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Introduction

In the last years important progress in symplectic topology have been achieved
using either of the following approaches:

The Gromov-Floer approach studies pseudo holomorphic spheres in symplec-
tic manifolds to infer results on the symplectic topology of the manifold. In
particular, results on the geometry of Lagrange submanifolds, existence of fixed
points of symplectomorphisms isotopic to the identity, have thus been obtained for
which we refer to [G1, F11, F12]. This approach is essentially the only one available
when working in arbitrary symplectic manifolds. In a certain sense we might say
that this approach considers symplectic topology as the study of pseudo-
holomorphic curves in almost complex manifolds.

The other approach, which is the one we are interested in here, could be called
the Conley-Zehnder approach. It is mainly concerned with periodic orbits of
Hamiltonian systems. This can be a very efficient way of dealing with symplectic
topology questions, at least in IR?", as has been sufficiently demonstrated for
instance by Ekeland and Hofer in [E-H2, E-H3, V3] and the author [V2]. The
method is based on studying the topology of the action functional, this is what we
now explain. Let H(t,x) be a time dependent Hamiltonian on IR2", we search
1-periodic solutions of X=JVH(t,x)=Xgx(t,x) where dH(t,x)¢=w(Xx(t,x), &)
=(JVH(t, x), &) (if we identify R?" to C", then J is the matrix of multiplication by
i). Such periodic solutions can be obtained as critical points of the action
functional:

A,,(x)=sjl {JIx, %y —H(t,x)dt .

* Current address: Département de Mathématique, Bitiment 425, Université de Paris-Sud,
F-91405 Orsay, France



686 C. Viterbo

The usual way to get these critical points is by taking minmax on some classes of
sets invariant by the flow. While this would be ackward to describe in this
introduction, we point out that it becomes the usual minmax theory if we replace
Ay by a finite dimensional reduction A}. The capacities of H are then the critical
value associated to a minmax on certain cohomology classes (cf. [V3]). It is thus
fundamental to compute the topology of the sublevel sets {x|A}(x) < A}. Thus we
can say that this approach considers symplectic.topology as the topology of the
action functional.

Our approach is based on the remark that the action functional is nothing else
than a special generating function (for the definition of this we refer to Sect. 1). This
was already exploited in [V1] to show that all the indices defined for periodic
solutions of Hamiltonian systems are, up to a constant, all equal, and that this
indices have a very geometric definition. The natural generalization of such a result
is to show that the sublevel sets of a generating function are, after a suitable
suspension, diffeomorphic (provided we restrict ourselves to generating functions
with quadratic phase cf. Sect. 1). Thus we can get rid of action functionals, and
work with any generating function of the time one flow of the Hamiltonian, which
is a much more flexible tool. The ideas developed here originated from a question
that Yasha Eliashberg asked to Helmut Hofer and myself. Hofer’s answer is
contained in [H]. The present paper is an expanded version of our own answer
which is Corollary 4.8. In the course of the proof which was based on the usual
study of the “action functional topology” it appeared that chosing between the
“broken geodesic” reduction of Chaperon-Laudenbach-Sikorav, and the
Lyapounov-Schmidt reduction of Conley-Zehnder, meant having to chose
between two equally desirable properties, C° continuity of the capacities
(Proposition 4.6), and the “triangle inequality” (Proposition 4.8). The advantage of
our approach is that we get both properties, moreover most of the proofs are then
obvious. The paper is organized as follows.

In Sect. 1 we define generating functions, and prove that they are essentially
unique.

Section 2 associates to every Lagrange submanifold L of T*B and cohomology
class u in H*(B) a real number c(u, L). In this section and the next one we prove
basic properties of this numbers.

In Sect. 4 we associate to every compact supported symplectomorphism 1y of
IR 2" isotopic to the identity (in the set of compact supported symplectomorphisms)
a Lagrange submanifold I, of T*S$?" which is the compactification of its graph. The
construction of Sect. 3 then yields two numbers that we shall denote by ¢, () and
c-(p).

This allows us to define positive symplectomorphisms [by the condition
c_(p)=0] and to prove several remarkable properties of these maps.

We also prove that a compact supported symplectomorphism has infinitely
many periodic points in the interior of its support.

Section 5 is devoted to studying the behaviour of our invariants by symplectic
reduction. The treatment is in no way complete and is only pursued as needed to
give a simple proof of the “camel problem”, Sect. 6 deals with a property of “simple
hypersurfaces”.
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1 Some properties of generating functions with quadratic phase

We first recall some definitions about generating functions.
Let E— B be a vector bundle over the manifold B, S: E»IR a C? function. We

shall denote by g—g(e) the fiber derivative of S at ec E. We assume the map

A
—:E—E* to be transverse to 0, we may then define the manifold

0¢
Zg= {eeE/g—g(e)=0},

ig:Zs—T*B,
e—(n(e), 0S(e)) .

and the map

S . S
Note that because o8 (e)=0for ein X5, we can identify dS(e) to an element of T, B.

0¢

To simplify the notations we shall often take “abstract local coordinates” (b, £) on
E, we then write ig(b, £)=<b,%§(b, é)>.

It is clear that ig is a Lagrange immersion. More generally, given a Lagrange
immersion ¢ : L— T*B, we shall say that S is a generating function for ¢ if thereisa
diffeomorphism h:L—Xg such that igch=¢.

Without further assumptions, the question of existence and uniqueness of
generating functions for a given Lagrange immersion is completely solved in terms
of algebraic topology invariants of the immersion (cf. [Gi, La]), however we shall
consider the following class of generating functions.

Definition 1.1. A generating function § is said to be quadratic at infinity if S(b, £)
=q(b, &) for |¢| large enough, where g, is a nondegenerate quadratic form on each
fiber.

We shall abbreviate “generating function quadratic at infinity” into “g.f.q.i.”. It
seems that algebraic topological methods cannot decide whether a Lagrange
immersion has a gf.q.i. or not.

We refer to [Sii, Si2] for examples and counterexamples, and quote the main
result from there

Proposition 1.2. The property of having a g.f.q.i. is invariant by Hamiltonian isotopy.

Note. By Hamiltonian isotopy we mean the time one flow of a time dependent
Hamiltonian vector field.

The main new result of this section will be a uniqueness result for g.f.q.i. Before
we state it, we need to define equivalence of g.f.q.i. (cf. [H6, We]).

Definition 1.3.Let S, : E, »R, S, : E,»R be two g.f.q.i. We shall say that S, and S,
are equivalent if there is a fiber preserving diffeomorphism @: E, —E,, such that
S,0®=8,+Cst.

We will usually write ®(b,&)=(b, (v, &) so that S,(b, (b, &))=S,(b,&)+C.
Clearly S, and S, generate the same Lagrange immersion.
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Definition 1.4. Let S,:E,—>R be a gfqi and ¢,:E,»R a nondegenerate
quadratic form on the fibers. Then S,: E;®E,—R given by

S3(b, &1, &2)=8,(b, &)+ q,(b, )

will be called a stabilization of S,.
Once again, S, and S, generate the same Lagrange immersion. Our main result
in this section can be stated as

Proposition 1.5. Let S, S, be two g f.q.i. generating the same Lagrange embedding i
of Binto T*B. Assume that i(B)= ¢,(0g), where ¢, is a Hamiltonian isotopy of T*L.
Then after stabilization, S, is equivalent to S,.

The proof will take up the end of this section. It is based on the following lemma

Lemma 1.6. If S|, S, are gf.q.i. for the zero section of T*B, then after stabilization
S, and S, are equivalent.

Proof. We may of course assume S, to be a quadratic form in the fiber, that is

Sy, &%, &) =11 —1E7 2,
so that X' =B x {0}.
Now Theorem 4.1.10 of [La], (or [Ce, Proposition 4, p. 168]), states that there
is a fiber preserving difffomorphism ¢:U,—U,, where U,, U, are neighbour-
hoods of Z,, X,, such that

SZ o (p = Sl + C
(provided S, and S, have been suitably stabilized).

