (a) = s(°a,0) we get (apply successively to (0,°b) and
(a,0)),

@A g (b)° g (@B b) = 0

so g is a chain map, and

@A t (a)+ g f (a)+ t@A(a) = a

so g f is homotopic to IdA.
The proposition thus follows from the following lemma.

LEMMA 7.34. Any morphism from an acyclic complex C • to an injective complex I •

is homotopic to 0.

Let f be the morphism. We will construct the map s such that f = @s + sd by in-
duction using the injectivity. Assume we have constructed the solid maps and we wish
to construct the dotted one in the following (non commutative !) diagram, such that
fm°1 = @m°2sm°1 + smdm°1.
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.... // C m°2 dm°2 //

fm°2

✏✏

sm°2

~~

C m°1 dm°1 //

sm°1

||

fm°1

✏✏

C m dm //

}}

fm

✏✏

...

....
@m°3 // I m°2 @m°2 // I m°1 @m°1 // I m @m // ...

The horizontal maps are not injective, but we may replace them by the following
commutative diagram

dm°2✏✏
C m°1

fm°1°@m°2sm°1

##

✏✏

dm°1

**
0 // Im(dm°1) = Ker(dm)

d 0
m //

w

✏✏

C m

sm

yy
I m°1

.

where we first prove the existence of w and then the existence of sm . The existence
of w follows from the fact that there is a morphism Ker(dm°1) ! ker(fm°1 °@m°2sm°1)
since Ker(dm°1) = Im(dm°2) and we just have to check that ( fm°1°@m°2sm°1)±dm°2 = 0
which is obvious from the diagram and the induction assumption, because

fm°1 ±dm°2 = @m°2 ± fm°2 =
@m°2 ± (@m°3sm°2 + sm°1dm°2) = @m°2sm°1dm°2

The injectivity of d 0
m follows from the exactness of the sequence, and the existence of

sm follows from the injectivity of I m°1.
Notice that proposition 7.32 implies

COROLLARY 7.35. Let I • be an acyclic chain complex of injective elements, and F is
any left-exact functor, then F (I •) is also acyclic.

PROOF OF THE COROLLARY. Indeed, since the 0 map from I • to itself is a quasi-
isomorphism, we get a homotopy between idI • and 0. In other words idI • = d s + sd .
As a result F (idI •) = F (d)F (s)+F (s)F (d) = dF (s)+F (s)d and this implies that F (idI •) :
F (I •) ! F (I •) is homotopic to zero, which is equivalent to the acyclicity of F (I •). ⇤
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Note that this implies that to compute the right-derived functor, we may replace
the injective resolution by any F -acyclic resolution, that is resolution by objects Lm
such that H j (Lm) = 0 for all j 6= 0:

COROLLARY 7.36. Let 0 ! A ! L0 ! L1 ! ... be a resolution of A such that the L j
are F -acyclic, that is RmF (L j ) = 0 for any m ∏ 1. Then RF (A) is quasi-isomorphic to the
chain complex 0 ! F (L0) ! F (L1) ! ..... In particular RmF (A) can be computed as the
cohomology of this last chain complex.

PROOF. Let I • be an injective resolution of A. There is according to 7.5 a morphism
f : L• ! I • extending the identity map. Because the map f is a quasi-isomorphism
(there is no homology except in degree zero, and then by assumption f§ induces the
identity), according to the previous result there exists g : I • ! L• such that g ± f is
homotopic to the identity. But then F (g )±F ( f ) is homotopic to the identity, and F ( f )
is an isomorphism between the cohomology of F (I •), that is RF§(A) and that of F (L•).
. ⇤Manque de montrer que F ( f )±F (g ) est homotope Ĺ l’identitŐ

Note that the above corollary will be proved again using spectral sequences in
Proposition 8.13 on page 107.

Note that if I is injective, 0 ! I ! I ! 0 is an injective resolution, and then
clearly H 0(X ,I ) = °(X ,I ) and H j (X ,I ) = 0 for j ∏ 1. A sheaf such that H j (X ,F ) = 0
for j ∏ 1 is said to be °X -acyclic (or acyclic for short).

EXERCICE 7.37. Let A•,B• be complexes of injective objects quasi-isomorphic to
0 ! A ! 0 and 0 ! B ! 0. Then any map A• ! B•[°1] is homotopic to 0. Show that a
map A• ! B•[1] does not need to be homotopic to zero.

3.1. Complements: DeRham, singular and Čech cohomology. We shall prove here
that DeRham or Čech cohomology compute the usual cohomology.

Let RX be the constant sheaf on X . Let ≠ j be the sheaf of differential forms on X ,
that is ≠ j (U ) is the set of differential forms defined on U . This is clearly a soft sheaf,
and we claim that we have a resolution

0 !RX
i!≠0 d!≠1 d!≠2 d!≠3 d! ....

d!≠n ! 0

where d is the exterior differential. This is a resolution as follows from the exactness of

0 ! (RX )x =R i!≠0
x

d!≠1
x

d!≠2
x

d!≠3
x

d! ....
d!≠n

x ! 0

which in turn follows from the Poincaré lemma, since for U contractible, we already
have the exactness of

0 !RX
i!≠0(U )

d!≠1(U )
d!≠2(U )

d!≠3(U )
d! ....

d!≠n(U ) ! 0

and x has a fundamental basis of contractible neighborhoods. Since soft sheaves are
acyclic, we may compute H§(X ,RX ) by applying °(X ,•) to the above resolution. That
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is the cohomology of

0 !≠0(X )
d!≠1(X )

d!≠2(X )
d!≠3(X )

d! ....
d!≠n(X ) ! 0

or else the DeRham cohomology.
Similarly, if Z is a closed subset, then kZ = i§i°1kX , where i : Z ! X is the inclusion.

Because i°1 is exact and i§ sends injective to injectives, i§i°1(≠ j
X ) are acyclic, and kZ

has a resolution by the ≠ j
Z , where ≠•

Z is the sheaf of germs of forms near Z . In other

words,≠ j
Z (U ) = {! 2≠ j (U )}/ ' where !1 '!2 if and only if !1 =!2 in a neighborhood

of Z . Then H j (X ,kZ ) = H j (≠•
Z ).

3.2. Singular cohomology. Let f : X ! Y be a continuous map between topo-
logical spaces, and C §

f be the complex of singular cochains over f , that is C
q
f (U )

is the set of singular q-cochains over f °1(U ). There is of course a boundary map
± : C

q
f (U ) ! C

q+1
f (U ). For X = Y and f = Id this is just the sheaf of singular cochains

on X . If moreover the space X is locally contractible, the sequence

0 ! kX !C 0 ±!C 1 ±!C 2 ! ....

yields a resolution of the constant sheaf, the exactness of the sequence at the stalk
level follows from its exactness on any contractible open set U . Thus, since the C q are
flabby, the cohomology H§(X ,kX ) is computed as the cohomology of the complex

0 !C 0(X )
±!C 1(X )

±!C 2(X ) !

3.3. Čech cohomology. Let F be a sheaf of R-modules on X .

DEFINITION 7.38. Given a covering U of X by open sets U j , an element of C q (U,F )
consists in defining for each (q +1)-uple (Ui0 , ....,Uiq ) an element s(i0, ..., iq ) 2F (Ui0 \
...\Uiq ) such that s(iæ(0), iæ(1), ..., iæ(q)) = "(æ)s(i0, ..., iq ).

If s 2 Č q (U,F ) we define (±s)(i0, i1, ..., iq+1) = P
j (°1) j s(i0, i1, ., bi j .., iq+1). This con-

struction defines a sheaf on X as follows: to an open set V we associate the covering of
V by the U j \V , and there is a natural map induced by restriction of the sections of F ,
Č q (U,F ) ! Č q (U\V ,F ) obtained by replacing U j by U j \V . Thus the Čech complex
associated to a covering is a sheaf over X . We may consider the complex of sheaves

0 !F
i! Č 0(U,F )

±! ...
±! Č q (U,F )

±! Č q+1(U,F )
±! ...

PROPOSITION 7.39. The Čech complex associated to F is a resolution of F

B CAUTION: This is usually NOT an injective resolution. Except in special
cases, it cannot be used directly to compute the cohomology of F •.
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PROOF. We must prove that the complex of sheaves

0 !F
i! Č 0(U,F )

±! ...
±! Č q (U,F )

±! Č q+1(U,F )
±! ...

is exact. Let x 2 X and U 2 U such that x 2 U . To s 2 Č q (U,F )x we associate K s 2
Č q°1(U,F )x as follows: K s(Ui0 , ...,Uiq°1 ) = s(U ,Ui0 , ...,Uiq°1 ) which makes sense since
for V ΩU containing x, , V \U \Ui0 \ ...\Uiq°1 =V \Ui0 \ ...\Uiq°1

Now we have

K (±s)(Ui0 , ...,Uiq ) = K
X

j
(°1) j s(Ui0 ,Ui1 , ., bUi j , ..,Uiq+1 )

±K (s))(Ui0 , ...,Uiq ) = ±s(U ,Ui0 , ...,Uiq ) = s(Ui0 , ...,Uiq ))°
X

j
(°1) j s(U ,Ui0 , .., bUi j , ...,Uiq )

so we see that ±K +K±= I d and this implies that the sequence is exact. ⇤
However if for all (i0, ..., iq ), the H j (Ui0 \ ...\Uiq ,F ) are zero for j ∏ 1, we say we

have an acyclic cover, and the cohomology of Č q (U,F ) computes the cohomology of
the sheaf F . This will follow from a spectral sequence argument (see exercise 8.30).

3.4. Direct and inverse limits. We start with

EXERCICES 2. (1) Let A be a sheaf overN,N being endowed with the topology
for which the open sets are {1,2, ...,n}, N and ;. Prove that a sheaf over N is
equivalent to a sequence of R-modules, An and maps

... ! An ! An°1 ! .... ! A0

and that H 0(N,A ) = lim√°°An is the inverse limit of the sequence. Describe

lim1(An)n∏1
de f= H 1(N,A )

(2) Show that the above sheaf is flabby if and only if the maps An ! An°1 are onto,
and that the sheaf is acyclic if and only if the sequence satisfies the Mittag-
Leffler condition: the image of Ak in A j is stationary as k goes to infinity.

(3) Prove that the inverse limit functor lim√°° is left-exact, while the direct limit func-
tor lim°°! is exact. Prove that

H§(lim°°!
Æ

CÆ) = lim°°!
Æ

H§(CÆ)

Let C be an abelian category, I be a directed poset, that is a poset where every pair
of elements has an upper bound. We define F (I ,C ) to be the set of directed systems,
that is i 7! Xi and for i ∑ j there is a map fi j : Xi °! X j such that fi i = id and fi j ± f j k =
fi k . This is called a directed system associated to I . It is the same as the category
of covariant functors from Or d(I ) to C . The usual case is as above, I = N with the
standard order. In some situations we have an inverse limit functor

lim√°° : F (I ,C ) °!C
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where the limit is an object L toghether with maps fi : L °! Xi such that fi ± fi j = f j ,
and this is universal, i.e. for any other object N and morphisms gi 2 Mor(N , Xi ) such
that gi ± fi j = g j , there is a unique u 2 Mor(N ,L) such that gi = fi ±u.

Inverse limits do not necessarily exist. They however do exist in the category of
Abelian groups, or in the category of sheaves. Moreover the functor lim√°° is left-exact, so

we may define R j lim = lim j . In particular if lim1 vanishes, the functor lim√°° is exact.

DEFINITION 7.40 (Mittag-Leffler condition). A directed system (indexed by N) sat-
isfies the Mittag-Leffler condition if for all k, the map An °! Ak is an epimorphism for
n large enough.

From exercise 1 we deduce

THEOREM 7.41. If Ak is an inverse system satisfying the Mittag-Leffler condition.
Then lim1(Ak ) vanishes. As a result if we have an exact sequence 0 °! Ak °! Bk °!
Ck °! 0 and (Ak )k satisfies the Mittag-Leffler condition, then we have an exact sequence

0 °! lim√°°(Ak ) °! lim√°°(Bk ) °! lim√°°(Ck ) °! 0

THEOREM 7.42. Limits exist in the category Db(X ). Moreover if for t 2 R we define
open sets Ut such that U t ΩUs for t < s, then we have

R°(Ut ,F •) = lim
s<t

R°(Us ,F •)

PROOF. Let I • be a complex of injective sheaves quasi isomorphic to F •. Indeed
the system °(Us ,I •) °! °(Us0 ,I •) is onto for any s > s0.

⇤
REMARK 7.43. If we have a sequence Fk of sheaves, with maps Fk °! Fk°1, then

we cannot make sense of limR°(X ,Fk ). Indeed, let J p
k , I p

k be injective resolution of
Fk . Then for each k the complexes I •k and J•k are quasi-isomorphic. But we cannot
conclude that limk I •k and limk J•k are quasi-isomorphic.

add sth on direct limits ?

PROPOSITION 7.44. Let F • be in Db(X ). Assume for an increasing sequence Uk of
open sets we have that F •(Uk ) is acyclic. Then setting U =S

k Uk , we have that F •(U ) is
acyclic.

PROOF. First, we may replace F • by a quasi-isomorphic complex of injective sheaves,
I •. Let (sk )k∏1 is a sequence in I p (Uk ) defining an element s 2 I p (U ) such that
@sk = 0,. Then, assume we constructed v1, ..., vk°1 such that Ω j , j°1(v j ) = v j°1 and
s j = @v j . Now sk = @v 0

k . However there is no guarantee that Ωk,k°1(v 0
k ) = vk°1. How-

ever since Ωk,k°1@vk = @vk°1, we have @(Ωk,k°1vk ° vk°1) = 0 so by assumption we
may write Ωk,k°1v 0

k ° vk°1 = @wk°1. By surjectivity of I p (Uk ) °! I p (Uk°1) resulting
form the injectivity of I p , we may find wk such that Ωk,k°1(w °k) = wk°1. Then set
vk = v 0

k + @wk . We have @v 0
k = @vk = sk and Ωk,k°1(vk ) = Ωk,k°1(v 0

k )+Ωk,k°1(@wk ) =
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Ωk,k°1(v 0
k )+@wk°1 = vk°1. So we may by induction construct a sequence (vk ) which

defines an element v in I p°1(U ) and @v = s. This proves that I •(U ) is acyclic. ⇤
REMARK 7.45. This is a special case of the following theorem.

THEOREM 7.46. Let X •
k be a sequence of complexes, with chain maps Ωk,l : X •

k ! X •
l .

Let X • = lim√°°X •
k . Assume the sequence H j°1(X •

k ) satisfies the Mittag-Leffler condition.
Then H j (X •) = lim√°°H j (X •

k ).

In our situation since the H j (X •
k ) are assumed to vanish, they automatically satisfy

the Mittag-Leffler condition.

4. Appendix: More on injective objects

Let us first show that the functor A ! Mor(A,L) is left exact, regardless of whether L

is injective or not. Let 0 ! A
f! B

g!C ! 0 be an exact sequence. Since f is a monomor-
phism Mor( f ) : Mor(B ,L) ! Mor(A,L) given by the map u ! u ± f , is injective, by defi-
nition of monomorphisms. We thus only have to prove Im(Mor(g )) = Ker(Mor(f)). As-
sume u 2 Ker(Mor(f)) so that u± f = 0. According to proposition 6.13, (C , g ) = Coker( f ),
so by definition of the cokernel we get the factorization u = v ± g .

LEMMA 7.47. Let 0 ! A
f! B

g! C ! 0 be an exact sequence such that A is injective.
Then there exists w : B ! A such that w ± f = idA. As a result there exists of u : C ! B and
v : B ! A such that idB = f ± v +u ± g , and the sequence splits.

PROOF. The existence of w follows from the definition of injectivity applied to h =
idA. The map w is then given as the dotted map. Now since f = f ±w± f we get (idA° f ±
w)± f = 0, hence by definition of the Cokernel, and the fact that C = Coker(g ), there is
a map u : C ! B such that (idA° f ±w) = u±g . This proves the formula idB = f ±v+u±g
with v = w . As a result, g = g ± IdB = g ± f ± v + g ±u ± g , and g ± f = 0, and since g is an
epimorphism and g = g ±u ± g we have IdC = g ±u and the sequence is split according
to Definition 6.11 and Exercise 6.12. ⇤

LEMMA 7.48. Let 0 ! A
f! B

g!C ! 0 be an exact sequence with A,B injective. Then
C is injective.

PROOF. Indeed, the above lemma implies that the sequence splits, B ' A ©C , but
the sum of two objects is injective if and only if they are both injectives: injectivity
is a lifting property, and to lift a map to a direct sum, we must be able to lift to each
factor. ⇤

As a consequence any additive functor F will send a short exact sequences of injec-
tives to a short exact sequences of injectives, since the image by F will be split, and a
split sequence is exact. The same holds for a general exact sequence since it decom-
poses as 0 ! I0 ! I1 ! Ker(d2) = Im(d1) ! 0. Since I0, I1 are injectives, so is Ker(d2) =
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Im(d1). Now we use the exact sequence 0 ! Im(d1) ! I2 ! Ker(d3) = Im(d2) ! 0 to
show that Ker(d3) = Im(d2) is injective. Finally all the Ker(dj) and Im(d j ) are injective.
But this implies that the sequences 0 ! Im(dm°1) ! Im ! Ker(dm+1) = Im(dm) ! 0 are
split, hence 0 ! F (Im(dm°1)) ! F (Im) ! F (Ker(dm+1)) = F(Im(dm)) ! 0 is split hence
exact. This implies (Check !) that the sequence 0 ! F (I0) ! F (I1) ! F (I2) ! F (I3) ! is
exact.

LEMMA 7.49 (Horseshoe lemma). Let 0 ! A ! B ! C ! 0 be an exact sequence,
and, I •A, I •C be injective resolutions of A and C . Then there exists an injective resolution
of B, I •B , such that 0 ! I •A ! I •B ! I •C ! 0 is an exact sequence of complexes. Moreover,
we can take I •B = I •A © I •C .

PROOF. See [Weib] page 37. One can also use the Freyd-Mitchell theorem. ⇤
PROPOSITION 7.50. Let C be an abelian category with enough injectives. Let f : A !

B be a morphism. Assume for any injective object I , the induced map f § : Mor(B , I ) !
Mor(A, I ) is an isomorphism, then f is an isomorphism.

PROOF. Assume f is not a monomorphism. Then there exists a non-zero u : K ! A
such that f ±u = 0. We first assume u is a monomorphism. Letº : K ! I be a monomor-
phism into an injective I . Then there exists v : A ! I such that v±u =º. Let h : B ! I be
such that v = h± f . We have h± f ±u = v±u =º but also f ±u = 0 hence h± f ±u = 0 which
implies º= 0 a contradiction. Now we still have to prove that u may be supposed to be
injective. But the map u can be factored as t ± s where s : K ! Im(u) and t : Im(u) ! A
and t is mono and s is epi. Thus since f ±u = 0, we have f ± t ± s = 0, but since s is
epimorphisms, we have f ± t = 0 with t mono. Assume now f is not an epimorphism;
Then there exists a nonzero map v : B ! C such that v ± f = 0. We now send C to an
injective I by a monomorphism º. Then (º± v)± f = 0, and º± v is nonzero, since º is
a monomorphism. We thus get a non zero map º± v 2 Mor(B , I ) such that its image by
f § in Mor(A, I ) is zero. ⇤

As an example we consider the case of sheaves. Let F ,G be sheaves over X , and f :
F ! G a morphism of sheaves. We consider an injective sheaf, I , then Mor(F ,I ) =S

x Mor(Fx ,I (x)), so that the map f § on each component will give fx : Fx !Gx . If this
map is an isomorphism, then f is an isomorphism (this was proved in Prop. 6.36).

One should be careful: the map f must be given, and the fact that Fx and Gx are
isomorphic for all x does not imply the isomorphism of F and G .

EXERCICE 7.51. Prove that if C is an abelian category, the category I of injective
objects in C is a full abelian sub-category.

TO BE COM-
PLETED4.1. Appendix: Poincaré-Verdier Duality. Let f : X ! Y be a continuous map be-

tween manifolds. We want to define the map f !, and then of course R f !, adjoint of f !
and R f !. This is the sheaf theoretic version of Poincaré duality.
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EXERCICES 3. (1) Use the above to prove that for F • a complex of sheaves
over X , we have H (F •

x ) = limU H§(U ,F •). In other words the presheaf U 7!
H§(U ,F •) has stalk H (F •

x ), and of course the same holds for the associated
sheaf. So the stalk of the sheaf associated to the presheaf U 7! H§(U ,F •) is
the homology of the stalk complex F •

x .



CHAPTER 8

Derived categories, spectral sequences, application to sheaves

One of the main reasons to introduce derived categories is to do without spectral
sequences. It may then seem ironic to base our presentation of derived categories
on spectral sequences, via Cartan-Eilenberg resolutions. We could then rephrase our
point of view: the goal of spectral sequences is to actually do computations. The de-
rived category allows us to make this computation simpler hence more efficient by
applying the spectral sequence only once at the end of our categorical reasoning. This
is a common method in mathematics: we keep all information in an algebraic object,
and only make explicit computations after performing all the algebraic operations.

1. The categories of chain complexes

As we mentioned in the prevous chapter, given C an abelian category with enough
injectives, one can consider the different categories of chain complexes, Chb(C ), Ch+(C ),
Ch°(C ) respectively of chain complexes bounded, bounded from below, and bounded
from above. We denote by A• an object in Ch+(C ), we write it as

...
dm°1 // Am dm // Am+1 dm+1 // Am+2 dm+2 // ...

The functor H (A•) denotes the cohomology of this chain complex, that is H m(A•) =
Ker(dm)/Im(dm°1). We can see this is a complex with zero differential, so that H is a
functor from Ch(C ) to itself. When F • is a complex of sheaves, one should be care-
ful not to confuse this with H§(X ,F m) obtained by looking at the sheaf cohomology
of each term, nor is it equal to something we have not defined yet, H§(X ,F •) that is
computed from a spectral sequence involving both H and H§ as we shall se later.

Because we are interested in cohomologies, we will identify two chain homotopic
chain complexes, but replacing chain complexes by their cohomology loses too much
information. There are two notions which are relevant. The first is chain homotopy.
The second is quasi-isomorphism.

DEFINITION 8.1. A chain map f • is a quasi-isomorphism, if the induced map
H ( f •) : H (A•) !H (B•) is an isomorphism.

It is easy to construct two quasi-isomorphic chain complexes which are not homo-
topy equivalent. For example the following Z-modules sequences.

0 !Z
2·!Z! 0

101



102 8. DERIVED CATEGORIES AND SPECTRAL SEQUENCES

and

0 ! 0 !Z/2Z! 0

are quasi-isomorphic, by the quasi-isomorphism induced by the projection Z!
Z/2Z. But they are not homotopy equivalent : there is no non trivial chain map from
the second complex to the first, since there is no nonzero map from Z/2Z to Z. The
same example shows that the relation "there is a quasi-isomorphism from A• to B• is
transitive and reflexive but not symmetric. So we must in general use a slightly sophis-
ticated relation on chain complexes.

DEFINITION 8.2. Two chain complexes A•,B• are quasi-isomorphic if and only if
there exists C • and chain maps f • : C • ! A• and g • : C • ! B• such that f •, g • are quasi-
isomorphisms (i.e. induce an isomorphism in cohomology).

We shall restrict ourselves to derived categories of bounded complexes. The de-
rived category is philosophically the category of chain complexes quotiented by the
relation of quasi-isomorphisms. This is usually acheived in two steps. We first quotient
out by chain-homotopies, because it is easy to prove that homotopy between maps is
a transitive relation, and only afterwords by quasi-isomorphism, for which transitivity
is more complicated.

Note that if
0 ! A ! B 1 ! B 2 ! B 3 ! ...

is a resolution of A, then 0 ! A ! 0 is quasi-isomorphic to 0 ! B 1 ! B 2 ! B 3 ! ....
Indeed the map i : A ! B 1 induces obviously a chain map and a quasi-isomorphism

0

✏✏

// A

i0
✏✏

// 0

✏✏

// 0 //

✏✏

....

0 // B 1 @1 // B 2 @2 // B 3 @3 // ...
The idea of the derived category, is that it is a universal category such that any func-

tor sending quasi-isomorphisms to isomorphisms, factors through the derived cate-
gory. Because we do not use this property, we shall give here a particular construction,
in a case sufficiently general for our purposes: the case when the category C is a cate-
gory having enough injectives. We refer to the bibliography for the general construc-
tion.

DEFINITION 8.3. Let C be an abelian category. The homotopy category, Kb(C ) is
the category having the same objects as Chainb(C ) and morphisms are equivalence
classes of chain maps for the chain homotopy relation : MorKb(C )(A,B) = MorC (A,B)/ '
i.e. f ' g means that f is chain homotopic to g .

Note that Kb(C ) is additive but is not an abelian category: by moding out by the
chain homotopies, we lost the notion of kernels and cokernels. As a result there is
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no good notion of exact sequence. However Kb(C ) is a triangulated category. We
shall not go into the details of this notion here, but to remark that this is related to the
property that short exact sequences of complexes only yield long exact sequences in
homology. Before taking homology, a long exact sequence is a sequence of complexes

.. ! A• ! B• !C • ! A•[1] ! ..

usually only homotopy exact. Let Inj(C ) be the category of injective objects. This is
a full subcategory of C . Let Kb(Inj(C )) be the same category constructed on injective
objects. To each chain complex, we can associate a chain complex of injective objects
as follows:

Let

...
dm°1 // Am dm // Am+1 dm+1 // Am+2 dm+2 // ...

be the chain complex, and for each Am an injective resolution

0 // Am im // I m
0

d m
0 // I m

1

d m
1 // I m

2

d m
2 // ...

By slightly refining this construction, we get the notion of Cartan-Eilenberg resolu-
tion:

DEFINITION 8.4. A Cartan-Eilenberg resolution of A• is a commutative diagram,
where the lines are injective resolutions:

@m°2
✏✏

@m°2
0✏✏

@m°2
1✏✏

@m°2
2✏✏

0 // Am°1

@m°1

✏✏

im°1 // I m°1
0

@m°1
0
✏✏

±m°1
0 // I m°1

1

±m°1
1 //

@m°1
1
✏✏

I m°1
2

@m°1
2
✏✏

±m°1
2 // ..

0 // Am

@m

✏✏

im // I m
0

@m
0
✏✏

±m
0 // I m

1

±m
1 //

@m
1
✏✏

I m
2

@m
2
✏✏

±m
2 // ...

0 // Am+1

@m+1

✏✏

im+1 // I m+1
0

@m+1
0

✏✏

±m+1
0 // I m+1

1

±m+1
1 //

@m+1
1

✏✏

I m+1
2

@m+1
2

✏✏

±m+1
2 // ...

Moreover they must satisfy the following conditions

(1) If Am = 0, then for all j , the I m
j are zero.

(2) The lines yield injective resolutions of Ker(@m),Im(@m) and H m(A§). In other
words, the Im(@m

j ) are an injective resolution of Im(@m), the Ker(@m
j )/Im(@m°1

j )

are an injective resolution of Ker(@m)/Im(@m°1) =H m(A•,@). This implies that
the Ker(@m

j ) are an injective resolution of Ker(@m).
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REMARK 8.5. We decided to work in categories of finite complexes. This raises a
question: are Cartan-Eilenberg resolutions of such complexes themselves finite. Clearly
this is equivalent to asking whether an object has a finite resolution. The answer is
positive over manifolds: they have cohomological dimension n, so we can always find
resolutions of length at most n ( see [Bre] chap 2, thm 16.4 and 16.28). If we want
to work with bounded from below complexes, we do not need this result, but then we
shall need to be slightly more careful about convergence results for spectral sequences,
even though there is no real difficulty. The case of complexes unbounded from above
and below is more complicated- because of spectral sequence convergence issues- and
we shall not deal with it.

Now we claim

PROPOSITION 8.6. (1) Every chain complex has a Cartan-Eilenberg resolution.
(2) Let A•,B• be two complexes, I •,• and J•,• be Cartan-Eilenberg resolutions of

A•,B•, and f : A• ! B• be a chain map. Then f lifts to a chain map f̃ : I •,• !
J•,•. Moreover two such lifts are chain homotopic.

PROOF. (see [Weib]) Set B m(A•) = Im(@m), Z m(A•) = Ker(@m) and H m(A•), and con-
sider the exact sequence 0 ! B m(A•) ! Z m(A•) ! H m(A•) ! 0. Starting from injective
resolutions I •B m of B m(A) and I •H m of H m(A•), the Horseshoe lemma (lemma 7.49 on
page 99) yields an exact sequence of injective resolutions 0 ! I •B m ! I •Z m ! I •H m ! 0.
Applying the Horseshoe lemma again to 0 ! Z m(A•) ! Am ! B m+1(A•) ! 0 we get an
injective resolution I •Am of Am and exact sequence 0 ! I •Z m ! I •Am ! I •

B m+1 ! 0. Then

I •Am
@•m! I •

Am+1 is the composition of I •Am ! I •
B m+1 ! I •

Z m+1 ! I •
Am+1 . This proves (1). Prop-

erty (2) is left to the reader. ⇤

Note: a chain homotopy between f , g : I •,• ! J•,• is a pair of maps sh
p,q : I p,q !

J p+1,q and sv
p,q : I p,q ! J p,q+1 such that g ° f = (±sh + sh±)+ (@sv + sv@). This is equiva-

lent to requiring that sh + sv is a chain homotopy between Tot (I •,•) and Tot (J•,•).

PROPOSITION 8.7. Let I m
j be the double complex as above, and Tot (I •,•) be the

chain complex given by T q = © j+m=q I m
j and d = @+ (°1)m±, in other words d|I m

j
=

d m
j + (°1)m±m

j . Then A• is quasi-isomorphic to T •.
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LEMMA 8.8 (Tic-Tac-Toe). Consider the following bi-complex

@m°2
✏✏

@m°2
0✏✏

@m°2
1✏✏

@m°2
2✏✏

0 // Am°1

@m°1

✏✏

im°1 // I m°1
0

@m°1
0
✏✏

±m°1
0 // I m°1

1

±m°1
1 //

@m°1
1
✏✏

I m°1
2

@m°1
2
✏✏

±m°1
2 // ..

0 // Am

@m

✏✏

im // I m
0

@m
0
✏✏

±m
0 // I m

1

±m
1 //

@m
1
✏✏

I m
2

@m
2
✏✏

±m
2 // ...

0 // Am+1

@m+1

✏✏

im+1 // I m+1
0

@m+1
0

✏✏

±m+1
0 // I m+1

1

±m+1
1 //

@m+1
1

✏✏

I m+1
2

@m+1
2

✏✏

±m+1
2 // ...

Assume the lines are exact (i.e. im is injective and Im(im) = ker(±m
0 ) and Im(±m

j ) =
Ker(±m

j+1)). Then the maps im induce a quasi-isomorphism between the total complex
T q =© j+m=q I m

j endowed with d = @+ (°1)m± and the chain complex A•.

PROOF. The proof is the same as the proof of the spectral sequence computing
the cohomology of a bicomplex, except that here we get an exact result. Let us write
for convenience ± = (°1)m±. Then notice that the maps im yield a chain map be-
tween A• and T •. Indeed, if um 2 Am , (@+ ±)(im(um)) = @m

0 im(um) since ±
m
0 ± im =

0. But @m
0 im(um) = im+1@m(um) = 0 since um is @m-closed. Similarly if um is exact,

im(um) is exact, so that im induces a map in cohomology. We must now prove that
this induces an isomorphism in cohomology. Injectivity is easy: suppose im(um) =
(@+ ±)(y). Because there is no element left of I m

0 , we must have y = ym°1
0 hence

im(um) = @m°1
0 (ym°1

0 ) and ±
m°1
0 (ym°1

0 ) = 0. This implies by exactness of the lines that
ym°1

0 = im°1(um°1), and

im(um) = @m°1
0 (ym°1

0 ) = @m°1
0 (im°1(um°1) = im@m°1(um°1)

injectivity of im implies that um = @mum°1, so um was zero in the cohomology of A• .
We finally prove surjectivity of the map induced by im in cohomology.

Indeed, let x = P
j+m=q xm

j such that (@+±)(x) = 0. Looking at the component of

(@+±)(x) in I m
j we see that this is equivalent to @xm°1

j°1 +±xm°1
j = 0. Since the complexes

are bounded, there is a smallest j = j0 such that xm
j 6= 0. Then we have ±xm0°1

j0
= 0

(since xm0
j0°1 = 0), and by exactness of ±, we have xm0°1

j0
= ±ym0

j0
. Then x ° (@+±)(ym0

j0
)

has for all components in I m
j vanishing for j ∏ j0 °1. By induction, we see that we can

replace x by a (@+±) cohomologous element with a single component w m
0 in I m

0 and
since (@+±)(w m

0 ) = 0, we have w m
0 = im(um) and we easily check @(um) = 0. ⇤
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If we are talking about an element in C identified with the chain complex 0 ! A ! 0
the total complex above is quasi-isomorphic to an injective resolution of A. Then if F
is a left-exact functor, we denote RF (A) to be the element

0 ! F (I0) ! F (I1) ! ....

in Kb(Inj(C )). And R j F (A) is the j -th homology of the above. sequence1. But if we
want to work in the category of chain complexes, we must give a a meaning to RF (A•)
for a complex A•.

REMARK 8.9. The idea of the total complex of a double complex has an important
consequence: we will never have to consider triple, quadruple or more complicated
complexes, since these can all eventually be reduced to usual complexes.

DEFINITION 8.10. Assume C is a category with enough injectives. The derived cat-
egory of C , denoted Db(C ) is defined as Kb(Inj(C )). The functor D : Chainb(C ) !
Db(C ) is the map associating to F • the total complex of a Cartan-Eilenberg resolution
of F •.

REMARKS 8.11. (1) The category Db(C ) has the following fundamental prop-
erty. Let F be a functor from Chainb(C ) to a category D, which sends quasi-
isomorphisms to isomorphisms, then F can be factored through Db(C ): there
is a functor G : Db(C ) !D such that F =G ±D .

(2) We need to choose for each complex, a Cartan-Eilenberg resolution of it, and
the functor D : Chainb(C ) ! Db(C ) depends on this choice. However, chosing
for each complex a resolution yields a functor, and any two functors obtained
in such a way are isomorphic (I would hope...).

(3) Note that if A•,B• are objects in Chainb(C ), then the morphisms from A• to
B• do not coincide (but are contained in ) the set of morphisms from A• to B•

considered as objects in the derived category. In other words the functor D is
not a full functor. For example, if A is an object, identified with 0 ! A ! 0,
there is no nonzero morphism from A to A[1] in the category of chain com-
plexes, but there can be a morphism between their image in the derived cate-
gory, because their injective representatives do not need to be concentrated in
a single degree. However there is no morphism in the derived category from A
to A[°1] (see exercise 7.37 of Chapter 8).

(4) We shall indifferently say, for two objects in the derived category, that they
are quasi-isomorphic or isomorphic. The former is mostly used when we pay
attention to a specific complex representing an object in the derived category.

DEFINITION 8.12. Assume C is a category with enough injectives, and Db(C ) =
Kb(Inj(C )) its derived category. Let F be a left-exact functor. Then the right-derived

1The notation does not convey the idea that information is lost from RF (A) to R j F (A), as always
when taking homology.
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functor of F , RF : Db(C ) ! Db(D) is obtained by associating to A• the image by F of
the total complex of a Cartan-Eilenberg resolution of A•.

Note that Proposition 8.6 (2) shows that RF (A•) does not depend on the choice
of the Cartan-Eilenberg resolution. Most of the time, we only compute RF (A) for an
element A in C . For this take an injective resolution of A.

Examples:
(1) Let F • be a complex of sheaves. Then, H m(X ,F •) is defined as follows: apply

°X to a Cartan-Eilenberg resolution of F •, and take the cohomology. In other
words, H m(X ,F •) = (Rm°X )(F •). As we pointed out before, this is different
from H m(X ,F q ). But we shall see that there is a spectral sequence with E2 =
H p (X ,F q ) (resp. E p,q

2 = H p (X ,H q (F •))) converging to H p+q (X ,F •).
(2) Computing Tor . Let M be an R-module, and 0 ! M ! I1 ! I2 ! .... be an

injective resolution. Let F be the ≠R N functor, then R j F (M) = Tor j (M , N ) is
the j -th cohomology of RF (M) given by 0 ! F (I1) ! F (I2) ! F (I3) ! .... For
example the Z-module Z/2Z has the resolution

0 !Z/2Z
f!Q/Z

g!Q/Z! 0

where the map f sends 1 to 1
2 and g (x) = 2x. Then Tor (Z/2Z,Z/2Z) is the

complex 0 !Q/Z≠Z/2Z
ḡ!Q/Z≠Z/2Z! 0. This is isomorphic to 0 !Z/2Z

2!
Z/2Z! 0, so that Tor 0(Z/2Z,Z/2Z) = Z/2Z and Tor 1(Z/2Z,Z/2Z) = Z/2Z,
while Tor k (Z/2Z,Z/2Z) = 0 for k ∏ 2. However this is usually done using pro-
jective resolutions, which cannot be done for sheaves, since they do not have
enough projectives:

we start from
0 !Z

2·!Z!Z/2Z! 0
which yields

0 !Z/2Z
2·!Z/2Z! 0.

Finally the notion of spectral sequence allows us to replace injective resolutions by
acyclic ones, as we already proved in corollary 7.35:

PROPOSITION 8.13. Let 0 ! A ! B 1 ! B 2 ! B 3 ! ... be a resolution by F -acyclic
objects, that is R j F (B m) = 0 for all j ∏ 1 and all m. Then RF (A) is quasi-isomorphic to
0 ! F (B 1) ! F (B 2) ! F (B 3) ! ...

PROOF. The proposition tells us that injective resolutions are not necessary to com-
pute derived functors: F -acyclic ones are sufficient. Indeed we saw that 0 ! A ! 0 is
quasi-isomorphic to

0 // B 1 @1 // B 2 @2 // B 3 @3 // ...

To compute the image by RF of this last complex, we use again the Cartan-Eilenberg
resolution of the above exact sequence.
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0

✏✏

0

✏✏

0

✏✏

0

✏✏
0 // B 1

@1
✏✏

i1 // I 0
1

@0
1
✏✏

±1
0 // I 1

1

±1
1 //

@1
1
✏✏

I 1
2

@2
1
✏✏

±1
2 // ...

0 // B 2

@2

✏✏

i2 // I 2
0

@0
2

✏✏

±2
0 // I 2

1

±2
1 //

@1
2

✏✏

I 2
2

@2
2

✏✏

±2
2 // ...

We must then apply F to the above diagram, and we must compute the cohomol-
ogy of the total complex obtained by removing the column containing the B j . But by
assumptions the horizontal lines remain exact, since the B j are F -acyclic, while

0

✏✏

0

✏✏

0

✏✏

0

✏✏
0 // F (B 1)

@1
✏✏

i1 // F (I 0
1 )

@0
1
✏✏

±1
0 // F (I 1

1 )
±1

1 //

@1
1
✏✏

F (I 1
2 )

@2
1
✏✏

±1
2 // ...