Remarks. In [La], only generating functions on trivial bundles are considered, and
stabilization is only done with a quadratic form independent on the base variable.
Then the quoted theorem of [La] actually states that the set of equivalence classes
of germs of generating functions under fiber preserving diffeomorphisms is
isomorphic to an affine space on the vector space [ X, BO] the space of stable vector
bundles over X. Then in 4.4.3, (loc. cit.) the action of [X, BO] is explicited; if
«e[X, BO] is represented by the vector bundle 4, and Q , is a quadratic form on
each fiber of trivial vector bundle with negative bundle 4, then our action
is given by S—»S+Q,. Thus Latour’s theorem really implies the local equiva-
lence of generating functions with our definition of equivalence.

We now show how ¢ can be extended to a fiber preserving diffecomorphism
®:E,>E,, such that S, d=S,+C.

Consider on E, the metric induced by the Euclidean metric |£*|>+|£7|? on
each fiber, and endow E, with a metric such that ¢ is an isometry where defined.

Now ¢ sends the stable (resp. unstable) manifold of X, to the stable (resp.
unstable) manifold of X,.

Upon replacing U, by a subset, we may assume that U, is contained in
S1 ([ —e,€]) for & small enough, and that U, is stable by the gradient flow of S,
(restricted to S; }([—e¢, €])).

We first extend ¢ to UyuS; '(—¢). Since Uyn S (—¢) is a neighbourhood of
the “negative sphere bundle in S '(—e¢)” that is the intersection of the unstable
manifold of X, with S1'(g), and since S; *(—e) is diffeomorphic to the product of
the “negative sphere bundle” with E{, existence of an extension of ¢ follows from
the contractibility of the fibre of the map

*) Diff, (S* x R%)—Emb, (S* x D% §* x RY).
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Here Diff, (S* x RY) is the space of orientation preserving diffeomorphisms, and
Emb, is the set of embeddings inducing a degree one map on the spheres. That the
above map is indeed a Serre fibration follows easily from the extension of isotopies
principle, while the contractibility of the fibre is proved using Alexander’s trick as
follows: the fibre over the “standard” embedding is the space

{w e Diff , (S* x RY | ;51 x pa =1}
where i is the standard embedding of S* x D7 into S* x IR%. Set

P(x,a)=(X(x,a), A(x,)) and p,x,a)= <X(x ta), A(x ta))

Then as t goes to 0, p,(x, &) goes to the identity map and we thus get our retraction
of the fibre to a point.

Now, this means that the map (*) is a weak homotopy equivalence, which
implies, using the connexity of Emb,(S* x D%, $* x RY) that any family of embed-
dings of ¥ x D?into S* x IR? (inducing a map of degree one on the spheres) extends
to a family of diffeomorphisms of S* x R4. This is exactly what we need to be able to
extend ¢, since one can show that the embedding of the neighbourhood of the
negative sphere (which is difffomorphic to S¥ x D9 into S~ !(—é&)~S* x IR? induces
a map of degree one on S*.

We thus found our extension of ¢ to a map

@:UuuST(—e)» U, uS; (—¢).

The next step is to extend ¢ to ¢ defined on all S '([ —¢, €]). Let ! be the flow of
the normalized fiber gradient of S 1] that is S,(y2(b, £))=S,(b, &) +t, which is well
defined in Sy !([—¢,¢€])—U,. Let #? be the analogous flow for S,. We set for

(b, &Sy ()
@(n: (b, &) =n(o(b, &)

This definition coincides with ¢ on U, since by assumption ¢ maps the fiber
gradient flow of S, to the fiber gradient flow of S,.

Now that @ is defined on S} '([ —¢,€]) we may extend it to @: E, —E, by again
following the flow of 5!,n2. Our proof is now complete.

We may now conclude the proof of 1.5. This follows mainly from the
construction of Laudenbach and Sikorav (cf. [L-S, Sit, Si2]).

Let L be a Lagrange submanifold of T*B having a g.f.q.i. Then, according to
[Si1], if y, is a Hamiltonian isotopy of T*B, then ¢,(L) has a g.f.q.i. given by

S1(b, &, )= (b, &)+ So(B(b, C), 1)

Here o/ = o/,,, is a function depending on ¢, only, and : E— Bis not the canonical
projection. We shall write S = *S,. Now it is clear that if S is equivalent to Sg,
then S = o/ * S, will be equivalent to S,.

Consider now the case where L=¢,(0p) and set o, =, -1, &=,
S0, Sy are g.f.q.i. for L, then

o xS, and o/ *S; aregfq.i

for the zero section, and are thus equivalent after stabilization. Therefore
of_ xsl,*S, and o/ _, * o, * S, are equivalent after stabilization.
Now consider the family o/ _,* .o/, * S,. It is a gf.q.i. of

then if

0 Yo, 0,(05)=0,(0p),
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that we denote by R,. Similarly R;= o/ _, * o/, * S}, is also a g.f.q.i. for ¢,(05), and we
just proved that R, and R are equivalent after stabilization.

But R, is equivalent to R, (and R to Ry) because R, is a continuous family of
g.fq.i. for ¢,(0p). It is then easy to find a vector field generating a family of fiber
preserving diffeomorphisms v, such that R(y,(b, &)= R(b, &).

Thus R, is equivalent to Rj after stabilization, but R, = .o/, * o/, * S,, is easily
seen to be a stabilization of S,, and similarly R} is a stabilization of S}. This
concludes our proof.

2 Invariants for Lagrange submanifolds

In the next two sections, we suppose that generating functions are normalized in
such a way that the indeterminacy of S by a constant is removed. In most
applications, we shall consider Lagrange submanifolds of T*B coinciding with the
zero section in a certain subset of B. It is then natural to normalize our generating
functions so that the critical value corresponding to this region is zero.

In this section L will be a compact connected manifold, H*, H, will be
homology and cohomology with coefficients in some field IF, so that the Kiinneth
formula can be written as

H*(X x Y)~ H*X)Q HX(Y),
H, (X x Y)~H, (X)®H,(Y).
Given B, we consider the following sets
& ={Compact Lagrange submanifolds of T*B
isotopic to the zero section}
and for L in &
G(L)={gf.q.i. of L such that E_ the negative bundle
of g, is trivial} .

Note that if S coincides with g, at infinity, then for A large enough, the
homotopy type of the pairs (E*, E*), (E*, E~*) does not depend on A. We may thus
write E®, E~ to denote E*, E~*for A large enough. We remind the reader that, if
we denote by D(E,), S(E ;) the disk and sphere bundles associated to E, we have

HY(E*,E™*)~ H¥D(E;), S(E)——— H*(B),
where T is the Thom isomorphism, shifting the grading by d~ CdimE o
We are now ready to set

Definition 2.1. Let (u, L)e H¥*(B) x % (u+0), we define a real number c(u, L) as
follows. Let S e G(L), and consider Tue H*(E*, E~ ). Then
c(u, L)=inf{A|the image of Tu by the natural map
H*E®,E~*)>H*E* E~*) is non zero}.
In view of the results of Sect. 1, c(u, L) is indeed independent of S.

It is a classical result of Lusternik Schnirelman’s theory that c(u, L) is a critical
value of S. Moreover we have
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Proposition 2.2. 1 [f u=vUuw then
c(u, L)=c(v, L)
with equality only if w induces a non zero class in a neighbourhood of
K. =/{critical points on the level c(u,L)}.

Note also that there is a one to one correspondence between critical points of S
and points of LN B (where B is identified with the zero section of T*B). We shall
elaborate on this later, meanwhile we get

Corollary 2.3. Let ue H"(B) be the orientation class of B. Then c(u, L)=c(1, L) if and
only if L=B.

Proof. According to the proposition, ¢(y, L)=c(1, L) implies that #*u induces a non
zero cohomology class on a neighbourhood of K, or that p induces a non zero
cohomology class in a neighbourhood of n(K,)C LN B. Because u induces zero on
B—{pt}, we must have LnB=B that is BCL hence B=L.