0 // F (B 2)

@2

✏✏

i2 // F (I 2
0 )

@0
2

✏✏

±2
0 // F (I 2

1 )
±2

1 //

@1
2

✏✏

F (I 2
2 )

@2
2

✏✏

±2
2 // ...

Since the horizontal lines remain exact by assumption, using Tic-Tac-Toe, we can
represent any cohomology class of the total complex F (Tot (I p,q )) by a closed element
in F (B p+q ). ⇤

2. Spectral sequences of a bicomplex. Grothendieck and Leray-Serre spectral
sequences

Apart from simple situations, we cannot apply the Tic-Tac-Toe lemma to a general
bicomplex. However one should hope to recover at least some information on total
cohomology, from the homology of lines and columns.

Let us start with the algebraic study. Let (K p,q ,@,±) be a double (or bigraded)complex.
In other words, @p,q : K p,q ! K p,q+1 and ±p,q : K p,q ! K p+1,q each define a com-
plex. We moreover assume that @ and ± commute. This yields a third chain complex,
called the total complex, given by Tot (K •,•)m =©p+q=mK q,p and Dm = P

p+q=m @p,q +
(°1)p±p,q .

DEFINITION 8.14. A spectral sequence is a sequence of bigraded complexes (E p,q
r ,d p,q

r ),
such that d 2

r = 0, d p,q
r : E p,q

r ! E p+r,q°r+1
r , such that E p,q

r+1 = H(E p,q
r ,d p,q

r ). The spectral
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sequence is said to converge to a graded complex F p endowed with a homogeneous
increasing filtration Fm , if for r large enough, F p

m/F p
m°1 = E m,p°m

r .

Remember that the filtration Fm is homogeneous if Fm = L
p (Fm \F p ). Note that

our definition of a converging spectral sequence is not the most general definition,
since convergence could be reached in infinite time. This will not happen in our situ-
ation, as long as we stick with bounded complexes (and bounded resolutions). Note
that the map @ obviously induces a boundary map on H p,q

±
(K •,•) = H p,q (K •,•,±) !

H p+1,q
±

(K •,•).

THEOREM 8.15 (Spectral sequence of a total complex). There is a spectral sequence
from H@H±(K •,•) converging to H p+q (Tot (K •,•)).

REMARK 8.16. Of couse the differentials @ and ± play symmetric roles, so there is
also a spectral sequence from H±H@(K •,•) converging to the same limit, H p+q (Tot (K •,•)).
In general the two different spectral sequences give different informations.

PROOF. Our proof spells out in detail some of the ideas found in [B-T] and is also
inspired by Vakil’s notes ([Vak], p.62 ff.). We added the obvious idea, that a spec-
tral sequence is an approximation scheme to the total cohomology, in pretty much
the same way as numerical schemes (Newton method, Runge-Kutta, finite element
method, etc...) approximate solutions of ordinary equations.

For simplicity we assume K p,q = 0 for p or q nonpositive. This is called a first-
quadrant spectral sequence. We set K n

p = P
l∏p K p,n°p . For us an element will be

“small”, if it belongs to K p,q for p large. This is in fact more obvious on the filtration,
small elements are those in K n

p for p large.

Then a cohomology class in H m(Tot (K •,•),d = @+±) is just a sequence x = (x0, ..., xm)
of elements in K p,m°p such that @x0 = 0 and ±x j +@x j+1 = 0 for 1 ∑ j ∑ m°1 and finally
±xm = 0. This is represented by the zig-zag, where the zeros indicate that the sum of
the images of the arrows abutting there is zero.
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0

x0

@

OO

± // 0

x1

@

OO

± // 0

. . .

@

OO

± // 0

xm

@

OO

± // 0
FIGURE 1. x = x0 + ...+xm a cocycle in Tot (K •,•)m

This is well defined modulo addition of coboundaries, that correspond to sequences
(y0, ..., ym°1), such that x0 = @y0, x j = ±y j + @y j+1,±ym°1 = xm , that is represented as
follows

x0

y0

@

OO

± // x1

y1

@

OO

± // x2

. . .

@

OO

± // xm

ym°1

@

OO

± // xm

FIGURE 2. y = y0 + ...+ ym°1 and x = x0 + ...+xm is the D-coboundary of y

Note that a number of x j could be 0, but unwritten x j are always zero.
The main ideas of the spectral sequence, are

(1) That H n(K ) can be approximated by the images F p (H n(K )) of the H n(Kp ) un-
der the inclusions K n

p Ω K n .
(2) that a zig-zag as in Figure 1 can be approximated by "truncated zig-zags of

length r ”, so we have an approximation Sp,n°p
r of H n(Kp ). We set Sp,n°p

r
±

(Im(d)+
Sp+1,n°p°1

r°1 )
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(3) More precisely the filtration F p (H n(K )) is such that

F p (H n(K ))
±

F p+1(H n(K )) = E p,n°p
1

(4) that we can compute E p,q
r as the cohomology of (E p,q

r°1,dr ). This is not obvious
when we make the approximation scheme, but a crucial tool in applications.

Replace the K p,q by E p,q
r as follows:

the space H p,q
r is a quotient of the set C p,q

r of sequences x = x0 + ...+xr°2 such that

(1) x j 2 K p° j ,q+ j

(2) @x0 = 0 and ±x j +@x j+1 = 0 for j ∏ 1
(3) there exists xr°1 satisfying °±xr°2 = @xr°1

It will be convenient to use the notation x = x0+ ...+xr°2+(xr°1), where the paren-
thesis mean that only the existence of xr°1 matters and not its value2. Another possible
notation would be to replace xr°1 by xr°1 +ker(@)\K p°r+1,q+r°1 (so that (xr°1) desig-
nates an element in K p°r+1,q+r°1/Ker(@)). An element of Sp,q

r is thus represented by
the zig-zag

0

x0

@

OO

± // 0

x1

@

OO

± // 0

. . .

@

OO

±̄ // 0

xr°2

@

OO

± // 0

(xr°1)

@

OO

FIGURE 3. An element x = x0 + ...+xr°2 + (xr°1) in Sp,q
r

2For example for any z such that @z = 0, we have (0, ...,0,0) = (0, ...,0, z)
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x0

y1

@

OO

± // x1

y2

@

OO

± // x2

. . .

@

OO

± // xr°2

yr°1

@

OO

± // (xr°1)

FIGURE 4. The element x = x0 + ...+ xr°2 + (xr°1) is in Sp,q
r \ Im(d) as it

is the D-boundary of y.

So we look at elements with boundary not zero, but of r orders of magnitude
smaller than x0. And we quotient these by the set of coboundaries that are at most
r orders of magnitude larger, so that y0 2 K p,q Note that one or more of the x j could
be taken equal to 0 (and that all unwritten elements are assumed to be zeros). The
following is now obvious

LEMMA 8.17. The module F p,n°p
r = Sp,n°p /Im(D) is such that F p,n°p

1 = F p H n(K ).

PROOF. This is obvious, since as r increases (in fact r > p is enough), we have that
x is actually closed. So F p,n°p

1 will be the set of closed elements having a representative
in Kp , modulo the boundaries, and this is exactly F p H n(K ). ⇤

We now set

DEFINITION 8.18. Set E p,q
r = F p,q

r
±

F p+1,q°1
r . Then if Z p,q

r is the set of leading terms
(i.e. the set of x0 2 K p,q where x = x0+ ....+xr°2+ (xr°1)) of elements in Sp,q

r and B p,q
r is

the set of leading terms of boundaries in Sp,q
r .

Then E p,q
r is defined as the quotient of Z p,q

r by the subgroup B p,q
r of Z p,q

r of ele-
ments of the type D(y0 + ...+ yr°1) represented as above. Again we do not worry about
the value of ±yr°1. We denote by E p,q

r the set of such equivalence classes of objects
obtained with x0 2 K p,q .
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Clearly a cohomology class of the total complex, yields by truncation, a class in
E p,q

r , and it is clear that for r large enough (namely r ∏ min{p, q}), an element of E p,q
r

is nothing else than a D-cohomology class.
Our claim is that there is a differential dr : E p,q

r ! E p+r,q°r+1
r such that E p,q

r+1 is the
cohomology of (E p,q

r ,dr ). Let us first study the space E p,q
r for small values of r . We

set, E p,q
0 = K p,q and easily check that for r = 1, E p,q

1 = H p,q (K •,•,@). Then to x0 such
that @x0 = 0 we associate D(x0 + x1) = °±x0. This yields a map d1 : H p,q (K •,•,@) !
H p,q+1(K •,•,@), and for the class of x0 to be in the kernel of this map, means that ±x1 2
Im(@) so there exists x1 such that @x1 =°±x0, and so we may associate to it the element
in Z p,q

2

0

x0

@

OO

± // 0

(x1)

@

OO

FIGURE 5. An element in Z p,q
2 .

the parenthesis around x1 means, as usual, that the choice of x1 is not part of the
data defining the element, only its existence matters.

Then for any choice of x1 as above, the element x = x0 + (x1) vanishes in E p,q
2 if

and only if there exists y = y0 + y1 such that @y0 = 0, x0 = ±y0 +@y1, and ±y1 = x1 (note
that this last equality can be taken as the choice of x1 which automatically satisfies
@x1 = °±x0). This is clearly the definition of an element in H q

±
H p
@

(K •,•), so we may
indeed identify E2 with the cohomology of (E1,d1), that is H q

±
H p
@

(K •,•). The map d2 is

then defined as the class of ±x1.
In the general case, we define the map dr as follows. For the sequence (x0, ...., xr°1)

we define its image by dr to be the class of °±xr°1 in E p+r,q°r+1
r . Note that xr°1 is only

defined up to an element z in the kernel of @, but ±xr°1 is well defined in E p°r,q+r
r , since

±z = D(z).
Clearly ±xr°1 2 K p°r,q+r . We have to prove on one hand that if ±xr°1 is zero (in the

quotient space E p°r,q+r+1
r ) we may associate to x an element in E p,q

r+1, and that this map
is an isomorphism. Clearly if ±xr°1 = 0 in E p°r,q+r

r (not in K p°r,q+r ), this means we
have the following two diagrams
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0

x0

@

OO

± // 0

x1

@

OO

± // 0

. . .

@

OO

± // 0

(xr°1)

@

OO

± // u

FIGURE 6. The class u represents dr (x)

0

y0

@

OO

± // u

. . .

@

OO

± // 0

y j

@

OO

± // 0

y j+1

@

OO

± // 0

. . .

@

OO

± // 0

yr°2

@

OO

FIGURE 7. Representing the vanishing of dr x in E p+r,q°r+1
r : a class y

such that D(y) = u.
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Now claiming that u vanishes in the quotient E p°r,q+r+1
r , means that we have a

diagram of the above type In particular in the above case, u is not in the image of @,
but of the form ±y j +@y j+1 with @y1 = 0. Then the following sequence represents an
element in Z p,q

r+1:

0

x1

@

OO

± // 0

x2

@

OO

± // 0

. . .

@

OO

± // 0

xr°1 ° y0

@

OO

± // 0

(°y1)

@

OO

FIGURE 8. How to make x into an element of E p,q
r+1 assuming dr x = 0 in E p+r,q°r+1

r .

However by substracting from x the above coboundary, as on Figure 8 we can get
a strictly longer sequence, and then we get an element of E p,q

r+1. Conversely, it is easy
to see that an element in E p,q

r+1 corresponds by truncation to an element x in E p,q
r with

dr (x) = 0. ⇤
REMARK 8.19. Because @ and ± play symmetric roles, there is also a spectral se-

quence from H±H@(K •,•) converging to H p+q (Tot (K •,•)). This is often very useful in
applications.

EXERCICE 8.20. (1) Using spectral sequences reprove the snake lemma (Lemma
6.22) and the five lemma (Lemma 6.23). Prove that a short exact sequence of
complexes yields a long exact sequence in homology.

(2) Prove that we may replace D = d +± by D" = d +"± where " is considered very
small. Show that the spectral sequence is indeed an approximation scheme :
we look for elements such that D"(x) =O("r )....

PROPOSITION 8.21 (The canonical spectral sequence of a derived functor). Let A• 2
Chain(C ), and F a left-exact functor. Then there are two spectral sequences with respec-
tively E p,q

2 = H p (Rq F (A)) and E p,q
2 = Rp F (H q (A)), converging to Rp+q F (A).
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PROOF. Consider a Cartan-Eilenberg resolution of A•, and denote it by (I p,q ,@,±).
Then, consider the complex (F (I p,q ),F (@),F (±)). By definition RmF (A•) is the coho-
mology of (Tot (F (I p,q ),F (d)). Now H q

±
(F (I p,q )) = Rq F (A•), since the lines are injec-

tive resolutions of Ap , and so the cohomology of each line is Rq F (A•). Thus the first
spectral sequence has E p,q

2 = H p
@

H q
±

(F (I •,•)) = H p
@

(Rq F (A•)). Now consider the other
spectral sequence. We must first compute H@(F (I p,q )). But by our assumptions the
columns are injective, and have @ homology giving an injective resolution of H q (A•),
so applying F and taking the ± cohomology, we get Rp F (H q (A)). ⇤

COROLLARY 8.22. There is a spectral sequence with E2 term H p (X ,H q (F •)) and
converging to H p+q (X ,F •). Similarly there is a spectral sequence from E p,q

2 = H p (X ,F q )
converging to H p+q (X ,F •).

PROOF. Apply the above to the left-exact functor on Sheaf (X), F (F ) = °(X ,•). ⇤
The following result is often useful:

PROPOSITION 8.23 (Comparison theorem for spectral sequences). Let A•,B• be two
objects in Chain(C ), f • : A• ! B• a chain morphism. Let F be a left-exact functor,
and assume that the map induced by f • from H p (Rq F (A)) to H p (Rq F (B)) is an iso-
morphism. Then the induced map RF (A) ! RF (B) is also an isomorphism.

PROOF. This is a direct consequence of the fact that f • induces a map fr : E p,q
r (A) °!

E p,q
r (B) which is a chain map for dr ., and the 5-lemma.A COMPL

ETER
cf [Weib] ?

⇤
Besides the above canonical spectral sequence, the simplest example of a spectral

sequence is the following topological theorem, constructing the cohomology of the
total space of a fibre bundle from the cohomology of the base and fiber. Indeed,

THEOREM 8.24 (Leray-Serre spectral sequence). Letº : E ! B be a smooth fibre bun-
dle. Then there exists a spectral sequence with E2 term H§(B ,H q (Fx)) and converging
to H p+q (E).

For the proof see page 118. Note that H q (Fx) is a locally constant sheaf, i.e. lo-
cal coefficients, with stalk H§(F ), since H q (º°1(U )) ' H q (U £F ) = H q (F ) for U small
enough and contractible. In particular when B is simply connected, and we take coef-
ficients in a field, H§(B ,H q (Fx)) = H§(B)≠H§(F ).

At the level of derived categories, this is even simpler. Let G be a left-exact functors,
from C to D and F a left-exact functor from D to E . We are interested in the derived
functor R(F ±G)

THEOREM 8.25 (Grothendieck’s spectral sequence). Assume the category C has enough
injectives, and G transforms injectives into F -acyclic objects (i.e. such that R j F (A) = 0
for j ∏ 1). Then

R(F ±G) = RF ±RG
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PROOF. Let I • be an injective resolution of A. Then G(I •) is a complex representing
RG(A). Since this is F -acyclic, it can be used to compute RF (RG(A)), and this is then
represented by FG(I •). But obviously this represents R(F ±G)(A). ⇤

Note that this theorem could not be formulated if we only have the R j F without
derived categories, as was the case before Grothendieck and Verdier. Indeed, if we
only know the R j F there is no way of composing derived functors. The Grothendieck
spectral sequences has the following important application:

THEOREM 8.26 (Cohomological Fubini theorem). Let f : X ! Y be a continuous
map between compact spaces. Then , we have R°(X ,F ) = R°(Y ,R f§(F )) hence, taking
cohomology, H§(X ,F ) = H§(Y ,R f§F ).

PROOF. Apply Grothendieck’s theorem to G = f§ and F = °(Y ,•), use the fact that
°(X ,•) = °(Y ,•)± f§, and remember that H j (X ,F ) = R j°(X ,F ). We still have to check
that f§ sends injective sheaves to °(Y ,•) acyclic objects, but this is a consequence of
corollary 7.26. The second statement follows from the first by taking homology. ⇤

REMARKS 8.27. (1) If there is a cofinal sequence of neighborhoods such that
°( f °1(V ),F •) is acyclic, then R f§(F •) is acyclic, and H§(Y ,R f§F ) = 0. We
thus get the Vietoris-Begle theorem. The Grothendieck spectral sequence
looks like “three card monty” trick: there is no apparent spectral sequence,
and the proof is essentially trivial. So what ? See the next theorem for an ex-
planantion.

(2) Note that a priori we have not defined the cohomology of a an object in the de-
rived category of sheaves. This does not even fall in the framework of sheaves
with values in an abelian category, since the derived category is not abelian.
However, R°(X , ) : Db(Sheaf(X)) ! Db(Ab). Now taking homology does not
lose anything, because any complex of abelian groups is quasi-isomorphic to
its homology, since the category of abelian groups has homological dimension
1 ([?]). This fails for general modules, so in general, R°(X ,R f§(F )) is only de- Need reference
fined in Db(R°mod), which is not well understood, except that any element
has a well defined homology, so Rp°(X , (R f§)) is well defined.

(3) If c is the constant map, we get H§(X ,F •) = H§({pt }, (Rc)§(F •)), but (Rc)§(F •)
is a complex of sheaves over a point, that is just an ordinary complex. We thus
associate a complex in Db(R°mod) to the cohomology of X with coefficients
in F •.

(4) If f is a diffeomorphism, then R f§ and f °1 are inverse functors. This follows
from the Grothendieck spectral sequence, but in a more elementary way, if I •

is an Eilenberg-Cartan resolution of F • we have f§(I •) is an injective com-
plex, so f °1±R f§(F •) is represented by f °1± f§(I •) =I •. Similarly using that
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f °1 is exact (Proposition 7.21) and the fact that an exact functor sends an in-
jective complex to an acyclic one (Lemma 7.35) and finally the fact that the
derived functor can be computed using an acyclic resolution (Corollary 7.36)

Example: Let us consider the functor°Z , then by Grothendieck’s theorem,°Z (X ,F ) =
°(X ,°Z (F )) so that R°Z (X ,F ) = R°(X ,R°Z (F )).

THEOREM 8.28 (Grothendieck’s spectral sequence-cohomological version). Under
the assumptions of theorem 8.25, there is a spectral sequence from E p,q

2 = Rp F ±RqG to
Rp+q (F ±G).

PROOF. Let I • be an injective resolution of A, and consider C • =G(I •).
Then one of the canonical spectral sequence of theorem 8.21 applied to RF and

C •, has E p,q
2 given by Rp F (H q (C •)) and converges to Rp+q F (C •). But since H q (C •) =

RqG(A) by definition, we get that this spectral sequence is Rp F (RqG(A)), and con-
verges to Rp+q F (G(I •)) that is the p+q cohomology of RF (G(I •)) = RF ±RG(A). But we
saw that RF±RG(A) = R(F±G)(A), so the spectral sequence converges to Rp+q (F±G)(A).

⇤
Ideally, one should never have to construct a spectral sequence directly, any spec-

tral sequence should be obtained from the Grothendieck’s spectral sequence for some
suitable pair fo functors F,G .

EXERCICE 8.29. Let F1,F2 be functors such that we have an isomorphism RF1 = RF2
on elements of C . Then RF1 = RF2 on the derived category.

PROOF OF LERAY-SERRE. Let us see how this implies the Leray spectral sequence:
take C =Sheaves(X), D =Sheaves(Y), E =Ab and F = f§, G = °Y . Since °Y ± f§ = °X , we
get R°X = R°Y ±R f§, since f§ sends injectives to injectives (because f§ has an adjoint
f °1, see Proposition 7.22). So we get a spectral sequence E p,q

2 = H p (Y ,Rq f§(F )) to
H p+q (X ,F ) is the sheaf associated to the presheaf H q ( f °1(U )). If f is a fibration, this
is a constant sheaf. Moreover the sheaf Rq f§(F ) has stalk limx2U H q ( f °1(U )) which is
equal to H q ( f °1(x)) if f is a fibration such that the f °1(U ) form a fundamental basis
of neighbourhoods of f °1(x). ⇤

EXERCICE 8.30 (Čech cohomology for acyclic covers equals sheaf cohomology).
Prove that if U is a covering of X such that for all q and all sequences (i0, i1, ..., iq ),
we have H j (Ui0 \ ....\Uiq ,F ) = 0 for j ∏ 1, then the cohomology of the Čech com-
plex(see 3.3, page 95), C (U ,F ) coincides with H§(X ,F ). Hint: consider an injective
resolution of F , 0 ! F ! I 0 ! I 1 ! ... and the double complex having as rows the
Čech resolution of I p . Indeed, K p,q = Č q (U,I p ) and the map @ : K p,q °! K p+1,q is in-
duced by @ : I p °!I p+1 while ± is induced by the Čech differential. Now taking the @
differential of K p,q we get ©(i0,i1,..iq )H p (Ui0 \...\Uiq ,F ) which vanishes for p 6= 0 by as-
sumption, hence H@(K p,q ) =P

i0,...,iq °(Ui0 \ ...\Uiq ,F ) while taking the ± cohomology
of this yields the cohomology of the Čech complex. Conversely, taking first the ± co-
homology of the double complex, we get using the following lemma, that it is nonzero
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only for p = 0 in which case it is equal to °(X ,I p ) and taking the cohomology of the
sequence

0 °! °(X ,I 0) °! °(X ,I 1) °! .... °! °(X ,I q ) °!
we get the cohomology of F . By the remark following Theorem 8.15 these two spectral
sequences have the same limit that is the cohomology of the total complex, and this
proves our result.

LEMMA 8.31. Let I be an injective sheaf on X . Then the Čech-cohomology, Ȟ j (U,I ) =
0 for all j ∏ 1 and Ȟ 0(U,I ) = °(X ,I )

PROOF. Since I is injective, its restriction to Ui0 \ ...\Uiq is injective, hence V 7!
°(Ui0 \ ... \Uiq \V ) is also an injective sheaf, and since the direct sum of injective
sheaves is injective, we have that the Čech-resolution is an injective resolution, hence
its cohomology coincides with the cohomology of I , and since an injective sheaf is
acyclic, this concludes the proof. ⇤

3. Complements on functors and useful properties on the Derived category

3.1. Derived functors of operations and some useful properties of Derived func-
tors. Consider the operations H om,≠, f§, f °1. The operations f °1 is exact, so it is its
own derived functor. The functor f§ is left exact, hence has a right-derived functor, R f§.
The operation H om is covariant in the second variable and contravariant in the first.
Considering it as a functor of the second variable it is left exact, so has a right-derived
functor, RH om. Finally the tensor product is right-exact,hence has a left derived func-
tor denoted≠L . Note that in the case of H om and≠, the symmetry of the functor is not
really reflected, since for the moment one of the two factors must be a sheaf and not
a chain complex of sheaves. For a satisfactory theory one would have to work with bi-
functors, which we shall avoid (see [K-S], page 56). In particular we have as a complex
of sheaves, (F •≠G •)r =P

p+q=r F p≠G q and H om(F •,G •)r =P
p+q=r H om(F p ,G q ).

Again acording to [K-S], under suitable assumptions, whether we consider H om
as a bifunctor, or we consider the functor F !H om(F ,G ) (resp. G !H om(F ,G )),
their derived functors coincide.

REMARK 8.32. (1) Let °({x},F ) =Fx . This is an exact functor, since by defini-
tion a sequence is exact, if and only if the induced sequence at the stalk level
is exact. So R°({x},F ) =Fx .

(2) Be careful: there is no equality °({x},°Z (F )) = °({x},F ), so we cannot use
Grothendieck’s theorem 8.25.

(3) As long as we are working over fields, and finite dimensional vector spaces, the
tensor product and H om functors on the category k-vect are exact, so they
coincide with their derived functors. We shall make this assumption whenever
useful.

EXERCICE 8.33. We have for a complex F • that (H •(F •))x = H§(F •
x ). This follows

from the exactness of the functor F °!Fx from Sheaves(X) to R°mod.



120 8. DERIVED CATEGORIES AND SPECTRAL SEQUENCES

3.2. More on Derived categories and functors and triangulated categories. There
is no good notion of exact sequence in a derived category. Of course, the exact se-
quence of sheaves has a corresponding exact sequence of complexes of their injective
resolution as the following extension of the Horseshoe lemma (Lemma 7.49) proves:

PROPOSITION 8.34. Let 0 ! A• ! B• ! C • ! 0 be an exact sequence of complexes.
There is an exact sequence of injective resolutions 0 ! I •A ! I •B ! I •C ! 0 and chain
maps, a,b,c, which are quasi-isomorphisms

0 // A•

a
✏✏

// B•

b
✏✏

// C • //

c
✏✏

0

0 // I •A
// I •B

// I •C
// 0

PROOF. Indeed, if the complexes are reduced to single objects, this is just the Horse-
shoe lemma 7.49 applied to 0 ! A ! B ! C ! 0. The general case follows from the
theorem 8.6, (2), by replacing the double complexes by their total complex. ⇤Is this correct ?

Or only exact up to homotopy ?
EXERCICE 8.35. Let 0 ! A• f •

! B• g •
!C • ! 0 be an exact sequence of complexes. Let

T n be the mapping cone (see p. 91) of g , that is T n = B n©C n°1,dn = (@B ,@C +(°1)n gn).
Then the map ( f •,0) : A• °! T • is a quasi-isomorphism.

However, since the derived category does not have kernels or cokernels, the no-
tion of exact sequence is not well defined. It is replaced by the notion of distinguished
triangle, defined as follows.

DEFINITION 8.36. A distinguished triangle is a triangle

A•

v

}}
B• f

// C •
u

aa

isomorphic to a triangle of the form

C ( f )•

v

{{
M• f

// N •
u

cc

associated to a map f : M ! N .

We now claim that to an exact sequence in Chainb(C ), we may associate a distin-
guished triangle in the derived category

Indeed, an exact sequence of injective sheaves 0 ! I •A ! I •B ! I •C ! 0 is split, so
is isomorphic to 0 ! I •A ! I •A © IC ! I •C ! 0 and hence isomorphic to the above exact
sequence for M• = I •C [°1], N • = I A and f = 0.
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0 ! I •A ! I •A © IC ! I •C ! 0 and this is isomorphic to 0 ! I •A ! I •B ! I •C ! 0
The following property will be useful in the proof of Proposition 9.3.

PROPOSITION 8.37 ([Iv], p.58). Let F be a left exact functor from C to D, where C ,D
are categories having enough injectives. Then the functor RF : Db(C ) ! Db(D) preserves
distinguished triangles.

PROOF. ⇤
Let now F,G , H be left-exact functors, and ∏,µ be transformations of functors from

F to G and G to H respectively.

PROPOSITION 8.38 ([K-S] prop. 1.8.8, page 52). Assume for each injective I we have

an exact sequence 0 ! F (I )
∏!G(I )

∏! H(I ) ! 0. Then there is a transformation of func-
tors ∫ and a distinguished triangle

! RF (A)
R∏! RG(A)

R∏! RH(A)
∫! RF (A)[1]

R∏[1]! ...

PROOF. ⇤
Example: We have an exact sequence 0 ! °Z (F ) !F !FX°Z that extends for F

flabby to an exact sequence

0 ! °Z (F ) !F !FX°Z ! 0

therefore

COROLLARY 8.39. There is a distinguished triangle

R°Z (F ) ! R°(F ) ! R°(FX°Z )
[+1]! R°Z (F )[1]...

yielding a cohomology long exact sequence

... ! H j°Z (F ) ! H j (X ,F ) ! H j (X \ Z ;F ) ! H j+1
Z (F ) ! ...

REMARK 8.40. For each open U , we may consider R°(U ,F •) that is an element in
Db(R°mod). We would like to put these toghether to make a sheaf. The only obstruc-
tion is that this would not be a sheaf in an abelian category, but only in a triangulated
category. However, consider an injective resolution of F •, I •. Then I •(U ) represents
R(°(U ,F •)), so that R° is just the functor associating to F • the injective resolution,
which is the map so that we may define R°(F •) = I • in the derived category, i.e. this
is the functor D of Definiton 8.10. Then R°(U ,F •) = R°(F •)(U ).

3.3. Čech cohomology of complexes of sheaves. Let F • be in Chainb(Sheaves(X)).
Let U be an open cover of X and consider the total complex T • of the double com-
plex C p (U,F •). The the cohomology of T equals the cohomology H§(X ,F •) provided
H p (Ui0 \ ...\Uq ;F j ) for all p ∏ 1.
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3.4. Bifunctors and derived bifunctors. A bifunctor is a functor from the product
category C £C 0 to a category C00. For example H om and ≠ (that will be sometimes de-
noted for convenience by T for tensor product) or ⇥ (that will be sometimes denoted
for convenience by ET for external tensor product) are bifunctors from Sheaves(X)£
Sheaves(X) to Sheaves(X) for the first two, and from Sheaves(X)£Sheaves(Y) to Sheaves(X£Y)
for the last one. The same theory, using the fact that we have enough injectives, and
that for each of these bifunctors we can extend to bifunctors from Chainb(Sheaves(X))£
Chainb(Sheaves(X)), where we use the functor

Tot : Chainb(Sheaves(X))£Chainb(Sheaves(Y)) °! Chainb(Sheaves(X£Y))

given by F •£G • °! K • where K n = P
p+q=n F p £G q . Then if F is a bifunctor, we

set Tot (F ) the functor induced by F ±Tot , i.e. Tot (F )(F £G ) = F (Tot (F £G ) in other
words Tot (F )(F £G )n = P

p+q=n F (F p £G q ). We usually denote Tot (F ) by F , since
there is no real ambiguity. The derived functor of F is then obtained as the derived
functor of Tot (F ). In other words, replace F • by a quasi-isomorphic complex made of
injective objects, I • and G • by J •. Then RF (F •£G •) = Tot (F )(I •£G •). For this to be
well defined, we need that for any acyclic F • and any G •, the complex Tot (F )(F •£G •)
is acyclic. The Grothendieck spectral sequence yields the following

PROPOSITION 8.41. Let F •,G • in Chainb(Sheaves(X)). There are spectral sequences
from H p (X ,F •)≠H q (Y ,G •) converging to H p+q (X £Y ,F •⇥G •).

PROOF. Let F be the bifunctor F ≠G °! F £G that is an exact functor. For U Ω
X ,V Ω Y and I ,J injective sheaves, we have °(U £V ,I ⇥J ) = °(U ,I )≠°(V ,J ),
because injective sheaves are fine. Let ET be the external tensor product bifunctor.
Then we have °U£V ± ET (F •,G •)) = T ± (°U ,°V )(F •,G •), hence R°U£V (F •⇥G •) =
T (°U (F •),R°(cG)), hence taking cohomologies we get the above spectral sequence.

⇤

4. (1,1)-category theory

Let C be a category. Its nerve is the following Simplicial set that is a functor
from the category Simplicial to the category Sets : the vertices N (C )0 of N (C ) are
the objects of C , the edges N (C )1 correspond to elements of MorC (X ,Y ), and for
f 2 N (C )1 = MorC (X ,Y ), we have d0( f ) = X ,d1( f ) = Y , and s0(X ) = IdX . Now N (C )n =
MorsSet (¢n , N (C )) is the set of diagrams

X0
f1°! X1

f2°! ...Xi°1
fi°! Xi

fi+1°! ....
fn°! Xn

The map di sends the above to

X0
f1°! X1

f2°! ...Xi°1
fi+1± fi°! Xi+1

fi+2°! ....
fn°! Xn

while si sends it to

X0
f1°! X1

f2°! ...Xi°1
fi°! Xi

IdXi°! Xi
fi+1°! ...

fn°! Xn
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Finally, given a diagram X0
f1°! X1

f2°! X2, the edge of N (C ) corresponding to f1 ± f0
may be uniquely characterized by the fact that there exists a 2-simplex æ 2 N (C )2 with
d2(æ) = f0,d0(æ) = f1 and d1(æ) = f1 ± f0.

DEFINITION 8.42. Let S be a simplicial set, and C[S] be the simplicially enriched
category such that objects are the objects of S, and MorC[S](X ,Y )n is given by the se-
quences ( f1, ..., fn) of composable functors f j 2 MorS(X j°1, X j ). The d n

j are defined as

above by d n
j ( f1, ..., fn) = ( f1, .., f̂ j , ..., fn) and sn

j : ( f1, ..., fn) = ( f1, .. f j°1, id, f j+1, ...., fn)

Example: Let¢n be the category with objects j 2 {0, ...,n} and morphisms Mor¢n (i , j ) =
qi , j for i ∑ j and ; otherwise. By uniqueness, note that q j ,k±qi , j = qi ,k . ThenC[¢n] has
the same objects as ¢n , and MorC[¢n ](i , j )k is the set of sequences i = i0 ∑ i1 ∑ ... ∑ ik =
j . In particular if pi , j 2 MorC[¢n ](i , j )1, we don’t have in general pir°1, j ±....±pi1,i2 ±pi ,i1 =
pi , j . In fact, C[¢n] is the free category generated by the pi , j .

DEFINITION 8.43. A homotopy coherent diagram from C to D is an ordinary func-
tor

F§(C ) =C[N (C )] °!D

Let N be a smooth manifold endowed with a triangulation. Let W Ω V Ω U , and
rU ,V : F (U ) °! F (V ),rV ,W : F (V ) °! F (W ). We have rV ,W ± rV ,W 6= rU ,W , but if C =
Op(X)op , we get a functor

F§(Op(X)op ) =C[N (Op(X)op )] °! Chb

For this we must describe the structure of Chb as a simplicially enriched category.
We have that

MorsChb (A•,B•)k = MorChb (C§(¢k )≠ A•,B•)

Now the theorem that tells us that such a category can be rectified tells us that

PROPOSITION 8.44. Given a functor

F : F§(Op(X)op ) °! Chb

there is a sheaf on X , seen as a functor

F : Op(X)op °! Chb

such that if we denote by º : F§(Op(X)op ) °! Op(X)op, then F is homotopy equivalent
to cF ±º.

We thus have to prove.

PROPOSITION 8.45. The map U 7! C F§(L,∫§U ) and the rU ,V define a coherent ho-
motopy from the category Op(X)op to the category C hb. Its rectification, cF§

L defines a
presheaf on N such that

SS(cFL) = bL



124 8. DERIVED CATEGORIES AND SPECTRAL SEQUENCES

PROOF. We denote by ° the Dold-Kan equivalence, sending Chb to sA , adjoint to
N . We must prove that the C F§(L,∫§U ) and the rU ,V define a simplicial map from
C[N (Op(X)op )] to Chb ª= sA . Now C[N ((Op(X)op )]k is defined as the set of sequences
U1 Ω .... ΩUk , with d n

j (U1, ....,Un) = (U1, ...,Û j , ...,Un). A simplicial map to sA , will send
C[N ((Op(X)op )]k to (sA )k commuting with the d n

j , sn
j . in other words we send U1 Ω

.... ΩUk to Xk (U1, ...,Uk ) 2A and we have d k
j Xk (U1, ....,Uk ) = Xk°1(U1, ...,Û j , ....,Uk )

U to °F (U ), (U1,U2) to °rU2,U1 , and (U1 Ω .... ΩUk ) to °(rUk ,Uk°1 ± ....± rU2,U1 ) ⇤
We shall consider sheaves on X (i.e. Op(X)op )) taking values in Chb(A ).
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CHAPTER 9

Singular support in the Derived category of Sheaves.

1. Singular support

1.1. Definition and first properties. From now on, we shall denote by Db(X ) the
derived category of (bounded) sheaves over X , that is Db(Sheaf(X)).

Let U be an open set. The functor °(U ;•) sends sheaves on X to R-modules, and
has a derived functor R°(U ;•). Its cohomology R j°(U ;F ) = H j (U ,F ). Now if Z is
a closed set, we defined the functor °Z in chapter 7, page 90 as the set of sections
supported in Z , that is °Z (U ,F ) is the kernel of F (U ) °!F (U \ Z ). This is a sheaf, so
°Z is a functor from Sheaf(X) to Sheaf(X). We checked (cf. Proposition 7.31) that this is
left-exact, using the left-exactness of the functor F !F|X \Z , where F|X \Z (U ) =F (U \
(Z \U )). Hence we may define R°Z : Db(X ) °! Db(X ). This is defined for example for
a sheaf F as follows: construct an injective resolution F , that is 0 ! F ! I0 ! I1 !
I2 !I3 ! ....

Then the complex of sheaves

0 ! °Z I0 ! °Z I1 ! °Z I2 ! °Z I3 ! °Z I4 ! ...

represents R°Z (F ). The cohomology space H j (R°Z (F )) is an element in Db(X ), of-
ten denoted H j

Z (F ). Moreover we denote by H j
Z (X ,F ) = H j (R°Z (X ,F )).

DEFINITION 9.1. ([K-S]) Let F • be an element in Db(X ). The singular support of
F •, SS(F •) is the closure of the set of (x, p) such that there exists a real function ' :
M !R such that d'(x) = p, and we have

R°{x|'(x)∏0}(F
•)x 6= 0

Note that this is equivalent to the fact that limx2U R°(U ,F •) °! limx2U R°(U ,F •) is
not an isomorphism, or the existence of j such that R j°{x|'(x)∏0}(F •)x = H j

{x|'(x)∏0}(F
•)x 6=

0.

An equivalent formulation is that (x0,ª0) › SS(F •) if and only if there is a neigh-
bourhood of (x0,ª0) in T §X such that for any (x,ª) in this neighbourhood and any
smooth function ' such that d'(x) = ª we have R°{x|'(x)∏0}(F •)x = 0. Or else that
limUæx R°(U ,F •) °! limUæx R°(U \ {'< 0},F •) is an isomorphism.

REMARKS 9.2. (1) Assume for simplicity that we are dealing with a single sheaf
F , rather than with a complex. The above vanishing can be restated by asking

127



128 9. SINGULAR SUPPORT IN Db (Sheaf(X))

that the natural restriction morphism

lim
U3x

H j (U ;F ) °! lim
U3x

H j (U \ {'< 0};F )

is an isomorphism for any j 2 Z . This implies in particular ( j = 0) that
“sections” of F defined on U \ {' < 0} uniquely extend to a neighborhood of
x.

Indeed, let I • be a complex of injective sheaves quasi-isomorphic to F •.
Then we have an exact sequence

0 ! °Z I • !I • !I •
X \Z ! 0

where the surjectivity of the last map follows from the flabbiness of injective
sheaves. This yields the long exact sequence

! H j
Z (U ,F •) ! H j (U ,F •) ! H j (U \ Z ,F •) ! H j+1

Z (U ,F •) ! ...

so that the vanishing of H j
Z (U ,F •) = R° j

Z (F •) for all j is equivalent to the
fact that H j (U ,F •) ! H j (U \ Z ,F •) is an isomorphism.