We now explain more precisely the relationship between the c(u, L) and the
points of LN B. Recall from [V1] that we may associate to a pair of Lagrange
submanifolds L,,L, of T*B and a pair x,y of transverse intersection points of
L,nL, an integer m(x,y;L,,L,) and a real number I(x,y;L,,L,) [denoted by
m(x, y) and l(x, y) if there is no ambiguity]. The number I(x, y) has the following
simple definition: let y, (resp. 7,) be a path in L, (resp. L,) connecting x to y. Let y

be the loop 7,75 !, then I(x, y) = pdq. It is easy to see that our definition does not

depend on the choices of yl,yz.y

The definition of m(x, y) can be found in [V1], we however point out that
according to [V1] m(x,y) is an integer modulo u(L,)-H(L,)+ u(L,)- H{(L,)
where u(L,), u(L,) are the Maslov classes of L, L,. Since we are only interested in
these Lagrange submanifolds given by a generating function, their Maslov class
vanishes, so m(x, y) is indeed an integer. Now Proposition 5.2 of [V1, p. 370] and
the above Proposition 2.2 yield

Proposition 2.4. To each ue H*(B) we can associate a point x, of LNB such that
§)) I(x,, x,)=c(u, L) —c(v, L)
) if L is transverse to B, then m(x,, x,)=degu—degv.
This result is very useful, especially when combined with
Proposition 2.5. If L,, L, have generating functions S,, S, defined on the same vector

bundle, and such that |S,—S,|co<¢, then for all u in H*(B) we have |c(u,L,)
—c(u, L)) <e.

Proof. The result is obvious, set E} (resp. E3) to be

{xeE|Si(x)<4}
(resp. {x € E|S,(x) < A}) and remark that E3™*C E{ CE}** and for |4 large enough
all the inclusions are homotopy equivalences. Using the definition of c(u, L) yields

the result.
We are now ready to prove
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Proposition 2.6. Let y, be flow of a Hamiltonian preserving T*B—B. Then
for all u in H*(L) we have

cu,p,L)y=c(u,L).

Proof. Note that for all t, p,LnB= LN B, and for any two points x, yin LN B, l,(x, y)
[that we define to be I(x, y; y,L,05)] is really independent of t. If we assume that the
g.f.q.i. of L has finitely many critical values, then the set of their differences is finite.
Thus I(x, y) has values in a finite set.

On the other hand c(u, p,L) changes continuously with ¢, and according to 2.4
has its values in the set of I(x, y). This implies that if the g.f.q.i. has only finitely many
critical values, c¢(u, p,L) is a constant. The general case is obtained by perturbing a
gf.qi of L so that the above argument applies, and use Proposition 2.5 to
conclude.

Before we define the “composition” of Lagrange manifolds, and study the
capacities of this “composition”, we would like to state and prove some more
elementary results. Let « be a homology class on B, then we can define c(a, L) by

c(o, L)=inf{A| Tue H (E®,E™*) is in the image
of the map H,(E* E®)—»H (E*,E~*)}.

Here a— T is the Thom isomorphism in homology. B

Finally if L is an immersed Lagrange submanifold of 7*B, L denotes the image
of L by (g, p)—(q, —p). Obviously, L is again a Lagrange submanifold. We now
have

Proposition 2.7. If ue HB) and o.€ H,_ (B) are Poincaré dual to each other, then
c(u, L)= —c(a, L).

Proof. If S is a gf.q.i. for L, then —S is a gf.q.. for L. Then
E*={xeE|-S(x)SA}=E—E %

Thus H*(E*, E-*)=H*(E—E~* E—E®). This last group is isomorphic, by
Alexander duality, to H, (E*,E™*%).

H (E~* E~*)—= H*E>,E*

l l

Tee H (E®,E~*)—— H¥E®,E~*)3Tu

l

Fig. 1 H(E®,E~%—=— H¥(E* E~*)

Consider the diagram of Fig. 1, where the horizontal isomorphisms are given by
Alexander duality, and the vertical ones from the homology (resp. cohomology)
exact sequence of the triple (E*,E"* E~ ) [resp. (E°° E* E~™)].

Note that the Alexander duality sends Toto Tuifuis the Poincaré dual of . We
can then conclude our argument as follows:

If A< c(u, L) then the class Tu goes to zero in H*(E*, E~ ®). This is equivalent to
the fact that T goes to zero in H (E © E~%), or else by exactness of the homology
sequence of a triple, that T is in the image of H,(E~* E~>), which implies
—A=c(u,L) or A< —c(o, L). We just proved that c(u L)< —c(a, L). The same
argument yields the reversed inequality, hence our result.
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Corollary 2.8. If pu is the orientation class of B, then
e, L)=—c(1,L).

Proof. Let a.e Hy(L) be the Poincaré dual of u. Let N=dimE~, so that
Tac HY(E®,E™®).
Because dim Hy(E®, E~°)=1 [due to dim Hy(L)=1], c(, L) can also be defined as
inf{A|Hy(E*, E-®)>H\E®,E~*) is non zero} .
Since we are dealing with coefficients in a field, IF,
Hy(E* E~*)~Hom(HME* E~*),FF)
and the map Hy(E*, E~ °)—~H\E>, E~*) is the transpose of the map
HME®,E~*°)—~HME* E~®)

which is non zero if and only 1=c(1, L). Thus c(«, L)=c(1, L), and the conclusion
follows from 2.7.

3 Composition of Lagrange submanifolds

In the coming sections we shall deal with Lagrange submanifolds of T*B not
necessarily isotopic to the zero section, but still possessing a g.f.q.i., S.

We shall first define for a pair of Lagrange submanifolds L,,L, of T*B the
Lagrange manifold L, 4 L,.

Definition 3.1. Let L,, L, be two Lagrange submanifold of T*B, and assume
L, x L, to be transverse to Tj(Bx B) [ =the restriction to the diagonal 4 of
T*(B x B)].
Then, since T*(B x B) is a coisotropic manifold the reduction of which can be
identified with T*B, L, x L, has a reduction to T*B that we denote by L, 4% L,.
Note that L, # L, could be written as L, + L,, since

L4 L,={(g,p)€ T*L|p=p, + P2, (4, P1) €Ly, (4, p,) € L,}

and L, % L, could be written L, — L,. Note that L, — L, is not the zero section O
unless the projection L, — B is one to one.
The proof of the following result is left to the reader.

Proposition 3.2 Let S, S, be g.f.q.i. for L, and L,. Set
Sy 4 S(x, & m)=S1(x, &)+ S,(x, 7).
Then S, %S, is a gfq.i. for Ly L,.
The main result of this section can now be stated as
Proposition 3.3.
cu-v,S; #8,)=cu,Sy)+c@,S,)
for any u,ve H*(L).
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Proof. Let S, be defined on E,, S, on E, and S;=S,#S, on E;=E,®E,
=E, xgE,. Then

3= U EixgE4. O

Atu=v

HY(EF,E5 *)~H*ET, E{ *)Q@uvg H*ES, E; )

H%EY,E;*) HXE}Ef ) Qg+ H*(ES, E5 ©)

N\

Fig. 2 H*(E} xgE4, E7 ® x3E5 ®)
XxpY— X
Fig. 3 Y — B

X xgY

e ~
2= ) X*xgzY* XxY
Atu=v
A
Fig. 4 “L‘}:vx x ¥*

Consider the commutative diagram of Fig. 2, where all arrows are induced by
natural maps, except for the lower right one

H*(E’},E;“’)@H.(B)H*(E‘ﬁ, E;®) >H*(E} xgE,u, E{ ® xgE; ).

This last map is defined as follows. Let p,, p, be the projections of E; on E, E,.
Then we have a map p*®p*

HX(E{, E{ *)® H*(E4, E; *)—>H*(E} x5 E4, ET ® x5 E5 )

and it is clear that for BeH*(B), x,eH*E},E{®), x,eH*E4E;®),
Bx; ®x,—x, ® Px, isin the kernel of p¥ ® p%. Thus p*® p* can in fact be defined on
H*E}, Ef ) ®pon H*(E4, E; )

We now need the

Lemma 34. Let X, Y be total spaces of fiber bundles over B. Then
H*(X xpY)~ H¥(X)®gs 5 H*(Y).
Consider now two increasing filtrations (X*),(Y*) of X and Y, and let
Z2’= () X*xgY*.