(2) The set SS(F ) is a homogeneous subset in T §X . Note that SS(F ) is in T §X
not T̊ §X .

(3) It is easy to see that SS(F •)\0X = supp(F •) where supp(F •) = {x 2 X |H j (F •)x = 0}.
Take ' = 0, then R°{x|'(x)∏0}(F ) = R°(F ), and R j°(F )x = H j (Fx). So if we
are not interested in the support of F , we could define SSU (F ) as SS(F )\
ST §(N ) Ω ST §N and SS J+(F ) as SS(F )\ {ø = 1} Ω J 1(N ,R). Note that since
SS(F ) is only positively homogeneous, SS J+(F ) does not allow us to recover
SS(F ) \ 0N , but only its positive part. However if we also know SS J°(F ) =
SS(F )\ {ø = °1} we can recover SS(F ). Similarly the knowledge of SSU (F )
revcovers SS(F ) \ 0N .

(4) Clearly (x, p) 2 SS(F •) only depends on F • near x. In other words if F • =G •

in a neighbourhood V of X , then

(x, p) 2 SS(F •) , (x, p) 2 SS(G •)

(5) It is also clear that SS(F •) is a diffeomorphism invariant. Indeed, if f : X °! Y
is a diffeomorphism, ' a smooth fonction on Y , T § f : T §X °! T §Y the map
(x,ª) 7! ( f (x),ª±d f (x)°1) we have

H j (U , f °1F •) //

'
✏✏

H j (U \ {'> 0}, f °1F •)

'
✏✏

H j ( f (U ),F •) // H j ( f (U )\ {'± f °1 > 0},F •)
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Since d(' ± f °1) = d'( f (x))d f (x)°1 we have (x,ª) 2 SS( f °1F •) , ( f (x),ª ±
d f (x)°1) 2 SS(F •). Note that this will also be a consequence Proposition 9.5
(see page 131).

(6) We would like to check R°{x|'(x)∏0}(F •)x = 0 for a single function'with d'(x) =
p 6= 0. Is this possible ?

The first properties of SS(F ) are given by the following proposition

PROPOSITION 9.3. The singular support has the following properties

(1) SS(F •) is a conical subset of T §X .

(2) If F •
1 !F •

2 !F •
3

+1!F •
1 [1] is a distinguished triangle in Db(X ), then SS(F •

i ) Ω
SS(F •

j )[SS(F •
k ) and (SS(F •

i )\SS(F •
j ))[(SS(F •

j )\SS(F •
i )) Ω SS(F •

k )) for any
i , j ,k such that {i , j ,k} = {1,2,3}.

(3) SS(F •) ΩS
j SS(H j (F •)).

PROOF. The first statement is obvious. For the second, we first notice that SS(F •) =
SS(F •[1]). Now according to Proposition 8.37 (see page 121), R°Z maps a triangle as in
(2) to a similar triangle, so that we get the following distinguished triangle R°Z (F •

1 ) !
R°Z (F •

2 ) ! R°Z (F •
3 )

+1! R°Z (F •
1 )[1] ! ...

which yields

... ! R°Z (F •
1 )x ! R°Z (F •

2 )x ! R°Z (F •
3 )x

+1! R°Z (F •
1 )x[1] ! ...

and in particular, taking Z = {y |√(y) ∏ 0} where √(x) = 0 and d√(x) = p, if two of
the above vanish, so does the third. This implies the first part of (2). Moreover if one
of the above cohomologies vanish, for example R°Z (F •

1 )x ' 0, then the other two are
isomorphic, hence vanish simultaneously. Thus (x, p) › SS(F •

1 ) implies that (x, p) ›
SS(F •

2 )¢SS(F •
3 ), where ¢ is the symmetric difference. This implies the second part of

(2).
Consider the canonical spectral sequence of Proposition 8.21 (see page 115) ap-

plied to F = °Z . This yields a spectral sequence from Rp°Z (H q (F •)), converging to
Rp+q°Z (F •). So if

°
Rp°Z (H q (F •))

¢
x vanishes we also have that

°
Rp+q°Z (F •)

¢
x van-

ishes. ⇤

Examples:

(1) An exact sequence of complexes of sheaves 0 ! F •
1 ! F •

2 ! F •
3 ! 0 is a spe-

cial case of a distinguished triangle (or rather its image in the derived category
is a distinguished triangle). So in this case, we have the inclusions SS(F •

i ) Ω
SS(F •

j )[SS(F •
k ) and (SS(F •

i )\SS(F •
j ))[(SS(F •

j )\SS(F •
i )) Ω SS(F •

k )) for any
i , j ,k such that {i , j ,k} = {1,2,3}.

(2) If F is the 0-sheaf that is Fx = 0 for all x (hence F (U ) = 0 for all U ), we have
SS(F ) =;. Indeed, for all x and √, R°{√(x)∏0}(X ,F )x = 0, hence the result. It
is easy to check that this if SS(F ) = ;, then F is equivalent to the zero sheaf
(in Db(X )), that is F is a complex of sheaves with exact stalks.
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(3) Let kX be the constant sheaf on X . Then SS(kX ) = 0X . Indeed, consider the
deRham resolution of kX ,

0 ! kU !≠0 d!≠1 d!≠2 d!≠3 d! ...

and apply °Z . We obtain

0 ! °Z≠
0 d! °Z≠

1 d! °Z≠
2 d! °Z≠

3 d! ...

where °Z≠
j is the set of j -forms vanishing on Z , and the cohomology of the

above complex is obtained by considering closed forms, vanihing on Z , mod-
ulo differential of forms vanishing on Z .

But if Z is the set {y | '(y) ∏ 0} where p = d'(y) 6= 0, a chart reduces this
to the case where Z is a half space. Then, Poincaré’s lemma tells us that any
closed form on a small ball, vanishing on the half ball is the differential of a
form vanishing on the half ball. Thus SS(kX ) does not intersect the comple-
ment of 0X , and since the support of kX is X , we get SS(kX ) = 0X .

Since SS is defined by a local property, SS(F ) = 0X for any locally constant
sheaf on X .

(4) We have
SS(F •©G •) = SS(F •)[SS(G •)

since R°Z (F •©G •) = R°Z (F •)©R°Z (G •).
(5) Let U be an open set with smooth boundary, @U and kU be the constant sheaf

over U . Then SS(kU ) = {(x, p) | x 2U , p = 0, or x 2 @U , p = ∏∫(x),∏< 0} where
∫(x) is the exterior normal.

Indeed, in a point outside @U the sheaf is locally constant, and the state-
ment is obvious. If x is a point in U , then the singular support over T §

x X is
computed as in the case of the constant sheaf (since kU is locally isomorphic
to the constant sheaf) and we get that SS(kU )\T §

x X = 0x . For x in X \U , the
same argument, but comparing to the zero sheaf, shows that SS(kU )\T §

x X =
;. We must then consider the case x 2U \U .

Now let≠ j
U be the sheaf defined by≠ j

U (V ) is the set of j -forms in≠ j (U\V )
supported in a closed subset of V . We then have an acyclic resolution

0 ! kU !≠0
U

d!≠1
U

d!≠2
U

d!≠3
U

d! ...

so that R°Z (kU ) is defined by

0 ! °Z≠
0
U

d! °Z≠
1
U

d! °Z≠
2
U

d! °Z≠
3
U

d! ...

where Z = {'(x) ∏ 0} and °Z≠
j
U means the space of j -forms vanishing on

the complement of Z . Now assume U and Z are half-spaces (respectively
open and closed). Consider the closed forms in (°Z≠

k
U ) modulo differentials

of forms in (°Z≠
k°1
U ). But any closed form vanishing in a sector is the dif-

ferential of a form vanishing in the same sector (by the proof of Poincaré’s
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lemma 3.4, page 20)). There is an exception, of course, if the sector is empty
and k = 0, in which case the constant function is not exact. So at a point x of
@U , (R j°Z≠U )x = 0 unless Z \U =;, in which case (R0°Z≠U )x = kx = k and
d'(x) is a positive multiple of the interior normal.

We may reduce to the above case by a chart of U , and using the locality of
singular support.

(6) For U as above and F =U , we have

SS(kF ) = {(x, p) | x 2U , p = 0, or x 2 @U , p =∏∫(x),∏> 0}

This follows from (1) of the above proposition applied to the exact sequence
(which is a special case of a distinguished triangle) 0 ! kX \F ! kX ! kF ! 0.

(7) Let kZ be the constant sheaf on the closed submanifold Z . Then SS(kZ ) =
∫Z = {(x, p) | x 2 Z , p|Tx Z = 0}. This is the conormal bundle to Z . Faux ?

(8) We would like to check R°{x|'(x)∏0}(F •)x = 0 for a single function'with d'(x) =
p. But this does not hold. Indeed, let us consider the situation above, where
F = kU . We just saw that setting Z = {x 2 X | '(x) ∏ 0} we have (R°Z (kU ))x =
(°Z (≠•

U ))x = 0 if and only if Z \U 6=;. But if this last condition . For example
slet ≠ = {(x, y) 2 R2 | x < 0}. Then let '0(x, y) = x and '(x, y) = x ° y3 that are
tangent at x = y = 0. Indeed let fSS(F •) be the interior of the set A compléter

{(x, p) | 9' 2C1(X ,R),d'(x) = p,R°{x|'(x)∏0}(F
•)x = 0}

Then we claim SS(F •) = fSS(F •)[ supp(F •).

EXERCICE 9.4. Compute SS(F ) for F an injective sheaf defined by F (U ) = {(sx)x2U |
sx 2C}. What about the sheaf FW (U ) = {(sx)x2U | sx 2C for x 2W, sx = 0 for x ›W }

Let us now see how our operations on sheaves act on SS(F •).

PROPOSITION 9.5. ([K-S]) Let f : X ! Y be a proper map on supp(F •). Then

SS(R f§(F •)) Ω§ f ±SS(F •)

and this is an equality if f is a closed embedding. We also have

SS(R f !(F
•)) Ω§ f ±SS(F •)

If f is any submersive map,

SS( f °1G •) =§°1
f ±SS(G •)

For L a Lagrangian, § f (L) is obtained as follows: consider T §X £T §Y and the La-
grangian § f = {(x,ª, y,¥) | y = f (x),ª = ¥ ±d f (x)}. This is a conical Lagrangian sub-
manifold. Let KL = L £T §Y . This is a coisotropic submanifold, in T §X £T §Y and
K !

L (x,ª, y,¥) = L£ {(y,¥)}, so KL/K !
L ' T §Y , and ºY (T § f )°1(L) = (§ f \KL)/K !

L .
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PROOF. Let√be a smooth function on Y such that√( f (x)) = 0 and ª= d√( f (x))d f (x).
Assume we have (x, p) › SS(F •) for all x 2 f °1(y). Then we have

R°{√± f ∏0}(F
•)| f °1(y) = 0

But

R°{√∏0}(R f§(F •))y = R f§(R°{√± f ∏0}(F
•))y =

R°( f °1(y),R°{√± f ∏0}(F
•)) = 0

Here the first equality follows from the fact that °Z ± f§ = f§ ±° f °1(Z ) so the same holds
for the corresponding derived functors. The second equality follows from the fact that
if f is proper on supp(F •), we have ( f§F •)y = °( f °1(y),F •

| f °1(y)
), that we shall now

prove.
Indeed, let j : Z ! X be the inclusion of a closed set. We define °(Z ,F •) as

°(Z , j°1(F •)). We also have °(Z ,F •) = limZΩU °(U ,F •) according to remark 7.17 on
page 86. Then ( f§F •)(U ) = F •( f °1(U )), so ( f§F •)y = limU3y F •( f °1(U )) and since
f is proper, f °1(U ) is a cofinal family of neighbourhoods of f °1(y). This implies

( f§F •)y
de f= °(y, f§F •) = °( f °1(y),F •), hence taking the derived functors (R f§F •)y =

R°(y,R f§F •) = R°( f °1(y),F •). Clearly if for all x 2 f °1(y) we have R°(x,F •) = 0, we
will have (R f§F •)y = 0. We thus proved that (x,ª±d f (x)) › SS(F •) implies ( f (x),ª) ›
SS(R f§(F •)).

If f is a closed embedding, f °1(y) is a discrete set of points, R°( f °1(y),F •) van-
ishes if and only if for all x in f °1(y), the stalks R°(F •)x vanish. In this case we have
equality.

Now if f is submersive, it is an open map, so °(U , f °1F •) = limV æ f (U )°(V ,F •) =
°( f (U ),F •). So we must study the map

R°( f (U ),F •) °! R°( f (U \ {'> 0}),F •)

But for U small enough, f (U \ {'> 0}) = f (U ) unless ker(d f ('(x0))) Ω ker(d'(x0)) = 0.
So if ker(d f (y)) 6Ω ker(ª), the above map is an isomorphism, and since this is an open
condition, it implies (x,ª) › SS( f °1(F •)). Otherwise, we can find ' = √ ± f with
d'(x0) = ª and then f (U \ {√ ± f > 0}) = f (U ) \ {√ > 0}), so the above is a quasi-
isomorphism if and only if (x0,¥0) = (x0,d√(x0)) › SS(F •). But {(x,¥ ±d f (x)) | (y,¥) 2
SS(F •)} =§°1

f (SS(F •)).
⇤Attempt to

redefine SS(F •) LEMMA 9.6. Let F • 2 Db(X ),' : X °!R a smooth function such that d'(x0) = ª0 6= 0
and '(x0) = 0. Assume for all open set with smooth boundary ≠ such that '@≠ is a
submersion near '°1(0), we have (0,1) › SS(R'§(F •≠k≠)). Then (x0,ª0) › SS(F •).

PROOF. By a change of variables, and the fact that the result is local, it is enough to
prove the case X =Rn ,'= x1 where (x1, .., xn) are coordinates on Rn , so ª0 = e§

1 .
⇤
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The following continuity result is sometimes useful. Let (F •
∫ )∫∏1 be a directed sys-

tem of sheaves, i.e. there are maps fµ,∫ : F •
µ !F •

∫ for µ∑ ∫ satisfying the obvious com-
patibility conditions, and let F • = lim∫!+1F •

∫ (we will assume the limit is a bounded
complex, so the F •

∫ are uniformly bounded).
Now let S∫ be a sequence of closed sets in a metric space M . Then define lim∫!+1 S∫ =

S to mean that each point x in S is the accumulation point of some sequence of points
(x∫)∫∏1 in S∫. In other words

lim
n

S∫ =
\

∫∏1

[

µ∏∫
Sµ

With these notions at hand, we may now state

LEMMA 9.7 (see [K-S] exercice V.7 page 246). Let (F •
∫ )∫∏1 be a directed system of

sheaves. Then we have
SS(lim

°!
∫

F •
∫ ) Ω lim

∫!+1
SS(F •

∫ )

PROOF. Indeed, we must compute R°Z (lim∫!+1F •
∫ )x = lim∫!+1 R°Z (F •

∫ )x the
equality follows from the fact that the direct limit is an exact functor, and thus com-
mutes with °Z (since it commutes with °(U ,•)). Set Z = {y | √(y) ∏ 0}, where √ is
a function such that √(x) = 0,d√(x) = p. As a result (x0, p0) › SS(lim∫!+1F •

∫ ) if False ?
R°Z (lim∫!+1F •

∫ )x = 0 for all (x, p) in a neighbourhood of (x0, p0), and this implies
our statement. ⇤

As an application we may prove:

PROPOSITION 9.8. Let ≠ be an open set, and N§(≠) Ω T §X the union of the N§
x≠),

the dual cone to the interior of the set Nx≠= {(x, v) 2 T X | 9"> 0, x+]0,"[·v Ω≠}. Then
SS(k≠) = N§(≠)a.
Il semble qu’une démonstration directe soit plus facile

We remind the reader that the dual cone to a convex cone C Ω E is C o = {ª 2 E§ |
8v 2 C ,hª, vi ∏ 0} and that C a = {(x,°p) | (x, p) 2 C }. Note that Nx(≠) = T §

x X if x 2
≠[ ô̊(X \≠), so N§

x (≠) = 0.

PROOF. Now we claim that SS(≠) = SS(k≠) Ω N§(≠). Indeed this can be proved
by approximating ≠ by open sets with smooth boundary, and use the fact that if ≠∫

is a sequence such that lim∫≠∫ = ≠ we have lim∫k≠∫ = k≠. Indeed, for an open set
with smooth boundary, we have Nx(≠) is the half-space defined by Tx@≠ and N§

x (≠) =
R+∫(x) where ∫(x) is the outside normal. Then we know indeed that SS(k≠) = ∫§≠.
Now we must prove that for a well chosen sequence≠k , we have

SS(≠) = SS(lim
k
≠k ) Ω lim

k
SS(≠k ) = N§(≠)a

⇤
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1.2. The sheaf associated to a Generating function. Let S(x,ª) be a GFQI for a
Lagrangian L, that is L = {(x, @

@x S(x,ª)) | @
@ªS(x,ª) = 0}. We set ßS = {(x,ª) | @

@ªS(x,ª) =
0}, bßS = {(x,ª,∏) | @S

@ª (x,ª) = 0,∏ = S(x,ª)}, and bL = {(x,øp,∏,ø) | p = @S
@x (x,ª), @S

@ª (x,ª) =
0,∏= S(x,ª)}. Set US = {(x,ª,∏) | S(x,ª) ∑ ∏} Ω M £Rq £R. Let FS = Rº§(kUS ), where º
is the projection º : M £Rq £R! M £R.

We claim that SS(FS) = bL. It is easy to prove that SS(FS) Ω bL, since §º ±SS(kS) = bL.
Indeed, the correspondence §º corresponds to symplectic reduction by pª = 0, i.e.
sends A to§º ± A = A\ {pª = 0}/(ª).

To prove equality, we moreover assume the sets º°1(x,∏)\bßS are discrete sets. This
is a generic condition. We then use the formula from the proof of the above proposition

R°{√∏0}(Rº§(kUS ))(x,∏) = Rº§(R°{√±º∏0}(kUS ))(x,∏) =
R°(º°1(x,∏),R°{√±º∏0}(kUS )) = 0

But R°{√±º∏0}(kUS )(x,ª,∏) is non zero if and only if (x,ª,∏,d√(º(x,ª,∏))dº(x,ª,∏)) 2
SS(kUS ) that is (x,d√(x,∏)) 2 bL. This is a discrete set by assumption (for (x,∏) fixed),
thus R°{√±º∏0}(kUS )|º°1(x,∏) has vanishing stalk except over the discrete set of points of
bßS \º°1(x,∏). Note that such a sheaf is zero if and only if each of the stalks is zero. So
we have that

R°(º°1(x,∏),R°{√±º∏0}(kUS )) = 0

if and only if for all (x,ª,∏) 2 M £Rq £Rwe have (x,øp,∏,ø) 2 bL =§º ±SS(kUS ).

REMARKS 9.9. (1) If S is the generating function for§ in J 1(N ,R) then SS J (FS) =
§.

(2) With the notations of the previous remark, note that if lim∫!+1 S∫ = S, where
the limit is for the uniform C 0 convergence, we have for a suitable sequence "k
converging to 0, so that US∫+"∫ ΩUSµ+"µ for µ ∏ ∫, that lim∫!+1US∫+"∫ =US ,
and thus lim∫!+1(kS∫+"∫) = kS (where we wrote kS for kUS ). Thus SS(kS) Ω
lim∫!+1 SS(kS∫). Thus the second assertion also holds in the non-generic
case, i.e. without assuming the sets º°1(x,∏)\ bßS to be discrete.

1.3. Uniqueness of the quantization sheaf of the zero section. The following plays
the role of the uniqueness result for GFQI (see Theorem 5.19, page 47).

PROPOSITION 9.10. Let F • in Db(X ), be such that SS(F •) Ω 0X . Then F • is equiva-
lent in Db(X ) to a locally constant sheaf.

PROOF. We start by proving the proposition for the case X = R (see [K-S] page 118,
proposition 2.7.2 and lemma 2.7.3). First, since the support of °Z (F ) is contained in
Z , we have that °{t∏s}F (]°1, s+"[) = °{t∏s}F (]s°", s+"[). Moreover this last space is
the kernel of the map

F (]°1, s +"[) !F (]°1, s +"[\{t ∏ s}) =F (]°1, s[)
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so we have an exact sequence

0 ! °{t∏s}F (]s °", s +"[) !F (]°1, s +"[) !F (]°1, s[)

which in the case of a flabby (and in particular for an injective) sheaf, I extends to

0 ! °{t∏s}I (]s °", s +"[) !I (]°1, s +"[) !I (]°1, s[) ! 0

since the last map is surjective by flabbiness.
Thus, given an injective complex 0 !I 0 !I 1 !I 2 ! ... quasi-isomorphic to F •

we get a sequence

0 ! °{t∏s}I
•(]s °", s +"[) !I •(]°1, s +"[) !I •(]°1, s[) ! 0

By definition, the complex °{t∏s}I
•(]s°", s+"[) represents R°{t∏s}F (]s°", s+"[) which

converges as " goes to zero to R°{t∏s}(F )s , which vanishes by assumption. Thus using
the exactness of the direct limit, and this exact sequence we get a surjective quasi-
isomorphism.

lim°°°!
"!0

°(]°1, s +"[,I •) ! °(]°1, s[,I •)

Then by definition of a sheaf, lim√°°°
"!0

°(]°1, s1°"[,I •) is isomorphic to°(]°1, s1[,I •).

We may thus apply the following lemma, due to Kashiwara in the case ∏t ,µt are
isomorphisms.

LEMMA 9.11 (Adapted from [K-S], lemma 1.12.6). Let (X •
s ,Ωs,t ) a family of complexes

in Db(M) indexed by s 2R, whereΩs,t : X •
t °! X •

s are defined for s < t and are chain map.
Assume

∏t : X •
t °! lim√°

t>s

X •
s

is an isomorphism and
µt : lim°!

t<s

X •
s °! X •

t

be a surjective quasi-isomorphism. Then for all s < t the map Ωs,t is a quasi isomor-
phism.

PROOF. We first make the preliminary remark that µt is actually surjective on cy-
cles, that is for any zt 2 X p

t with d zt = 0, there exists some zs for s > t with d zs = 0
and such that Ωt s(zs) = zt . Indeed, because µt is surjective in homology, we can find
(z 0

s)s>t such that d z 0
s = 0 Ωs,s0(zs0) = zs and Ωt s(z 0

s) = zt +d v . But then since µt is onto,
vt corresponds to a sequence (vs)s>t and then zs = z 0

s °d vs satisfies Ωt s(zs) = zt and of
course d zs = d z 0

s = 0.
Now we first prove injectivity of Ωs,t in cohomology. Consider xt0 2 X p

t0
such that

d xt0 = 0 and denote by xs = Ωst0 (xt0 ). We assume there exists some s such that xs is
exact. Let us consider the non-empty set S of pairs (s, ys) such that Ωs,t0 (xt0 ) = d ys with
the order relation (s, ys) < (s0, ys0) if and only if s < s0 and Ωs,s0 ys0 = ys . If we have a to-
tally ordered subset T of S it has an upper bound. Indeed, let s1 = sup{s | 9(s, ys) 2 T }.
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Then the family ys defines an element in lim√°
s<s1

Xs and since ∏s1 is an isomorphism this

defines a unique element ys1 2 Xs1 and we have d ys1 = Ωs1,t0 (xt0 ). So let (s1, ys1 ) be
an upper bound for T . Now according to Zorn’s lemma, S has a maximal element. If
this is of the form (t0, yt0 ) we are finished, i.e. we proved xt0 vanishes in cohomology.
Otherwise, it is of the form (t1, yt1 ) with Ωt1,t0 (x0) = d yt1 but µt1 : lim°!

t>t1

X •
t °! X •

t1
is in-

jective in cohomology, so there exists t > t1 and yt 2 X p°1
t such that xt = d yt . But then

d(Ωt1,t (yt )° yt1 ) = Ωt1,t (xt )° xt1 = 0, so zt1 = Ωt1,t (yt )° yt1 satisfies d zt1 = 0. According
to our preliminary remark, zt1 is the image of a closed class zt that is Ωt1,t (zt ) = zt1 for t
close enough to t1 and d zt = 0. Then xt °d(yt °zt ) = xt °d yt = 0 and Ωt1,t (yt °zt ) = yt1 ,
so (t , yt ° zt ) > (t1, yt1 ) which contradicts the maximality of (t1, yt1 ).

We thus proved that the map induced in cohomology by Ωs,t is injective.
Now let us prove surjectivity. We argue by contradiction and let xs0 2 X p

s0 such that
d xs0 = 0, and assume its cohomology class is not in the image of Ωs0,s for some s > s0.
Consider the non-empty set

S = {(t , zt ) | d zt = 0,9y,Ωs0,t (zt ) = xs0 +d y}

We have an order relation on S given by (t , zt ) < (t 0, z 0
t ) if and only if t < t 0 and Ωt ,t 0(zt 0) =

zt . As above we prove S satisfies the assumptions of Zorn’s lemma. Consider a totally
ordered subset, T , and let us prove it has an upper bound. We first notice that for
(t , zt ) in such a set, we may find y independent from t such that Ωs0,t (zt ) = xs0 +d y .
Indeed if (t , zt ) < (t 0, z 0

t ) and Ωs0,t (zt ) = xs0 +d y,Ωs0,t 0(zt 0) = xs0 +d y 0, we have xs0 +d y =
Ωs0,t (zt ) = Ωs0,tΩt ,t 0(zt 0) = Ωs0,t 0(zt 0) = xs0 +d y 0. Now let s1 = sup{t | 9(t , zt ) 2 T } which
is finite by assumption. Then the family (zs)s<s1 defines an element in lim√°

s1>s

X p
s which

is isomorphic to X p
s1 since ∏s1 is an isomorphism. We thus get an element zs1 in X p

s1

which is closed since the zs are closed. Then Ωs0,s1 (zs1 ) = xs0 +d y . As a result (s1, zs1 )
is an upper bound for T . Now let (t0, zt0 ) be a maximal element in S, which exists
according to Zorn’s lemma. Then according to our preliminary remark, zt0 corresponds
to a sequence (zs) 2 X p

s for s > t0 such that d zs = 0 and Ωt0,s(zs) = zt0 . Then (s, zs) 2 S
and (t0, zt0 ) < (s, zs) which contradict the maximality of (t0, zt0 ).

⇤
We thus proved that R°(]°1, s[,F ) is constant. Note that the same proof works if

the family is only defined for s in some finite interval ]a,b[. Now in the general case,
we have to prove that if F • is in Db(X ), it is locally constant. Let B(x0,R) be a small
ball in X , that is of radius smaller than the injectivity radius of the manifold, so that the
function r (x) = d(x, x0) has no critical point except 0. Then SS(r§F •) Ω §r ±SS(F •),
but since SS(F ) Ω 0X , and r has no positive critical value, we get §r ±0X Ω 0R[ {(0,ø) |
ø 2 R}, so that R°(]°1,R[,R f§(F •)) °! R°(]°1,"[,R f§(F •)) is an isomorphism. In
other words, R°(B(x0,R),F •) °! R°(B(x0,"),F •) is an isomorphism, and by going to
the limit as " goes to zero, we get R°(B(x0,R),F •) ' R°(F •)x0 . The same argument
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shows that for any open set U , diffeomorphic to a ball, we have R°(U ,F •) ' R°(F •)x0

for any x0 in U . Since M can be covered by open sets diffeomorphic to a ball and
containing a fixed point x0, this proves that F • is locally constant in Db(X ).

⇤
REMARKS 9.12. (1) Note that in the case where X is the real line, we only need

the sheaf F to be defined on open sets of the type ]°1, t [, and that for an
injective resolution I , we have lims!t+ I (]°1, s[) 'I (]°1, t [) to conclude
that the R°(°1, s[,F ) are all isomorphic.

(2) One should not imagine that sheaves on contractible spaces have vanishing
cohomology. Obviously if Z is a subspace of X , H§(X ,kZ ) = H§(Z ,R) which
does not vanish if X is contractible, but Z is not.

(3) Assume f is a smooth function, and Xt = ≠§({ f < t }). That ∏t is an isomor-
phism, follows from the fact that≠§ defines a sheaf and that { f < t } =S

s<t { f <
s}. Then µt is a quasi-isomorphism in particular if t is a regular value of f . The
above result then reduces to the First Morse Lemma for functions defined on
R. This shall be more precise in Section 2 (see page 139).

EXERCICE 9.13. Compute the cohomology of the skyscraper sheaf at 0 in R. Then
compute its singular support.

1.4. The non-characteristic deformation lemma. We want to use the same ar-
gument as above to prove a propagation theorem: we have a condition under which
R°(U1,F •) °! R°(U0,F •) is an isomorphism.

THEOREM 9.14 ([K-S], lemme 2.7.2 page 117). Let F • be an element in Db(X ) and
(Ut )t2[0,1] be an increasing family of open domains with smooth boundary @Ut such that

(1) Ut =
S

s<t Us and
T

s>t U s =Ut
(2) (Ut \Us)\ supp(F ) is compact
(3) for all t , SS(Ut )\SS(F )\{(x, p) | x 2T

s>t Us \Ut } Ω 0X (where SS(U ) is defined
as SS(kU )).

Then we have an isomorphism R°(U1,F •) °! R°(U0,F •).

PROOF. For the general proof we refer to [K-S]. Our proof is by “continuous induc-
tion”: consider the set of t such that

H§(Ut ,F •) °! H§(U0,F •)

is an isomorphism. We want to prove that this set is open and closed. We notice that
our assumption implies that R°X \Ut (F •)x = 0 for all x 2 ±Ut , where we define ±Ut =T

s>t (Us \Ut ) Ω @Ut . Indeed, assume Ut is defined near x by {x |'t < 0} where 't has 0
as a regular value, then X \Ut is described locally as

{x |'t (x) ∏ 0}
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X
0U 1U U2

FIGURE 1. The sets Ut

and
SS(Ut ) = {(x,∏d't (x)) |∏< 0, x 2 @Ut }[0Ut

Since by assumption for x 2 ±Ut , (x,d't (x)) › SS(F •), we have R°X \Ut (F •))x = 0
hence for I • an injective complex quasi isomorphic to F • we have

0 ! lim
s!t ,s>t

°Us \Ut (I •) °! lim
s!t ,s>t

°(Us ,I •) °! R°(Ut ,I •) °! 0

By assumption we have R°±Ut (F •) = 0, since its stalk at each point vanishes, we have,
using assumption (2), that lims!t ,s>t R°Us \Ut (I •) is quasi-isomorphic to 0. This im-
plies that lims!t ,s>t °(Us ,I •) °! °(Ut ,I •) is a surjective quasi-isomorphism. Since
by definition of a sheaf we have lims!t ,s<t R°(Us ,I •) = R°(Ut ,I •), we see that using
Lemma 9.11 (page 135), we have that R°(Us ,I •) ' R°(Ut ,I •). ⇤

REMARK 9.15. One can remove assumption (2), but then the conclusion would be
that we have an isomorphism R°c (Us ,I •) ' R°c (Ut ,I •). Indeed we used that if Z is
compact, any family of open sets Vj such that

T
Vj = Z is cofinal (for the set of open

neighbourhoods of Z ).

PROPOSITION 9.16 (A. Oancea). Let Ut = 't (U0) be the image by an isotopy of U0.
Let Xt (x) = d

d s's(x)|s=t . Assume for all x 2 @U0 and all t , we have hª, Xt ('t (x))i = 0 for
all (x,ª) 2 SS(F •)\T §

@Ut
X . Then we have an isomorphism

R°(Ut ,F •) °! R°(U0,F •)
Pb d enonce.
Est-ce vraiment utile
Missing proof

PROOF. Let F̃ • be the element kR⇥F • onR£X , and consider the map√ : (t , x) °!
(t ,'t (x)). Then (R√)§(F̃ •) =G • is an element in Db(R£X ) such that j°1

t (G •) = R('°1
t )§(F •),

where jt : X °!R£X is the map x °! (t , x). Then R°(Ut ,F •) = R°((Rº)§(G )){t } where
º(t , x) = t . Now

SS((Rº)§(G )) Ω (§º)SS(G •) Ω (§º)±§√°1 SS(F •) =§(º±√)

⇤
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2. The sheaf theoretic Morse lemma and applications

The last paragraph in the proof of Proposition 9.10 (see page 134) can be general-
ized as follows.

PROPOSITION 9.17. Let us consider a function f : M ! R proper on supp(F ). As-
sume that {(x,d f (x)) | x 2 f °1([a,b])}\SS(F ) is empty. Then for t 2 [a,b] the natural
maps R°({x | f (x) ∑ t },F ) °! R°({x | f (x) ∑ a},F ) are isomorphisms. In particular
H§( f °1(a),F ) ' H§( f °1([a,b]),F ).

PROOF. It follows from 9.14 on page 137 applied to Ut = f °1(]°1, t [), but we will
provide a simpler and more direct proof. The proposition is equivalent to proving
that the R°(]°1, t ],R f§(F )) are all canonically isomorphic for t 2 [a,b]. But this fol-
lows from Proposition 9.10 see page 134), since SS(R f§F )\T §([a,b]) Ω§ f ±SS(F ) =
{( f (x),ø) | x 2 f °1([a,b]), (x,ød f (x)) 2 SS(F )} and this is contained in the zero section
by our assumption. ⇤

Note that the standard Morse lemma corresponds to the case F = kM .

LEMMA 9.18. Let ' be a smooth function on X such that 0 is a regular level. Let
x 2'°1(0) and assume there is a neighbourhood U of x such that

R°(U \ {'(z) ∑ t },F •) °! R°(U \ {'(z) ∑ 0},F •)

is an isomorphism for all positive t small enough. Then R°{'∏0}(F •)x = 0.

PROOF. Again, we have R°(]°1, t [,R'§(F •)) ! R°(]°1,0[,R'§(F •)) is an iso-
morphism. So if G • is a sheaf over R, the fact that R°(]°1, t [,G •) ! R°(]°1,0[,G •)
is an isomorphism implies R°{t∏0}(G •)t=0 = 0 since for I • an injective resolution of G •

we have

0 ! °{t∏s}I
•(]s °", s +"[) !I •(]°1, s +"[) !I •(]°1, s[) ! 0

⇤

2.1. Simple sheaves. A sheaf is simple if for any point if its singular support, the
change in cohomology is “as small as possible”.

More precisely,

DEFINITION 9.19 (Simple complex of sheaves). Let F • 2 Db(X ) and let ' be such
that '(x0) = 0,d'(x0) = ª0. We assume L' = {(x,d'(x)) | x 2 M } satisfies the following
two conditions: L' \ SS(F •) = (x0,ª0) and L' is transverse to SS(F •). Then F • is
simple if dim H§

{x|'(x))∏0}(F
•)x0 = 1.

3. Some computations of Singular supports

Let f be a map from X to Y . Let B be a subset in T §Y . We set
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DEFINITION 9.20. We define (§ f )#(B) to be the set of (x,ª) such that there exists se-
quences (xn ,ªn) 2 T §X , (zn ,≥n) 2 B such that limn xn = x, limn zn = f (x), ≥n±d f (xn) °!
ª and d(zn , f (xn)) · |≥n |°! 0.

Note that (§ f )°1(B) Ω (§ f )#(B), since (§ f )°1(B) = {(x,ª) | 9(y,¥) 2 A, f (x) = y,¥ ±
d f (x) = ª}. However (§ f )#(B) is closed, while (§ f )°1(B) is not necessarily so.

EXERCICE 9.21. Prove that (§ f )#(B) is closed. Prove that it is not necessarily the
smallest closed subset containing (§ f )°1(B).

Example: Let f :R°!R be the map f (x) = x2. Then (§ f )°1(T §R){(x,ª) | y = x2,ª=
2¥x} = T §(R \ {0})[ {(0,0)} while (§ f )#(T §R){(x,ª) | 9xn , limn xn = x, limn yn = x2,ª =
limn 2¥n xn , |yn ° x2

n | ·¥n °! 0} = T §(R), since for x = 0 we may take the sequence xn =
1/n, yn = 1/n2,¥n = nª.

PROPOSITION 9.22. Let F • 2 Db(Y ) and f : X °! Y be smooth map. Then

SS( f °1(F •)) Ω (§ f )#(SS(F •))

The following lemma deals with a special case of an embedding of euclidean spaces.

LEMMA 9.23. Let X = Rp ,Y = Rp+q , f (x1, ..., xp ) = (x1, ..., xp ,0, ...,0) . If (0,e§
1 ) 2

SS( f °1(F •)) then (0,e§
1 ) 2 (§ f )#(SS(F •)).

PROOF. Let x 2 Rp , y 2 Rq be coordinates in Rp+q . Let ' be smooth function on
Rp such that d'(0) = e§

1 . Then after a change of variable, we may assume ' = x1. Let
VΩ,± = {(x, y) | ±(x1 °Ω(x1)) ∏ |y |2}. We assume Ω(0) = ",°1

2 ∑ Ω0(x) ∑ 0 with " ∏ 0 and
Ω(x) = 0 for x ∑ °Æ. We also denote V± = V0,±, V Æ

",± = VΩ,±. Notice that V Æ
",± æ V±, andT

±>0 V± =R§
° and

T
Æ,",±>0 V Æ

",± =R°.
Now we claim that

(*) R°(V Æ
",±,F •) °! R°(V±,F •)

is an isomorphism. This follows from Proposition 9.14 (see page 137), applied to the
deformation t 7! Vt = V Æ

t",±. Indeed, ±Vt Ω {(x, y) | x1 ∏ °Æ} and SS(Vt )\º°1(±Vt ) is
contained in

{(x,ª, y,¥) | ±(x1 ° tΩ(x1)) =°|y |2, x1 ∏°Æ; ª=∏±(1° tΩ0(x1))e§
1 ,¥=∏ ·2y}

Assume that it intersects SS(F •) for all ",±,Æ small enough. Then there exists a se-
quence (zn ,≥n) = (xn ,ªn , yn ,¥n) 2 SS(F •) such that xn °! 0, yn °! 0,ªn = e§

1 ,¥n =
2yn

±(1°tΩ0(xn,1)) where xn,1 denotes the first coordinate of xn , we have

yn¥n =
2y2

n

±(1° tΩ0(xn,1))
=

2±(xn,1 ° tΩ(xn,1))
±(1° tΩ0(xn,1))

=

2(xn,1 ° tΩ(xn,1))
(1° tΩ0(xn,1))
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and this last sequence goes to zero with n, so 0 = lim yn¥n = lim |zn ° xn | · |≥n |. Thus if
(0,e§

1 ) ›§#
f (SS(F •)) we have that (*) is an isomorphism. Since the families V Æ

",±,V± are
cofinal families for neighbourhoods of R°,R§

° this implies that for r small enough

lim
UæR°

°(U \B(0,r ),I •) °! lim
V æR§°

°(V \B(0,r ),I •)

is a quasi-isomorphism. Thus limUæRR°{x1∏0}(U\B(0,r ),I •) = R°Z (I •)0 = 0. We thus
proved (0,e§

1 ) › SS( f °1(F •)). ⇤

REMARK 9.24. (1) The above proves the proposition for f an embedding, since
the singular support is local, and an embedding is always locally equivalent to
an embedding of euclidean spaces. Note that is the main case we shall use.