Atpu=v
If a cohomology class x®y in H¥(X x 3 Y) induces a non zero class on H*(Z"), then
there exists A, with A+ pu=v such that x®y is non zero in H¥(X*)@ H*(Y").

The Thom isomorphism just tells us that H¥(E®, E~ ®) is a free H*(B) module.
By applying the lemma to our situation, we see that there exist A, u with A+ u=v
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such that if the image of T(uv)e H*(EY, E5 ) in H*(E}, E5 ©) is non zero, then its
image in
H*(E} xgE4, E{ © x3E; ©)

is also non zero. Using the diagram of Fig. 2, this implies that the image of Tu® Tv
in

H¥EY,ET *)®pss H*(E5, E; )
is non zero, thus A= c(u, L,), p=c(v, L,). This shows that
cuv, Ly# Ly)=c(u, L,)+c(v,L,).

We now complete our proof by proving Lemma 3.4. The first statement is
proved by either using the Eilenberg-Moore spectral sequence associated to the
diagram of Fig. 3, or in our case, the fact that if T; denotes the Thom class
associated to (E®, E~ ®), then we have Ty g, = T, ® Tg,. For the second part, we
use the commutative diagram of Fig. 4 and the first part of the lemma. As a
consequence of this, the map X x;Y—X x Y induces the map

H*(X)®H*(Y)_’H*(X)@)H*(B)H*(Y)

which is surjective. Thus if a given class in H*(X x5 Y) induces a non zero class in
H*(Z), the same will be true for some class x®y in H*(X x Y). Using the
commutativity of the diagram of Fig. 4, this implies that x® y has non zero image

in H*( U X*xY*), we now show that this implies that x®y has non zero
Atpu=v

image in H*(X* x Y*) for some A, u with A+ pu=v.
This is in fact readily checked, let

Mx)=inf{A|x is non zero in H*(X*)},
p(x)=inf{u|x is non zero in H*(X*)}.

We claim that A(x)+ p(y) = v. Assume this is not so, we can then find cocycles a
and b with support in X —X*®, Y— Y*®, and cocycles a, B such that

x=[a+da], y=[b+dp]

hence
x®y=a®b+d(—).

Now the cocycle a®b vanishes on X*x Y* if either A<A(x) or u<p(y), in
particular if A+ p=v we are in one of the two cases, and a®b vanishes. Since

Z= ) X * % Y* a®b vanishes on Z, a contradiction.
Atu=v

Proposition 3.5. c(u, w(L))=c(u, L—yp~ '(0p)).

Proof. We now consider c(u, p,(L)— w7 *(0g)). This takes values in the set of
| pdq— | pdq, where y, , and y, , are paths connecting two points x,, y, in
1,¢ Y2,t

w(L)nww 05 =p(Loyp; '(0p),

and 7, , (resp. 72,0 is in y{(L)—ppi '(0p) (resp. Op). B .
Now we would like to take for y, , ;i (7, 1)T-1p,1p1 (y2,1) but this
expression is meaningless since the two paths we are trying to substract do not
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necessarily have the same projection. However it is easy to get around this
difficulty as follows.

Let Sy (b, &) [resp. S, (b,n)] be a gLq.i. for pap; '(w,(L)) [resp. wp; '(0p)], and
x,=(qs Py)» ¥:=(qs p;)- Then (q,,0) and (g;,0) are in
(w1 'y (L)— w1 '(0p)N0g.
Now I(g,,0), (¢:,0)) is given by

[Sl, t(qta ér) - S2,t(qt’ '1:)] - [Sl, t(q;’ f;) - S2,t(q;’ 1’];)]

where (q,,¢,1,) and (g, &,1n,) correspond to (q,0) and (g;,0). But the above
expression can be reordered as

[Sl , t(qb ét) - Sl ,t(q:9 é:)] - [Sz. r(qn ’1:) - S2,t(q;’ 11;)] .

This can be read as the difference of pdg, and '[ pdq, and it is now

Yewr J()'n, 1) wewi 1(y2,1)

clear that I((¢,,0), (4,0)= [ pdq is indeed independent of t. []
y2,1°97 4

Corollary 3.6. c(uv, (L)) = c(u, L)+ c(v, p(0p)).

Proof. According to the proposition we just proved, we have:

c(uv, p(L)) = c(uv, L—(0p)).
We now apply Proposition 3.3 to get
c(uv, p(L)) Z c(u, L)+ (v, '(0).-
Applying 3.5 once more shows that

o(v, p(0g)) = (v, 05—y~ '(0p)) =c(v,p ™ (0n),
thus concluding our proof. [

4 Applications to Hamiltonian diffeomorphisms

In this section we consider the following subgroups of Diff,,(IR?"), the group of
symplectic diffeomorphisms of R?":

#°(R?"): the group of time one maps of the Hamiltonian flow associated to a time
dependent, compact supported Hamiltonian H(x, t)
#(U): the subgroup of #°(IR?") obtained by imposing to the support of H(x, t)
to be in U x [0, 1].

Remark. If H(t, x) is a Hamiltonian, generating a flow y, we will denote by Supp(y,)
the support of H. We point out that it is generally bigger than the support of the
isotopy (i.e. {x|3t, p{(x)+ x}). For instance take H to be oneina neighbourhood of

the origin, and 0 outside a compact set. Then the neighbourhood of the origin is in
Supp () —supp(y)).

The group #(B"(r)) has obvious C* (k 20) topologies, and #°(R>") will have
the obvious topology that makes it a limit of #(B>"(r)) as r goes to infinity. Let us
remind the reader that as a result, a continuous map from a compact set into
#°(IR?") can be factored through s#°(B*"(r)) for r large enough.
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We now consider, for ye(IR?"), its graph I, a Lagrange submanifold of
R?"xIR?". For r large enough I, coincides w1th the diagonal A outside B*"(r)
x B?"(r). We can identify R?" x R?" with T*4 through the map

P
(q,P, QaP)_’ <q-i2_QsB:;—‘sP_paq_Q>

Now the image of I}, in T*4, I, coincides with the zero section outside a
compact set. If we consider 4 ~R2"as §2"— {P}, where P is the “north pole”, we get
an embedding T*A—T*S?" and the image of I, coincides with the zero section in
a neighbourhood of P, so that we can make th1s s image closed by adding the pomt
(P,0). We thus get a Lagrange submanifold F of T*S?" such that there is a
neighbourhood U of P in §2" with F NT*U = U We shall normalize generating
functions by assuming that S(P,0)= 0

We may now set

Definition 4.1. Let H*(S2")=IF- 1®IF - u, we set

C—(‘P)-‘— —C(H, f:p)9
ci(p)=—c(1,T),
Yw)=c(p)—c_(v).

The results of Sect.2 have obvious translations to c. (), y(y), however we
summarize the main facts together with some improvements, and new results.

Proposition 4.2.

(1) c-(W)=0=c,(y), with c.(yp)=c_(y)=0

if and only if p=

) cilp™N=—c_(y).

(3) Let U be a compact set inRR?",yp, be anisotopy in #(U), generated

by H, and z be any point in R*"—U.

There are fixed points of y,x ,,x_ in U such that if y .,y _ are paths connecting x ,
tozand x_toz,and g, =7y, op(y:Y), g- =y_op(y=?') then

ci(w)=Ix4,z;p)= — | pdg=— (I )pdq—Hdt,
g+ Ye(X +
c_(p)=Ux_,z;yp)— | pdg=— (j )pdq—Hdt.
g- Ye(x -

Moreover if the fixed points x,,x_ are nondegenerate, we have with the
notations of [V2],

i(x4)=2n, i,(x_)=0.
Remark. I(x, y;y) is obviously defined as I((x, x), (y,y); I,,, 4) (cf. Sect. 2).
Proof. (1) Let S be a gf.q.i. for I}, obtained from one for I, then
S(00,&)= &% — 1% |*.