(2) It seems that the sequences defining§#
f can be refined to limn xn = x, limn zn =

f (x), limn ≥n ±d f (xn) = ª and d(zn , f (xn))|≥n |' d(xn , x) as n goes to infinity.

LEMMA 9.25. Let f : X °! Y , g : Y °! Z . Assume g is a submersion. Then §#
g =§°1

g
and for any subset C of T §Z ,

§#
f ±§

#
g (C ) =§#

f ±§
°1
g (C ) Ω§#

g± f (C )

PROOF. Let (y,¥) 2 T §Y and assume we have a sequence such that limn yn = y ,
limn zn = z = g (y), ≥n ±d g (yn) °! ¥ and d(zn , g (yn)) · |≥n | °! 0. But since d g (yn) is
surjective, t d g (yn) is injective hence |≥ ± d g (yn))| ∏ C |≥| for some postitive constant
C , and yn in a neighbourhood of y . So ≥n ± d g (yn) °! ¥ implies ≥n °! ≥ and then
≥±d g (y) = ¥ hence (y,¥) 2§°1

g (C ).
Let now (x,ª) 2 T §X and (y,¥) 2 T §Y . We assume (y,¥) 2 §°1

g (C ) and (x,ª) 2
§#

f (y,¥), so that (x,ª) 2 §#
f ±§

°1
g (C ). Let (xn ,ªn , yn ,¥n , zn ,≥n) be a sequence in T §X £

T §Y £T §Z such that xn °! x, yn °! y = f (x) and¥n±d f (xn) °! ª and d(yn , f (xn))|¥n |°!
0. Let (zn ,≥n) 2C be such that g (yn) = zn ,≥n ±d g (yn) = ¥n .

Then ≥n ±d g ( f (xn))d f (xn) °! ªn , limn zn = g f (x) and
d(zn , g f (xn))|≥n | ∑ K d(yn , f (xn))|¥n | °! 0 where K is an upper bound for |d g (y)|2 in
a neighbourhood of y . As a result, (x,ª) 2§#

g± f (C ). ⇤

PROOF OF PROPOSITION. Any map f : X °! Y is the composition of the embed-
ding ∞ f : X °! X £Y given by x 7! (x, f (x)) and of the sumbersion ºY : X £Y °! Y
given by (x, y) 7! y . Then

SS( f °1(F •)) = SS((ºY ±∞ f )°1(F •)) = SS(∞°1
f ±º°1

Y (F •)) Ω§#
∞ f

±§°1
ºY

(SS(F •)) Ω

§#
ºY ±∞ f

(SS(F •) =§#
f (SS(F •))

⇤

Let C ,D be two conic subsets in T §M .
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DEFINITION 9.26. Let C ,D be two closed cones. Then C b+D is defined as follows:
(z,≥) 2C b+D if and only if there are sequences (xn ,ªn) 2C , (yn ,¥n) 2 D such that limn xn =
limn yn = z, limn(ªn+¥n) = ≥ and limn |xn°yn ||ªn | = 0. We write C b+D = (C +D)+C b+

1
D .

Note that C +D is not necessarily a closed cone, but C b+D is closed. Note also that
C b+D = (§d )#(C £D) where d : X °! X £ X is the diagonal map. We have the equality
C +D = C b+D if C \D Ω 0X , where D = {(x,°ª) | (x,ª) 2 D}. Indeed, it is enough to
prove that if ªn +¥n converges, then ªn and ¥n converge. But for each x we may set
s(x) = inf{|ª+¥| | |ª|+ |¥| = 1,(x,ª) 2C , (x,¥) 2 D} and s(x) > 0 so in a neighbourhood of
x0 there exists "> 0 such that s(x) > ", hence |ª+¥|∏ "(|ª|+ |¥|)

PROPOSITION 9.27. We have for F •,G • in

SS(F ⇥L G ) Ω SS(F )£SS(G )

SS(F ≠L G ) Ω SS(F )b+SS(G )

PROOF. Again, we limit ourselves to the situation of complexes ofC-modules sheaves,
so that ⇥L ,≠L ,RHom coincide with ⇥,≠,H om, since vector spaces are always pro-Pas sd̄r !
jective and injective. Note that the second equality follows from the first, since if
d : X ! X £X is the diagonal map, we have F ≠G = d°1(F ⇥G ), and

SS(d°1F ) = (§d )#(SS(F )£SS(G ))

but
§°1

d = {(x1,ª1, x2,ª2, x3,ª3) | x1 = x2 = x3,ª3 = ª1 +ª2}

therefore (§d )#(SS(F )£SS(G )) is equal to SS(F )b+SS(G ).
Let us now prove the first statement. Since the property is local, we may assume

X ,Y are euclidean spaces. Let (x0,ª0) › SS(F •). We shall prove that for any (y0,¥0) 2
T §Y , we have (x0,ª0, y0,¥0) › SS(F •⇥G •). We may replace F •,G • by their injective
Cartan-Eilenberg resolutions. Let U ΩU 0 and V Ω V 0 be neighbourhoods of x0 and y0
respectively, and At ,Bt be families of open sets with smooth boundary parametrized
by t 2]°","[ such that

(1) If s < s0 we have As Ω As0 ,Bs Ω Bs0

(2) We have As = As0 ,Bs = Bs0 for (s, s0) 2]°1,°"[2[]",+1[2

(3) As \ (X \U 0) = As0 \ (X \U 0) and Bs \ (X \V 0) = Bs0 \ (X \V 0)
(4) As \U = {x 2U , | hª, x °x0i< s} and Bs \V = {y 2V , | h¥, y ° y0i< s}
(5) SS(As)\º°1

X (U 0)\SS(F •) =;
(6) A°"\U =;, A" æU and B°"\V =;,B" æV

We set Ct =
S

s At°s £Bs . Then Ct \ (U £V ) = {(x, y) 2U £V | hª, x °x0i+ h¥, y ° y0i< t }
Therefore for t > 0 small enough, and s close to zero, the inclusion As °! As+t in-
duces a quasi-isomorphism °(As+t ,F •) °! °(As ,F •), hence a quasi-isomorphism
from °(At°s £Bs ,F •⇥G •) °! °(A°s £Bs ,F •⇥G •)
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Notice that At°s£Bs\At°s0£Bs0 = At°æ£Bæ0 whereæ= max{s, s0} andæ0 = min{s, s0}.
We may thus apply the following lemma.

LEMMA 9.28. Let X = S
s2I Xs, and Y Ω X such that Y = S

s2I Ys where Ys Ω Xs and
H§(Xs ,Ys ;F •) = 0. We assume for all finite sequences s1, ..., sr we have

H§
√

r\

i=1
Xsi ,

r\

i=1
Ysi ,F •

!

= 0

Then H§(X ,Y ,F •) = 0.

We finish the proof of the proposition before proving the lemma. Indeed applying
the lemma to X =Ct ,Y =C0, Xs = At°s £Bs and Ys = A°s £Bs , and we get that we have
a quasi-isomorphism from °(Ct ,F •⇥G •) to °(C0,F •⇥G •). Indeed, we have

r\

i=1
Xsi = At°æ£Bæ0

where æ= sup{s j },æ0 = inf{s j } and we have to check that

H§(At°æ£Bæ0 , A°æ£Bæ0 ,F •⇥G •) = 0

But this follows by Kunneth’s formula since there is a spectral sequence converging to

H§(At°æ£Bæ0 , A°æ£Bæ0 ,F •⇥G •)

starting from E2 term

H§(At°æ, Aæ,F •)≠H§(Bæ0 ,G •) = 0

Applying the lemma, we see that

H§(Ct ,C0,F •⇥G •) = 0

and this implies that (x0,ª0, y0,¥0) › SS(F •⇥G •).

PROOF OF THE LEMMA. We may replace F • by an injective complex of sheaves.On
each Xs the map °(Xs ,I •) °! °(Ys ,I •) is a quasi-isomorphism. Let us consider the
following statement

(*) The lemma holds for I of finite cardinal k.
We are going to prove this statement by induction. For k = 1 the statement is just

the assumption. Assume we proved the lemma when X is a union of k °1 of the Xs ,
and Y the union of the k ° 1 corresponding Ys . Then let us prove it for a union of k
such sets. So X = Sk+1

j=1 Xs j = X 0 [ Xsk where X 0 = Sk
j=1 Xs j , and Y = Y 0 [ Ysk where

Y 0 = Sk°1
i=1 Ys j . We know that H j (X 0,Y 0,F •) = 0 and that H j (Xs ,Ys ,F •) = 0. We also

notice that X 0 \ Xsk = Sk°1
j=1 (Xs j \ Xsk ) and since for each intersection (Xs j \ Xsk ) is an

Xs0j
, we have that X 0 \Xsk (resp. Y 0 \Ysk ) is the intersection of k °1 sets of the type Xs

(resp. Ys).
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Now applying the Mayer-Vietoris (Proposition 7.13, page 85) exact sequence, we
get

H j°1(Xsk )©H j°1(X 0) //

✏✏

H j°1(X 0 \Xsk )

✏✏

// H j (X 0 [Xsk ) //

✏✏

H j (Xsk )©H j (X 0) //

✏✏

H j (X 0 \Xsk ))

✏✏

H j°1(Ysk )©H j°1(Y 0) // H j°1(Y 0 \Ysk )) // H j (Y 0 [Ysk ) // H j (Y 0)©H j (Y 0) // H j (Y 0 \Ysk )

we see that the vertical arrows other than the middle one are isomorphisms by in-
duction assumption, and then according to the five lemma (see Lemma 6.23 page 67)
the middle one is also an isomorphism.

Now, we see that our statement holds for any finite union of Xs . Now let Zs be
an increasing union of sets such that

S
s Zs = X and that Zs is a finite union of Xs ,

Zs =
S

t2Is Xt and that similarly Ws =
S

t2Is Yt is an increasing family with
S

s Ws = Y . We
just proved that H§(Zs ,Ws ,F •) = 0. According to Proposition 7.44 on page 97, we have
H§(X ,Y ,F •) = 0 hence thus the map °(X ,F •) °! °(Y ,F •) is a quasi-isomorphism.

⇤
LEMMA 9.29 ([K-S], 2.6.6, p. 112, [Iv], p.320). Let f : X ! Y be a continuous map,

and F 2 Db(X ),G 2 Db(Y ). Then

R f !(F
•≠L f °1G •) = R f !(F

•)≠L G •

PROOF. Again, we do not consider the derived tensor products, since we are dealing
with C-vector spaces. Then, there is a natural isomorphism from

f !(F )≠G ' f !(F ≠ f °1(G ))

⇤
LEMMA 9.30 (Base change theorem ([Iv], p. 322). Let us consider the following carte-

sian square of maps,

A
f
//

u
✏✏

B

g
✏✏

C
v // D

that is the square is commutative, and A is isomorphic to the fiber product B £D C . Then
Ru! ± f °1 = v°1 ±Rg !

3.1. Resolutions of constant sheaves, the DeRham and Morse complexes. Let
W ( f ) = {(x,∏) | f (x) ∑∏}. We consider k f the constant sheaf over W ( f ), and we saw we
have a quasi-isomorphism 3.1 (se page 94), between k f and ≠•

f the set of differential
forms on W ( f ). Moreover according to LePeutrec-Nier-Viterbo ([LeP-N-V]), there is a
quasi-isomorphism from≠•

f to B M•
f the Barannikov-Morse complex of f .
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Also if f is a Morse function on X , we have that R f§(kX ) is a sheaf over R and its
singular support SS(R f§(kX )) is of the form

0R[
[

i
{ci }£R

4. Quantization of symplectic maps

We assume in this section that X ,Y , Z are manifolds. Now we want to quantize
symplectic maps in T §X , that is to a homogeneous Hamiltonian symplectomorphism
© : T §X ! T §Y we want to associate a map b© : Db(X ) ! Db(Y ). There are (at least)
two posibilites to do that, and one should not be surprised. In microlocal analysis,
there are several possible quantizations from symbols to operators: pseudodifferential,
Weyl, coherent state, etc...

Define qX : X £Y ! X (resp. qY : X £Y ! Y ) and qX Y : X £Y £ Z ! X £Y (resp.
qX Z : X £Y £Z ! X £Z , qX Y : X £Y £Z ! Y £Z ) be the projections.

DEFINITION 9.31. Let K 2 Db(X £Y ). We then define the following operators: for
F 2 Db(X ) and G 2 Db(Y ) define

™K (F ) = (RqY §)(RHom(K , q !
X (F )))

©K (G ) = (RqX !)(K ≠L q°1
Y (G ))

Then™K ,©K are operators from Db(X ) to Db(Y ) and Db(Y ) to Db(X ) respectively.

REMARK 9.32. (1) The method is reminiscent of the definition of operators on
the space of C k functions using kernels.

(2) For the sake of completeness, we have used the derived functor language in
all cases. However, for sheaves in the category of finite dimensional vector
spaces, RH om = H om and ≠L =≠. Also, if the projections are proper, i.e. if
X ,Y are compact, R(qX !) = R(qX §)

(3) In the category of coherent sheaves over a projective algebraic manifold, the
above definition extends to the Fourier-Mukai transform. Indeed if K 2 Db

Coh(X£
Y ) is an element in the derived category of the coherent sheaves on the prod-
uct of two algebraic varieties, the Fourier-Mukai transform from Db

Coh(X ) to
Db

Coh(Y ) is defined as

©K (G ) = (RqX §)(K ≠L q°1
Y (G ))

Consider Mirror symmetry as an equivalence of categories M : Fuk(T §X ) °!
Db(X ) sending Mor(L1,L2) = F H§(L1,L2) to MorDb (M (L1),M (L1)). Moreover,

let us consider the functor SS : Db(X ) °! Fuk(T §X ). This should send the el-
ement ©K 2 Mor(Db(X ),Db(Y )) to the Lagrangian correspondence, §SS(K ) :
T §X °! T §Y . Vice-versa any such Lagrangian correspondence can be quan-
tized, for example for each exact embedded Lagrangian L we can find F such
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that SS(F ) = L. We shall see this can be done using Floer homology. Can one
use other methods, for example the theory of Fourier integral operators ?

(4) According to [K-S] proposition 7.1.8, the two functors ©K ,™K are adjoint
functors.

The sheaf K is called the kernel of the transform (or functor).We say that K 2
Db(X £Y ) is a good kernel if the map

SS(K ) °! T §X

is proper. We denote by N (X ,Y ) the set of good kernels. Note that any sheaf F 2 Db(X )
can be considered as a kernel in Db(X ) = Db(X £ {pt }), and it automatically belongs to
N (X , {pt }), because SS(F ) ! T §X is trivially proper. We shall see that transforms de-
fined by kernels can be composed, and, in the case of good kernels, act on the singu-
lar support in the way we expect. Let X ,Y , Z three manifolds, and qX (resp. qY , qZ )
be the projection of X £ Y £ Z on X (resp. Y , Z ) and qX Y (resp. qY Z , qX Z ) be the
projections on X £ Y (resp. Y £ Z , X £ Z ). Similarly ºX Y etc... are the projections
T §X £T §Y £T §Z ! T §X £T §Y .

We may now state

PROPOSITION 9.33. Let K1 2 Db(X £Y ) and K2 2 Db(Y £Z ). Set

K = (RqX Z )!(q°1
X Y (K1)≠L q°1

Y Z (K2))

Then K 2 Db(X £ Z ), and ™K =™K2 ±™K1 and ©K =©K1 ±©K2 . We will denote
K =K2 ±K1.

PROOF. Consider the following diagram

X £Y £Z
qX Y

xx
qX Z
✏✏

qY Z

&&
X £Y

q X Y
X

✏✏

q X Y
Y

��

X £Z

q X Z
X

��

q X Z
Z

��

Y £Z

qY Z
Z

✏✏

qY Z
Y

��
X Y Z

Let G 2 Db(Z ). We first claim that

(Rq X Y
X )!(K1 ≠ (q X Y

Y )°1((RqY Z
Y )!(K2 ≠ (qY Z

Z )°1(G )))) =(?)

(RqX )!(q°1
X Y (K1)≠q°1

Y Z (K2)≠q°1
Z (G ))

The cartesian square with vertices X £Y £Z , X £Y ,Y £Z ,Y and lemma 9.30, page
144 yields an isomorphism between the image of K2 ≠ (qY Z

Z )°1(G ) by (RqX Y )!q°1
Y Z and

its image by (q X Y
Y )°1(RqY Z

Y )!. The first image is
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(RqX Y )!q
°1
Y Z (K2 ≠ (qY Z

Z )°1(G )) = (RqX Y )!(q°1
Y Z (K2)≠q°1

Y Z ± (qY Z
Z )°1(G )) =

(RqX Y )!(q°1
Y Z (K2)≠q°1

Z (G ))

using for the last equality that qY Z
Z ±qY Z = qZ .

This is thus equal to

(q X Y
Y )°1(RqY Z

Y )!(K2 ≠ (qY Z
Z )°1(G )))

Apply now ≠K2 and then (Rq X Y
X )!, we get

(Rq X Y
X )!(K1 ≠ (q X Y

Y )°1(RqY Z
Y )!(K2 ≠ (qY Z

Z )°1(G )))

for the first term and

(Rq X Y
X )!(K1 ≠ (RqX Y )!(q°1

Y Z (K2)≠q°1
Z (G ))))

for the second term.
Using lemma 9.29 applied to f = qX Y , we get

F ≠ (RqX Y )!G = (RqX Y )!(q°1
X Y (F )≠G )

hence applying (Rq X Y
X )! and using the composition formula (Rq X Y

X )!±(RqX Y )! = (RqX )!,
we get

(Rq X Y
X )!(K1 ≠ (RqX Y )!(q°1

Y Z (K2)≠q°1
Z (G )) = (RqX )!(q°1

X Y (K1)≠q°1
Y Z (K2)≠q°1

Z (G )))

This proves our equality.
We must prove the right hand side above is equal to

(Rq X Z
X )!((RqX Z )!(q°1

X Y (K1)≠L q°1
Y Z (K2))≠ (q X Z

Z )°1(G ))

But
(RqX Z )!(F ≠ (qX Z )°1(G )) = (RqX Z )!(F )≠G

and (Rq X Z
X )! ± (RqX Z )! = (RqX )!, so

(Rq X Z
X )!((RqX Z )!(q°1

X Y (K1)≠L q°1
Y Z (K2))≠ (q X Z

Z )°1(G )) =
(Rq X Z

X )!(RqX Z )!(q°1
X Y (K1)≠L q°1

Y Z (K2)≠q°1
X Z (q X Z

Z )°1(G )) =
(RqX )!(q°1

X Y (K1)≠L q°1
Y Z (K2))≠q°1

Z (G )

⇤
The next proposition tells us that©K ,™K act as expected on SS(F ).