Let E p, be the fiber of E over the north pole identified to the point at infinity, then
we have inclusions

(ESy, Ep®) > (E% E™ )
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hence a commutative diagramm
H* (E(P}s E(;)w) ‘—“‘H*(an E™%)

J*T I T T

HX{P}) «— H*S™)
where T is the Thom isomorphism
H*(S*)>H*E®,E~ %)

(resp. H*({oo})«-»H *(E{P), E7))and j* is induced by the inclusion mapjj : (E°%E~™)
—(E*,E™") (resp. .
Now it is easy to see that j*T is an isomorphism, and since the image of
1e H*(S?") is 1 in H*({o0}) we see that j*T(152,) 0 hence c_(y)=c(1, r,)<o.
The mequahty ¢+(p)20 now follows from (2) which is a translatlon of
Corollary 2.8 since [;,=I,- . Finally the left side equality in (3) is a restatement of
Proposition 2.4. The equahty
fpdq= | pdq—Hdt
[ we(x)
is proved as follows. Let ¥:K=[0,1]*->IR?>" be the map given by ¥(t,0)
=1,(y(0)). Then j d(pdq Hdt)=0since for each 6, t— P(t, ) is an tangent to the

kernel of d(pdq— Hdt) and P(K) is foliated by such curves. Now apply Stoke’s
theorem, and decomposing 9K as {0,1} x [0,1]Ju[0,1] x {0,1}, we get

fpdq= ) pdq—Hdt= ) pdq—Hdt
9 ¥({0, 1] X [0, 1]) w[(0, 11x{0, 1))
= | pdg—Hdt— | pdq—Hdt= | pdq—Hdt.
we(x) we(z) we(x)

The last equality holds because y,(z)=z and H(t,z)=0. O

Corollary 4.3. Let ¢ be a conformal map isotopic to the identity in the set of
conformal maps i.e. p =@, po=1d with ¢}w= A(t)w. Then, for any symplectic (not
necessarily compact supported) diffeomorphism of R*", we have

cilope =22 ()c,(y), c_(pwe™ ") =A1)*c-(v),
and

Wowe ™ 1)=12 ().
Proof. If x, y are fixed points of i, then ¢,(x), ¢/(y) are fixed points of ¢,pe, !, and

(), @(y)) = A(t)*I(x, y)

1 . . . .
s0 W c. (o, ') has values in a totally discontinuous set, hence is independent
of t. The same holds for c_ and y. [
One of the main tools in the applications of c¢_, ¢,y is given by

Proposition 4.4.
cilep)=c.(9)+c.(v),

c_(pp)2c_(p)+c_(w),
o) <y(e)+y(v).
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Proof. It follows from Corollary 3.6 which states
C(uv, lII(L)) é c(u, L) + C(U, v 1(05))
applied to the extension of ¥ =y xId to T*S*" and L=T1,,. [J

Corollary 4.5. Let ¢, be an isotopy in #°(U), and y an element in # °(IR*") such that
Y(U)NU =0. Then we have

crwe)=ci(w), c-_(po)=c_(y).
As a result we get ¢ . (9)<y(p) and —c_(p) <y(y).

Proof. Let x be a fixed point of we,. If x is such a point, then x is not in U for
otherwise ¢,(x) would be in U thus contradicting the assumption that y(U)nU =.
Since ¢, =id outside U, we have that x must be a fixed point of . Now let x, y be
two fixed points of ypo¢@, (and thus of y). Then the number I(x,y;ype,) is
independent of t. We choose a path y, joining x to y, then

Yo w@(rr =71 0w Do wr) e wdrr =710 wri ) ow(yy oy ).

First observe that the area of the closed loop y(y, o ¢,(y; !)) is the same as that of
71 ° ¢dy; ') whichis equal to I(x, y; ¢,), it is enough to show that this last quantity is
zero. But by the proof of 4.2, I(x, y; ¢,) is also given by
| pdg—Hdt— | pdq—Hdt.
belx) 6y

Since ¢/(x)=x; ¢(y)=y and H(t,x)=H(t,y)=0, the area of y, - ¢,(y; !) vanishes.
The area we are looking for is therefore the area of y, o y(y; !), that is I(x, y; ), and
this proves our claim.

Our now classical argument shows that ¢ . ( o ¢,) is independent of ¢, and the
same holds for c¢_,y. Now we apply 4.4

C+(‘P¢)+C+(V)_l)gc+(¢)
since ¢, (p@)=c (), c.(y~")= —c_(y) we get

(@) =v(y).
The other inequality follows similarly. [

Proposition 4.6. Let H,(t,x), H,(t, x) be two compact supported Hamiltonians, p,
and y, the time one maps of the associated flow. Assume H (t,x) < H,(t,x) for all x
and t. Then ¢, (p,)Sc,(p,) and c_(p)Sc_(y,).

Proof. Let K((x, y,t) be defined on T*RR" x T*IR" by K (x, y,t)= H,(y,t), and the
same for K,. Then the time one flow of the Hamiltonian vector field associated to
K, is (Id,y,) and so sends the diagonal to the graph of y,. K, has an obvious
extension to T*S*" and his time one flow sends the zero action to [, . The same
holds for K, and of course K; < K,. We consider H,(t, x) to be a linear homotopy
from H, to H, and K, the corresponding function on T*R" x T*R". We first
prove:

Lemma 4.7. Let S, be a continuous one parameter family of functions, and let c(A)
=c(u, S,) be a critical value obtained by minmax. We assume that: dS,(x)= 0 implies

0
EY S:(x)=20.
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Then c(A) is non decreasing.
Proof. We first make the stronger assumption that for x a critical point of S;, we

have %S A(x)>0. We also assume that the family S, is generic, i.e. each S, has

Morse critical points with distinct critical values, except for a finite number of
values of 4, that we shall denote by 4, <4,<...<A. Nowif A€]4;, 4;, [ then we
may follow the unique critical point with critical value c(4), let x; be this critical
point. Then

d d 0 d
7= 77 (8:x2)= 27 5;00) +dS,0x,) 77 x5

Because X is a critical point of S, the second term is zero while the first one is
positive by assumption. Thus ¢ is a continuous function with strictly positive
derivative except at finitely many points. It is thus increasing. It is now easy to
conclude in the general case. First the genericity assumption on the family is easily
removed by approximation in the C' topology. This will not destroy the stronger
hypothesis we made at the beginning of the proof, since the critical points of the
perturbed family are in a neighbourhood of the critical point of the old one. If we
now consider a sequence of generic families converging to the original one, since
¢(u, S) depends continuously on S in the C' topology, we get that c() is non
decreasing. Finally the stronger assumption we made is easily removed by
replacing S, by S, + ¢4 for ¢ arbitrarily small. []

We may now prove the proposition. Let p}(x;) be the flow of H (t, x), and ¢,(t)
=p}(x,). According to 4.2, we have for a critical point x; of a gfq.i. S, of L,, the
graph of ?, that

Si(xz)= _sjl ¢%[pdq—H,dt].

It is easy to check that
9
04

The above result has two applications. The first is to generalize the notion of
time one flow of a nonnegative Hamiltonian terms of the invariants that we
defined. To begin with, we have:

$,00= | 26§20, O

Corollary 4.8. If v is the time one map of the flow generated by a nonnegative
Hamiltonian H(t, x), then c _(y)=0. If H(t,x)=¢&>0 for (t,x) in Jto, t;[ x B(n), then
c+(y)>0.

Proof. Because H=0, c_(y)=c_(Id)=0 and since c_(p) <0 we get ¢_(y)=0.

We now prove that if H(t, x) = & >0 for (¢, x) in Jto, t, [ x B(1), then c , () >0. This
will conclude our proof.

For this it is enough to construct some nonnegative Hamiltonian H, such that
H,, has support in Jt,, T,[ x B(y), is bounded by ¢, and such that ¢, the time one
flow associated to H,, is not the identity. Indeed, we will have, according to the first
part of our corollary, c¢_(¢)=0. Since ¢ +id, c,(¢)>0, and because H,<H,
0<cy(p)<cilyp). O

From 4.7 we see that the property of being the time one flow for a nonnegative
Hamiltonian implies ¢ _(y)= 0. We can thus define a partial order relation, that we
denote by <:
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Definition 4.9. For ¢,y in #°(R?") we write <y if and only if c_(pp ~1)=0.
Proposition 4.10.

(1) ld<yp=yp '<Id,
(2 Y1 <P, <= oY <PYP,,
3) 0, <@, and Y, <P, =@, <Qp,.

Proof. Clearly (3)-(2)—(1). Now ¢y, <@,yp, means c_(¢,yp,p; o7 1)=0. But
e (@201 "1 N=c_(o1 '92w2w1 N2 (97 '@r) +e_(waypr ')
since @, > @, P, >, the right hand side is zero, and so is the left hand side. [

Now let yp>1Id, then y*<Id for all positive k, moreover c,(p*)<c,(yp**!)
+c,(p™Y) since c (p™)=—c_(p)=0 we get that the sequence c,(y*) is
increasing. Thus either c , (p*) goes to infinity, or it converges to some finite value.

In fact we see that ¢ (y*) is bounded by the following argument. Denote by U
the support of y,, and let ¢ be an element of #°(IR2") such that p(U)nU = . By 4.5,
we have y(p)=c. (y*) hence our result. In fact we just showed that

sup{c . (y)|support(y) CU} <inf{y(@)| p(U)nU =0} .
We now set

Definition 4.11. We define c(U) as sup{c. (y)|support(p)C U} whenever U is an
open bounded set of R?", and y(U) as inf{y()|p(U)nU =0}.

We may thus summarize our findings in
Proposition 4.12. (1) If support(¢)C U, and p(U)nU =0

(P =cU) =AU =y(w).

) If Id< the increasing sequence c . (v*) has a limit, denoted by
Ci(p).

We now get a result on periodic points of compactly supported Hamiltonian
systems.

Note that if x, (k), x_(k) are fixed points of y* given by Proposition 4.2, then
x 4 (k)= x ,.(kl) implies that c . (") =lc , (y*), since if y is a path from x , (k) to zand g
the loop y- ¥y~ 1), then

Y- M) 2g i) .. v T (g)

i.e. both sides have the same area. But the area of the right hand side is [ times the
area of g (because  is symplectic) hence our result.

Proposition 4.13. (1) Assume Id<y. We set Per(N,y)={periodic orbits of v in
supp(y) of period k with 1<k<N}. Then card Per(N,y)=Cx N for some
C=C(y).

(2) In general v has infinitely many periodic points.

Proof. We assume y # Id otherwise the result is trivial. Let ¢, =c , (p*) then if x, is a

.. . . 1 1
critical point associated to c;, we have x, % x; unless =T Now let k(n) be a
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sequence defined inductively as follows:

k(n+1)=inf{k>k(n)|k>k(n)x G }

Ck(n)

Because ¢, <c,, <c(supp(y)), the above sequence is well defined. Moreover

1 . . . ..
because the sequence E(T)C"(n) is strictly decreasing, the points x,,, are all distinct.

Now we wish to estimate k(n). Note that

k(n+1) < Skt 1) 1
k(n) — cim k(n)

C, .
Let ***1 —1 4, we may write
Ckm

N-1 1 N-1 1
k(N)= i1='[1 <1 +&;+ k—(;)> <1l (1 +&;+ }>

i=1

N-1 1 1 N—-1 1 ]
< I - &,
ST( ) (14 w)

a0 C . .
Now [] (1+¢)= ci’ is a convergent product, thus the same is true for
Ll .

it J
14 ——¢.
JJl( +j+18’>

. . .. C
since ¢;>0. Let y be its limit, then we have y< C—°° and
1

k(N)gyITJ]_:[1<1+;—,)=y-N

. . 1
and (1) is proved with C=- 2= el

(2)follows from considering an infinite sequence y*~ such that ¢ L) >0(ifk, is
free to have any sign, such a sequence always exists). Then because ¢, (y*") is
bounded, the sequence cannot be made of multiples of a finite number of terms,
and the above argument applies. [

We now apply 4.6 to study the continuity of the invariants that we defined.

Proposition 4.14. Let H,, H, be two compact supported Hamiltonians. Let y,,,, be
the associated time one flows. If |H, — H,|<¢, then we have: |y(p,)—y(p,)|Se. In
other words if Co(R?" x [0,1],IR) is the set of compact supported C? Hamiltonians,
the map from Co(R?" x [0,1],R) to R, that associates to H the number y(y), i.e. the
capacity of its time one flow is continuous for the C° topology.

Proof. Let Hg be a Hamiltonian such that
Hg(x)= hg(1x]),
hg(s)=1 for s=R,
hg(s)=0 for s=3R,
|W(s)|]<1 foralls.

with:
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Weset Hg ,=¢Hpg fore<1,and ¢y, is the time one flow of Hy ,. Note that there is
no nonconstant one periodic orbit for ¢ ,, hence, using Proposition 4.2, we see
that y(¢g ) <1. Now, our assumptions imply that H,<H, +H r,» and since Hy ,
and H, have disjoint support, the flow associated to H, + H R.: 18 Py o Pg .. Using
Proposition 4.6, we get the inequality

Yw2) S9(wi) +7(Pr,.)

W) () +e.
By exchanging H, and H,, we get the proposition. [

We also have another type of C° continuity, which answers a question by
J. Moser. We would like to thank him for his suggestion.

ie.

Proposition 4.15. There is a constant C, independent of R and e, such that if ¢ has
support in B(0,R), and d(x, ¢(x))< ¢ for all x, then

@)= CeR.

More generally, the functions y,c,,c_ are continuous on #°(R*") for the C°
topology.

Remark. (1) One may explicitely compute C, an unchecked computation yields
C=4n.

(2) The above proposition is not symplectically invariant, ie. if ¢ satisfies the
assumptions of the proposition, oy ™! will not in general. As a result, the above

proposition does not imply that y(¢) < Cé|/ c(supp(9)), or that y(¢) < CeR whene-
ver d(x, p(x))<¢ and supp(¢p) can be embedded in B(0, R).
(3) We shall see that we can have y(¢p)=3¢R.

Proof of Proposition 4.15. Let y be a compact supported symplectic map. For z a
fixed point of y, we consider I(z, ) to be the number I(z, o) as defined above in this
section, i.e. it is the symplectic area bounded by the loop ¢ o p(c ~ 1), where cis a path
from z to oo.

We first need

Lemma. For any £>0, R> Cé, there exist a symplectic diffeomorphism with compact
support such that

1) v has its support in B(0,2R),
2 d(x,p(x))>¢ in B(O,R),
3) 0<lz,p)< —g—sR for any z such that y(z)=z.

We postpone the proof of the lemma to conclude the proof of the proposition.
According to Proposition 4.4, we may estimate

W) Sp(w ™)+ 1(we).

According to Proposition 4.2, c,(p9)<2l(z.,pe) for some z, satisfying
Yo(z,)=z,. We take for ¢ the map given by the lemma. Then y¢(z) =z can only
happen if ¢(z)=2z and y(z)=z. Indeed,

d(o(2), p(e(2)) =d(z, p(z)) S &
so using (2) ¢(z) ¢ B(0, R) hence z ¢ B(0, R) and thus ¢(z)=z.
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We may conclude that I(z, pe)=1(z,p) < %BR so that

C
c.(pg)< S>eR, ¢ (vp)=0.
. -1 CO
Using 4.2 once more, we see that y(y~ ') < TsR, thus

C C
WQ)SHw™ ) +1(we) < - eR+ =2 eR< CoeR
provided C,e < R. On the other hand because the support of ¢ isin B(0, R), we have
(@) = C(B**(R))=nR? (follows from Proposition 4.12 and Definition 4.11), so that
if Coe=R, y(9)<nR?<nCyeR, thus we may set C=nC,. [

Proof of the lemma. The idea is to extend the translation by a vector of norme to a
symplectic diffeomorphism with support in B(0,2R). We first notice that if we
constructed y, g for e<Cy, R=1, we may set y, g(z) =Ry, g, 1(z/R).