PROPOSITION 9.34 ([K-S], Proposition 7.1.2). We assume K 2 Db(X £Y ) and L 2
Db(Y £Z ) are good kernels. Then K ±L is a good kernel and

SS(K ±L ) = SS(K )±SS(L )
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In particular,

SS(™K (F )) Ωºa
Y (SS(K )\º°1

X (SS(F )) = SS(K )±SS(F )

SS(©K (G )) ΩºX Z (SS(K )£T §Y SS(G )) = SS(K )°1 ±SS(G )

PROOF. We first notice that the properness assumption for good kernels implies
that

(§) º°1
X Y (SS(K ))b+

1
º°1

Y Z (SS(L )) =;

Indeed, a sequence (xn , yn ,ªn ,¥n) and (y 0
n , zn ,¥0n ,≥n) respectively in SS(K ) and SS(L )

such that

(9.1) lim
n

xn = x1, lim
n

yn = lim
n

y 0
n = y1, lim

n
zn = z1, lim

n
ªn = ª1, lim

n
(¥n +¥0n) = ¥1

By properness of the projection SS(K ) °! T §X , we have that the sequence ¥n is
bounded, hence ¥0n is also bounded, and this proves (§). Now we have

SS(q°1
X Y (K )≠L q°1

Y Z (L )) Ωº°1
X Y (SS(K ))+º°1

X Y (SS(L ))

Then

SS(RqX Z !(q°1
X Y (K )≠L q°1

Y Z (L ))) Ω§qX Z (SS((q°1
X Y (K )≠L q°1

Y Z (L ))) =
§qX Z (º°1

X Y (SS(K ))+º°1
Y Z (SS(L ))) = SS(K )±SS(L )

⇤
REMARK 9.35. Assume X = Y and SS(K ) be the graph of a symplectomorphism,

then set K a 2 Db(Y £ X ) to be the direct image by æ(x, y) = (y, x) of K (i.e. K a =
æ§K ). Then set for a Lagrangian in T §X £ T §X , La = {(y,¥, x,ª) | (x,ª, y,¥) 2 L}.
Then SS(K a) = SS(K )a Ω T §X £T §X , and™K ±™K a =™L where SS(L ) = SS(K )±
SS(K a) = SS(K )±SS(K )a = SS(Id) =¢T §X .

From this we can prove the following result. Even though we technically do not
use it in concrete questions (our singular support will be Lagrangian by construction),
the following is an essential result, due to Kashiwara-Schapira ([K-S], theorem 6.5.4),
Gabber [Ga] (for the general algebraic case)

PROPOSITION 9.36 (Involutivity theorem). Let F • be an element in Db(X ). Then
SS(F •) is a coisotropic submanifold.

Some remarks are however in order. Proving that C = SS(F •) is coisotropic is equiv-
alent to proving that given any hypersurfaceß such that C Ωß, the characteristic vector
field Xß of ß is tangent to C . Besides, this is a local property, so we may asume we are
in a neighbourhood of 0 2 Rn . Now consider the example C Ω ß = {(q, p) | h∫, qi = 0}.
Then Xß = R(0,∫). Now remember that C \0Rn = supp(F ). Thus if F is nonzero near
0, since our assumption implies that supp(F ) Ω {q | h∫, qi = 0}, whenever we move in
the ∫ direction, we certainly change Fx , hence R(0,∫) ΩC .
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Let us start with the case M =Rn . We wish to prove that for a sheaf F , SS(F ) cannot
be contained in {q1 = p1 = 0}. Indeed, let f : Rn ! R be the projection on q1. Then
§ f ±SS(F ) Ω {0} Ω T §R. Thus R f§F is a sheaf on R with singular support contained in
{0}.

Here we should rather consider the embedding j :R!Rn given by j (x) = (x,0, ...0),
and j°1(SS(F )) has singular support §°1

j (SS(F )) Ω {(0,0)} and now use the fact that

SS( f °1(F )) = §°1
f (SS(F )). Assume we could find such a sheaf. Then SS(F ) being

conic, locally, it either contains vertical lines, or is contained in a singleton. We may
thus assume SS(F ) = {0} and find a contradiction. But locally SS(F ) Ω {0} implies
supp(F ) Ω {0} hence F =Fx is a sky-scraper sheaf at points of f °1(y), and SS(F ) = T §

0 R

a contradiction. A way to rephrase this is that the singular support can not be too small.
In fact the proof can be reduced to the above.

LEMMA 9.37. Let C0 be a homogeneous submanifold of T §X and (x0, p0) 2C0. There
is a homogeneous Lagrangian correspondence §, such that C = § ±C0 sends T(x0,p0)C0
to T(x,p)C . If we moreover assume C0 is not coisotropic, we may find local homogeneous
coordinates T(x,p)C Ω {(x, p) | x1 = p1 = 0}

PROOF. A space is coisotropic if and only if it is contained in no proper symplectic
subspace. Let H be a hyperplane, ª a vector transverse to H , C a subspace containing
ª. Assume ⇤

PROOF OF THE INVOLUTIVITY THEOREM. Let us coinsider C0 = SS(F ) and assume
we are at a smooth point (x0, p0) which is not coisotropic. Because the result is lo-
cal, we may always assume we are working on T §Rn . Then there exists a local sym-
plectic diffeomorphism, sending (x0, p0) to (0, p0) sending C0 to C , such that T(0,p0)C Ω
{x1 = p1 = 0}. By applying a further C 1 small symplectic ap, we may assume Now let §
be the correspondence in T §Rn £T §R2 given by {x1 = t1, ..., xn = tn , xn+1 = tn+1, p1 =
tn+1, p2 = t2, ..., pn+1 = tn+1}, and K the corresponding kernel. Then § ±C is ob-
tained by projecting on T §R the intersection §\ (C £T §R). We have near (x, p) that
§\C £T §RΩ {x1 = xn+1 = p1 = pn+1 = 0} so that the projection on T §R2 is contained
in {0,0}. But we proved that this is impossible, since this would mean that K ±F satis-
fies locally SS(K ±F ) Ω {0}. ⇤

PROOF OF THE LEMMA. Clearly if V is a proper symplectic subspace and C Ω V be
isotropic, we have V ! ΩC!, but C! is isotropic, a contradiction.

⇤
DEFINITION 9.38. A sheaf is constructible if and only if there is a stratification of

X , such that F • is locally constant on each strata.

PROPOSITION 9.39. If F • is constructible, then it is Lagrangian.

PROOF. We refer to the existing literature, since we will not really use this proposi-
tion: our singular supports will be Lagrangian by construction. We can actually take
this as the definition of constructible.
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⇤
Example: Let us consider a contructible sheaf, F on R. Then SS(F ) is Lagrangian.

So it contains a piece of the zero section corresponding to the support of F , and half
lines {c j }£R+ or {c j }£R°. However the following turns out to be useful.

DEFINITION 9.40. We shall say that a sheaf on a metric space is locally stable if for
any x there is a positive ± such that for all " 2]0,±[, we have H§(B(x,"),F •) ! H§(F •

x )
is an isomorphism.

PROPOSITION 9.41. Constructible sheaves are locally stable

5. Appendix: More on sheaves and singular support

5.1. The Mittag-Leffler property. The question we are dealing with here, is to
whether R°(V ,F ) = lim√°°°

V ΩU
R°(U ,F ). Notice that by defintion of sheaves, we have

°(U ,F ) = lim√°°°
V ΩU

°(U ,F )

so our question deals with the commutation of inverse limit and cohomology. Note
that on metric spaces all these limits can be taken to be limits for a countable sequence,
and inverse limite being left-exact has a right-derived functor. One usually notes

n
lim√°p

= Rn lim√°p
.

The Mittag-Leffler property guarantees that a certain limit has
n

lim√°p
= 0 for n ∏ 1.

DEFINITION 9.42 (Mittag-Leffler property). Let fi j : A j ! Ai for i ∑ j be an inverse
system. We say that the system satisfies the Mittag-Leffler property, if it is stationary:
i.e. for each i , there is k such that for all l ∏ k we have fi k (Ak ) = fi l (Al ).

5.2. Convolution of sheaves. Let s : E £E ! E be defined by s(u, v) = u + v . then
§s 2 T §(E £E £E) is given by

§s = {(u,ª, v,¥, w,≥) | w = u + v,≥= ¥= ª}

DEFINITION 9.43 (Convolution). Let E be a real vector space, and s : E £ E ! E
be the map s(u, v) = u + v . We similarly denote by s the map s : (X £E)£ (Y £E) !
(X £Y )£E given by s(x,u, y, v) = (x, y,u + v). Let F ,G be sheaves on X £E and Y £E .
We set

F §G = Rs!(q°1
X F ⇥L q°1

Y G )

This is a sheaf on Db(X £Y £E). where qX : X £Y £E ! X £E and qY X £Y £E ! Y £E
are the projections.

EXERCICE 9.44 ([K-S] page 135-exercice II.20)). (1) Prove that the operation §
is commutative and associative.
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(2) Prove that k{0} §G =G .
(3) Let U ( f ) = {(x,u) 2 X £R | f (x) ∑ u}, V (g ) = {(y, v) 2 Y £R | g (y) ∑ v}, and

W (h) = {(x, y, w) 2 X £R | h(x, y) ∑ w}. Then kU ( f ) § kV (g ) = kW ( f ©g ) where
( f © g )(x, y) = f (x)+ g (y).

(4)

SS(F §G ) =§s ± (SS(F )£SS(G )) =
{(x, px , y, py , w,¥) | 9(x, px ,u,¥) 2 SS(F ),9(x, px , v,¥) 2 SS(G ), w = u + v}

As a consequence

SS(kU ( f ))§kV (g )) = SS(kW ( f ©g ))

(5) Prove that if S : X £Rp °! R and T : Y £Rq °! R are g.f.q.i. then Rº§(kUS §
kUT )) = Rº§(kUS©T ) where (S ©T )(x, y,ª,¥) = S(x,ª)+T (y,¥).

(6) Let us consider a function g (u, v) on E£E and assume (u, @g
@u (u, v)) ! (v,°@g

@v (u, v))
define a (necessarily Hamiltonian) map 'g . Then, let ©g be the operator
F ! kW (g ) §F . Prove that SS(©g (F )) Ω'g (SS(F )).

Note that one can define the adjoint functor of the convolution, RHom§ satisfying
Mor(F §G ,H ) = Mor(F,RHom§(G ,H )).

DEFINITION 9.45. We set

RH om§(F ,G ) = (RqX )§RH om(q°1
Y F , s !G )

Do we have H 0(X£Y £E ,RH om§(F ,G )) = RHom§(G ,H ) ? Compute RH om§(kU ( f ),kU (g )).

PROPOSITION 9.46. We have

SS(F §G ) Ω SS(F )§̂SS(G )

where A§̂B = s# j #(A£B)

DEFINITION 9.47. Let F ,G 2 Db(X £E). Let d be induced by the diagonal map
d : X £E °! X £X £E . Then, we set F ?G = d°1(F §G ).

EXERCICE 9.48. Prove that if S : X £Rp °! R and T : Y £Rq °! R are g.f.q.i. then
Rº§(kUS ?kUT )) = Rº§(kUS#T ) where (S#T )(x,ª,¥) = S(x,ª)+T (x,¥). More generally if
F 2 Db(X £R),G 2 Db(X £R), we have F ?G .....





CHAPTER 10

The proof of Arnold’s conjecture using sheaves.

1. Statement of the Main theorem

Here is the theorem we wish to prove

THEOREM 10.1 (Guillermou-Kashiwara-Schapira). Let M be a (non-compact man-
ifold) and N be a compact submanifold. Let ©t be a homogenous Hamiltonian flow on
T §M \ 0M and √ be a function without critical point in M. Then for all t we have

©t (∫§N )\ {(x,d√(x)) | x 2 M } 6=;

Of course, ©t can be identified with a contact flow ©̂t on ST §M , ∫§N \ ST §M =
S∫§(N ) is Legendrian, the set L√ = {(x, d√(x)

|d√(x)| | x 2 M } is co-Legendrian, and we get

COROLLARY 10.2. Under the assumptions of the theorem, we have

©̂t (S∫§(N ))\L√ 6=;

Let us prove how this implies the Arnold conjecture, first proved on T §T n by Chap-
eron ([Cha]), using the methods of Conley and Zehnder ([Co-Z]), then in general cotan-
gent bundles of compact manifolds by Hofer ([Hofer]) and simplified by Laudenbach
and Sikorav ([Lau-Sik]), who established the estimate of the number of fixed points in
the non-degenerate case (this was done in the general case in terms of cup-length in
[Hofer]).

THEOREM 10.3. Let 't be a Hamiltonian isotopy of T §N , the cotangent bundle of a
compact manifold.Then '1(0N )\0N 6=;. If moroever the intersection points are trans-
verse, there are at least

P
j dim(H j (N )) of them.

PROOF OF THEOREM 10.3 ASSUMING THEOREM 10.1. Consider M = N£R and√(z, t ) =
t . Then's : T §N ! T §N can be assumed to be supported in a compact region contain-
ing

S
s2[0,1]'

s(L), so we may set ©s(q, p, t ,ø) = (xs(x,ø°1p),øps(x,ø°1p), fs(t , x, p,ø),ø)
where 's(x, p) = (xs(x, p), ps(x, p)), and this is now a homogeneous flow on T §M .
We identify N to N £ {0}, and apply the main theorem: ∫§N = 0N £ {0}£R and L√ =
{(x,0, t ,1) | (x, t ) 2 N £ R}, so that ©s(∫§N ) = {(xs(x,0),øps(x,0), fs(0, x,0,ø),ø) | x 2
N ,ø 2 R} so that ©s(∫§N )\L√ = {(xs(x,0), ps(x,0), fs(0, x,0,ø),ø) | ps(x,0) = 0,ø = 1} =
's(0N )\0N . According to the main theorem this is not empty, and this concludes the
proof. ⇤
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2. The proof

PROOF OF THE MAIN THEOREM. We start with the sheafCN , which satisfies SS(CN ) =
∫§N . We first consider a lift of©t to e© : T §(M £ I ) ! T §(M £ I ) given by the formula

e© : (q, p, t ,ø) °! (©t (q, p), t ,ø+F (t , q, p))

where ©t (q, p) = (Qt (q, p),Pt (q, p)) and F (t , q, p) = °Pt (q, p) @@t Qt (q, p) because de-
noting ©t (q, p) = (Qt (q, p),Pt (q, p)) the homogeneity of ©t and Proposition 4.39 im-
ply that Pt dQt = pd q and F (t , q, p) is homogeneous in p. Let K be a kernel in
Db(M £ I £ M £ I ) such that SS(K ) = g r aph(e©). The existence of such a kernel will
be proved in Proposition 10.4. Then consider the sheaf K (CN£I ) 2 Db(M £ I ). It has
singular support given by

SS(K (CN£I )) Ω e©(SS(CN£I )) Ω e©(∫§N £0I )

Now consider the function f (q, t ) = t on M £ I . It satisfies L f = {(q, t ,0,1) | q 2 M , t 2
I } › SS(K (CN£I )) since this last set is contained in

e©(∫§N £0I ) = {(Qt (q, p),Pt (q, p), t ,F (t , q, p)) | (q, t ) 2 N £ I , p = 0 on Tq N }

If we had a point in L f \SS(K (CN£I )) it should then satisfy Pt (q, p) = 0, but then we
would have F (t , q, p) =°Pt (q, p) @@t Qt (q, p) = 0 which contradicts ø= 1. We now denote
by Kt 2 Db(M) the sheaf obtained by restricting K to M £ {t }£M £ {t }.

The Morse lemma (cf. lemma 9.17) then implies that H§(M £ [0, t ],K (CN£I )) °!
H§(M £ [0, s],K (CN£I )) is an isomorphism for all s < t , and also that

H§(M £ {0},K (CN£I )) ' H§(M £ {t },K (CN£I ))

for all t . But on one hand

H§(M £ {0},K (CN£I )) ' H§(M ,K0(CN )) = H§(M ,CN ) ' H§(N ,R)

on the other hand,

H§(M ,K1(CN£I )) = H§(R,√§(K1(CN£I )) = 0

the last equality follows from the fact that

SS(√§(K1(CN£I )) Ω§√\SS((K1(CN£I )) =§√\©(∫§N ) =;,

√§(K1(CN£I ) is compact supported and Proposition 9.10. This is a contradiction and
concludes the proof modulo the next Proposition. ⇤

PROPOSITION 10.4. Let © : T §X ! T §X be a compact supported symplectic diffeo-
morphism C 1-close to the identity, and e© its homogeneous lift to T̊ §(X £R) ! T̊ §(X £R),
given by e©(q, p, t ,ø) = (Q(q,ø°1p),øP (q,ø°1p),F (q, p, t ,ø),ø). Then there is a kernel
K 2 Db(X £R£X £R) such that SS(K ) = °e©.
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PROOF (“TRANSLATED” FROM [Bru]). Because any Hamiltonian symplectomorphism
is the product of C 1-small symplectomorphisms, thanks to the decomposition formula

©1
0 =

nY

j=1
©

j
N
j°1
N

we can restrict ourselves to the case where © is C1-small. Note also that e© is well
defined by the compact support assumption: for ø close to zero,

(Q(q,ø°1p),øP (q,ø°1p)) = (q,øø°1p) = (q, p)

Let f (q,Q) be a generating function for © so that p = @ f
@q (q,Q),P = ° @ f

@Q (q,Q) defines

the map ©. Let W = {(q, t ,Q,T ) | f (q,Q) ∑ t °T } and F f = kW 2 Db(X £R). Then
SS(F f ) = °e©. Let us start with X = Y = Rn , and f0(q,Q) = |q °Q|2. Then we get K0

with SS(K0) = °e©0
. Now if f is C 2 close to f0, we will get any possible e© f , C 1-close to

the map (q, p) ! (q + p, p). Then e© f1 ± e© f2 where f1 is close to f0 and f2 close to ° f0

will be C 1-close to the identity. Now since any time one of a Hamiltonian isotopy can
be written as the decomposition of C 1-small symplectomorphisms, we get the general
case.

Now let i : N ! Rn be an embedding. Then the standard Riemannian metric on
Rl induces a symplectic embedding ĩ : T §N ! T §Rn given by (x, p) 7! (i (x), ep(i (x)))
where ep(i (x)) is the linear form on Rl that equals p on Tx N and zero on (Tx N )?. Now
let ©t be a Hamiltonian isotopy of T §N . We claim that it can be extended to e©t such
that

(1) e©t preserves ∫§N = N £ (Rl )§, and thus the leaves of this coisotropic subman-
ifold. This implies that e©t induces a map from the reduction of N £ (Rl )§ to
itself, that is T §N .

(2) we require that this map equals©t .

The existence of e©t follows from the following construction:
Assume© is the time one map of©t associated to H(t , x, p), where (x, p) is coordi-

nates for T §N . Locally, we can write (x,u, p, v) for points in Rl so that N = {u = 0}. We
define

eH(t , x,u, p, v) =¬(u)H(t , x, p),

where ¬ is some bump function which equals is 1 on N (i.e. {u = 0}) and 0 outside a
neighborhood of N . By the construction, X eH = XH on N £(Rl )§. Then e©= e©1, the time
one flow of eH , is the map we need.

The theorem follows by noticing that if fK is such that SS(K ) is the graph of e©,
then the restriction fK|N£N has singular support the graph of©.

⇤
REMARK 10.5. The original proof of [G-K-S] follows a slightly different approach.

Instead of decomposing a map into compositions of maps having a generating func-
tions in the Jacobi sense, it uses the decomposition of Lagrange relations into relations
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given by the conormal of a smooth hypersurface. Indeed, if ∫§S1 is the conormal of a
hypersurface, and ' a homogoneous Hamiltonian map C 1-close to the identity, then
there exists a smooth hypersurface, S2 such that '§∫§S1 = ∫§S1 (see exercise 4.42 on
page 40)

Exercice: Show that if L has a GFQI, then'(L) has a GFQI for' 2 H am(T §N ). Hint.
If S : N £Rk !R is a GFQI for L, then L is the reduction of g r (dS).

REMARK 10.6. (1) We could have used directly that the graph of© has a GFQI.
(2) 0N is generated by the zero function over the zero bundle over N , or less for-

mally
S : N £R ! R

(x,ª) 7! ª2

(3) There is no general upper bound on k (the minimal number of parameter of a
generating functions needed to produce all Lagrangian.)

Reason: Consider a curve in T §S1