We now set y; ; =y,

1y, will be the flow of the followmg Hamiltonian
— H(x,y)=0+((x,&)+1) — where ¢ is a unit vector —, if [x|*<1, [y]*<%.

- 0L H(x,y)<1+26 for all (x,y) in B(0,2R).
— H(x,y)=0 outside B(0,2R).

Note that for (x,y)eB(0,1), and s<%, we have y(x,y)=(x,y—s€) thus
d(z, w,(z)) = 5. The last step is to prove that 0 <l(z, y,) < Cs if s < 4. For this we notice
that if z is a fixed point of the flow, i.e. H'(z)=0, then we have that I(z, p,)=sH(z).

Now for s <s,, (Where s, is less than the smallest period of a non trivial closed
orbit of the flow, which is strictly positive), y,(z)=z => H'(z)=0 and thus

0=z, py2) <s(14+20)<3s
for 6<%

13
Let Cy=sup (S—, 5) then we have proved
0

Ve,R R=Cgye we have d(z,y,g(z)) 2 ¢ and
Co
0 =< l(Z, lpe/R(z)) 8R D

One may in fact check that y(yp,) =3s, and thus y(ip, g) 23¢R while d(z, p, g(2))
<2¢ and suppy, x=B(0,2R). Thus our proposition can not be that much
improved.

We leave the following easy generalization to the reader

Proposition 4.17. Given any compact set W inRR*", there is a constant C(W) such that
Vx  d(x, o(x)) Se=)(¢) = C(W)eR

if supp(¢)CR-W.

Remark. Note that the quantlty C(W)is not a symplectic invariant of W, it depends
also on the metric on IR?". It is however invariant by an isometry of the Kéhler
structure.
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From the above results we get the following

Corollary 4.18. Let H,, be a sequence of Hamiltonians such that their time one flow
v, converges in the C° topology to a symplectic map y. Then if H, converges in the
C° topology to a Hamiltonian H with time one flow ¢, then we have Y()=y(¢) (and
also ¢, (p)=c.(®), c_(y)=c_(¢)).

Note added in proof. Corollary 4.18 may be improved to conclude that ¢ = . Indeed, ¢ ~ 'y, is the
time one flow of H,(t, ¢(2))— H(t, ¢,(2)). Since this goes to zero in the C° topology, ¢ ~ 'y, goes to
the identity, hence g =1.

Using the fact that y(¢)=0 only for ¢ =1d this implies as a special case the
following result by Hofer:

Corollary 4.19 (cf. [H]). Let H, be a sequence of compact supported Hamiltonians
such that H n—o~ 0, and their time one maps v, converge C° to some map . Then

yp=Id.

5 On the effect of symplectic reduction and the camel problem

Consider two compact manifolds ¥, W, and let L be a Lagrange submanifold of
T*(V x W).For almost every win W, Lis transverse to T*V x T.*W, so that we may
define the reduction L,, of LnT*V x T*W.

Now if L has the g.£.q.i. S: E- IR defined on the vector bundle E— V' x W, then
L, has the gfq.i. S, =8,- 1 xwy: E,—R.

Note that L,, is not necessarily isotopic to the zero section, even if L is. In this
case we cannot speak about c(a, L,), since the number in Definition 2.1 might
depend on the choice of a generating function for L,, however we may define
c(a, S,,)-

We may now state

Proposition 5.1. For o in H*(V), we have, if S is a gf.q.i. for L,
c(a®1,L)<infc(a, S,,)

é sup c(a, Sw) é C(a®/lw, L) .

Proof. Consider the sequences

H*(Vx W)—— H*E®, E~®)— H*E* E~®)

H*(V) —— H¥(EZ, E;®)— H*E2, E; )

where the map H*(V x W)— H*(V) is induced by the injection V-V x {w}CVx W,
and coincides with the composition of the projection on H*(V)® H°(W) and the
obvious identification H*(V)Q H(W)—H*(V).

Now if the image of T(«) is nonzero in H*(EZ, E,, ©) that is for 1> c(a, L), we
must have that the image of T(a®1) in H*(E*, E~ ) is nonzero, that is
AZc(a®1, L). Thus we proved that if 1> c(a, S,,) then 42 c(x®1, L) that is c(a, S,,)
2c(a®1, L). Since this holds for every w e W we get the first inequality. The second
inequality is trivial, and the third one is obtained from the first one by changing L
to L.

We now consider an open set U in R***™_ and the family of its reductions,

U,=(UnR*"xR™x {0})/{0} x R™.
We wish to estimate c(U) using the U,
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First of all we slightly change our familiar setting. If y is in #°(R*"*™), we
consider again I, in T*Agznxgom Now instead of compactifying IR*" xR*™ to
§2m*m we may compactify it to S?"xS?™ and I, becomes a Lagrange
submanifold of T*(S?"x S?™). We may thus consider four numbers, namely
(1®1, 1), (1@ psam IL,), c(isnp1s1},), and c(psan® psan, I). Accordingly, as in
Definition 4.11, we may define c(a, U), (o, U) for o one of the above four
cohomology classes. []

We shall first need to slightly extend several notions that have been introduced
in the previous sections.

First of all, we may generalize the capacities defined in Sect. 4 to the case of
compact supported Hamiltonian isotopies of IR2" x T*T*(T*is the k dimensional
torus).

This is easy if we notice that such isotopy, y,, may be lifted to an isotopy §, of
R2" x R2™ such that §,(x +v)={,(x)+v for ve {0} x Z*.

Thus I, is such that if (x,y)e I, then (x+v,y+v)ely, this means that

I},Ciﬂxﬁ x R?" x R%* = T*(Agan x g2x)

descends to the quotient T*(Agzn+i X T*).

Let fw be the Lagrange submanifold thus obtained, it is easy to see that fw
coincides with the zero section outside a compact set (because v, is compact
supported).

We may again compactify T*[R>"** x T¥) into T*(S*"** x T*), and I, may be
compactified into I}, in T*(S2"**x T*). Now, if «a®p is a cohomology class in
H*(S?"**® H*(T*), we may define c(a®p, I ).

We may now prove

Proposition 5.2. c(us.-®1, U) <infy(U,,).

Proof. It is clear from 5.1 that the following is true:
c(“S2"® 1, IP) = infc(u’ Sw)

where S is a gf.q.i. for I, and y is in #°(U).

Now let i, be a symplectic isotopy supported in U with y,=id, §’ a gfq.i. for
I, and S, its restriction to n~'($*" x {w}). We are going to show that c(u, S)
=y(U,)

Let ¢ be an element in #°(IR>") such that (U, )nU,,=@. We denote by ¢S, the
generating function of ¢L,, obtained from S},. Now the proof of Proposition 3.5
applies, and we may state with ¢=¢ xid

e, $S,)=c(%, S, — @~ (Os20))
where ¢~ !(Og:n) denotes any gf.q.i. of this manifold.

Because c(a, S.,) is one of the numbers I(x,y) associated to @L,, and L,
coincides with 4,, outside U,, x U,, the proof of Corollary 4.5 carries over, thus

concluding our proof. [

The “camel problem” can be stated as follows: there is no symplecticisotopy, ¥,
with support in (R?"—IR 2"~ ')UB*"(g), such that y,=id and y, sends a ball
of radius r> ¢ contained in one component of R?"—IR?"~! in to the other com-
ponent.
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In other terms a ball of radius r > ¢ cannot “go through a hole of radius ¢” (see
also [Ar, V3] for historical details). In fact this may be generalized as follows: let
VCR* ™! be such that its reduction has capacity y(V/R). Then U cannot go
through R?"~! — ¥ unless c(U) < y(V/R).

To keep our proof simple, we shall only consider the case of balls, but with a
little more work, we could easily extend our proof to this more general case.

An alternative (unpublished) proof is due to Gromov, and Eliashberg using the
technique developed in [Gr1]. I wish to thank them for enlightening discussions.

We now go back to the camel problem. Let y, be a compact supported
Hamiltonian isotopy such that y, sends a ball B, of radius r from one side to the
other of the hyperplane R?"~! x {0}. We then have

Proposition 5.3. Let Vbe |) w/(B)nR*""! x {0}, and V/R be the quotient of V
te[0,1]
by the characteristic foliation in R?"~1.

Then V/R is a subset of R*"~2 such that y(V/R)=nr>.

Before we prove the above proposition, we shall make some simplifying
assumptions.
We take on R*", the coordinates (g, p,q,,p,)€ R*"~2 x R?, the hyperplane
IR?>"~! x {0} is then given by {p,=0}.
Without modifying V=) w(B,)nR*"~* x {0}, we may assume that
t

1) For some ¢>r we have

0
Ydq5 Dy Gus P+ C) =YUq, P, 4> )+ € I
Pn

Y1(q> P> s Pw) =(4, P, Gy Pu+C),
2 y, is defined for all £’s and v, , , =y, o y,.

This follows easily from the fact that all symplectic embeddings of B, into the
half space R*"~! xR, are symplectically isotopic, and from the extension of
isotopies.

Now let H(t,q,p,q,, p,) be the Hamiltonian generating y,. We shall define a
symplectic map ¥:R*"*2R2"*2 by

¥(q, D 4> P t, h) = (94, P, 4,, D), &, B+ H(t, , P, 4, D)
We infer from (1) and (2) that

_ _ 0 0
lP(q,P’ qmpn'l'kc’ t+la h)= .P(qa D> qns pn)+kca—pn +l§
: 2n—2 2 2n+2 a a 73
This means that on R?" "2 x T*T?~R an’— +Zé} , ¥ descends to a

map W= lpl.
If we denote by ¥, the map obtained above by taking

V4> P, 4w Pn)=(4; P, 4 Pu 1),
it is easy to see that ¥, is symplectically isotopic to ¥,. [
Now let U(r) be ¥,(B*"(r) x T*S!), we have
Lemma 5.4. c(u®d(p, + ct)®1, U(r)) = nr?.
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Proof. For simplicity, we assume c=1. Clearly

c(u®d(p,+t)®1, ¥, (B*"(r) x T*S")
=c(u®d(p, +)®1, ¥o(B>"(r) x T*S"))
=(PHu®d(p,+t)®1), B*(r) x T*S")
=c(u®dp,®1, B>"(r) x T*S")
=c(u®dp,, B*(r)=mr?.
Lemma 5.5.

c(u®d(p, +1)®1, U(r) =y (H, te{%} i p(BX(r)NR*" ™ x {0}/1R> =7 V/R).

Proof. If we remark that the torus T2 ={(p,,t)€ S ! x §} can also be written as the
product of the circles {p,+t=0} and {p,=0}, we see that according to
Proposition 5.2, we may infer that

o(u®d(p, +1)®1, U(M) < infy(u®d(p, +1), U()n{p,=s}/R)

<y(p®d(p,+1), U(r)n{p,=0}/R).
Now

U(r)n{p,=0}/RC (t[kéJ l]w,(Bz..(,))anzn—x X {0}/]R> x T*S'=V/R x T*S* .

Since p(u®d(p,+1), V/R x T*S*)=y(y, V/R) according to 5.2, this concludes our
proof. [

Remark. The same proof yields the following result. Let
He)=R*"—R" x RHUB"(¢)

be the complement of a punctured coisotropic subspace in R?", and
SEmb(B*"(r), H4¢)) be the space of symplectic embeddings of the ball in HX),
0SEmb(B?"(r), H*(¢)) be the subspace of those embeddings with their image outside
a large ball of R?". Then one may prove that

Ty - 1(8 SEmb(B*'(r), H(£)) > 7, - (SEmb(B"(r), H'(2)))

is zero if and only if r<e.

6 On some properties of simple manifolds

We consider the hypersurfaces introduced by Eliashberg in [El], which satisfy the
following two properties

(i) = coincides with Zo={(g,q, P, Ps)|P,=0} outside Ux[0,1]xR (U is a
compact subset of R?"~?2),

(ii) a characteristic of 2 which intersects U x {0} x {0}, also intersects
U x {1} x {0}.

We shall usually summarize (i) by saying that all characteristics of Z “go from
one side to the other”, and call a hypersurface satisfying the above conditions,
simple.

To a simple hypersurface X, one may associate
— a symplectic diffeomorphism of R?"~2, ¢, which coincides with the identity
outside U, defined by the property: y = @5(x) <> (x,0,0) and (y, 1,0) are on the same
characteristic of X.
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— a Lagrange submanifold of R?"~2 x R?",

Zr={(x,y)eRR*""2xR?"|ye X, and is on the characteristic
of X which goes through (x,0,0)} .

Note that the reduction of #; by {q,=1} is the graph of ¢;. Note also that if
H(t, x) is a time dependent compact supported Hamiltonian on IR2"~ 2, with time

one flow ¢, then for
2 ={(x,t,h)e R*"|h=H(t, x)}
we have p;=¢.
[Remark: We had to assume H(t, x) =0 for ¢ ¢ [0, 1], but we can always do so by
replacing H(t, x) by H(t, x) —a(t), since H(t, x) does not depend on x for ¢ ¢[0,1].]
We now, as in Sect. 4, replace R?"~2 x R?" by T*R?""! using the map

q+Q p+P )

(q,p’Q’QmP9Pn)—’< 2 ,T,QmP—P,q—Q,P,.

Note that for Z,=R?""! x {0}, £, =%, goes to the zero section. We now
compactify &; and the zero section %, to $*"~% x S*, the S* direction being given
by Q..

In order to do this we need that ¥;=%; outside a compact set, and this
happens if and only if ¢, =id. This is slightly unpleasant, since we want to relate @,
to X, so we operate as follows: change X on U x [1,2] x {0} (where ;= %5 ) to the
graph of a Hamiltonian K(t, x) such that its time one map is ¢; !. We thus get a
simple hypersurface 2. We may now compactify simultaneously %5 and ., and
get a Lagrange submanifold ;. of T*L; =T*(S*"~2x S*).

Definition 6.1. For
a®ﬂe H*(SZn—Z X Sl)= H*(sZn—2)®H*(Sl) s

we set c(a® B, 2’) for c(x® B, Ly).

However if 2" is obtained from X as explained above, we keep the notation ¢y
for the symplectomorphism (usually not the identity) defined before.

We may prove

Proposition 6.2. d(1®1,Z)Sc_(p) 1@, 2),

c(u®1,2)=c (@)= c(u®u, ).

Proof. Follows immediately from Proposition 5.1 and the fact that I, is the
reduction of %5 by {Q,=1}. O

Remember that Corollary 4.7 told us that if ¢ is the flow of a nonnegative
Hamiltonian, then ¢ _(p)=0. We wish to generalize this statement as follows.

Proposition 6.3. Assume X to be contained in R*""* xR . Then c_(p;)=0, i.e.

Proof. Let (x,y,Q,) be coordinates on Py, (x,y,Q,,¢,1,P,) be coordinates in
T* %5, Let S(x, y,Q,, () be a gfq.i. for s, then S(x, y,1,{) is a gf.q.i. for I, and
S(x, y,Q,, &) is a quadratic form in ¢ for Q,=0. For each 6 € S*, denote by S(x, y, &)
the restriction of S to {Q,=0}. Then c(1, S,) is zero for =0, is equal to c _(¢jy) for
08, 0S S .. 0Sg _ .
30 =30, P,>0for 6e[0,1] if FE (x,y,8)=0, we get as in the
proof of Proposition 4.6 that c(1, S) is a nondecreasing function on [ —1,0]. But
since (1, S,)=0 and c_(¢;) <0, we clearly get c_(¢0y)=0. [

0=1 and since
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